JP2023128368A - Electrochemical cell and method for manufacturing the same - Google Patents

Electrochemical cell and method for manufacturing the same Download PDF

Info

Publication number
JP2023128368A
JP2023128368A JP2022032672A JP2022032672A JP2023128368A JP 2023128368 A JP2023128368 A JP 2023128368A JP 2022032672 A JP2022032672 A JP 2022032672A JP 2022032672 A JP2022032672 A JP 2022032672A JP 2023128368 A JP2023128368 A JP 2023128368A
Authority
JP
Japan
Prior art keywords
positive electrode
negative electrode
solid electrolyte
layer
electrolyte layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022032672A
Other languages
Japanese (ja)
Inventor
竜 鈴木
Ryu Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2022032672A priority Critical patent/JP2023128368A/en
Priority to PCT/JP2022/047130 priority patent/WO2023166824A1/en
Publication of JP2023128368A publication Critical patent/JP2023128368A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

To provide an electrochemical cell that can further improve electric capacity and a battery life and a method for manufacturing the same.SOLUTION: An electrochemical cell includes: a positive electrode layer 20 containing a positive electrode active material; a negative electrode layer 30 containing a negative electrode active material; and a solid electrolytic layer 10 containing a solid electrolytic material. The solid electrolytic layer 10 is located between the positive electrode layer 20 and the negative electrode layer 30. The solid electrolytic layer 10 is open to the positive electrode layer 20 side and has a positive electrode recess 11 into which the positive electrode layer 20 enters. The solid electrolytic layer 10 is open to the negative electrode layer 30 side and has a negative electrode recess 15 into which the negative electrode layer 30 enters. The positive electrode recess 11 and the negative electrode recess 15 are deviated in a surface direction of the solid electrolyte layer 10.SELECTED DRAWING: Figure 2

Description

本発明は、電気化学セルの製造方法及び電気化学セルに関する。 The present invention relates to a method for manufacturing an electrochemical cell and an electrochemical cell.

リチウムイオン二次電池の電解液や、電解液を高分子ポリマーに保持させたゲル電解質に代えて、無機材料からなる固体電解質を用いる全固体電池(電気化学セル)が知られている。
全固体電池においては、無機材料間の接触抵抗に起因して、固体電解質内部の内部抵抗が高くなる。
All-solid-state batteries (electrochemical cells) are known that use a solid electrolyte made of an inorganic material instead of the electrolyte of a lithium ion secondary battery or a gel electrolyte in which the electrolyte is held in a polymer.
In all-solid-state batteries, internal resistance inside the solid electrolyte increases due to contact resistance between inorganic materials.

こうした問題に対して、例えば、特許文献1には、固体電解質を含む固体電解質層の表面に凹凸を形成して内部抵抗を低減した全固体電池が提案されている。 To address these problems, for example, Patent Document 1 proposes an all-solid-state battery in which the internal resistance is reduced by forming irregularities on the surface of a solid electrolyte layer containing a solid electrolyte.

特開2008-243735号公報Japanese Patent Application Publication No. 2008-243735

特許文献1の全固体電池(リチウムイオン二次電池)に用いられる電極体100は、図15に示すように、正極層120と、負極層130と、正極層120と負極層130との間に位置する固体電解質層110とを有する。固体電解質層110には、正極層120に向いて開口する正極凹部111が形成されている。これにより、断面視において、固体電解質層110の正極層120側には、正極凹部111と正極凸部112とが交互に形成されている。固体電解質層110には、負極層130に向いて開口する負極凹部115が形成されている。これにより、断面視において、固体電解質層110の負極層130側には、負極凹部115と負極凸部116とが交互に形成されている。 As shown in FIG. 15, the electrode body 100 used in the all-solid-state battery (lithium ion secondary battery) of Patent Document 1 includes a positive electrode layer 120, a negative electrode layer 130, and a structure between the positive electrode layer 120 and the negative electrode layer 130. and a solid electrolyte layer 110 located thereon. A positive electrode recess 111 that opens toward the positive electrode layer 120 is formed in the solid electrolyte layer 110 . Thereby, in a cross-sectional view, positive electrode recesses 111 and positive electrode protrusions 112 are alternately formed on the positive electrode layer 120 side of the solid electrolyte layer 110. A negative electrode recess 115 opening toward the negative electrode layer 130 is formed in the solid electrolyte layer 110 . Thereby, in a cross-sectional view, negative electrode recesses 115 and negative electrode protrusions 116 are alternately formed on the negative electrode layer 130 side of the solid electrolyte layer 110.

特許文献1の発明は、正極凹部111と負極凹部115との距離D8と、正極凸部112と負極凸部116との距離D9とが異なる。すなわち、正極層120と負極層130との距離が不均一となっている。このため、固体電解質層110の内部抵抗が低いところと高いところとができ、電流密度に差ができ、電池反応が不均一になる。その結果、全固体電池の電極利用率(電気容量)の低下や、特定部位の劣化が促進されることによる電池寿命の低下が起きる。 In the invention of Patent Document 1, the distance D8 between the positive electrode recess 111 and the negative electrode recess 115 is different from the distance D9 between the positive electrode projection 112 and the negative electrode projection 116. That is, the distance between the positive electrode layer 120 and the negative electrode layer 130 is non-uniform. For this reason, the solid electrolyte layer 110 has low internal resistance and high internal resistance in some areas, resulting in a difference in current density and non-uniform battery reaction. As a result, the electrode utilization rate (electrical capacity) of the all-solid-state battery decreases, and the battery life decreases due to accelerated deterioration of specific parts.

そこで、本発明は、電気容量をより高められ、電池寿命をより高められる電気化学セル及び電気化学セルの製造方法を目的とする。 Therefore, an object of the present invention is to provide an electrochemical cell and a method for manufacturing the electrochemical cell that can further increase the electric capacity and battery life.

上記課題を解決するために、本発明は以下の態様を有する。
本発明に係る電気化学セルは、正極活物質を含む正極層と、負極活物質を含む負極層と、固体電解質を含む固体電解質層と、を有し、前記固体電解質層は、前記正極層と前記負極層との間に位置し、前記固体電解質層は、前記正極層側に開口し、前記正極層が入り込む正極凹部を有し、前記固体電解質層は、前記負極層側に開口し、前記負極層が入り込む負極凹部を有し、前記正極凹部と、前記負極凹部とが、前記固体電解質層の面方向にずれている。
In order to solve the above problems, the present invention has the following aspects.
The electrochemical cell according to the present invention includes a positive electrode layer containing a positive electrode active material, a negative electrode layer containing a negative electrode active material, and a solid electrolyte layer containing a solid electrolyte, and the solid electrolyte layer is different from the positive electrode layer. The solid electrolyte layer is located between the negative electrode layer and has a positive electrode recess that opens toward the positive electrode layer and into which the positive electrode layer enters, and the solid electrolyte layer opens toward the negative electrode layer and has a positive electrode recess into which the positive electrode layer enters. It has a negative electrode recess into which the negative electrode layer enters, and the positive electrode recess and the negative electrode recess are offset in the plane direction of the solid electrolyte layer.

この構成によれば、固体電解質層の内部抵抗を均一にでき、電流密度の均一性を高められる。このため、電気容量をより高められ、電池寿命をより高められる。 According to this configuration, the internal resistance of the solid electrolyte layer can be made uniform, and the uniformity of the current density can be improved. Therefore, the electric capacity can be further increased and the battery life can be further increased.

また、前記固体電解質層は、前記正極凹部及び前記負極凹部を各々2個以上有し、平面視において、前記固体電解質層の面方向で、前記正極凹部と、前記負極凹部とが交互に位置していてもよい。
この構成によれば、電流密度の均一性をさらに高められる。
Further, the solid electrolyte layer has at least two positive electrode recesses and two or more negative electrode recesses, and in plan view, the positive electrode recesses and the negative electrode recesses are alternately located in the surface direction of the solid electrolyte layer. You can leave it there.
According to this configuration, the uniformity of current density can be further improved.

また、前記正極凹部の深さが、前記固体電解質層の厚さの1/2よりも深く、前記負極凹部の深さが、前記固体電解質層の厚さの1/2よりも深くてもよい。
この構成によれば、電気容量をさらに高められる。
Further, the depth of the positive electrode recess may be deeper than 1/2 of the thickness of the solid electrolyte layer, and the depth of the negative electrode recess may be deeper than 1/2 of the thickness of the solid electrolyte layer. .
According to this configuration, the electric capacity can be further increased.

