JP2023123651A - 永久磁石を用いて磁気測定結果を得るためのデバイス、システムおよび方法 - Google Patents

永久磁石を用いて磁気測定結果を得るためのデバイス、システムおよび方法 Download PDF

Info

Publication number
JP2023123651A
JP2023123651A JP2023102418A JP2023102418A JP2023123651A JP 2023123651 A JP2023123651 A JP 2023123651A JP 2023102418 A JP2023102418 A JP 2023102418A JP 2023102418 A JP2023102418 A JP 2023102418A JP 2023123651 A JP2023123651 A JP 2023123651A
Authority
JP
Japan
Prior art keywords
magnetic field
magnet
ferromagnetic element
shell
field device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023102418A
Other languages
English (en)
Inventor
ウリ ラポポルト
Rapoport Uri
ヤイール ゴールドファーブ
Goldfarb Yair
ヨラム コーヘン
Cohen Yoram
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aspect Imaging Ltd
Original Assignee
Aspect Imaging Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US15/402,438 external-priority patent/US10224135B2/en
Application filed by Aspect Imaging Ltd filed Critical Aspect Imaging Ltd
Publication of JP2023123651A publication Critical patent/JP2023123651A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/383Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using permanent magnets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/42Screening
    • G01R33/421Screening of main or gradient magnetic field

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

【課題】十分な均一性および/また安定性を有し、および/または全重量を低減する、磁気測定システムを提供する。【解決手段】磁場デバイス200は、第1の磁石201、第1の磁石に隣接して配置された第1の強磁性素子202、第2の磁石221、第1の強磁性素子と第2の強磁性素子との間にギャップを生み出すために第2の磁石に隣接して第1の強磁性素子に対して配置された第2の強磁性素子222、および第1の強磁性素子と第2の強磁性素子との間でギャップ内に配置された第3の磁石230をもつ。【選択図】図1B

Description

一般に、本発明は、磁気デバイスに関する。より詳しくは、本発明は、磁気測定結果を得るためのデバイス、システムおよび方法に関する。
電磁ベースの機器を物質の特性の測定のために用い、および/またはその組成を同定するために用いることができる。例えば、物質(例えば、分子)について物理、化学および/または構造情報を得るために磁気共鳴分光を行うことが可能な電磁ベースの機器を用いることができる。典型的に、磁気共鳴分光を行い、例えば、対象/被験体の高品質の測定結果(例えば、高解像度画像および/または画像コントラスト)を提供するために、測定のゾーン(例えば、測定される対象が配置される区域)内の磁場が実質的に安定および/または一様なことが望ましいことがありうる。他の用途(例えば、磁気共鳴画像化(MRI:magnetic resonance imaging))も、高く、安定な、および/または一様な磁場強度を必要としうる。
