JP2023125764A - Electronic component testing device - Google Patents

Electronic component testing device Download PDF

Info

Publication number
JP2023125764A
JP2023125764A JP2022030040A JP2022030040A JP2023125764A JP 2023125764 A JP2023125764 A JP 2023125764A JP 2022030040 A JP2022030040 A JP 2022030040A JP 2022030040 A JP2022030040 A JP 2022030040A JP 2023125764 A JP2023125764 A JP 2023125764A
Authority
JP
Japan
Prior art keywords
electronic component
temperature
voltage
current
voltage application
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2022030040A
Other languages
Japanese (ja)
Other versions
JP7515900B2 (en
Inventor
渉 村井
Wataru Murai
太陽 小森
Taiyo Komori
俊輔 佐々木
Shunsuke Sasaki
嘉一 笹岡
Yoshikazu Sasaoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Weld Co Ltd
Original Assignee
Tokyo Weld Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Weld Co Ltd filed Critical Tokyo Weld Co Ltd
Priority to JP2022030040A priority Critical patent/JP7515900B2/en
Publication of JP2023125764A publication Critical patent/JP2023125764A/en
Application granted granted Critical
Publication of JP7515900B2 publication Critical patent/JP7515900B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Testing Of Individual Semiconductor Devices (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)

Abstract

To provide an electronic component testing device capable of appropriately conducting testing of an electronic component while preventing an excessive increase in temperature of the electronic component causing self-heating, and capable of coping with low costs and a compact device configuration also with respect to testing of multiple electronic components.SOLUTION: An electronic component testing device 10 applies electric voltage to an electronic component W causing self-heating, at a test temperature higher than normal temperature. A control unit 13 of the electronic component testing device 10 adjusts an electric voltage applied to the electronic component W by controlling a voltage application unit 11 according to a measurement result related to leakage current of a current measuring unit 12, referring to a correlation relationship between leakage current in the electronic component W and temperature of the electronic component W.SELECTED DRAWING: Figure 3

Description

本開示は、自己発熱を生じる電子部品に対し、常温よりも高い試験温度下で電圧を印加することで、当該電子部品の試験を行う電子部品試験装置に関する。 The present disclosure relates to an electronic component testing apparatus that tests an electronic component that generates self-heating by applying a voltage to the electronic component at a test temperature higher than room temperature.

電子部品メーカーは、出荷対象の電子部品の電気的な特性検査を行って不良品を排除し、良品のみを出荷する。特に近年では、自動車をはじめとする様々な技術分野において、電子部品の特性がより高い信頼性をもって保証されることが要求されるようになってきており、実使用環境に近い高温条件下での試験保証のニーズが高まっている。また高温条件下での試験は、電子部品の寿命劣化を加速させる負荷を与えるのに適しており、初期不良を顕在化させるスクリーニング手段としても有用である。 Electronic component manufacturers inspect the electrical characteristics of electronic components to be shipped, eliminate defective products, and ship only non-defective products. Particularly in recent years, in various technical fields including automobiles, it has become necessary to guarantee the characteristics of electronic components with higher reliability, and it has become necessary to guarantee the characteristics of electronic components under high-temperature conditions close to the actual usage environment. The need for test assurance is increasing. Furthermore, testing under high temperature conditions is suitable for applying a load that accelerates the deterioration of the life of electronic components, and is also useful as a screening means for exposing initial defects.

しかしながら、高温条件下で電子部品の電気的な特性試験を行う場合、電子部品が自己発熱を伴って過度に温度上昇してしまうことがある。すなわち電子部品の温度が上昇すると、電子部品での消費電流が増大する。そして電子部品での消費電流が増えると、電子部品の発熱量が増えて電子部品の温度が更に上昇し、その結果、電子部品での消費電流が更に増大する、という悪循環に陥る。このような悪循環によって、元々は良品に分類されていた電子部品が熱ダメージを受けて不良品となってしまい、歩留まりが低下してしまう。 However, when testing the electrical characteristics of electronic components under high-temperature conditions, the temperature of the electronic components may rise excessively due to self-heating. That is, when the temperature of the electronic component increases, the current consumption of the electronic component increases. When the current consumption of the electronic components increases, the amount of heat generated by the electronic components increases, the temperature of the electronic components further increases, and as a result, the current consumption of the electronic components further increases, resulting in a vicious cycle. Due to such a vicious cycle, electronic components that were originally classified as good products suffer thermal damage and become defective products, resulting in a decrease in yield.

特許文献1が開示する試験装置は、温度センサによって検出される電子部品の温度を、当該電子部品を加熱するヒータの制御にフィードバックすることで、自己発熱する電子部品の温度が調整されて電子部品の熱ダメージが抑えられる。 The test device disclosed in Patent Document 1 feeds back the temperature of an electronic component detected by a temperature sensor to the control of a heater that heats the electronic component, so that the temperature of the self-heating electronic component is adjusted and the temperature of the electronic component is adjusted. heat damage is suppressed.

特許第5987977号公報Patent No. 5987977

しかしながら特許文献1の試験装置で行われるヒータフィードバック制御では、電子部品の自己発熱量を必ずしも十分には抑えることができないため、自己発熱の度合いが大きい電子部品の温度上昇を適切に抑制できないことがある。 However, in the heater feedback control performed in the test device of Patent Document 1, it is not always possible to sufficiently suppress the amount of self-heating of electronic components, so it may not be possible to appropriately suppress the temperature rise of electronic components that generate a large degree of self-heating. be.

また多数の電子部品の試験を同時的に行う場合、電子部品の個体差に起因して、自己発熱の度合いに関して電子部品間で無視できない差が見られることがある。特許文献1の試験装置においてこのような状況に対処するには、各電子部品の温度制御を個別的に行うために各電子部品の温度制御に必要な温度センサ、ヒータ及びフィードバック制御機器のセットが、試験対象の電子部品のそれぞれに関して必要になる。例えば、特許文献1の試験装置において1000個の電子部品の試験を同時的に行う場合、1000セット分の独立した制御系(温度センサ、ヒータ及び制御機器)が必要とされる。 Furthermore, when testing a large number of electronic components simultaneously, non-negligible differences in the degree of self-heating may be observed among the electronic components due to individual differences among the electronic components. In order to deal with such a situation in the test apparatus of Patent Document 1, a set of temperature sensors, heaters, and feedback control equipment necessary for temperature control of each electronic component is required to individually control the temperature of each electronic component. , are required for each electronic component to be tested. For example, when testing 1000 electronic components simultaneously using the test apparatus of Patent Document 1, 1000 sets of independent control systems (temperature sensors, heaters, and control devices) are required.

さらに特許文献1の試験装置において、試験対象の電子部品間で熱的な相互作用があると、個々の電子部品に関するフィードバック温度制御が成立しなくなる。そのため特許文献1の試験装置では、試験対象の複数の電子部品を密集させることができず、電子部品間に相応の間隔スペースを設けて電子部品間で熱的な相互作用が生じないようにする必要がある。したがって特許文献1の試験装置では、同時的に試験が行われる電子部品の数が増えるに従って、必要とされる設置面積が大幅に大きくなる。 Furthermore, in the test apparatus of Patent Document 1, if there is thermal interaction between the electronic components to be tested, feedback temperature control regarding the individual electronic components will not be established. Therefore, in the test device of Patent Document 1, multiple electronic components to be tested cannot be crowded together, and appropriate spacing is provided between the electronic components to prevent thermal interaction between them. There is a need. Therefore, in the test apparatus of Patent Document 1, as the number of electronic components to be tested simultaneously increases, the required installation area becomes significantly larger.

このように特許文献1の試験装置は、同時的に試験を行う電子部品の数が増えることで、装置構成が複雑化且つ大型化して装置コストが高くなってしまい、経済性及び面積生産性の点でニーズを満たせないことがある。 As described above, in the test device of Patent Document 1, as the number of electronic components to be tested simultaneously increases, the device configuration becomes complicated and large, and the device cost increases, resulting in poor economic efficiency and area productivity. We may not be able to meet your needs in some respects.

本開示は上述の事情に鑑みてなされたものであり、自己発熱を生じる電子部品の過度な温度上昇を防ぎつつ当該電子部品の試験を適切に行うことができる電子部品試験装置であって、複数の電子部品の試験に対しても低コスト且つコンパクトな装置構成で対処可能な電子部品試験装置を提供する。 The present disclosure has been made in view of the above-mentioned circumstances, and is an electronic component testing device that can appropriately test electronic components while preventing excessive temperature rise in electronic components that generate self-heating. To provide an electronic component testing device capable of testing electronic components at low cost and with a compact device configuration.