また、前記固体電解質層の厚さと前記正極凹部の深さとの差と、前記固体電解質層の厚さと前記負極凹部の深さとの差と、前記固体電解質層の厚さ方向の断面視における前記正極凹部と前記負極凹部との距離と、が互いに等しくてもよい。
この構成によれば、電流密度の均一性をさらに高められる。
Also, the difference between the thickness of the solid electrolyte layer and the depth of the positive electrode recess, the difference between the thickness of the solid electrolyte layer and the depth of the negative electrode recess, and the positive electrode in a cross-sectional view in the thickness direction of the solid electrolyte layer. The distance between the recess and the negative electrode recess may be equal to each other.
According to this configuration, the uniformity of current density can be further improved.

本発明の電気化学セルの製造方法は、正極活物質を含む正極層と、負極活物質を含む負極層と、固体電解質を含む固体電解質層と、を有し、前記固体電解質層が、前記正極層と前記負極層との間に位置する電気化学セルの製造方法であって、前記固体電解質層の前記正極層側に開口し、前記正極層が入り込む正極凹部と、前記固体電解質層の前記負極層側に開口し、前記負極層が入り込む負極凹部とを、前記固体電解質層の面方向にずらして位置させる。 The method for manufacturing an electrochemical cell of the present invention includes a positive electrode layer containing a positive electrode active material, a negative electrode layer containing a negative electrode active material, and a solid electrolyte layer containing a solid electrolyte, wherein the solid electrolyte layer is connected to the positive electrode. A method for manufacturing an electrochemical cell located between the solid electrolyte layer and the negative electrode layer, the positive electrode recess being open to the positive electrode layer side of the solid electrolyte layer and into which the positive electrode layer enters, and the negative electrode of the solid electrolyte layer. A negative electrode recess that is open to the layer side and into which the negative electrode layer enters is positioned offset in the plane direction of the solid electrolyte layer.

この構成によれば、固体電解質層の内部抵抗を均一にでき、電流密度の均一性を高められる。このため、電気容量をより高められ、電池寿命をより高められる。 According to this configuration, the internal resistance of the solid electrolyte layer can be made uniform, and the uniformity of the current density can be improved. Therefore, the electric capacity can be further increased and the battery life can be further increased.

また、前記固体電解質層に、前記正極凹部及び前記負極凹部を各々2個以上とし、平面視において、前記固体電解質層の面方向で、前記正極凹部と、前記負極凹部とを、交互に位置させてもよい。
この構成によれば、電流密度の均一性をさらに高められる。
Further, the solid electrolyte layer has at least two positive electrode recesses and two or more negative electrode recesses, and the positive electrode recesses and the negative electrode recesses are alternately located in the plane direction of the solid electrolyte layer in plan view. It's okay.
According to this configuration, the uniformity of current density can be further improved.

また、前記正極凹部の深さを前記固体電解質層の厚さの1/2よりも深くし、前記負極凹部の深さを前記固体電解質層の厚さの1/2よりも深くしてもよい。
この構成によれば、電気容量をさらに高められる。
Further, the depth of the positive electrode recess may be deeper than 1/2 of the thickness of the solid electrolyte layer, and the depth of the negative electrode recess may be deeper than 1/2 of the thickness of the solid electrolyte layer. .
According to this configuration, the electric capacity can be further increased.

また、前記固体電解質層の厚さと前記正極凹部の深さとの差と、前記固体電解質層の厚さと前記負極凹部の深さとの差と、前記固体電解質層の厚さ方向の断面視における前記正極凹部と前記負極凹部との距離と、を互いに等しくなるようにしてもよい。
この構成によれば、電流密度の均一性をさらに高められる。
Also, the difference between the thickness of the solid electrolyte layer and the depth of the positive electrode recess, the difference between the thickness of the solid electrolyte layer and the depth of the negative electrode recess, and the positive electrode in a cross-sectional view in the thickness direction of the solid electrolyte layer. The distances between the recess and the negative electrode recess may be made equal to each other.
According to this configuration, the uniformity of current density can be further improved.

本発明の電気化学セルの製造方法及び電気化学セルによれば、電気容量をより高められ、電池寿命をより高められる。 According to the electrochemical cell manufacturing method and electrochemical cell of the present invention, the electric capacity can be further increased and the battery life can be further increased.

本発明の一実施形態に係る電気化学セルの外観を示す斜視図である。FIG. 1 is a perspective view showing the appearance of an electrochemical cell according to an embodiment of the present invention. 同電気化学セルに収容する電極体の一例を示す断面図である。It is a sectional view showing an example of an electrode body housed in the same electrochemical cell. 正極凹部と負極凹部との位置関係の一例を示す平面図である。FIG. 3 is a plan view showing an example of the positional relationship between a positive electrode recess and a negative electrode recess. 正極凹部と負極凹部との位置関係の一例を示す平面図である。FIG. 3 is a plan view showing an example of the positional relationship between a positive electrode recess and a negative electrode recess. 図2の電極体の製造方法を示す断面図である。3 is a cross-sectional view showing a method of manufacturing the electrode body of FIG. 2. FIG. 図2の電極体の製造方法を示す断面図である。3 is a cross-sectional view showing a method of manufacturing the electrode body of FIG. 2. FIG. 図2の電極体の製造方法を示す断面図である。3 is a cross-sectional view showing a method of manufacturing the electrode body of FIG. 2. FIG. 図2の電極体の製造方法を示す断面図である。3 is a cross-sectional view showing a method of manufacturing the electrode body of FIG. 2. FIG. 図2の電極体の製造方法を示す断面図である。3 is a cross-sectional view showing a method of manufacturing the electrode body of FIG. 2. FIG. 図2の電極体の製造方法を示す断面図である。3 is a cross-sectional view showing a method of manufacturing the electrode body of FIG. 2. FIG. 本発明の一実施形態に係る電気化学セルに収容する電極体の他の例を示す断面図である。It is a sectional view showing other examples of the electrode body housed in the electrochemical cell concerning one embodiment of the present invention. 本発明の一実施形態に係る電気化学セルに収容する電極体の他の例を示す斜視図である。FIG. 3 is a perspective view showing another example of an electrode body housed in an electrochemical cell according to an embodiment of the present invention. 本発明の一実施形態に係る電気化学セルに収容する電極体の他の例を示す斜視図である。FIG. 3 is a perspective view showing another example of an electrode body housed in an electrochemical cell according to an embodiment of the present invention. 本発明の一実施形態に係る電気化学セルに収容する電極体の他の例を示す斜視図である。FIG. 3 is a perspective view showing another example of an electrode body housed in an electrochemical cell according to an embodiment of the present invention. 従来の全固体電池に用いられる電極体の一例を示す断面図である。FIG. 2 is a cross-sectional view showing an example of an electrode body used in a conventional all-solid-state battery.

以下、本発明に係る電気化学セルの実施形態について図面を参照して説明する。以下の実施形態では、電気化学セルの一例として、コイン型の全固体電池(以下、単に「電池」ともいう。)を挙げ、この電池の構成について説明する。
なお、以下の説明に用いる図面では、各部材を認識可能な大きさとするため、各部材の縮尺を適宜変更し、表示している。
Embodiments of an electrochemical cell according to the present invention will be described below with reference to the drawings. In the following embodiments, a coin-shaped all-solid-state battery (hereinafter also simply referred to as a "battery") will be cited as an example of an electrochemical cell, and the configuration of this battery will be described.
Note that in the drawings used in the following explanation, the scale of each member is appropriately changed and displayed in order to make each member a recognizable size.

≪電気化学セル≫
図1に示すように、本実施形態の電池(電気化学セル)1は、平面視円形状のボタン型の電池である。この電池1は、容器状の外装体2と外装体2の内部に収容された電極体とを備えている。
≪Electrochemical cell≫
As shown in FIG. 1, the battery (electrochemical cell) 1 of this embodiment is a button-shaped battery that is circular in plan view. This battery 1 includes a container-shaped exterior body 2 and an electrode body housed inside the exterior body 2.

外装体2は、ラミネートフィルムにより形成されている。ラミネートフィルムは、金属箔と内側面に設けられ金属箔を被覆する融着層と、外側面に設けられ金属箔を被覆する保護層とを有する。
金属箔は、例えば、アルミニウムやステンレス鋼等の外気や水蒸気を遮断する金属により形成されている。
融着層は、例えば、ポリエチレンやポリプロピレン等のポリオレフィンや、2種類以上の樹脂を含むコポリマーから形成されている。
保護層は、例えば、上述のポリオレフィンや、ポリエチレンテレフタレート等のポリエステル、ナイロン等のポリアミドから形成されている。
The exterior body 2 is formed of a laminate film. The laminate film has a metal foil, a fusion layer provided on the inner surface to cover the metal foil, and a protective layer provided on the outer surface to cover the metal foil.
The metal foil is made of a metal that blocks outside air and water vapor, such as aluminum or stainless steel.
The adhesive layer is formed of, for example, polyolefin such as polyethylene or polypropylene, or a copolymer containing two or more types of resin.
The protective layer is made of, for example, the above-mentioned polyolefin, polyester such as polyethylene terephthalate, or polyamide such as nylon.