測定に磁場を用いるいくつかのシステムは、磁場を生み出すために、コイルへの電流の印加を伴う磁気コイルを含むことができ、一方で他のシステムは、磁場を生み出すために、典型的に電流の印加を必要としない永久磁石を利用できる。
永久磁石(単数または複数)を用いて磁気共鳴分光および/または磁気画像化のために十分な(例えば、実質的に安定および/または一様な)磁場を測定ゾーン中に生み出す際の1つの困難さは、永久磁石(単数または複数)によって生成される磁場が不均一であり、従って、典型的に、測定のゾーン内に不均一な磁場を生じかねないことである。
永久磁石を用いて測定のゾーン内に均一および/または安定な磁場を生み出すためのいくつかの現在の解決策は、画像化デバイスに追加の素子を(例えば、コイル)を加えるおよび/または永久磁石のサイズを増加させることである。現在の解決策に伴う1つの困難さは、磁気測定デバイス中の素子数が増加し、および/または永久磁石のサイズが増加するにつれて、デバイスの重量、サイズおよび/またはコストが増加しかねないことである。
現在の解決策での別の困難さは、重い磁気測定デバイスが可動性の欠乏をもたらしかねないことである。例えば、病院環境における磁気測定デバイス(例えば、磁気共鳴画像化(MRI)デバイス)については、重いおよび/または大きいデバイスは、病院職員がMRIを移動させるのを妨げかねない。動かすのが困難なことがありうる患者(例えば、複数の生命維持および/またはモニタ設備につながれた患者)を画像化するときには、このことがさらなる困難さをもたらしかねない。
別の例において、工業環境における磁気測定デバイス(例えば、オイル生産施設中で流体および/または掘削泥の特性を測定する核磁気測定(NMR)デバイス)については、重いおよび/または大きいデバイスは、職員がプロセス中に様々な位置で流体/泥を測定するのを妨げかねない。
それゆえに、十分な均一性および/また安定性を有し、および/または磁気測定システムの全重量を低減する、所望の磁場強度を達成することが望ましいことがありうる。
それゆえに、本発明のいくつかの実施形態に従って、磁場デバイスが提供され、本磁場デバイスは、第1の磁石、第1の磁石に隣接して配置された第1の強磁性素子、第2の磁石、第1の強磁性素子と第2の強磁性素子との間にギャップを生み出すために第2の磁石に隣接して第1の強磁性素子に対して配置された第2の強磁性素子、および第1の強磁性素子と第2の強磁性素子との間でギャップ内に配置された第3の磁石を含む。
いくつかの実施形態において、第3の磁石は、第1の強磁性素子の第1の表面に面する第1の表面、および第2の強磁性素子の第1の表面に面する第2の表面を有する。いくつかの実施形態において、第3の磁石の第1の表面は、第1の強磁性素子の第1の表面と境を接し、第3の磁石の第2の表面は、第1の強磁性素子の第1の表面と境を接する。いくつかの実施形態において、第3の磁石は、第3の磁石が第1の位置と第2の位置との間で並進することを許容する寸法を有し、第1の位置は、第1の強磁性素子の第1の表面であり、第2の位置は、第2の強磁性素子の第1の表面である。
いくつかの実施形態において、磁場デバイスは、第1の強磁性素子と第2の強磁性素子との間でギャップ内に配置された第4の磁石をさらに含む。いくつかの実施形態において、第4の磁石は、第1の強磁性素子の第1の表面に面する第1の表面、および第2の強磁性素子の第1の表面に面する第2の表面を有する。いくつかの実施形態において、第4の磁石は、第4の磁石が第1の位置と第2の位置との間で並進することを許容する寸法を有し、第1の位置は、第1の強磁性素子の第1の表面であり、第2の位置は、第2の強磁性素子の第1の表面である。