本開示の一態様は、常温より高い試験温度下で、自己発熱を生じる電子部品に電圧を印加する電子部品試験装置であって、電子部品に電圧を印加する電圧印加部と、電子部品における電流を測定する電流測定部と、予め取得される電子部品における漏れ電流と電子部品の温度との間の相関関係に照らして、電流測定部の漏れ電流に関する測定結果に応じて電圧印加部を制御することで、電子部品に印加される電圧を調整する制御部と、を備える、電子部品試験装置に関する。 One aspect of the present disclosure is an electronic component testing device that applies a voltage to an electronic component that generates self-heating at a test temperature higher than room temperature, the device comprising: a voltage application section that applies a voltage to the electronic component; a current measurement unit that measures the voltage, and a voltage application unit that controls the voltage application unit in accordance with the measurement result regarding the leakage current of the current measurement unit in light of the correlation between the leakage current in the electronic component and the temperature of the electronic component obtained in advance. This invention relates to an electronic component testing apparatus that includes a control unit that adjusts a voltage applied to an electronic component.

制御部は、電流測定部の漏れ電流に関する測定値が、相関関係に応じて定められる熱暴走判定閾値を超える場合、電子部品の温度を下げるように電子部品に印加される電圧を調整する定常状態復帰処理を電圧印加部に対して開始してもよい。 The control unit adjusts the voltage applied to the electronic component to lower the temperature of the electronic component when the measured value of the leakage current of the current measurement unit exceeds a thermal runaway determination threshold determined according to the correlation. A return process may be started for the voltage application section.

制御部は、電流測定部の漏れ電流に関する測定値が、相関関係に応じて定められる定常判定閾値を下回る場合、電圧印加部に対する定常状態復帰処理を終了してもよい。 The control unit may end the steady state return process for the voltage application unit when the measured value of the leakage current of the current measurement unit is less than the steady state determination threshold determined according to the correlation.

制御部は、定常状態復帰処理において、電圧印加部が電子部品に電圧を印加する通電時間を調整するように、電圧印加部を制御してもよい。 The control section may control the voltage application section so as to adjust the energization time during which the voltage application section applies the voltage to the electronic component in the steady state return process.

制御部は、定常状態復帰処理において、電圧印加部が電子部品に印加する電圧の大きさを調整するように、電圧印加部を制御してもよい。 The control section may control the voltage application section so as to adjust the magnitude of the voltage applied by the voltage application section to the electronic component in the steady state return process.

電圧印加部は、複数の電子部品に電圧を印加し、電流測定部は、複数の電子部品における電流を測定し、相関関係は、複数の電子部品の各々における漏れ電流と複数の電子部品の各々の温度との間の相関関係となっており、制御部は、相関関係に照らして、電流測定部の漏れ電流に関する測定結果に応じて電圧印加部を制御することで、複数の電子部品に印加される電圧を調整してもよい。 The voltage application section applies a voltage to the plurality of electronic components, the current measurement section measures the current in the plurality of electronic components, and the correlation is determined between the leakage current in each of the plurality of electronic components and each of the plurality of electronic components. In light of the correlation, the control unit controls the voltage application unit according to the leakage current measurement result of the current measurement unit, thereby applying voltage to multiple electronic components. The voltage applied may be adjusted.

本開示によれば、自己発熱を生じる電子部品の過度な温度上昇を防ぎつつ当該電子部品の試験を適切に行うことができ、複数の電子部品の試験に対しても低コスト且つコンパクトな装置構成で対処可能である。 According to the present disclosure, it is possible to properly test an electronic component while preventing an excessive temperature rise in the electronic component that causes self-heating, and the device configuration is low cost and compact even for testing multiple electronic components. It is possible to deal with this.

図1は、積層セラミックコンデンサの消費電流とワーク温度との間の相関関係例を示す図である。FIG. 1 is a diagram showing an example of the correlation between current consumption of a multilayer ceramic capacitor and workpiece temperature. 図2は、図1に示す例における、漏れ電流とワーク温度との間の相関関係例を示す図である。FIG. 2 is a diagram showing an example of the correlation between leakage current and workpiece temperature in the example shown in FIG. 図3は、第1の実施形態による電子部品試験装置の構成例を示す図である。FIG. 3 is a diagram showing an example of the configuration of the electronic component testing apparatus according to the first embodiment. 図4は、第1の実施形態の電子部品試験方法にかかる経過時間(横軸)と各電流測定部の測定電流(縦軸)との間の関係例を示す図である。FIG. 4 is a diagram showing an example of the relationship between the elapsed time (horizontal axis) and the measured current (vertical axis) of each current measurement unit according to the electronic component testing method of the first embodiment. 図5は、第1の実施形態の電子部品試験方法にかかる経過時間(横軸)と各電子部品に対する印加電圧(縦軸)との間の関係例を示す図である。FIG. 5 is a diagram showing an example of the relationship between the elapsed time (horizontal axis) and the voltage applied to each electronic component (vertical axis) according to the electronic component testing method of the first embodiment. 図6は、第2の実施形態による電子部品試験装置の構成例を示す図である。FIG. 6 is a diagram showing an example of the configuration of an electronic component testing apparatus according to the second embodiment. 図7は、第2の実施形態の電子部品試験方法にかかる経過時間(横軸)と各電流測定部の測定電流(縦軸)との間の関係例を示す図である。FIG. 7 is a diagram showing an example of the relationship between the elapsed time (horizontal axis) and the measured current (vertical axis) of each current measurement unit according to the electronic component testing method of the second embodiment. 図8は、第2の実施形態の電子部品試験方法にかかる経過時間(横軸)と各電子部品に対する印加電圧(縦軸)との間の関係例を示す図である。FIG. 8 is a diagram showing an example of the relationship between the elapsed time (horizontal axis) and the voltage applied to each electronic component (vertical axis) in the electronic component testing method of the second embodiment.

図1は、積層セラミックコンデンサ(MLCC: Multilayer Ceramic Capacitor)の消費電流とワーク温度との間の相関関係例を示す図である。図1の横軸は、時間(経過時間(秒))を示し、測定対象のMLCCでの消費電流を示す。 FIG. 1 is a diagram showing an example of the correlation between current consumption of a multilayer ceramic capacitor (MLCC) and workpiece temperature. The horizontal axis in FIG. 1 indicates time (elapsed time (seconds)) and indicates current consumption in the MLCC to be measured.

図1には、MLCCの温度(すなわち「ワーク温度」)が40℃、70℃、100℃、130℃、160℃及び190℃の場合の相関曲線が描かれている。 FIG. 1 depicts correlation curves for MLCC temperatures (ie, "work temperatures") of 40°C, 70°C, 100°C, 130°C, 160°C, and 190°C.

図2は、図1に示す例における、漏れ電流とワーク温度との間の相関関係例を示す図である。図2の横軸は漏れ電流を示し、縦軸はワーク温度を示す。 FIG. 2 is a diagram showing an example of the correlation between leakage current and workpiece temperature in the example shown in FIG. The horizontal axis in FIG. 2 shows leakage current, and the vertical axis shows workpiece temperature.

本件発明者は、静電容量10μF(ファラド)、定格電圧50V(ボルト)及び温度特性X5R(電子工業会(EIA: Electronic Industries Alliance))を有するMLCCのサンプルに対して125Vの電圧を印加しつつ、当該サンプルにおける消費電流を測定した(図1参照) The inventor of the present invention applied a voltage of 125 V to a sample of MLCC having a capacitance of 10 μF (farad), a rated voltage of 50 V (volts), and a temperature characteristic of X5R (Electronic Industries Alliance (EIA)). , measured the current consumption in the sample (see Figure 1)

図1において「P1」は電力投入初期状態を示す。この電力投入初期状態は、充電が進行し、MLCCのサンプルに電気(電荷)が徐々に蓄えられている状態を示す。一方、図1において「P2」は定常状態を示す。ここでの定常状態は、電子部品がフル充電された状態を指す。充電完了後の定常状態のMLCCサンプルに電圧を印加すると、MLCCサンプルから電流が漏れ出し、当該漏れ電流(リーク電流)が消費電流(図1の縦軸参照)として測定される。 In FIG. 1, "P1" indicates the initial power-on state. This initial power-on state indicates a state in which charging progresses and electricity (charge) is gradually stored in the MLCC sample. On the other hand, "P2" in FIG. 1 indicates a steady state. The steady state here refers to a state where the electronic components are fully charged. When a voltage is applied to the MLCC sample in a steady state after charging is completed, current leaks from the MLCC sample, and the leakage current is measured as current consumption (see the vertical axis in FIG. 1).