電極体は、正極活物質を含む正極層と負極活物質を含む負極層と、正極層と負極層との間に位置する固体電解質層とを有する。固体電解質層は、固体電解質を含む。
本実施形態の電極体3Aは、図2に示すように、正極層20と、負極層30と、正極層20と負極層30との間に位置する固体電解質層10とを有する。
固体電解質層10は、正極層20側に開口する正極凹部11を有する。正極凹部11には、正極層20が入り込んでいる。
固体電解質層10は、負極層30側に開口する負極凹部15を有する。負極凹部15には、負極層30が入り込んでいる。
正極凹部11と負極凹部15とは、固体電解質層10の面方向(X方向)にずれて位置している。
The electrode body has a positive electrode layer containing a positive electrode active material, a negative electrode layer containing a negative electrode active material, and a solid electrolyte layer located between the positive electrode layer and the negative electrode layer. The solid electrolyte layer includes a solid electrolyte.
As shown in FIG. 2, the electrode body 3A of this embodiment includes a positive electrode layer 20, a negative electrode layer 30, and a solid electrolyte layer 10 located between the positive electrode layer 20 and the negative electrode layer 30.
The solid electrolyte layer 10 has a positive electrode recess 11 that opens toward the positive electrode layer 20 side. The positive electrode layer 20 is inserted into the positive electrode recess 11 .
The solid electrolyte layer 10 has a negative electrode recess 15 that opens toward the negative electrode layer 30 side. The negative electrode layer 30 is inserted into the negative electrode recess 15 .
The positive electrode recess 11 and the negative electrode recess 15 are positioned offset in the plane direction (X direction) of the solid electrolyte layer 10 .

電極体3Aの厚さT3Aは、例えば、500~4000μmが好ましく、800~3500μmがより好ましく、1000~3000μmがさらに好ましい。厚さT3Aが上記下限値以上であると、電池1の電気容量をより高められる。厚さT3Aが上記上限値以下であると、電池1をよりコンパクトにできる。
厚さT3Aは、例えば、電極体3Aを厚さ方向(Z方向)に切断した断面を顕微鏡等で観察することにより求められる。
The thickness T3A of the electrode body 3A is, for example, preferably 500 to 4000 μm, more preferably 800 to 3500 μm, even more preferably 1000 to 3000 μm. When the thickness T3A is equal to or greater than the above lower limit, the electric capacity of the battery 1 can be further increased. When the thickness T3A is less than or equal to the above upper limit value, the battery 1 can be made more compact.
The thickness T3A is determined, for example, by observing a cross section of the electrode body 3A in the thickness direction (Z direction) using a microscope or the like.

<固体電解質層>
固体電解質層10は、固体電解質を含む。
固体電解質としては、全固体電池に用いられる公知のものを利用できる。固体電解質としては、酸化物系固体電解質が挙げられる。
酸化物系固体電解質としては、例えば、Li1.5Al0.5Ge1.512(LAGP)、LiLaZr12(LLZ)、Li1.3Al0.3Ti1.7(PO(LATP)、Li10GeP12(LGPS)、Li3.5Ge0.50.5(LGVO)、LiTaPO(LTPO)、La0.57Li0.29TiO(LLTO)、Li6.2Ga0.3La2.95Rb0.05Zr12(LGLRZO)、Li10GeO12(LGPO)、Li6.25LaZrAl0.2512等が挙げられる。
これらの固体電解質は、1種を単独で用いてもよく、2種以上を併用してもよい。
<Solid electrolyte layer>
Solid electrolyte layer 10 includes a solid electrolyte.
As the solid electrolyte, known ones used in all-solid-state batteries can be used. Examples of the solid electrolyte include oxide-based solid electrolytes.
Examples of the oxide solid electrolyte include Li 1.5 Al 0.5 Ge 1.5 P 3 O 12 (LAGP), Li 7 La 3 Zr 2 O 12 (LLZ), Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 (LATP), Li 10 GeP 2 S 12 (LGPS), Li 3.5 Ge 0.5 V 0.5 O 4 (LGVO), LiTa 2 PO 8 (LTPO), La 0.57 Li 0.29 TiO 3 (LLTO), Li 6.2 Ga 0.3 La 2.95 Rb 0.05 Zr 2 O 12 (LGLRZO), Li 10 GeO 2 P 12 (LGPO), Li 6. 25 La 3 Zr 2 Al 0.25 O 12 and the like.
These solid electrolytes may be used alone or in combination of two or more.

固体電解質層10の厚さT10は、例えば、300~3800μmが好ましく、500~3300μmがより好ましく、800~2800μmがさらに好ましい。厚さT10が上記下限値以上であると、電池1の強度をより高められる。厚さT10が上記上限値以下であると、電池1の内部抵抗をより低減できる。
厚さT10は、厚さT3Aと同様の方法により求められる。
The thickness T10 of the solid electrolyte layer 10 is, for example, preferably 300 to 3800 μm, more preferably 500 to 3300 μm, and even more preferably 800 to 2800 μm. When the thickness T10 is equal to or greater than the above lower limit, the strength of the battery 1 can be further increased. When the thickness T10 is less than or equal to the above upper limit value, the internal resistance of the battery 1 can be further reduced.
Thickness T10 is determined by the same method as thickness T3A.

正極凹部11の深さD11は、例えば、200~3700μmが好ましく、400~3200μmがより好ましく、700~2700μmがさらに好ましい。深さD11が上記下限値以上であると、電池1の内部抵抗をより低減できる。深さD11が上記上限値以下であると、固体電解質層10の強度をより高められる。
深さD11は、厚さT3Aと同様の方法により求められる。
The depth D11 of the positive electrode recess 11 is, for example, preferably 200 to 3,700 μm, more preferably 400 to 3,200 μm, and even more preferably 700 to 2,700 μm. When the depth D11 is equal to or greater than the above lower limit value, the internal resistance of the battery 1 can be further reduced. When the depth D11 is less than or equal to the above upper limit value, the strength of the solid electrolyte layer 10 can be further increased.
Depth D11 is determined by the same method as thickness T3A.

正極凹部11の幅W11は、例えば、1~100μmが好ましく、2~80μmがより好ましく、3~60μmがさらに好ましい。幅W11が上記下限値以上であると、正極凹部11に正極層20が入り込みやすい。幅W11が上記上限値以下であると、固体電解質層10の強度をより高められる。
幅W11は、厚さT3Aと同様の方法により求められる。
The width W11 of the positive electrode recess 11 is, for example, preferably 1 to 100 μm, more preferably 2 to 80 μm, and even more preferably 3 to 60 μm. When the width W11 is equal to or larger than the above lower limit, the positive electrode layer 20 easily enters the positive electrode recess 11. When the width W11 is less than or equal to the above upper limit value, the strength of the solid electrolyte layer 10 can be further increased.
The width W11 is determined by the same method as the thickness T3A.

2つの正極凹部11の間には、正極凸部12が形成されている。
正極凸部12の高さH12は、正極凹部11の深さD11と同様である。
正極凸部12の幅W12は、例えば、1~300μmが好ましく、2~240μmがより好ましく、3~180μmがさらに好ましい。幅W12が上記下限値以上であると、固体電解質層10の強度をより高められる。幅W12が上記上限値以下であると、電池1の内部抵抗をより低減できる。
幅W12は、厚さT3Aと同様の方法により求められる。
A positive electrode protrusion 12 is formed between the two positive electrode recesses 11 .
The height H12 of the positive electrode protrusion 12 is the same as the depth D11 of the positive electrode recess 11.
The width W12 of the positive electrode convex portion 12 is, for example, preferably 1 to 300 μm, more preferably 2 to 240 μm, and even more preferably 3 to 180 μm. When the width W12 is equal to or greater than the above lower limit, the strength of the solid electrolyte layer 10 can be further increased. When the width W12 is less than or equal to the above upper limit value, the internal resistance of the battery 1 can be further reduced.
Width W12 is determined by the same method as thickness T3A.

負極凹部15の深さD15は、例えば、200~3700μmが好ましく、400~3200μmがより好ましく、700~2700μmがさらに好ましい。深さD15が上記下限値以上であると、電池1の内部抵抗をより低減できる。深さD15が上記上限値以下であると、固体電解質層10の強度をより高められる。
深さD15は、厚さT3Aと同様の方法により求められる。
The depth D15 of the negative electrode recess 15 is, for example, preferably 200 to 3,700 μm, more preferably 400 to 3,200 μm, and even more preferably 700 to 2,700 μm. When the depth D15 is equal to or greater than the above lower limit value, the internal resistance of the battery 1 can be further reduced. When the depth D15 is less than or equal to the above upper limit value, the strength of the solid electrolyte layer 10 can be further increased.
Depth D15 is determined by the same method as thickness T3A.