いくつかの実施形態において、第1の磁石、第2の磁石および第3の磁石は、永久磁石、超伝導磁石、または抵抗磁石である。いくつかの実施形態において、第1の磁石、第2の磁石および第3の磁石は、所望の磁場強度、画像化される対象のタイプ、またはそれらの任意の組み合わせに基づく寸法を有する。いくつかの実施形態において、第1の磁石、第2の磁石および第3の磁石は、10および1100ミリメートルの間の長さ、10および300ミリメートルの間の幅、および45および200ミリメートルの間の高さを有する。
いくつかの実施形態において、ギャップは、画像化される対象のタイプに基づく寸法を有する。いくつかの実施形態において、ギャップは、190ミリメートルの直径を有する。いくつかの実施形態において、磁場デバイスは、第1の磁石に結合された少なくとも1つの第5の磁石をさらに含む。
いくつかの実施形態において、第3の磁石は、磁場デバイスに対して周辺的な磁場の減少をもたらすように配置される。いくつかの実施形態において、磁場デバイスの第1の軸が第1の強磁性素子から第2の強磁性素子へ通過するとして定義され、第1の磁石および第2の磁石は、第1の軸に沿う磁化方向をもつ磁場をもたらすように配置され、第3の磁石は、第1の軸に沿う磁化方向をもつ磁場をもたらすように配置される。
いくつかの実施形態において、第3の磁石の磁化方向は、第1の磁石の磁化方向の反対である。いくつかの実施形態では、磁場デバイスが外部シェル内に配置され、外部シェルは、金属合金を含む。いくつかの実施形態では、第1および第2の磁石のうちの少なくとも1つが所定の磁場強度をもつ磁場を放射し、第3の磁石が所定の磁場強度をもつ磁場を放射して、第1および第2の磁石のうちの少なくとも1つの磁場の強度は、第3の磁石の磁場の強度より実質的に大きい。いくつかの実施形態では、磁場デバイスの動作の間に生成される全磁場がギャップ内で実質的に均一かつ一様である。
それゆえに、本発明のいくつかの実施形態に従って、磁場を測定体積中へ向ける方法が提供され、本方法は、第1の磁場強度をもつ第1の磁場を第1の方向に発生させるステップと、実質的に一様な磁束を生み出すために第1の磁場を測定体積中へ分布させるステップと、第2の磁場強度をもつ第2の磁場を第2の方向に向けることによって測定体積中への全磁束を増加させるステップであって、第2の方向が第1の方向に平行であるステップとを含む。
いくつかの実施形態において、本方法は、測定体積中への第3の磁場を第3の方向に向けるステップをさらに含み、第3の方向は、第1の方向に垂直である。いくつかの実施形態において、本方法は、対象を測定体積内に配置するステップと、対象に対して磁場解析を行うステップとをさらに含む。
いくつかの実施形態において、第1の磁場強度、および第2の磁場強度のうちの少なくとも1つは、0.5および1.5テスラの間にある。いくつかの実施形態において、第1の磁場強度および第1の方向、ならびに第2の磁場強度および第2の方向は、測定体積のサイズ、測定される対象のタイプ、またはそれらの任意の組み合わせに基づく。いくつかの実施形態において、測定体積中の全磁束は、実質的に均一な場である。
それゆえに、本発明のいくつかの実施形態に従って、第1の磁石、第1の磁石に隣接して配置された第1の強磁性素子、第2の磁石、第1の強磁性素子と第2の強磁性素子との間にギャップを生み出すために第2の磁石に隣接して第1の強磁性素子に対して配置された第2の強磁性素子、第1の強磁性素子と第2の強磁性素子との間でギャップ内に配置された第3の磁石、および、少なくとも第1の磁石および第2の磁石を被うために第1の磁石および第2の磁石からの所定の距離に配置されたシェルを含み、所定の距離が所望の磁場強度に基づき、シェルの厚さが所定の距離に対応する、磁場デバイスが提供される。
それゆえに、本発明のいくつかの実施形態に従って、磁場を測定体積中へ向ける方法が提供され、本方法は、第1の磁場強度をもつ第1の磁場を第1の方向に発生させるステップと、実質的に一様な磁束を生み出すために第1の磁場を測定体積中へ分布させるステップと、第2の磁場強度をもつ第2の磁場を第2の方向に向けることによって測定体積中への全磁束を増加させるステップであって、第2の方向が第1の方向に平行であるステップと、シェルを配置するための、第1の磁場強度および第2の磁場強度を発生させることができる測定体積からの距離を測定体積のサイズに基づいて決定するステップであって、測定体積からのその距離にシェルを配置するステップがシェルの外側の磁場を実質的になくすステップとを備える。