本件発明者は、ワーク温度を変え(すなわちワーク温度を40℃、70℃、100℃、130℃、160℃及び190℃に変え)、それぞれのワーク温度に関して上述の消費電流の測定を行った。 The inventor of the present invention changed the work temperature (that is, changed the work temperature to 40° C., 70° C., 100° C., 130° C., 160° C., and 190° C.) and measured the current consumption described above for each work temperature.

その結果、図2に示すように、漏れ電流の大きさとワーク温度との間には線形関係(比例関係)があることが確認された。本件発明者は、各種条件(例えば静電容量、定格電圧及び印加電圧など)を変えつつ上述の消費電流の測定を行ったが、いずれの測定においても漏れ電流の大きさとワーク温度との間には線形関係(比例関係)が認められた。 As a result, as shown in FIG. 2, it was confirmed that there was a linear relationship (proportional relationship) between the magnitude of the leakage current and the workpiece temperature. The inventor of the present invention measured the above-mentioned current consumption while changing various conditions (e.g. capacitance, rated voltage, applied voltage, etc.), but in all measurements there was a difference between the magnitude of leakage current and the workpiece temperature. A linear relationship (proportional relationship) was observed.

漏れ電流の大きさとワーク温度との間の当該相関関係(線形関係)に照らせば、漏れ電流からワーク温度を推定して把握することができる。 In light of the correlation (linear relationship) between the magnitude of the leakage current and the workpiece temperature, the workpiece temperature can be estimated and understood from the leakage current.

以下に説明する電子部品試験装置及び電子部品試験方法の各実施形態は、このような漏れ電流とワーク温度との間の相関関係(線形関係)に基づいている。以下の各実施形態では、複数の電子部品の試験が同時的に行われ、当該複数の電子部品の各々における漏れ電流と当該複数の電子部品の各々の温度との間の相関関係に照らして、各電圧印加部の制御及び各電子部品に印加される電圧の調整が行われる。 Each embodiment of an electronic component testing device and an electronic component testing method described below is based on such a correlation (linear relationship) between leakage current and workpiece temperature. In each of the following embodiments, a plurality of electronic components are tested simultaneously, and in light of the correlation between the leakage current in each of the plurality of electronic components and the temperature of each of the plurality of electronic components, Control of each voltage application unit and adjustment of the voltage applied to each electronic component are performed.

[第1の実施形態]
図3は、第1の実施形態による電子部品試験装置10の構成例を示す図である。
[First embodiment]
FIG. 3 is a diagram showing a configuration example of the electronic component testing apparatus 10 according to the first embodiment.

図3に示す電子部品試験装置10は、自己発熱する複数の電子部品W(例えば200~1000個の電子部品W)に対して電圧を同時的に印加しつつ、常温より高い試験温度下で各電子部品Wの試験を行う。当該試験の間、各電子部品Wは自己発熱によって温度が上昇し、例えば所望の試験温度が150℃であっても、各電子部品Wの温度は100℃~170℃の温度範囲で変動しうる。 The electronic component testing apparatus 10 shown in FIG. 3 simultaneously applies voltage to a plurality of self-heating electronic components W (for example, 200 to 1000 electronic components W), and tests each electronic component at a test temperature higher than room temperature. Test the electronic component W. During the test, the temperature of each electronic component W increases due to self-heating, and for example, even if the desired test temperature is 150 ° C., the temperature of each electronic component W may fluctuate in the temperature range of 100 ° C. to 170 ° C. .

電子部品試験装置10によって行われる具体的な試験内容は限定されない。例えば、各電子部品Wに対して熱負荷をかけながら電気的負荷を印加する試験が行われてもよいし、各電子部品Wに対して熱負荷及び電気的負荷をかけながら電気的測定を行う試験が行われてもよい。より具体的には、バーンインなどのスクリーニング試験、耐電圧試験、静電容量試験、絶縁抵抗試験、或いは漏れ電流試験などの電気的試験が、電子部品試験装置10によって行われうる。 The specific test contents performed by the electronic component testing apparatus 10 are not limited. For example, a test may be performed in which an electrical load is applied while a thermal load is applied to each electronic component W, or an electrical measurement is performed while a thermal load and an electrical load are applied to each electronic component W. Tests may also be conducted. More specifically, electrical tests such as a screening test such as burn-in, a withstand voltage test, a capacitance test, an insulation resistance test, or a leakage current test can be performed by the electronic component testing apparatus 10.

本例では電子部品WとしてMLCC(積層セラミックコンデンサ)が用いられるが、電子部品試験装置10によって試験可能な電子部品Wは限定されない。例えば負特性サーミスタ、ダイオード、トランジスタなどの半導体素子、或いはセラミックコンデンサ以外のコンデンサの一部などを電子部品Wとして用いることが可能であり、他の任意の電子デバイスが電子部品Wとして用いられてもよい。 In this example, an MLCC (multilayer ceramic capacitor) is used as the electronic component W, but the electronic component W that can be tested by the electronic component testing apparatus 10 is not limited. For example, a semiconductor element such as a negative characteristic thermistor, a diode, or a transistor, or a part of a capacitor other than a ceramic capacitor can be used as the electronic component W, and even if any other electronic device is used as the electronic component W. good.

各電子部品Wは、電子部品本体と、電子部品本体に取り付けられる第1外部電極及び第2外部電極とを有する。 Each electronic component W has an electronic component body, and a first external electrode and a second external electrode attached to the electronic component body.

電子部品試験装置10は、電源部20と、電源部20に第1配線31を介して接続される複数の第1プローブ21と、電源部20に第2配線32を介して接続される複数の第2プローブ22と、を備える。 The electronic component testing apparatus 10 includes a power supply unit 20, a plurality of first probes 21 connected to the power supply unit 20 via first wiring 31, and a plurality of first probes 21 connected to the power supply unit 20 via second wiring 32. A second probe 22 is provided.

本例の電源部20は、直流電源装置によって構成され、定格電圧よりも大きな電圧(例えば定格電圧の2.5倍の直流電圧)を各電子部品Wに与えることができる。なお電源部20の構成は限定されない。電源部20は、例えば交流電源装置により構成されてもよいし、直流(直流電流及び直流電圧)及び交流(交流電流及び交流電圧)を各電子部品Wに対して選択的に付与可能な電源装置により構成されてもよい。 The power supply section 20 of this example is constituted by a DC power supply device, and can provide each electronic component W with a voltage larger than the rated voltage (for example, a DC voltage 2.5 times the rated voltage). Note that the configuration of the power supply section 20 is not limited. The power supply unit 20 may be configured by, for example, an AC power supply device, or a power supply device capable of selectively applying direct current (DC current and DC voltage) and alternating current (AC current and AC voltage) to each electronic component W. It may be configured by

複数の第1プローブ21は、単一の第1プローブホルダ23によって支持され、複数の電子部品Wのそれぞれの第1外部電極に接続される。複数の第2プローブ22は、単一の第2プローブホルダ24によって支持され、複数の電子部品Wのそれぞれの第2外部電極に接続される。このように第1プローブ21及び第2プローブ22は相互に対を成す電極(ピン状導電体)として機能し、同時的に試験可能な電子部品Wの数と同じ数の第1プローブ21及び第2プローブ22のペアが設けられる。 The plurality of first probes 21 are supported by a single first probe holder 23 and connected to the respective first external electrodes of the plurality of electronic components W. The plurality of second probes 22 are supported by a single second probe holder 24, and are connected to the second external electrodes of each of the plurality of electronic components W. In this way, the first probe 21 and the second probe 22 mutually function as paired electrodes (pin-shaped conductors), and the first probe 21 and the second probe 22 have the same number as the number of electronic components W that can be tested simultaneously. A pair of two probes 22 is provided.