負極凹部15の幅W15は、例えば、1~100μmが好ましく、2~80μmがより好ましく、3~60μmがさらに好ましい。幅W15が上記下限値以上であると、負極凹部15に負極層30が入り込みやすい。幅W15が上記上限値以下であると、固体電解質層10の強度をより高められる。
幅W15は、厚さT3Aと同様の方法により求められる。
The width W15 of the negative electrode recess 15 is, for example, preferably 1 to 100 μm, more preferably 2 to 80 μm, and even more preferably 3 to 60 μm. When the width W15 is equal to or larger than the above lower limit value, the negative electrode layer 30 easily enters the negative electrode recess 15. When the width W15 is less than or equal to the above upper limit value, the strength of the solid electrolyte layer 10 can be further increased.
The width W15 is determined by the same method as the thickness T3A.

2つの負極凹部15の間には、負極凸部16が形成されている。
負極凸部16の高さH16は、負極凹部15の深さD15と同様である。
負極凸部16の幅W16は、例えば、1~300μmが好ましく、2~240μmがより好ましく、3~180μmがさらに好ましい。幅W16が上記下限値以上であると、固体電解質層10の強度をより高められる。幅W16が上記上限値以下であると、電池1の内部抵抗をより低減できる。
幅W16は、厚さT3Aと同様の方法により求められる。
A negative electrode protrusion 16 is formed between the two negative electrode recesses 15 .
The height H16 of the negative electrode protrusion 16 is the same as the depth D15 of the negative electrode recess 15.
The width W16 of the negative electrode convex portion 16 is, for example, preferably 1 to 300 μm, more preferably 2 to 240 μm, and even more preferably 3 to 180 μm. When the width W16 is equal to or greater than the above lower limit, the strength of the solid electrolyte layer 10 can be further increased. When the width W16 is equal to or less than the above upper limit value, the internal resistance of the battery 1 can be further reduced.
Width W16 is determined by the same method as thickness T3A.

固体電解質層10の厚さT10と正極凹部11の深さD11との差(正極凹部11の最深部から負極層30までの距離)をD1とする。
固体電解質層10の厚さT10と負極凹部15の深さD15との差(負極凹部15の最深部から正極層20までの距離)をD2とする。
固体電解質層10の厚さ方向(Z方向)の断面視における、正極凹部11と負極凹部15との固体電解質層10の面方向(X方向)の距離をD3とする。
このとき、距離D1と距離D2と距離D3とは、互いに等しいことが好ましい。距離D1と距離D2と距離D3とが互いに等しいことで、固体電解質層10の内部の電流密度の均一性をさらに高められる。
ここで、「等しい」とは、距離の比(D1/D2、D1/D3等)が±5%以内であることをいうものとする。
The difference between the thickness T10 of the solid electrolyte layer 10 and the depth D11 of the positive electrode recess 11 (the distance from the deepest part of the positive electrode recess 11 to the negative electrode layer 30) is defined as D1.
The difference between the thickness T10 of the solid electrolyte layer 10 and the depth D15 of the negative electrode recess 15 (the distance from the deepest part of the negative electrode recess 15 to the positive electrode layer 20) is defined as D2.
In a cross-sectional view of the solid electrolyte layer 10 in the thickness direction (Z direction), the distance between the positive electrode recess 11 and the negative electrode recess 15 in the surface direction (X direction) of the solid electrolyte layer 10 is defined as D3.
At this time, it is preferable that the distance D1, the distance D2, and the distance D3 are equal to each other. By making the distance D1, the distance D2, and the distance D3 equal to each other, the uniformity of the current density inside the solid electrolyte layer 10 can be further improved.
Here, "equal" means that the distance ratio (D1/D2, D1/D3, etc.) is within ±5%.

固体電解質層10は、正極凹部11及び負極凹部15を各々2個以上有する。固体電解質層10において、固体電解質層10の面方向で、正極凹部11と負極凹部15とは、交互に位置していることが好ましい。正極凹部11と負極凹部15とが交互に位置していることで、固体電解質層10の内部の電流密度の均一性をさらに高められる。
ここで、「固体電解質層10の面方向で、正極凹部11と負極凹部15とが交互に位置している」とは、図3に示すように、平面視で、X方向及びY方向の双方に正極凹部11と負極凹部15とが交互に位置している場合のほか、図4に示すように、平面視で、X方向にのみ正極凹部11と負極凹部15とが交互に位置している場合を含むものとする。
なお、正極凹部11と負極凹部15とが交互に位置しているのは、平面視で、任意の方向に位置していればよい。
The solid electrolyte layer 10 has two or more positive electrode recesses 11 and two or more negative electrode recesses 15 . In the solid electrolyte layer 10 , the positive electrode recesses 11 and the negative electrode recesses 15 are preferably located alternately in the plane direction of the solid electrolyte layer 10 . Since the positive electrode recesses 11 and the negative electrode recesses 15 are alternately located, the uniformity of the current density inside the solid electrolyte layer 10 can be further improved.
Here, "the positive electrode recesses 11 and the negative electrode recesses 15 are alternately located in the plane direction of the solid electrolyte layer 10" means that, as shown in FIG. In addition to cases where positive electrode recesses 11 and negative electrode recesses 15 are alternately located, as shown in FIG. 4, positive electrode recesses 11 and negative electrode recesses 15 are alternately located only in the This shall include cases.
Note that the positive electrode recesses 11 and the negative electrode recesses 15 may be alternately located in any direction in plan view.

正極凹部11の深さD11は、固体電解質層10の厚さT10の1/2よりも深いことが好ましい。深さD11が厚さT10の1/2よりも深いと、正極凹部11の最深部が負極凸部16の内部に位置する。このため、固体電解質層10の内部の電流密度をより高められ、電池1の電気特性をより高められる。
深さD11の上限値は特に限定されず、厚さT10よりも小さければよい。
The depth D11 of the positive electrode recess 11 is preferably deeper than 1/2 of the thickness T10 of the solid electrolyte layer 10. When the depth D11 is deeper than 1/2 of the thickness T10, the deepest part of the positive electrode recess 11 is located inside the negative electrode protrusion 16. Therefore, the current density inside the solid electrolyte layer 10 can be further increased, and the electrical characteristics of the battery 1 can be further improved.
The upper limit of the depth D11 is not particularly limited, as long as it is smaller than the thickness T10.

負極凹部15の深さD15は、固体電解質層10の厚さT10の1/2よりも深いことが好ましい。深さD15が厚さT10の1/2よりも深いと、負極凹部15の最深部が正極凸部12の内部に位置する。このため、固体電解質層10の内部の電流密度をより高められ、電池1の電気特性をより高められる。
深さD15の上限値は特に限定されず、厚さT10よりも小さければよい。
The depth D15 of the negative electrode recess 15 is preferably deeper than 1/2 of the thickness T10 of the solid electrolyte layer 10. When the depth D15 is deeper than 1/2 of the thickness T10, the deepest part of the negative electrode recess 15 is located inside the positive electrode protrusion 12. Therefore, the current density inside the solid electrolyte layer 10 can be further increased, and the electrical characteristics of the battery 1 can be further improved.
The upper limit of the depth D15 is not particularly limited, as long as it is smaller than the thickness T10.

<正極層>
正極層20は、正極活物質を含む。
正極活物質としては、全固体電池に用いられる公知のものを利用できる。正極活物質としては、例えば、一元系正極材、二元系正極材、三元系正極材等が挙げられる。
一元系正極材としては、例えば、LiMO(Mは、Co、Ni、Mn、Al、Fe等の金属元素を表す)が挙げられる。
二元系正極材としては、例えば、Li1-xCoMnO(xは、0<x<1を満たす数)、LiFePO(xは、0<x≦1を満たす数)、Li13(xは、0<x≦1を満たす数)、Li1-xMn(xは、0<x<1を満たす数)、Li1-xNi0.5Mn1.5(xは、0<x<1を満たす数)等が挙げられる。
三元系正極材としては、例えば、LiNi1/3Mn1/3Co1/3等が挙げられる。
これらの正極活物質は、1種を単独で用いてもよく、2種以上を併用してもよい。
<Positive electrode layer>
The positive electrode layer 20 includes a positive electrode active material.
As the positive electrode active material, known materials used in all-solid-state batteries can be used. Examples of the positive electrode active material include a one-component cathode material, a binary cathode material, a ternary cathode material, and the like.
Examples of the one-component positive electrode material include LiMO 2 (M represents a metal element such as Co, Ni, Mn, Al, Fe, etc.).
Examples of binary positive electrode materials include Li 1-x CoMnO 4 (x is a number that satisfies 0<x<1), Li x FePO 4 (x is a number that satisfies 0<x≦1), Li x V 6 O 13 (x is a number that satisfies 0<x≦1), Li 1-x Mn 2 O 4 (x is a number that satisfies 0<x<1), Li 1-x Ni 0.5 Mn 1 .5 O 4 (x is a number satisfying 0<x<1), and the like.
Examples of the ternary positive electrode material include LiNi 1/3 Mn 1/3 Co 1/3 O 2 .
These positive electrode active materials may be used alone or in combination of two or more.