本発明と見なされる主題が本明細書の結論部分において特に指摘され、明確に請求される。本発明は、しかしながら、動作の構成および方法のいずれについても、以下の詳細な記載が添付図面とともに読まれたときにその記載への参照により、それらの目的、特徴、および利点と併せて理解されることができる。
当然のことながら、説明を簡潔かつ明確にするために、図に示される要素は、必ずしも一定の縮尺では描かれていない。例えば、明確にするために、いくつかの要素の寸法が他の要素と比較して誇張されることがありうる。さらに、適切と考えられるところでは、対応するまたは類似する要素を示すために複数の図の間で参照数字が繰り返されることがありうる。
本発明の実例となる実施形態による、磁場デバイスの斜視断面図を概略的に示す。 本発明の実例となる実施形態による、図1Aのデバイスへの追加の磁石を有する磁場デバイスの斜視断面図を概略的に示す。 本発明の実例となる実施形態による、磁場デバイスの前断面図を概略的に示す。 本発明の実例となる実施形態による、追加の磁石をもつ、磁場デバイスの前断面図を概略的に示す。 本発明の実例となる実施形態による、磁場を測定体積中へ向ける方法に関するフローチャートを示す。 本発明の実例となる実施形態による、様々な磁場デバイスの上断面図を概略的に示す。 本発明の実例となる実施形態による、様々な磁場デバイスの上断面図を概略的に示す。 本発明の実例となる実施形態による、様々な磁場デバイスの上断面図を概略的に示す。 本発明の実例となる実施形態による、様々な磁場デバイスの上断面図を概略的に示す。 本発明の実例となる実施形態による、様々な磁場デバイスの上断面図を概略的に示す。 本発明の実例となる実施形態による、様々な磁場デバイスの上断面図を概略的に示す。 本発明の実例となる実施形態による、様々な磁場デバイスの上断面図を概略的に示す。本発明の実例となる実施形態による、様々な磁場デバイスの上断面図を概略的に示す。 本発明の実例となる実施形態による、様々な磁場デバイスの上断面図を概略的に示す。 本発明の実例となる実施形態による、磁場デバイスの前断面図を概略的に示す。 本発明の実例となる実施形態による、磁場デバイスの前断面図を概略的に示す。 本発明の実例となる実施形態による、頭部磁場デバイスの前断面図を概略的に示す。 本発明の実例となる実施形態による、磁石からシェルへの距離の関数としてのフリンジ磁場のグラフを示す。 本発明の実例となる実施形態による、磁場を測定体積中へ向ける方法に関するフローチャートを示す。
以下の詳細な記載では、本発明の十分な理解を与えるために多くの具体的な詳細が提示される。しかしながら、これらの具体的な詳細なしに本発明を実施できることを当業者は理解するであろう。他の事例では、本発明を曖昧にしないために、よく知られている方法、手順、および構成部品が詳細には記載されなかった。
図1Aは、本発明の実例となる実施形態による、磁場デバイス100の断面斜視図を概略的に示す。磁場デバイス100は、外部シェル111、第1の磁石101(例えば、第1の永久磁石)、第1の強磁性素子102(例えば、第1のポールピース)、および第2の磁石121(例えば、第2の永久磁石)ならびに第2の強磁性素子122(例えば、第2のポールピース)を含むことができる。いくつかの実施形態では、第1の磁石101および第1の強磁性素子102ならびに/または第2の磁石121および第2の強磁性素子122を単一のユニットとして(例えば、組立品として)一緒にまとめることができる。
第1の強磁性素子102を第1の磁石101へ結合させるか、および/またはそれに隣接して配置できる。第2の強磁性素子122を第2の磁石121へ結合させるか、および/またはそれに隣接して配置できる。いくつかの実施形態において、磁場デバイス100は、第1の強磁性素子102と第2の強磁性素子122との間に配置された、第3の磁石130を含むことができる。
第1および第2の強磁性素子102、122を磁場デバイス100のギャップ150(例えば、測定のゾーン)に対して近位にできるように、第1および第2の強磁性素子102、122を対応する第1および第2の磁石101、121へ結合させ、それらに隣接して配置できる。第1の磁石101および第2の磁石121を磁場デバイス100のギャップ150に対して遠位にできる。第1の磁石101の磁化方向を、第2の軸(図1Aでは「X」と示される)に沿って、第2の磁石121の磁化方向に平行にでき、第1および第2の強磁性素子102、122は、向かい合うことができて、それらの間にギャップ150が生み出される。