各第1プローブ21及び各第2プローブ22は、電子部品Wに対して直接的に接触することが予定されているプローブ要素を有する。このプローブ要素は、電子部品Wに対する良好な電気的接続を確立可能な任意の形態を有し、例えば帯状の導電体(例えばCu、Fe或いはAlなどの金属体)によって構成されてもよいし、導電体めっき(例えばAu、Ag、Ni或いはSnなどの金属めっき)が施されていてもよい。 Each first probe 21 and each second probe 22 has a probe element that is scheduled to come into direct contact with the electronic component W. This probe element has any form capable of establishing a good electrical connection to the electronic component W, and may be composed of, for example, a band-shaped conductor (for example, a metal body such as Cu, Fe, or Al), Conductor plating (for example, metal plating such as Au, Ag, Ni, or Sn) may be applied.

第1プローブホルダ23及び第2プローブホルダ24は、非導電体(例えばマシナブルセラミックスなどの材料)によって構成される。第1プローブホルダ23及び第2プローブホルダ24のうちの少なくともいずれか一方は、制御部13の制御下で移動可能に設けられている。複数の第1プローブ21及び/又は複数の第2プローブ22は、対応のホルダとともに一体的に移動して、試験対象の複数の電子部品Wに接触する試験位置と、試験対象の複数の電子部品Wから離れた退避位置とに配置可能である。 The first probe holder 23 and the second probe holder 24 are made of a non-conductive material (for example, a material such as machinable ceramics). At least one of the first probe holder 23 and the second probe holder 24 is provided movably under the control of the control unit 13. The plurality of first probes 21 and/or the plurality of second probes 22 move together with their corresponding holders to a test position where they contact a plurality of electronic components W to be tested, and a plurality of electronic components to be tested. It can be placed in a retracted position away from W.

第1プローブホルダ23及び第2プローブホルダ24には、それぞれ第1ヒータ25及び第2ヒータ26(例えばラバーヒータ)が設けられている。第1ヒータ25及び第2ヒータ26は、試験対象の電子部品Wの温度(試験温度)を調整する。すなわち第1ヒータ25及び第2ヒータ26からの熱エネルギーが各第1プローブ21及び各第2プローブ22を介して各電子部品Wに伝えられることで、各電子部品Wが加熱されて所望の試験温度に調整される。第1ヒータ25及び第2ヒータ26は、制御部13の制御下で駆動されてもよいし、制御部13によることなく(例えば手動的に)駆動されてもよい。 The first probe holder 23 and the second probe holder 24 are provided with a first heater 25 and a second heater 26 (for example, a rubber heater), respectively. The first heater 25 and the second heater 26 adjust the temperature of the electronic component W to be tested (test temperature). That is, the thermal energy from the first heater 25 and the second heater 26 is transmitted to each electronic component W via each first probe 21 and each second probe 22, thereby heating each electronic component W and performing a desired test. Adjusted to temperature. The first heater 25 and the second heater 26 may be driven under the control of the control unit 13 or may be driven independently of the control unit 13 (for example, manually).

第1ヒータ25及び第2ヒータ26の駆動温度は、お互いに同じであってもよいが、お互いに異なる温度であってもよい。特に、第1ヒータ25及び第2ヒータ26のうちの一方が、電子部品Wの温度を所望の試験温度(例えば150℃)よりも高い温度(例えば153℃)に調整するように発熱し、他方が、電子部品Wの温度を所望の試験温度よりも低い温度(例えば147℃)に調整するように発熱してもよい。この場合、第1プローブ21、第2プローブ22及び電子部品Wは、一方のプローブから電子部品Wに熱移動が生じ且つ電子部品Wから他方のプローブに熱移動が生じる状態に置かれる。そのため、第1プローブ21、電子部品W及び第2プローブ22の熱応答性が高い状態で、試験を行うことができる。 The driving temperatures of the first heater 25 and the second heater 26 may be the same, or may be different. In particular, one of the first heater 25 and the second heater 26 generates heat so as to adjust the temperature of the electronic component W to a higher temperature (for example, 153 °C) than the desired test temperature (for example, 150 °C), and the other However, heat may be generated so as to adjust the temperature of the electronic component W to a temperature lower than the desired test temperature (for example, 147° C.). In this case, the first probe 21, the second probe 22, and the electronic component W are placed in a state where heat transfer occurs from one probe to the electronic component W and from the electronic component W to the other probe. Therefore, the test can be performed in a state where the first probe 21, the electronic component W, and the second probe 22 have high thermal responsiveness.

一例として、第1プローブ21と第2プローブ22との間の温度差が5℃~15℃となるように、第1ヒータ25及び第2ヒータ26の発熱がコントロールされてもよい。第1プローブ21と第2プローブ22との間の温度差が5℃よりも小さくなると、電子部品Wの放熱が適切に行われないことがある。一方、第1プローブ21と第2プローブ22との間の温度差が15℃よりも大きくなると、電子部品Wの温度コントロールが難しくなることがある。 As an example, the heat generation of the first heater 25 and the second heater 26 may be controlled so that the temperature difference between the first probe 21 and the second probe 22 is 5° C. to 15° C. When the temperature difference between the first probe 21 and the second probe 22 is smaller than 5° C., heat dissipation from the electronic component W may not be performed appropriately. On the other hand, if the temperature difference between the first probe 21 and the second probe 22 is greater than 15° C., it may become difficult to control the temperature of the electronic component W.

各第2プローブ22と電源部20との間で延びる第2配線32には電圧印加部11及び電流測定部12が設けられ、各電圧印加部11及び各電流測定部12は制御部13に接続される。 A voltage application section 11 and a current measurement section 12 are provided in the second wiring 32 extending between each second probe 22 and the power supply section 20, and each voltage application section 11 and each current measurement section 12 are connected to the control section 13. be done.

各電流測定部12は、対応の第2配線32を流れる電流(ひいては対応の電子部品Wにおける電流)を繰り返し測定し、測定結果を制御部13に送信する。各電流測定部12による測定頻度は限定されず、例えば100ms毎に、各電流測定部12は電流測定を行って制御部13に測定結果を送信してもよい。各電圧印加部11は、対応の電子部品Wに電圧を印加する。本実施形態の電圧印加部11は、制御部13の制御下で、対応の電流測定部12の測定結果に基づいて、対応の第2配線32における電流のオン(通電)及びオフ(通電遮断)を行うスイッチング素子として構成される。 Each current measurement unit 12 repeatedly measures the current flowing through the corresponding second wiring 32 (and thus the current in the corresponding electronic component W), and transmits the measurement results to the control unit 13. The measurement frequency by each current measuring section 12 is not limited, and each current measuring section 12 may measure the current and transmit the measurement result to the control section 13, for example, every 100 ms. Each voltage application section 11 applies a voltage to the corresponding electronic component W. Under the control of the control unit 13, the voltage application unit 11 of the present embodiment turns on (energizes) and turns off (cuts off current) the current in the corresponding second wiring 32 based on the measurement result of the corresponding current measurement unit 12. It is configured as a switching element that performs.

制御部13は、予め取得されている電子部品Wにおける漏れ電流と電子部品Wの温度(ワーク温度)との間の相関関係に照らして、電流測定部12の漏れ電流に関する測定結果に応じて対応の電圧印加部11を制御することで、電子部品Wに印加される電圧を調整する。 The control unit 13 takes action according to the measurement result regarding the leakage current of the current measurement unit 12 in light of the correlation between the leakage current in the electronic component W and the temperature of the electronic component W (workpiece temperature) that has been obtained in advance. The voltage applied to the electronic component W is adjusted by controlling the voltage application section 11 of the electronic component W.

本実施形態の制御部13は、PWM制御(パルス幅変調制御)を実行可能なデジタル回路を含み、電子部品Wに印加される電圧をPWM制御に基づいて調整する。すなわち制御部13は、電流測定部12より取得される漏れ電流の測定値に基づいて、対応の電圧印加部11が対応の電子部品Wに電圧を印加する通電時間を調整するように、対応の電圧印加部11を制御する。なおPWM制御の具体例については後述する(図5参照)。 The control unit 13 of this embodiment includes a digital circuit capable of performing PWM control (pulse width modulation control), and adjusts the voltage applied to the electronic component W based on the PWM control. That is, the control unit 13 controls the corresponding electronic component W so that the corresponding voltage application unit 11 adjusts the energization time for applying voltage to the corresponding electronic component W based on the measured value of the leakage current acquired by the current measurement unit 12. Controls the voltage application section 11. Note that a specific example of PWM control will be described later (see FIG. 5).