正極層20の厚さT20は、例えば、10~500μmが好ましく、30~400μmがより好ましく、80~300μmがさらに好ましい。厚さT20が上記下限値以上であると、電池1の電気容量をより高められる。厚さT20が上記上限値以下であると、電池1の内部抵抗をより低減できる。
厚さT20は、厚さT3Aと同様の方法により求められる。
The thickness T20 of the positive electrode layer 20 is, for example, preferably 10 to 500 μm, more preferably 30 to 400 μm, and even more preferably 80 to 300 μm. When the thickness T20 is equal to or greater than the above lower limit, the electric capacity of the battery 1 can be further increased. When the thickness T20 is less than or equal to the above upper limit value, the internal resistance of the battery 1 can be further reduced.
Thickness T20 is determined by the same method as thickness T3A.

<負極層>
負極層30は、負極活物質を含む。負極活物質としては、全固体電池に用いられる公知のものを利用できる。
負極活物質としては、例えば、金属リチウム、金属リチウムとリチウム以外の金属との合金等が挙げられる。負極活物質としては、この他、カーボンやグラファイト等の炭素材料系、SiやSiO等のシリコン材料系、LiTi12(LTO)等のリチウム遷移金属複合酸化物等が挙げられる。
負極活物質は、1種を単独で用いてもよく、2種以上を併用してもよい。
<Negative electrode layer>
Negative electrode layer 30 includes a negative electrode active material. As the negative electrode active material, known materials used in all-solid-state batteries can be used.
Examples of the negative electrode active material include metallic lithium, an alloy of metallic lithium and a metal other than lithium, and the like. Other negative electrode active materials include carbon materials such as carbon and graphite, silicon materials such as Si and SiO, and lithium transition metal composite oxides such as Li 4 Ti 5 O 12 (LTO).
One type of negative electrode active material may be used alone, or two or more types may be used in combination.

負極層30の厚さT30は、例えば、10~500μmが好ましく、30~400μmがより好ましく、80~300μmがさらに好ましい。厚さT30が上記下限値以上であると、電池1の電気容量をより高められる。厚さT30が上記上限値以下であると、電池1の内部抵抗をより低減できる。
厚さT30は、厚さT3Aと同様の方法により求められる。
The thickness T30 of the negative electrode layer 30 is, for example, preferably 10 to 500 μm, more preferably 30 to 400 μm, and even more preferably 80 to 300 μm. When the thickness T30 is equal to or greater than the above lower limit, the electric capacity of the battery 1 can be further increased. When the thickness T30 is less than or equal to the above upper limit value, the internal resistance of the battery 1 can be further reduced.
Thickness T30 is determined by the same method as thickness T3A.

≪電気化学セルの製造方法≫
本発明の電気化学セルの製造方法は、固体電解質層の正極層側に開口し、正極層が入り込む正極凹部と、固体電解質層の負極層側に開口し、負極層が入り込む負極凹部とを、固体電解質層の面方向にずらして位置させる工程、を有する。
以下に、本実施形態の電気化学セルの製造方法について、図面を参照して、詳細に説明する。
≪Manufacturing method of electrochemical cell≫
The method for manufacturing an electrochemical cell of the present invention includes: a positive electrode recess that opens on the positive electrode layer side of the solid electrolyte layer and into which the positive electrode layer enters; and a negative electrode recess that opens on the negative electrode layer side of the solid electrolyte layer and into which the negative electrode layer enters; A step of shifting the solid electrolyte layer in a plane direction and positioning the solid electrolyte layer.
Below, the method for manufacturing an electrochemical cell of this embodiment will be described in detail with reference to the drawings.

図5に示すように、固体電解質層10を用意する。
固体電解質層10を製造するには、固体電解質の粉末を圧粉成形し、電気炉等で焼成して固体電解質層10とする。
固体電解質の粉末としては、上述した固体電解質層10に含まれる固体電解質の粉末が挙げられる。
As shown in FIG. 5, a solid electrolyte layer 10 is prepared.
To manufacture the solid electrolyte layer 10, solid electrolyte powder is compacted and fired in an electric furnace or the like to form the solid electrolyte layer 10.
Examples of the solid electrolyte powder include the solid electrolyte powder included in the solid electrolyte layer 10 described above.

焼成の雰囲気は、酸素欠損を抑える為、酸素を含む雰囲気が好ましく、水分の影響が懸念される場合は、ドライ雰囲気を選択することがさらに好ましい。焼成の際、固体電解質シートのゆがみを抑える為、セラミック板(AlやMgO等からなる)やグラファイト板等で挟むことが好ましい。セラミック板との反応や、Liの揮発を抑える為に、固体電解質と同じ材料や、Liを含有する酸化物等をシート化したものをセラミック板との間に挿入してもよい。 The firing atmosphere is preferably an atmosphere containing oxygen in order to suppress oxygen vacancies, and if there is a concern about the influence of moisture, it is more preferable to select a dry atmosphere. In order to suppress distortion of the solid electrolyte sheet during firing, it is preferable to sandwich the solid electrolyte sheet between ceramic plates (made of Al 2 O 3 , MgO, etc.), graphite plates, or the like. In order to suppress reaction with the ceramic plate and volatilization of Li, a sheet made of the same material as the solid electrolyte or an oxide containing Li may be inserted between the ceramic plate and the ceramic plate.

次に、図6に示すように、固体電解質層10の一方の面に、負極層30が入り込む負極凹部15を形成する。負極凹部15を形成する方法は特に限定されず、例えば、レーザーを用いる方法、フォトリソグラフィを用いる方法、金型を用いる方法等が挙げられる。
金型を用いる方法の場合、上述した固体電解質の粉末を金型に充填し、圧粉成形し、焼成することで、負極凹部15を有する固体電解質層10が得られる。
なお、負極凹部15は、あらかじめ形成されたものであってもよい。
Next, as shown in FIG. 6, a negative electrode recess 15 into which the negative electrode layer 30 enters is formed on one surface of the solid electrolyte layer 10. The method for forming the negative electrode recess 15 is not particularly limited, and examples thereof include a method using a laser, a method using photolithography, a method using a mold, and the like.
In the case of the method using a mold, the solid electrolyte layer 10 having the negative electrode recess 15 is obtained by filling a mold with the solid electrolyte powder described above, compacting it, and firing it.
Note that the negative electrode recess 15 may be formed in advance.

負極凹部15を形成することで、負極凹部15が形成されていない部分が、負極凸部16として残る。 By forming the negative electrode recess 15, a portion where the negative electrode recess 15 is not formed remains as the negative electrode protrusion 16.

負極凹部15は、2個以上形成されることが好ましい。負極凹部15を2個以上形成することで、電池1の内部抵抗をより低減できる。負極凹部15を形成する数は、特に限定されないが、上述した各形成方法による負極凹部15の形成のしやすさや、固体電解質層10の強度を維持する観点を考慮して適宜設定することができる。 It is preferable that two or more negative electrode recesses 15 are formed. By forming two or more negative electrode recesses 15, the internal resistance of the battery 1 can be further reduced. The number of negative electrode recesses 15 to be formed is not particularly limited, but can be appropriately set in consideration of the ease of forming negative electrode recesses 15 by each of the above-mentioned forming methods and the viewpoint of maintaining the strength of solid electrolyte layer 10. .

負極凹部15の深さD15は、固体電解質層10の厚さT10の1/2よりも深く形成されることが好ましい。負極凹部15の深さD15を固体電解質層10の厚さT10の1/2よりも深く形成することで、固体電解質層10の内部の電流密度をより高められ、電池1の電気特性をより高められる。 The depth D15 of the negative electrode recess 15 is preferably formed deeper than 1/2 of the thickness T10 of the solid electrolyte layer 10. By forming the depth D15 of the negative electrode recess 15 to be deeper than 1/2 of the thickness T10 of the solid electrolyte layer 10, the current density inside the solid electrolyte layer 10 can be further increased, and the electrical characteristics of the battery 1 can be further improved. It will be done.

次に、図7に示すように、負極層30を形成する。負極層30を形成する方法は特に限定されず、例えば、負極活物質を含む負極スラリーを用意し、負極スラリーに固体電解質層10をディッピングする方法、固体電解質層10にスクリーン印刷等により負極スラリーを塗工する方法等が挙げられる。 Next, as shown in FIG. 7, a negative electrode layer 30 is formed. The method of forming the negative electrode layer 30 is not particularly limited, and for example, a method of preparing a negative electrode slurry containing a negative electrode active material and dipping the solid electrolyte layer 10 into the negative electrode slurry, a method of applying the negative electrode slurry to the solid electrolyte layer 10 by screen printing, etc. Examples include a method of coating.