様々な実施形態において、ギャップ150の寸法(それゆえに、素子102、122、101、121のその上の配置)は、測定される被験体/対象に依存しうる。例えば、測定される被験体が成人の頭部であれば、ギャップ150は、成人の頭部を楽に収める寸法を有することができる。別の例において、測定される被験体がマウスであれば、ギャップ150は、マウスを収めることができる。他の対象/被験体を測定できること、およびこれらは例であることが当業者には明らかである。
図1Bは、本発明の実例となる実施形態による、図1Aのデバイスへの追加の磁石を有する、磁場デバイス200の断面斜視図を概略的に示す。磁場デバイス200は、外部シェル211、第1の磁石201、第1の強磁性素子202(例えば、第1のポールピース)、第2の磁石221、第3の磁石230、第4の磁石240、第1の強磁性素子202、および第2の強磁性素子222(例えば、第2のポールピース)を含むことができる。第1の強磁性素子202を第1の磁石201へ結合させるか、および/またはそれに隣接して配置できる。第2の強磁性素子222を第2の磁石221へ結合させるか、および/またはそれに隣接して配置できる。
いくつかの実施形態において、磁場デバイス200は、図1Aにおける磁石103、123または図1Bにおける磁石203、223のような追加の磁石を含むことができる。いくつかの実施形態では、図1Aにおける磁石103、123が存在しない。
第1および第2の強磁性素子202、222を磁場デバイス200のギャップ250(例えば、測定のゾーン)に対して近位にできるように、第1および第2の強磁性素子202、222をその対応する第1および第2の磁石201、221へ結合させ、それらに隣接して配置できる。第1の磁石201および第2の磁石221を磁場デバイス200のギャップ250に対して遠位にできる。第1の磁石201の磁化方向を、第2の軸(図1Bでは「X」と示される)に沿って、第2の磁石221の磁化方向に平行にでき、第1および第2の強磁性素子202、222は、向かい合うことができて、それらの間にギャップ250が生み出される。
第3の磁石230を第1の強磁性素子202および第2の強磁性素子222へ結合させることができて、それらの間に配置できる。
第3の磁石230は、第1の強磁性素子202の第1の表面204に面する第1の表面231および第2の強磁性素子222の第1の表面224に面する第2の表面232を有することができる。第3の磁石230の第1の表面231は、第1の強磁性素子202の第1の表面204と境を接することができ、第3の磁石230の第2の表面232は、第1の強磁性素子220の第1の表面224と境を接することができる。いくつかの実施形態において、第3の磁石230は、第3の磁石230が第1の位置と第2の位置との間で並進することを許容する寸法を有することができ、第1の位置は、第1の強磁性素子202の第1の表面204であり、第2の位置は、第2の強磁性素子222の第1の表面224である。
第4の磁石240を第1の強磁性素子202と第2の強磁性素子222との間でギャップ250内に配置できる。第4の磁石240は、第1の強磁性素子202の第1の表面204に面する第1の表面241および第2の強磁性素子222の第1の表面224に面する第2の表面242を有することができる。第4の磁石240は、第4の磁石240が第1の位置と第2の位置との間で並進することを許容する寸法を有することができ、第1の位置は、第1の強磁性素子202の第1の表面204であり、第2の位置は、第2の強磁性素子222の第1の表面224である。
当業者には明らかなように、磁気勾配を与えるためにギャップ中に(電流の印加によって磁場を生み出す)磁気勾配コイルを利用できるが、本発明のある実施形態は、磁気勾配コイルが必要ない永久磁石を用いる。