次に、上述の構成を有する電子部品試験装置10によって行われる電子部品試験方法の一例について説明する。 Next, an example of an electronic component testing method performed by the electronic component testing apparatus 10 having the above-described configuration will be described.

図4は、第1の実施形態の電子部品試験方法にかかる経過時間(横軸)と各電流測定部12の測定電流(縦軸)との間の関係例を示す図である。図5は、第1の実施形態の電子部品試験方法にかかる経過時間(横軸)と各電子部品Wに対する印加電圧(縦軸)との間の関係例を示す図である。 FIG. 4 is a diagram showing an example of the relationship between the elapsed time (horizontal axis) and the measured current (vertical axis) of each current measuring section 12 according to the electronic component testing method of the first embodiment. FIG. 5 is a diagram showing an example of the relationship between the elapsed time (horizontal axis) and the voltage applied to each electronic component W (vertical axis) according to the electronic component testing method of the first embodiment.

試験対象の複数の電子部品Wは、それぞれ、対応の第1プローブ21及び第2プローブ22に接触している状態で、当該対応の第1プローブ21及び第2プローブ22を介して電気が流される。この際、試験対象の複数の電子部品Wは、第1ヒータ25及び第2ヒータ26からの熱エネルギーによって加熱され、これらの電子部品Wの温度(試験温度)は例えば150℃に調整される。 Electricity is applied to the plurality of electronic components W to be tested through the corresponding first probe 21 and second probe 22 while in contact with the corresponding first probe 21 and second probe 22, respectively. . At this time, the plurality of electronic components W to be tested are heated by thermal energy from the first heater 25 and the second heater 26, and the temperature (test temperature) of these electronic components W is adjusted to 150° C., for example.

具体的には、制御部13の制御下で各電圧印加部11がオン状態に調整され、各電子部品Wに対し、電源部20からの電力が供給される(図4の「電力投入初期」参照)。これにより各電子部品Wの充電が進行し、各電流測定部12によって取得される測定電流値は徐々に小さくなる。 Specifically, each voltage application unit 11 is adjusted to the ON state under the control of the control unit 13, and power is supplied from the power supply unit 20 to each electronic component W (“initial power-on” in FIG. 4). reference). As a result, charging of each electronic component W progresses, and the measured current value acquired by each current measuring section 12 gradually becomes smaller.

そして各電子部品Wは、充電が完了して、定常状態に達する(図4の「定常状態」参照)。 Then, each electronic component W completes charging and reaches a steady state (see "steady state" in FIG. 4).

定常状態の各電子部品Wに対して電圧印加を続行することで、各電子部品Wには漏れ電流が生じる。当該漏れ電流は、対応の電流測定部12により測定電流として取得される。 By continuing to apply voltage to each electronic component W in a steady state, a leakage current is generated in each electronic component W. The leakage current is acquired as a measurement current by the corresponding current measurement section 12.

自己発熱する電子部品Wは、定常状態において電圧が印加され続けることで、発熱して温度が上昇し、いわゆる熱暴走を生じることがある(図4の「熱暴走初期」参照)。特にMLCCが電子部品Wとして使われる場合、MLCCの充電時間を短縮するために高電流による充電が行われることが多いが、そのような場合、必然的に試験温度が高くなるため電子部品Wの熱暴走が起きやすい。熱暴走を起こした電子部品Wは、時間の経過とともに加速度的に昇温し、耐熱温度を超えると破壊に至る(図4の「熱破壊」参照)。 When a voltage is continuously applied to the electronic component W that generates self-heating in a steady state, the electronic component W generates heat and the temperature increases, which may cause so-called thermal runaway (see "initial thermal runaway" in FIG. 4). In particular, when an MLCC is used as an electronic component W, charging with a high current is often performed to shorten the charging time of the MLCC. Heat runaway is likely to occur. The temperature of the electronic component W that has caused thermal runaway increases at an accelerated rate over time, and if it exceeds the allowable temperature limit, it will be destroyed (see "Thermal Destruction" in FIG. 4).

そこで本実施形態の制御部13は、電流測定部12の測定結果が熱暴走判定閾値T1に到達したことを検知したら、対応の電子部品Wに対する定常状態復帰処理を個別的に開始する(図4及び図5の「熱暴走検知」参照)。すなわち制御部13は、電流測定部12の漏れ電流に関する測定値が、上述の相関関係に応じて定められる熱暴走判定閾値T1を超える場合、対応の電子部品Wの温度を下げるように当該電子部品Wに印加される電圧を調整する定常状態復帰処理を、対応の電圧印加部11に対して開始する。 Therefore, when the control unit 13 of this embodiment detects that the measurement result of the current measurement unit 12 has reached the thermal runaway determination threshold T1, it individually starts steady state return processing for the corresponding electronic component W (FIG. 4 (See “Thermal Runaway Detection” in Figure 5). That is, when the measured value of the leakage current of the current measuring section 12 exceeds the thermal runaway determination threshold T1 determined according to the above-mentioned correlation, the control section 13 controls the electronic component W to lower the temperature of the corresponding electronic component W. A steady state return process for adjusting the voltage applied to W is started for the corresponding voltage application section 11.

上述の図2に示すように、電子部品Wの漏れ電流とワーク温度との間には強い正の相関がある。この相関に照らして、電子部品Wの漏れ電流(すなわち電流測定部12の測定結果)が熱暴走判定閾値T1に到達したか否かを判定することで、電子部品Wが「熱暴走を起こしているか否かの判定基準温度である判定閾値温度」に達したか否かを実質的に判定している。したがって、ここで判定基準として用いられる「測定電流に関する熱暴走判定閾値T1」は、「電子部品Wの温度に関する判定閾値温度」に対応する。 As shown in FIG. 2 described above, there is a strong positive correlation between the leakage current of the electronic component W and the workpiece temperature. In light of this correlation, by determining whether the leakage current of the electronic component W (that is, the measurement result of the current measurement unit 12) has reached the thermal runaway determination threshold T1, it is possible to determine whether the electronic component W has caused "thermal runaway." It is essentially determined whether or not the determination threshold temperature, which is the reference temperature for determining whether or not the vehicle is present, has been reached. Therefore, the "thermal runaway determination threshold T1 regarding the measured current" used as the determination criterion here corresponds to the "determination threshold temperature regarding the temperature of the electronic component W."

このようにして、各電子部品Wの温度を直接的に測定することなく、各電子部品Wの温度が「熱暴走を起こしているか否かの判定閾値温度」に達したか否かを判定でき、ひいては各電子部品Wに熱暴走が生じているか否かを判定できる。 In this way, it is possible to determine whether the temperature of each electronic component W has reached the "determination threshold temperature for determining whether thermal runaway is occurring" without directly measuring the temperature of each electronic component W. Therefore, it can be determined whether or not thermal runaway has occurred in each electronic component W.

熱暴走を起こしている電子部品Wに対して行われる上述の定常状態復帰処理は、対応の電子部品Wが定常状態に戻るまで続行され、対応の電子部品Wが定常状態に戻ったら終了する。具体的には、制御部13は、電流測定部12の漏れ電流に関する測定値が、上述の相関関係に応じて定められる定常判定閾値T2を下回る場合、対応の電圧印加部11に対する定常状態復帰処理を終了する(図4及び図5の「定常状態復帰」参照)。ここで判定基準として用いられる「測定電流に関する定常判定閾値T2」は、「電子部品Wが平常状態に置かれているか否かの判定基準温度である判定閾値温度」に対応する。 The above-mentioned steady state return processing performed on the electronic component W that has caused thermal runaway is continued until the corresponding electronic component W returns to the steady state, and ends when the corresponding electronic component W returns to the steady state. Specifically, when the measured value of the leakage current of the current measurement unit 12 is less than the steady state determination threshold T2 determined according to the above-mentioned correlation, the control unit 13 performs a steady state return process for the corresponding voltage application unit 11. (See "Return to steady state" in FIGS. 4 and 5). The "steady state determination threshold T2 regarding the measured current" used as the determination criterion here corresponds to the "determination threshold temperature that is the determination reference temperature for whether or not the electronic component W is placed in a normal state."