負極層30を形成した後、図8に示すように、固体電解質層10の他方の面(負極凹部15が形成されていない方の面)に形成された負極層30を研磨し、除去する。 After forming the negative electrode layer 30, as shown in FIG. 8, the negative electrode layer 30 formed on the other surface of the solid electrolyte layer 10 (the surface on which the negative electrode recess 15 is not formed) is polished and removed.

次に、図7に示すように、固体電解質層10の他方の面に、正極層20が入り込む正極凹部11を形成する。正極凹部11を形成する方法は特に限定されず、例えば、レーザーを用いる方法、フォトリソグラフィを用いる方法等が挙げられる。
なお、正極凹部11は、あらかじめ形成されたものであってもよい。
正極凹部11を形成することで、正極凹部11が形成されていない部分が、正極凸部12として残る。
Next, as shown in FIG. 7, a positive electrode recess 11 into which the positive electrode layer 20 enters is formed on the other surface of the solid electrolyte layer 10. The method for forming the positive electrode recess 11 is not particularly limited, and examples thereof include a method using a laser, a method using photolithography, and the like.
Note that the positive electrode recess 11 may be formed in advance.
By forming the positive electrode recess 11, a portion where the positive electrode recess 11 is not formed remains as the positive electrode protrusion 12.

正極凹部11は、負極凹部15に対して、固体電解質層10の面方向にずらして位置させる。正極凹部11と負極凹部15とを固体電解質層10の面方向にずらして位置させることで、固体電解質層10の内部抵抗を均一にでき、電流密度の均一性を高められる。このため、電池1の電気容量をより高められ、電池1の電池寿命をより高められる。
正極凹部11の位置は、照射するレーザーの位置、フォトリソグラフィのマスクの形状、金型の形状等により調節できる。
The positive electrode recess 11 is shifted from the negative electrode recess 15 in the plane direction of the solid electrolyte layer 10 . By positioning the positive electrode recess 11 and the negative electrode recess 15 in a shifted manner in the plane direction of the solid electrolyte layer 10, the internal resistance of the solid electrolyte layer 10 can be made uniform, and the uniformity of the current density can be improved. Therefore, the electric capacity of the battery 1 can be further increased, and the battery life of the battery 1 can be further increased.
The position of the positive electrode recess 11 can be adjusted by adjusting the position of the irradiated laser, the shape of the photolithography mask, the shape of the mold, etc.

正極凹部11は、2個以上形成されることが好ましい。正極凹部11を2個以上形成することで、電池1の内部抵抗をより低減できる。正極凹部11を形成する数は、特に限定されないが、上述した各形成方法による正極凹部11の形成のしやすさや、固体電解質層10の強度を維持する観点を考慮して適宜設定することができる。
電流密度の均一性をより高められることから、正極凹部11を形成する数は、負極凹部15を形成する数と同じであることが好ましい。
It is preferable that two or more positive electrode recesses 11 are formed. By forming two or more positive electrode recesses 11, the internal resistance of the battery 1 can be further reduced. The number of positive electrode recesses 11 to be formed is not particularly limited, but can be appropriately set in consideration of the ease of forming the positive electrode recesses 11 by each of the above-mentioned forming methods and the viewpoint of maintaining the strength of the solid electrolyte layer 10. .
The number of positive electrode recesses 11 to be formed is preferably the same as the number of negative electrode recesses 15 to be formed, since the uniformity of current density can be further improved.

正極凹部11は、平面視において、固体電解質層10の面方向で、負極凹部15と交互に位置することが好ましい。正極凹部11と負極凹部15とを、交互に位置させることで、電流密度の均一性をさらに高められる。 The positive electrode recesses 11 are preferably located alternately with the negative electrode recesses 15 in the surface direction of the solid electrolyte layer 10 in plan view. By alternately locating the positive electrode recesses 11 and the negative electrode recesses 15, the uniformity of current density can be further improved.

正極凹部11の深さD11は、固体電解質層10の厚さT10の1/2よりも深く形成されることが好ましい。正極凹部11の深さD11を固体電解質層10の厚さT10の1/2よりも深く形成することで、固体電解質層10の内部の電流密度をより高められ、電池1の電気特性をより高められる。 The depth D11 of the positive electrode recess 11 is preferably formed deeper than 1/2 of the thickness T10 of the solid electrolyte layer 10. By forming the depth D11 of the positive electrode recess 11 to be deeper than 1/2 of the thickness T10 of the solid electrolyte layer 10, the current density inside the solid electrolyte layer 10 can be further increased, and the electrical characteristics of the battery 1 can be further improved. It will be done.

固体電解質層10の厚さT10と正極凹部11の深さD11との差(正極凹部11の最深部から負極層30までの距離)をD1とする。
固体電解質層10の厚さT10と負極凹部15の深さD15との差(負極凹部15の最深部から正極層20までの距離)をD2とする。
固体電解質層10の厚さ方向(Z方向)の断面視における、正極凹部11と負極凹部15との固体電解質層10の面方向(X方向)の距離をD3とする。
このとき、距離D1と距離D2と距離D3とが、互いに等しくなるように、正極凹部11を位置させることが好ましい。距離D1と距離D2と距離D3とが互いに等しくなるように、正極凹部11を位置させることで、固体電解質層10の内部の電流密度の均一性をさらに高められる。
ここで、「等しい」とは、距離の比(D1/D2、D1/D3等)が±5%以内であることをいうものとする。
The difference between the thickness T10 of the solid electrolyte layer 10 and the depth D11 of the positive electrode recess 11 (the distance from the deepest part of the positive electrode recess 11 to the negative electrode layer 30) is defined as D1.
The difference between the thickness T10 of the solid electrolyte layer 10 and the depth D15 of the negative electrode recess 15 (the distance from the deepest part of the negative electrode recess 15 to the positive electrode layer 20) is defined as D2.
In a cross-sectional view of the solid electrolyte layer 10 in the thickness direction (Z direction), the distance between the positive electrode recess 11 and the negative electrode recess 15 in the surface direction (X direction) of the solid electrolyte layer 10 is defined as D3.
At this time, it is preferable to position the positive electrode recess 11 so that the distance D1, the distance D2, and the distance D3 are equal to each other. By positioning the positive electrode recess 11 so that the distance D1, the distance D2, and the distance D3 are equal to each other, the uniformity of the current density inside the solid electrolyte layer 10 can be further improved.
Here, "equal" means that the distance ratio (D1/D2, D1/D3, etc.) is within ±5%.

次に、図10に示すように、正極層20を形成する。正極層20を形成する方法は特に限定されず、例えば、正極活物質を含む正極スラリーを用意し、正極スラリーに負極層30が形成された固体電解質層10をディッピングする方法、負極層30が形成された固体電解質層10にスクリーン印刷等により正極スラリーを塗工する方法等が挙げられる。 Next, as shown in FIG. 10, a positive electrode layer 20 is formed. The method of forming the positive electrode layer 20 is not particularly limited, and for example, a method of preparing a positive electrode slurry containing a positive electrode active material and dipping the solid electrolyte layer 10 on which the negative electrode layer 30 is formed in the positive electrode slurry, and forming the negative electrode layer 30. Examples include a method of applying a positive electrode slurry to the solid electrolyte layer 10 by screen printing or the like.

正極層20を形成した後、固体電解質層10の他方の面(負極凹部15が形成されていない方の面)以外に形成された正極層20を研磨し、除去する。
以上の工程により、図2に示すような、電極体3Aが得られる。
After forming the positive electrode layer 20, the positive electrode layer 20 formed on the other surface of the solid electrolyte layer 10 (the surface on which the negative electrode recess 15 is not formed) is polished and removed.
Through the above steps, an electrode body 3A as shown in FIG. 2 is obtained.