いくつかの実施形態において、第1の磁石201、第2の磁石221および第3の磁石230は、永久磁石および/または超伝導磁石および/または抵抗磁石である。第1の磁石201、第2の磁石221および第3の磁石230は、所望の磁場強度、画像化される対象のタイプ、またはそれらの任意の組み合わせに基づく寸法を有することができる。
いくつかの実施形態において、第1の磁石201、第2の磁石221および第3の磁石230のうちの少なくとも1つは、10および1100ミリメートルの間の長さ、10および300ミリメートルの間の幅、および45および200ミリメートルの間の高さを有する。
磁場デバイス200の各々の磁石が磁化の方向を有し、磁場を生み出す。図1Bにおける破線矢印は、矢印がその上に表示された特定の磁石の磁化の方向を示す。
第1の磁石201および第2の磁石221は、第1の軸(図1Bでは「Y」と示される)、例えば、磁場デバイス200の横軸に沿う同じ磁化方向を有することができる。
第3の磁石230の磁化方向を、例として、第1の軸(図1Bでは「Y」と示される)に沿って、第1および第2の磁石201、221の磁化方向とは反対にすることができる。
いくつかの実施形態において、第1の強磁性素子202および第2の強磁性素子222は、対応する第1の磁石201および第2の磁石221によって生成された磁場を広げて方向づけることができ、および/または磁場デバイス200の外側からのノイズを低減できる。
図2Aは、本発明の実例となる実施形態による、磁場デバイス200の前断面図を概略的に示す。図2Bは、本発明の実例となる実施形態による、追加の磁石をもつ、磁場デバイス200の前断面図を概略的に示す。
いくつかの実施形態において、磁場デバイス200は、追加の磁石を含むことができる。例えば、図2Bを参照すると、磁場デバイス200は、第5の磁石203、および第6の磁石223を含むことができる。いくつかの実施形態において、第5の磁石203および第6の磁石223のうちの少なくとも1つは、永久磁石である。
いくつかの実施形態において、磁場デバイス200は、追加の磁石203、223を含むことができ、一方では第3の磁石230を第1および第2の強磁性素子202、222へ結合させることができる。
様々な実施形態では、第5および第6の磁石203、223を、それぞれ、第1および第2の磁石201、221の周りに配置し、例として、第6の磁石223を第2の磁石221の周りに配置できる。
第5および第6の磁石203、223は、第1の軸に垂直な第2の軸(図2Bでは「X」と示される)、例えば、磁場デバイス200の縦軸に沿って、第1の磁石201の磁化方向に垂直な磁化方向を有することができる。いくつかの実施形態によれば、少なくとも1つの第5の磁石203の磁化方向は、第1の磁石201から遠ざかることができ、少なくとも1つの第6の磁石223の磁化方向は、第2の磁石221へ向かうことができる。
当業者には明らかなように、磁場デバイス200に追加の磁石を含めることができる。例えば、いくつかの実施形態では、追加の第3の磁石、第5の磁石および/または第1の磁石を用いることができる。
いくつかの実施形態では、外部シェル211が金属合金を含むことができて、磁場デバイス200の磁石によって生み出された磁場を外部シェル211内に閉じ込めること(または実質的に閉じ込めること)を可能にできる。このようにして、外部シェル211の外側の磁場の存在をゼロおよび/またはごくわずかにできる。例えば、磁場の影響を受けやすいデバイス(例えば、携帯電話、ペースメーカなど)が外部シェル211に隣接してデバイス200の外側に配置された場合、その位置における磁場がこのデバイスに対して有しうる影響は無視できる。いくつかの実施形態において、ギャップ250へのアクセスを提供するために外部シェル111も開口を有することができる。
様々な実施形態では、第3の磁石230および/または第4の磁石240が中空構造を有し、第1および第2の強磁性素子202、222の間でギャップ250を取り囲むことができる。様々な実施形態では、第3の磁石230および/または第4の磁石240を様々な形状およびサイズで、例として、形状およびサイズが様々な円筒形または三角形で設けることができる。