本実施形態では、上述の定常状態復帰処理がPWM制御に基づいて行われる。すなわち制御部13は、定常状態復帰処理において対応の電圧印加部11のオンオフ駆動を制御し、対応の電子部品Wに電圧が印加される時間(オン時間)及び対応の電子部品Wに電圧が印加されない時間(オフ時間)が調整する。このように制御部13は、定常状態復帰処理において対応の電圧印加部11を制御し、当該電圧印加部11が電子部品Wに電圧を印加する通電時間を調整することで、当該電子部品Wの温度を下げる。これにより各電子部品Wの熱暴走が沈静化され、各電子部品Wの熱破壊を未然に回避できる。 In this embodiment, the above-described steady state return process is performed based on PWM control. That is, the control unit 13 controls the on/off drive of the corresponding voltage application unit 11 in the steady state return process, and determines the time period during which the voltage is applied to the corresponding electronic component W (on time) and the time during which the voltage is applied to the corresponding electronic component W. Adjust the off time (off time). In this way, the control unit 13 controls the corresponding voltage application unit 11 in the steady state return process, and adjusts the energization time during which the voltage application unit 11 applies voltage to the electronic component W, thereby controlling the electronic component W. Lower the temperature. As a result, thermal runaway of each electronic component W is suppressed, and thermal destruction of each electronic component W can be avoided.

なお、ここでのPWM制御の具体的な制御方法は限定されない。一例として図5に示すように、制御部13は、所定の時間間隔(例えば100ms)を100%として扱い、電流測定部12による測定電流の変化率(変化速度)に応じて(すなわち対応の電子部品Wの温度変化の割合に応じて)、対応の電子部品Wに対する電圧印加のオン及びオフの繰り返し頻度を調整するように、対応の電圧印加部11を制御してもよい。 Note that the specific control method of PWM control here is not limited. As an example, as shown in FIG. 5, the control section 13 treats a predetermined time interval (for example, 100 ms) as 100%, and according to the rate of change (change speed) of the current measured by the current measurement section 12 (i.e., the corresponding electronic The corresponding voltage application section 11 may be controlled so as to adjust the repetition frequency of turning on and off voltage application to the corresponding electronic component W (according to the rate of temperature change of the component W).

このように電子部品Wは、たとえ熱暴走を起こして昇温しても、熱破壊を起こす前に(すなわち熱破壊を起こしうるワーク温度(漏れ電流)に到達する前に)、上述の定常状態復帰処理(PWM制御)により温度が下げられて定常状態に復帰する。 In this way, even if the electronic component W undergoes thermal runaway and rises in temperature, the electronic component W returns to the above-mentioned steady state before thermal breakdown occurs (that is, before the workpiece temperature (leakage current) that can cause thermal breakdown is reached). The temperature is lowered by the return process (PWM control) and returns to a steady state.

試験が継続的に行われている間は、各電子部品Wに対する電圧の印加が続く。そのため各電子部品Wは、一旦定常状態に復帰しても、その後再び熱暴走を起こしうる。 While the test is continuously performed, voltage continues to be applied to each electronic component W. Therefore, even if each electronic component W once returns to a steady state, thermal runaway may occur again thereafter.

しかしながら本実施形態によれば、制御部13が各電流測定部12の測定結果に基づいて各電子部品Wの温度を監視し続け、熱暴走を起こしている電子部品W(すなわち漏れ電流が熱暴走判定閾値T1を超える電子部品W)に対して上述の定常状態復帰処理(PWM制御)が繰り返し適用される。これにより、各電子部品Wの熱暴走を経時的に防ぎつつ、多数の電子部品Wの試験を同時的に行うことができる。 However, according to the present embodiment, the control unit 13 continues to monitor the temperature of each electronic component W based on the measurement results of each current measurement unit 12, and the control unit 13 continuously monitors the temperature of each electronic component W based on the measurement results of each current measurement unit 12, and The above-described steady state return process (PWM control) is repeatedly applied to the electronic component W exceeding the determination threshold value T1. Thereby, a large number of electronic components W can be tested simultaneously while preventing thermal runaway of each electronic component W over time.

以上説明したように本実施形態の電子部品試験装置10及び電子部品試験方法によれば、自己発熱する電子部品Wの過度な温度上昇を防ぎつつ、当該電子部品Wの試験を適切に行うことができる。 As explained above, according to the electronic component testing apparatus 10 and the electronic component testing method of the present embodiment, it is possible to appropriately test the electronic component W while preventing the excessive temperature rise of the electronic component W that self-heats. can.

特に、各電子部品Wの漏れ電流とワーク温度との間の相関関係に照らして、漏れ電流の測定値に基づいて各電子部品Wの温度を推定できるので、個々の電子部品Wの温度を直接的に測定する必要がない。そのため、個々の電子部品Wの温度の測定及び制御のための制御系(温度センサ、ヒータ及び制御機器)が不要であり、電子部品試験装置10の装置構成を簡素化できる。 In particular, the temperature of each electronic component W can be estimated based on the measured value of the leakage current in light of the correlation between the leakage current of each electronic component W and the workpiece temperature. There is no need to measure accurately. Therefore, a control system (a temperature sensor, a heater, and a control device) for measuring and controlling the temperature of each electronic component W is unnecessary, and the device configuration of the electronic component testing apparatus 10 can be simplified.

また本実施形態の電子部品試験方法によれば、電子部品間に熱的な相互作用が生じていても、各電子部品Wの熱暴走を防ぎつつ試験を有効に実施できる。そのため、多数の電子部品Wの試験を同時的に行う場合、限られたスペースに多数の電子部品Wを並べた状態で試験を行うことが可能である。このように本実施形態は、低コスト且つコンパクトな構成の電子部品試験装置10によって、複数の電子部品Wの試験を同時的に適切に行うことができ、経済性及び面積生産性に優れる。 Moreover, according to the electronic component testing method of this embodiment, even if thermal interaction occurs between electronic components, the test can be effectively performed while preventing thermal runaway of each electronic component W. Therefore, when testing a large number of electronic components W at the same time, it is possible to perform the test with a large number of electronic components W lined up in a limited space. In this manner, the present embodiment can suitably test a plurality of electronic components W at the same time using the electronic component testing apparatus 10 having a low cost and compact configuration, and is excellent in economical efficiency and area productivity.

[第2の実施形態]
本実施形態において、上述の第1の実施形態と同一又は対応の要素には同一の符号を付し、その詳細な説明は省略する。
[Second embodiment]
In this embodiment, elements that are the same as or correspond to those in the first embodiment described above are given the same reference numerals, and detailed description thereof will be omitted.

図6は、第2の実施形態による電子部品試験装置10の構成例を示す図である。 FIG. 6 is a diagram showing a configuration example of the electronic component testing apparatus 10 according to the second embodiment.

上述の第1の実施形態ではPWM制御(デジタル回路)によって電子部品Wに対する印加電圧が制御されるが、本実施形態の制御部13は、レギュレータ制御を実行可能なアナログ回路を含み、アナログ制御によって電子部品Wに印加される電圧の大きさを調整する。 In the first embodiment described above, the voltage applied to the electronic component W is controlled by PWM control (digital circuit), but the control unit 13 of this embodiment includes an analog circuit capable of executing regulator control, and the voltage applied to the electronic component W is controlled by PWM control (digital circuit). The magnitude of the voltage applied to the electronic component W is adjusted.

すなわち本実施形態において、対応の電子部品Wに電圧を印加する各電圧印加部11は、制御部13の制御下で、対応の電流測定部12の測定結果に基づいて、対応の電子部品Wに印加する電圧の大きさを変更可能な素子として構成される。 That is, in this embodiment, each voltage application section 11 that applies a voltage to the corresponding electronic component W applies a voltage to the corresponding electronic component W based on the measurement result of the corresponding current measurement section 12 under the control of the control section 13. It is configured as an element that can change the magnitude of the applied voltage.

制御部13は、各電流測定部12の測定結果である各電子部品Wからの漏れ電流に基づいて、対応の電圧印加部11が電子部品Wに印加する電圧の大きさを調整するように、対応の電圧印加部11を制御する。なおレギュレータ制御の具体例については後述する(図8参照)。 The control unit 13 adjusts the magnitude of the voltage applied to the electronic component W by the corresponding voltage application unit 11 based on the leakage current from each electronic component W, which is the measurement result of each current measurement unit 12. The corresponding voltage application section 11 is controlled. Note that a specific example of regulator control will be described later (see FIG. 8).

他の構成は、上述の第1の実施形態の電子部品試験装置10(図3参照)と同様である。 The other configurations are the same as the electronic component testing apparatus 10 (see FIG. 3) of the first embodiment described above.