以上の説明では、固体電解質層10に負極層30を形成してから、正極層20を形成したが、本発明の電気化学セルの製造方法は、上述した実施形態に限定されない。
例えば、固体電解質層10に正極層20を形成してから、負極層30を形成してもよい。
正極凹部11を形成する際、金型を用いて正極凹部11を形成してもよい。
この場合、負極凹部15と正極凹部11とが形成された金型を用い、この金型に固体電解質の粉末を充填し、圧粉成形し、焼成することで、負極凹部15と正極凹部11とを有する固体電解質層10が得られる。この固体電解質層10に負極層30と正極層20とを順次形成することで、電極体3Aが得られる。
なお、負極層30と正極層20とを形成する順序は特に限定されず、負極層30を形成してから正極層20を形成してもよく、正極層20を形成してから負極層30を形成してもよい。
In the above description, the negative electrode layer 30 is formed on the solid electrolyte layer 10 and then the positive electrode layer 20 is formed, but the method for manufacturing an electrochemical cell of the present invention is not limited to the above-described embodiment.
For example, the negative electrode layer 30 may be formed after the positive electrode layer 20 is formed on the solid electrolyte layer 10.
When forming the positive electrode recess 11, a mold may be used to form the positive electrode recess 11.
In this case, a mold in which the negative electrode recess 15 and the positive electrode recess 11 are formed is used, and the mold is filled with solid electrolyte powder, compacted, and fired, thereby forming the negative electrode recess 15 and the positive electrode recess 11. A solid electrolyte layer 10 having the following properties is obtained. By sequentially forming a negative electrode layer 30 and a positive electrode layer 20 on this solid electrolyte layer 10, an electrode body 3A is obtained.
Note that the order in which the negative electrode layer 30 and the positive electrode layer 20 are formed is not particularly limited; the negative electrode layer 30 may be formed before the positive electrode layer 20 is formed, or the negative electrode layer 30 may be formed after the positive electrode layer 20 is formed. may be formed.

本発明の電気化学セルは、正極凹部と負極凹部とが、固体電解質層の面方向にずれているため、固体電解質層の内部抵抗を均一にでき、電流密度の均一性を高められる。このため、電気容量をより高められ、電池寿命をより高められる。
本発明の電気化学セルの製造方法は、正極凹部と負極凹部とを、固体電解質層の面方向にずらして位置させるため、固体電解質層の内部抵抗を均一にでき、電流密度の均一性を高められる。このため、電気容量をより高められ、電池寿命をより高められる。
In the electrochemical cell of the present invention, since the positive electrode recess and the negative electrode recess are offset in the plane direction of the solid electrolyte layer, the internal resistance of the solid electrolyte layer can be made uniform, and the uniformity of current density can be improved. Therefore, the electric capacity can be further increased and the battery life can be further increased.
In the electrochemical cell manufacturing method of the present invention, the positive electrode recess and the negative electrode recess are positioned offset in the plane direction of the solid electrolyte layer, so that the internal resistance of the solid electrolyte layer can be made uniform and the uniformity of current density can be improved. It will be done. Therefore, the electric capacity can be further increased and the battery life can be further increased.

以上、本発明の電気化学セル及び電気化学セルの製造方法について説明したが、本発明は上記の実施形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。
例えば、図11に示すように、電極体3Bは、電極体3Aに比べて、正極凹部13の深さD13が浅く、負極凹部17の深さD17が浅くてもよい。
正極凹部13の深さD13が、深さD11よりも浅いことで、固体電解質層10の厚さT10と正極凹部13の深さD13との差(正極凹部13の最深部から負極層30までの距離)D4を、距離D1よりも大きくできる。このため、特定部位の劣化を抑制でき、電池寿命をより高められる。
負極凹部17の深さD17が、深さD15よりも浅いことで、固体電解質層10の厚さT10と負極凹部17の深さD17との差(負極凹部17の最深部から正極層20までの距離)D5を、距離D2よりも大きくできる。このため、特定部位の劣化を抑制でき、電池寿命をより高められる。
図11において、距離D4と距離D5とは等しい。このため、固体電解質層10の内部の電流密度を均一にできる。
ここで、「等しい」とは、距離の比(D4/D5)が±5%以内であることをいうものとする。
Although the electrochemical cell and the method for manufacturing the electrochemical cell of the present invention have been described above, the present invention is not limited to the above-described embodiments, and can be modified as appropriate without departing from the spirit thereof.
For example, as shown in FIG. 11, the electrode body 3B may have a positive electrode recess 13 having a shallower depth D13 and a negative electrode recess 17 having a shallower depth D17 than the electrode body 3A.
Since the depth D13 of the positive electrode recess 13 is shallower than the depth D11, the difference between the thickness T10 of the solid electrolyte layer 10 and the depth D13 of the positive electrode recess 13 (from the deepest part of the positive electrode recess 13 to the negative electrode layer 30) is distance) D4 can be made larger than distance D1. Therefore, deterioration of specific parts can be suppressed and battery life can be further increased.
Since the depth D17 of the negative electrode recess 17 is shallower than the depth D15, the difference between the thickness T10 of the solid electrolyte layer 10 and the depth D17 of the negative electrode recess 17 (from the deepest part of the negative electrode recess 17 to the positive electrode layer 20) is distance) D5 can be made larger than distance D2. Therefore, deterioration of specific parts can be suppressed and battery life can be further increased.
In FIG. 11, distance D4 and distance D5 are equal. Therefore, the current density inside the solid electrolyte layer 10 can be made uniform.
Here, "equal" means that the distance ratio (D4/D5) is within ±5%.

正極凹部13の幅W13は、正極凹部11の幅W11と同様である。正極凹部13の幅W13は、正極凹部11の幅W11と同じでもよく、異なっていてもよい。
正極凸部14の高さH14は、正極凹部13の深さD13と同様である。
正極凸部14の幅W14は、正極凸部12の幅W12と同様である。正極凸部14の幅W14は、正極凸部12の幅W12と同じでもよく、異なっていてもよい。
The width W13 of the positive electrode recess 13 is the same as the width W11 of the positive electrode recess 11. The width W13 of the positive electrode recess 13 may be the same as or different from the width W11 of the positive electrode recess 11.
The height H14 of the positive electrode protrusion 14 is the same as the depth D13 of the positive electrode recess 13.
The width W14 of the positive electrode protrusion 14 is the same as the width W12 of the positive electrode protrusion 12. The width W14 of the positive electrode protrusion 14 may be the same as or different from the width W12 of the positive electrode protrusion 12.

負極凹部17の幅W17は、負極凹部15の幅W15と同様である。負極凹部17の幅W17は、負極凹部15の幅W15と同じでもよく、異なっていてもよい。
負極凸部18の高さH18は、負極凹部17の深さD17と同様である。
負極凸部18の幅W18は、負極凸部16の幅W16と同様である。負極凸部18の幅W18は、負極凸部16の幅W16と同じでもよく、異なっていてもよい。
The width W17 of the negative electrode recess 17 is the same as the width W15 of the negative electrode recess 15. The width W17 of the negative electrode recess 17 may be the same as or different from the width W15 of the negative electrode recess 15.
The height H18 of the negative electrode protrusion 18 is the same as the depth D17 of the negative electrode recess 17.
The width W18 of the negative electrode protrusion 18 is the same as the width W16 of the negative electrode protrusion 16. The width W18 of the negative electrode protrusion 18 may be the same as or different from the width W16 of the negative electrode protrusion 16.

図12に示すように、電極体3Cは、直線状の正極凹部11と、直線状の負極凹部15とを有していてもよい。 As shown in FIG. 12, the electrode body 3C may have a linear positive electrode recess 11 and a linear negative electrode recess 15.

図13に示すように、電極体3Dは、円柱状の正極凹部と、円柱状の負極凹部とを有していてもよい。 As shown in FIG. 13, the electrode body 3D may have a cylindrical positive electrode recess and a cylindrical negative electrode recess.

図14に示すように、電極体3Eは、ビア化工された正極凹部と、ビア化工された負極凹部とを有していてもよい。 As shown in FIG. 14, the electrode body 3E may have a positive electrode recessed portion and a negative electrode recessed portion formed with a via.

例えば、固体電解質層の形状は、平面視円形状ではなく、平面視多角形状であってもよい。
例えば、電極体は、1つではなく、2つ以上積層されていてもよい。
For example, the shape of the solid electrolyte layer may not be circular in plan view but may be polygonal in plan view.
For example, instead of one electrode body, two or more electrode bodies may be stacked.