次に、上述の構成を有する電子部品試験装置10によって行われる電子部品試験方法の一例について説明する。 Next, an example of an electronic component testing method performed by the electronic component testing apparatus 10 having the above-described configuration will be described.

図7は、第2の実施形態の電子部品試験方法にかかる経過時間(横軸)と各電流測定部12の測定電流(縦軸)との間の関係例を示す図である。図8は、第2の実施形態の電子部品試験方法にかかる経過時間(横軸)と各電子部品Wに対する印加電圧(縦軸)との間の関係例を示す図である。 FIG. 7 is a diagram showing an example of the relationship between the elapsed time (horizontal axis) and the measured current (vertical axis) of each current measuring section 12 according to the electronic component testing method of the second embodiment. FIG. 8 is a diagram showing an example of the relationship between the elapsed time (horizontal axis) and the voltage applied to each electronic component W (vertical axis) according to the electronic component testing method of the second embodiment.

本実施形態の電子部品試験方法も、基本的には、上述の第1の実施形態の電子部品試験方法と同様にして行われる。 The electronic component testing method of this embodiment is also basically performed in the same manner as the electronic component testing method of the first embodiment described above.

すなわち試験対象の複数の電子部品Wは、所望の試験温度に調整され且つ対応の第1プローブ21及び第2プローブ22に接触している状態で電気が流されて、試験が行われる。 That is, the plurality of electronic components W to be tested are adjusted to a desired test temperature and are tested by applying electricity to them while being in contact with the corresponding first probe 21 and second probe 22.

これにより各電子部品Wの充電が進行し、各電流測定部12により取得される測定電流値は徐々に小さくなって、電子部品Wは定常状態に達する(図7の「定常状態」参照)。そして、定常状態の各電子部品Wに対して電圧を印加し続けることで各電子部品Wには漏れ電流が流れ、当該漏れ電流は、対応の電流測定部12により測定電流として取得される。制御部13は、このようにして取得される各電子部品Wの漏れ電流の測定結果に基づいて、各電子部品Wの温度を監視する。 As a result, charging of each electronic component W progresses, and the measured current value acquired by each current measurement unit 12 gradually becomes smaller, and the electronic component W reaches a steady state (see "steady state" in FIG. 7). Then, by continuing to apply a voltage to each electronic component W in a steady state, a leakage current flows through each electronic component W, and the leakage current is acquired as a measurement current by the corresponding current measuring section 12. The control unit 13 monitors the temperature of each electronic component W based on the measurement result of the leakage current of each electronic component W obtained in this way.

そして制御部13は、電流測定部12の測定結果に基づいて、漏れ電流が熱暴走判定閾値T1に到達した電子部品Wを検知したら(図7及び図8の「熱暴走検知」参照)、当該電子部品Wに対して定常状態復帰処理を個別的に開始する。すなわち制御部13は、定常状態復帰処理において、対応の電圧印加部11が電子部品Wに印加する電圧の大きさを調整するように当該電圧印加部11を制御し、対応の電子部品Wの温度が下がるように当該電子部品Wに印加される電圧が調整される。 Then, when the control unit 13 detects an electronic component W whose leakage current has reached the thermal runaway determination threshold T1 based on the measurement result of the current measurement unit 12 (see “thermal runaway detection” in FIGS. 7 and 8), the Steady state return processing is started for each electronic component W individually. That is, in the steady state return process, the control unit 13 controls the corresponding voltage application unit 11 to adjust the magnitude of the voltage applied to the electronic component W, and adjusts the temperature of the corresponding electronic component W. The voltage applied to the electronic component W is adjusted so that the voltage decreases.

このように本実施形態では、レギュレータ制御に基づいて上述の定常状態復帰処理が行われ、対応の電圧印加部11が制御部13の制御下でアナログ的に駆動されることで、熱暴走を起こしている電子部品Wに印加される電圧の大きさが調整される。 In this way, in this embodiment, the above-mentioned steady state return processing is performed based on regulator control, and the corresponding voltage application section 11 is driven in an analog manner under the control of the control section 13, thereby causing thermal runaway. The magnitude of the voltage applied to the electronic component W is adjusted.

ここでのレギュレータ制御の具体的な制御方法は限定されない。一例として図8に示すように、時間の経過に対し、電子部品Wに対する印加電圧を比例的且つ継続的に小さくすることで、対応の電子部品Wの温度を下げてもよい。ただし、レギュレータ制御はこの制御方法には限定されない。例えば、対応の電流測定部12によって取得される電流測定値(すなわち対応の電子部品Wの漏れ電流)に応じて、対応の電子部品Wに対する印加電圧を指数関数的に小さくしてもよい。或いは、対応の電流測定部12によって取得される電流測定値に応じて、対応の電子部品Wに対する印加電圧を段階的に小さくしてもよい。 The specific control method of regulator control here is not limited. As an example, as shown in FIG. 8, the temperature of the corresponding electronic component W may be lowered by proportionally and continuously decreasing the voltage applied to the electronic component W over time. However, regulator control is not limited to this control method. For example, the voltage applied to the corresponding electronic component W may be exponentially reduced in accordance with the current measurement value acquired by the corresponding current measuring section 12 (that is, the leakage current of the corresponding electronic component W). Alternatively, the voltage applied to the corresponding electronic component W may be reduced stepwise in accordance with the current measurement value acquired by the corresponding current measuring section 12.

上述の定常状態復帰処理は、熱暴走を起こしている電子部品Wが定常状態に戻るまで続行され、当該電子部品Wが定常状態に戻ったら終了する。具体的には、制御部13は、電流測定部12の測定結果が定常判定閾値T2に到達したことを検知したら、定常状態復帰処理を終了する(図7及び図8の「定常状態復帰」参照)。 The above-mentioned steady state return process is continued until the electronic component W that has caused thermal runaway returns to the steady state, and ends when the electronic component W returns to the steady state. Specifically, when the control unit 13 detects that the measurement result of the current measurement unit 12 has reached the steady state determination threshold T2, it ends the steady state return process (see "Steady state return" in FIGS. 7 and 8). ).

そして制御部13は、各電流測定部12の測定結果に基づいて各電子部品Wの温度を監視し続け、熱暴走を起こしている電子部品W(すなわち漏れ電流が熱暴走判定閾値T1を超える電子部品W)に対して上述の定常状態復帰処理(レギュレータ制御)を繰り返し適用する。これにより各電子部品Wの熱暴走を防ぎつつ、多数の電子部品Wの試験を同時的に行うことができる。 Then, the control unit 13 continues to monitor the temperature of each electronic component W based on the measurement results of each current measurement unit 12, and monitors the temperature of each electronic component W causing thermal runaway (i.e., the electronic component W whose leakage current exceeds the thermal runaway determination threshold T1). The above steady state return process (regulator control) is repeatedly applied to component W). Thereby, a large number of electronic components W can be tested simultaneously while preventing thermal runaway of each electronic component W.

以上説明したように本実施形態においても、自己発熱を生じる電子部品Wの過度な温度上昇を防ぎつつ当該電子部品Wの試験を適切に行うことができ、複数の電子部品Wの試験に対しても低コスト且つコンパクトな装置構成で対処できる。 As explained above, in this embodiment as well, it is possible to properly test the electronic component W while preventing the excessive temperature rise of the electronic component W that causes self-heating, and it is possible to properly test the electronic component W while preventing the excessive temperature rise of the electronic component W that causes self-heating. can also be handled with a low cost and compact device configuration.

本明細書で開示されている実施形態及び変形例はすべての点で例示に過ぎず限定的には解釈されないことに留意されるべきである。上述の実施形態及び変形例は、添付の特許請求の範囲及びその趣旨を逸脱することなく、様々な形態での省略、置換及び変更が可能である。また上述の技術的思想を具現化する技術的カテゴリーは限定されない。例えば上述の電子部品試験方法に含まれる1又は複数の手順(ステップ)をコンピュータに実行させるためのコンピュータプログラムによって、上述の技術的思想が具現化されてもよい。またそのようなコンピュータプログラムが記録されたコンピュータが読み取り可能な非一時的(non-transitory)な記録媒体によって、上述の技術的思想が具現化されてもよい。 It should be noted that the embodiments and modifications disclosed in this specification are merely illustrative in all respects and should not be construed as limiting. The embodiments and modifications described above can be omitted, replaced, and changed in various forms without departing from the scope and spirit of the appended claims. Further, the technical category that embodies the above-mentioned technical idea is not limited. For example, the above technical idea may be embodied by a computer program for causing a computer to execute one or more procedures (steps) included in the above electronic component testing method. Further, the above-mentioned technical idea may be embodied by a computer-readable non-transitory recording medium on which such a computer program is recorded.