1…電気化学セル、2…外装体、3A,3B,3C,3D,3E…電極体、10…固体電解質層、11,13…正極凹部、12,14…正極凸部、15,17…負極凹部、16,18…負極凸部、20…正極層、30…負極層 DESCRIPTION OF SYMBOLS 1... Electrochemical cell, 2... Exterior body, 3A, 3B, 3C, 3D, 3E... Electrode body, 10... Solid electrolyte layer, 11, 13... Positive electrode recessed part, 12, 14... Positive electrode convex part, 15, 17... Negative electrode Recessed portion, 16, 18... Negative electrode convex portion, 20... Positive electrode layer, 30... Negative electrode layer

Claims (8)

正極活物質を含む正極層と、
負極活物質を含む負極層と、
固体電解質を含む固体電解質層と、を有し、
前記固体電解質層は、前記正極層と前記負極層との間に位置し、
前記固体電解質層は、前記正極層側に開口し、前記正極層が入り込む正極凹部を有し、
前記固体電解質層は、前記負極層側に開口し、前記負極層が入り込む負極凹部を有し、
前記正極凹部と、前記負極凹部とが、前記固体電解質層の面方向にずれている、電気化学セル。
a positive electrode layer containing a positive electrode active material;
a negative electrode layer containing a negative electrode active material;
a solid electrolyte layer containing a solid electrolyte;
The solid electrolyte layer is located between the positive electrode layer and the negative electrode layer,
The solid electrolyte layer has a positive electrode recess that is open to the positive electrode layer side and into which the positive electrode layer enters,
The solid electrolyte layer has a negative electrode recess that is open to the negative electrode layer side and into which the negative electrode layer enters,
An electrochemical cell, wherein the positive electrode recess and the negative electrode recess are offset in a plane direction of the solid electrolyte layer.
前記固体電解質層は、前記正極凹部及び前記負極凹部を各々2個以上有し、
平面視において、前記固体電解質層の面方向で、前記正極凹部と、前記負極凹部とが交互に位置している、請求項1に記載の電気化学セル。
The solid electrolyte layer has two or more of the positive electrode recesses and two or more of the negative electrode recesses,
The electrochemical cell according to claim 1, wherein the positive electrode recesses and the negative electrode recesses are alternately located in a planar direction of the solid electrolyte layer.
前記正極凹部の深さが、前記固体電解質層の厚さの1/2よりも深く、前記負極凹部の深さが、前記固体電解質層の厚さの1/2よりも深い、請求項1又は2に記載の電気化学セル。 The depth of the positive electrode recess is deeper than 1/2 of the thickness of the solid electrolyte layer, and the depth of the negative electrode recess is deeper than 1/2 of the thickness of the solid electrolyte layer. 2. The electrochemical cell according to 2. 前記固体電解質層の厚さと前記正極凹部の深さとの差と、
前記固体電解質層の厚さと前記負極凹部の深さとの差と、
前記固体電解質層の厚さ方向の断面視における前記正極凹部と前記負極凹部との距離と、が互いに等しい、請求項1~3のいずれか一項に記載の電気化学セル。
a difference between the thickness of the solid electrolyte layer and the depth of the positive electrode recess;
a difference between the thickness of the solid electrolyte layer and the depth of the negative electrode recess;
The electrochemical cell according to claim 1, wherein distances between the positive electrode recess and the negative electrode recess in a cross-sectional view in the thickness direction of the solid electrolyte layer are equal to each other.
正極活物質を含む正極層と、
負極活物質を含む負極層と、
固体電解質を含む固体電解質層と、を有し、
前記固体電解質層が、前記正極層と前記負極層との間に位置する電気化学セルの製造方法であって、
前記固体電解質層の前記正極層側に開口し、前記正極層が入り込む正極凹部と、
前記固体電解質層の前記負極層側に開口し、前記負極層が入り込む負極凹部とを、前記固体電解質層の面方向にずらして位置させる、電気化学セルの製造方法。
a positive electrode layer containing a positive electrode active material;
a negative electrode layer containing a negative electrode active material;
a solid electrolyte layer containing a solid electrolyte;
A method for manufacturing an electrochemical cell, wherein the solid electrolyte layer is located between the positive electrode layer and the negative electrode layer,
a positive electrode recess that opens on the positive electrode layer side of the solid electrolyte layer and into which the positive electrode layer enters;
A method for manufacturing an electrochemical cell, wherein a negative electrode recess that opens on the negative electrode layer side of the solid electrolyte layer and into which the negative electrode layer enters is shifted in a planar direction of the solid electrolyte layer.
前記固体電解質層に、前記正極凹部及び前記負極凹部を各々2個以上とし、
平面視において、前記固体電解質層の面方向で、前記正極凹部と、前記負極凹部とを、交互に位置させる、請求項5に記載の電気化学セルの製造方法。
The solid electrolyte layer has two or more positive electrode recesses and two or more negative electrode recesses,
6. The method for manufacturing an electrochemical cell according to claim 5, wherein the positive electrode recesses and the negative electrode recesses are alternately positioned in a planar direction of the solid electrolyte layer.
前記正極凹部の深さを前記固体電解質層の厚さの1/2よりも深くし、前記負極凹部の深さを前記固体電解質層の厚さの1/2よりも深くする、請求項5又は6に記載の電気化学セルの製造方法。 The depth of the positive electrode recess is deeper than 1/2 of the thickness of the solid electrolyte layer, and the depth of the negative electrode recess is deeper than 1/2 of the thickness of the solid electrolyte layer. 6. The method for manufacturing an electrochemical cell according to 6. 前記固体電解質層の厚さと前記正極凹部の深さとの差と、
前記固体電解質層の厚さと前記負極凹部の深さとの差と、
前記固体電解質層の厚さ方向の断面視における前記正極凹部と前記負極凹部との距離と、を互いに等しくなるようにする、請求項5~7のいずれか一項に記載の電気化学セルの製造方法。
a difference between the thickness of the solid electrolyte layer and the depth of the positive electrode recess;
a difference between the thickness of the solid electrolyte layer and the depth of the negative electrode recess;
Manufacturing the electrochemical cell according to any one of claims 5 to 7, wherein distances between the positive electrode recess and the negative electrode recess in a cross-sectional view in the thickness direction of the solid electrolyte layer are made equal to each other. Method.
JP2022032672A 2022-03-03 2022-03-03 Electrochemical cell and method for manufacturing the same Pending JP2023128368A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022032672A JP2023128368A (en) 2022-03-03 2022-03-03 Electrochemical cell and method for manufacturing the same
PCT/JP2022/047130 WO2023166824A1 (en) 2022-03-03 2022-12-21 Method for manufacturing electrochemical cell and electrochemical cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022032672A JP2023128368A (en) 2022-03-03 2022-03-03 Electrochemical cell and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2023128368A true JP2023128368A (en) 2023-09-14

Family

ID=87883672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022032672A Pending JP2023128368A (en) 2022-03-03 2022-03-03 Electrochemical cell and method for manufacturing the same

Country Status (2)

Country Link
JP (1) JP2023128368A (en)
WO (1) WO2023166824A1 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4920169B2 (en) * 2003-10-06 2012-04-18 日産自動車株式会社 Battery and vehicle equipped with this battery
US20070172735A1 (en) * 2006-01-26 2007-07-26 David R. Hall Thin-film Battery
JP2008078119A (en) * 2006-08-25 2008-04-03 Ngk Insulators Ltd Totally solid storage element
JP5572974B2 (en) * 2009-03-24 2014-08-20 セイコーエプソン株式会社 Manufacturing method of solid secondary battery
JP2019164957A (en) * 2018-03-20 2019-09-26 株式会社ミマキエンジニアリング Power-storage component, secondary battery, electric double layer capacitor, ink jet printer and manufacturing method
JP7319114B2 (en) * 2019-07-09 2023-08-01 ローム株式会社 Thin-film type all-solid-state battery, electronic device, and method for manufacturing thin-film type all-solid-state battery

Also Published As

Publication number Publication date
WO2023166824A1 (en) 2023-09-07

Similar Documents

Publication Publication Date Title
US11362366B2 (en) Secondary battery composite electrolyte, secondary battery, and battery pack
JP2008078119A (en) Totally solid storage element
KR20180079627A (en) Li-metal battery with microstructured solid electrolyte
KR20190113606A (en) Lithium metal secondary battery
US20220328864A1 (en) Method of manufacturing lithium metal unit cell for all-solid-state batteries and unit cell manufactured using the same
WO2019116761A1 (en) Lithium-ion secondary battery and method for manufacturing same
US20190140249A1 (en) All-solid-state secondary battery
WO2012060349A1 (en) All-solid-state battery
KR101736545B1 (en) Electrode assembly
JP2023128368A (en) Electrochemical cell and method for manufacturing the same
JP3987445B2 (en) Nickel / hydrogen storage battery
CN107548525B (en) Separator for battery cell and battery cell
KR20220143674A (en) Negative electrode for secondary battery, secondary battery, and negative electrode material for secondary battery
JP6468191B2 (en) Nonaqueous electrolyte secondary battery
CN110828907A (en) Power battery and preparation method thereof
KR20240000462U (en) lithium ion battery
US10141609B2 (en) Electrode coil for a galvanic element, and method for producing same
CN115395078A (en) Solid-state battery and method for manufacturing solid-state battery
WO2019221004A1 (en) Lithium ion secondary battery
WO2020004453A1 (en) Negative electrode for lithium ion battery, lithium ion battery using said negative electrode, and method for producing lithium ion battery
US20190341201A1 (en) Electrode for an electrochemical bundle of a metal-ion storage battery or a supercapacitor, method for producing the associated bundle and storage battery
JP2003168421A (en) Non-aqueous electrolyte secondary battery
JPH06203830A (en) Battery
US20230207980A1 (en) Battery
CN210897521U (en) Power battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20230609