10 電子部品試験装置
11 電圧印加部
12 電流測定部
13 制御部
20 電源部
21 第1プローブ
22 第2プローブ
23 第1プローブホルダ
24 第2プローブホルダ
25 第1ヒータ
26 第2ヒータ
31 第1配線
32 第2配線
P1 電力投入初期状態
P2 定常状態
T1 熱暴走判定閾値
T2 定常判定閾値
W 電子部品
10 Electronic component testing device 11 Voltage application section 12 Current measurement section 13 Control section 20 Power supply section 21 First probe 22 Second probe 23 First probe holder 24 Second probe holder 25 First heater 26 Second heater 31 First wiring 32 Second wiring P1 Power-on initial state P2 Steady state T1 Thermal runaway determination threshold T2 Steady state determination threshold W Electronic component

Claims (6)

常温より高い試験温度下で、自己発熱を生じる電子部品に電圧を印加する電子部品試験装置であって、
前記電子部品に電圧を印加する電圧印加部と、
前記電子部品における電流を測定する電流測定部と、
予め取得される前記電子部品における漏れ電流と前記電子部品の温度との間の相関関係に照らして、前記電流測定部の漏れ電流に関する測定結果に応じて前記電圧印加部を制御することで、前記電子部品に印加される電圧を調整する制御部と、を備える、電子部品試験装置。
An electronic component testing device that applies voltage to electronic components that generate self-heating at a test temperature higher than room temperature,
a voltage application unit that applies voltage to the electronic component;
a current measuring unit that measures the current in the electronic component;
By controlling the voltage application section according to the measurement result regarding the leakage current of the current measurement section in light of the correlation between the leakage current in the electronic component and the temperature of the electronic component obtained in advance, An electronic component testing device comprising: a control unit that adjusts a voltage applied to an electronic component.
前記制御部は、前記電流測定部の漏れ電流に関する測定値が、前記相関関係に応じて定められる熱暴走判定閾値を超える場合、前記電子部品の温度を下げるように前記電子部品に印加される電圧を調整する定常状態復帰処理を前記電圧印加部に対して開始する、請求項1に記載の電子部品試験装置。 The control unit controls a voltage applied to the electronic component to lower the temperature of the electronic component when the measured value of the leakage current of the current measurement unit exceeds a thermal runaway determination threshold determined according to the correlation. The electronic component testing apparatus according to claim 1, wherein a steady state return process for adjusting the voltage application unit is started for the voltage application unit. 前記制御部は、前記電流測定部の漏れ電流に関する測定値が、前記相関関係に応じて定められる定常判定閾値を下回る場合、前記電圧印加部に対する前記定常状態復帰処理を終了する、請求項2に記載の電子部品試験装置。 3. The control unit terminates the steady state return process for the voltage application unit when the measured value of the leakage current of the current measurement unit is less than a steady state determination threshold determined according to the correlation. Electronic component testing equipment described. 前記制御部は、前記定常状態復帰処理において、前記電圧印加部が前記電子部品に電圧を印加する通電時間を調整するように、前記電圧印加部を制御する、請求項2又は3に記載の電子部品試験装置。 The electronic device according to claim 2 or 3, wherein the control unit controls the voltage application unit so as to adjust the energization time during which the voltage application unit applies the voltage to the electronic component in the steady state return process. Parts testing equipment. 前記制御部は、前記定常状態復帰処理において、前記電圧印加部が前記電子部品に印加する電圧の大きさを調整するように、前記電圧印加部を制御する、請求項2又は3に記載の電子部品試験装置。 The electronic device according to claim 2 or 3, wherein the control unit controls the voltage application unit so as to adjust the magnitude of the voltage that the voltage application unit applies to the electronic component in the steady state return process. Parts testing equipment. 前記電圧印加部は、複数の電子部品に電圧を印加し、
前記電流測定部は、前記複数の電子部品における電流を測定し、
前記相関関係は、前記複数の電子部品の各々における漏れ電流と前記複数の電子部品の各々の温度との間の相関関係となっており、
前記制御部は、前記相関関係に照らして、前記電流測定部の漏れ電流に関する測定結果に応じて前記電圧印加部を制御することで、前記複数の電子部品に印加される電圧を調整する、請求項1乃至5のいずれか一項に記載の電子部品試験装置。
The voltage application unit applies voltage to a plurality of electronic components,
The current measurement unit measures the current in the plurality of electronic components,
The correlation is a correlation between the leakage current in each of the plurality of electronic components and the temperature of each of the plurality of electronic components,
The control unit adjusts the voltage applied to the plurality of electronic components by controlling the voltage application unit according to a measurement result regarding leakage current of the current measurement unit in light of the correlation. The electronic component testing device according to any one of Items 1 to 5.
JP2022030040A 2022-02-28 2022-02-28 Electronic Component Test Equipment Active JP7515900B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022030040A JP7515900B2 (en) 2022-02-28 2022-02-28 Electronic Component Test Equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022030040A JP7515900B2 (en) 2022-02-28 2022-02-28 Electronic Component Test Equipment

Publications (2)

Publication Number Publication Date
JP2023125764A true JP2023125764A (en) 2023-09-07
JP7515900B2 JP7515900B2 (en) 2024-07-16

Family

ID=87887897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022030040A Active JP7515900B2 (en) 2022-02-28 2022-02-28 Electronic Component Test Equipment

Country Status (1)

Country Link
JP (1) JP7515900B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3791326B2 (en) 2000-11-13 2006-06-28 株式会社村田製作所 Capacitor measurement method
JP2006284244A (en) 2005-03-31 2006-10-19 Matsushita Electric Ind Co Ltd Temperature measuring instrument
JP5218823B2 (en) 2008-03-31 2013-06-26 株式会社 東京ウエルズ Capacitor leakage current measuring method and capacitor leakage current measuring apparatus
JP6074610B2 (en) 2012-05-17 2017-02-08 パナソニックIpマネジメント株式会社 Toilet seat device
JP6295412B2 (en) 2014-01-30 2018-03-20 パナソニックIpマネジメント株式会社 Capacitor manufacturing method and capacitor inspection apparatus
JP7449581B2 (en) 2021-06-28 2024-03-14 株式会社 東京ウエルズ Capacitor measuring device and capacitor measuring method
JP7416439B2 (en) 2021-06-28 2024-01-17 株式会社 東京ウエルズ Electronic component testing equipment

Also Published As

Publication number Publication date
JP7515900B2 (en) 2024-07-16

Similar Documents

Publication Publication Date Title
US9453872B2 (en) Apparatus and method for power cycle test
US7839158B2 (en) Method of detecting abnormality in burn-in apparatus
JP6323566B2 (en) Electronic component testing equipment
JP5987977B2 (en) Electronic component testing equipment
CN110488172B (en) High-power IGBT junction temperature detection circuit, system and method
EP3239726A1 (en) Testing method with active heating and testing system
CN102692938A (en) Cooling device operating method and inspection apparatus
KR20180033223A (en) Continuous fluid thermal interface material supply
CN102393768A (en) Temperature closed-loop control device and testing method
JP2000301352A (en) Resistance welding electric source apparatus
TWI516773B (en) Device and method for testing electrical property
US6956391B2 (en) Testing method for electronic component and testing device
JP2023125764A (en) Electronic component testing device
JP2012088154A (en) Power-cycle testing device and power-cycle testing method
DE102015110848A1 (en) Information output device
JP5707579B2 (en) Power semiconductor test equipment
JP2023005270A (en) Electronic component testing device
US20170131154A1 (en) System And Method For In Situ Temperature Measurement
US8917103B2 (en) Device and method for testing semiconductor device
RU2698512C1 (en) Method for automated monitoring of thermal resistances of semiconductor devices
JP4911954B2 (en) Prober
US10751820B2 (en) Wire electrical discharge machine with deterioration detection function for feeder
JP3813752B2 (en) Semiconductor device acceleration test method and apparatus
CN215575489U (en) Based on industry silicon controlled rectifier components and parts check out test set
RU2716466C1 (en) Method of controlling thermophysical properties of materials and device for its implementation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240626

R150 Certificate of patent or registration of utility model

Ref document number: 7515900

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150