磁場デバイス200が磁気共鳴画像化(magnetic resonant imaging)に利用されるケースでは、高周波(RF:radio frequency)発生器またはフィールドセンサのような追加の電磁素子を含めることができる。例えば、追加の電磁素子、例として、磁気共鳴デバイス中のRF発生器からの放射漏れを防ぐために、第1および第2の強磁性素子202、222の間でギャップ250を取り囲むように第3の磁石230を構成できる。例えば、第3の磁石230の外側の追加の電磁素子からの放射漏れを防ぐために、第3の磁石230をギャップ250を取り囲む中空立方体または中空円筒の形状にすることができる。
第3の磁石230は、磁場デバイス200のために、測定の区域における全体的な磁場を均一および/または一様な磁場にすることに寄与できる。第3の磁石230は、例えば、第3の磁石230がギャップ内の全体的な磁場強度に寄与することに起因して、第1および/または第2の磁石201、221ならびに/または第5および/または第6の磁石203、223のサイズ、重量、および/または磁場強度の低減を可能にできる。第1および/または第2の磁石201、221ならびに/または第5および/または第6の磁石203、223のサイズの縮小は、例えば、第3の磁石230を含まない磁場デバイスと比較して、実質的に同じ場の強度をもつ磁場デバイスがより低い重量を有することを可能にできる。
いくつかの実施形態において、磁場デバイス200は、2つの第5の磁石203を含み、2つの第6の磁石223も含む。これらの実施形態では、例えば、第3の磁石230に起因して磁石のサイズを縮小する能力は、磁場デバイスのさらなる重量低減さえ提供できる。
いくつかの実施形態では、第1および第2の磁石201、221のうちの少なくとも1つが所定の磁場強度をもつ磁場を放射し、第3の磁石230が所定の磁場強度をもつ磁場を放射できて、第1および第2の磁石201、221のうちの少なくとも1つの磁場の強度を第3の磁石230の磁場の強度より実質的に大きくできる。
いくつかの実施形態によれば、外部シェル211は、磁場デバイス200の重量の大部分を構成しうる。第3の磁石230の追加は、均一かつ一様な磁場を提供するだけでなく他の構成部品の重量を低減できるので、重量を低減した外部シェルを利用することが可能でありうる。いくつかの実施形態では、磁場デバイス200の全重量について、例えば、第3の磁石を有さないデバイスと比較して少なくとも20パーセントの低減を生み出すことができる。いくつかの実施形態では、磁場強度について、例えば、第3の磁石を有さないが磁場デバイス200と実質的に同じ全重量を有するデバイスと比較して、少なくとも30パーセントの増加を生み出すことができる。第3の磁石230は、より強い磁場および/またはより低い全磁石重量を得ることを可能にできる。
いくつかの実施形態では、ギャップの中心からのフリンジ場の区域を縮小できて、例えば、約1ガウスの場の制限(時には1Gラインと呼ばれる)に対してこの区域を実質的に100ミリメートルに縮小できる。それゆえに、フリンジ場の低減は、外部シェル211の寸法を、例えば、実質的に860×1032ミリメートルから実質的に786×894ミリメートルへ縮小されることができる。外部シェル211の縮小は、適宜に、磁場デバイス200の全重量の低減をもたらすことができる。
磁場デバイスの総重量を低減できて、例えば、磁場強度と第1および第2の磁石ならびに少なくとも1つの第3の磁石の少なくとも組み合わせの全重量との比については、10%を超える増加である。いくつかの実施形態では、第3の磁石によってもたらされる磁場の増加を対応する第1および第2の磁石の拡大(第3の磁石はない)によって達成できる増加より大きくできる。このことは、第3の永久磁石のアラインメントに起因し、かつ、磁石の追加が重量の低減をもたらすことができるような重量節約のスケーラビリティにも起因する。
いくつかの実施形態では、外部シェル211は、外部シェルのフリンジ重量における低減に起因し、および/またはフリンジ場の低減に起因して、市販の磁気共鳴デバイスと比較してより小さい表面積を有することもできる。かかる低減が生じうる理由は、第3の磁石230の追加が、第1および第2の強磁性素子202、222の間で、ギャップ250中の磁場を増加させることができ、それゆえに、磁場デバイス200のフリンジ場を低減できて、その結果、外部シェル211が、例えば、市販の磁気共鳴デバイスと比較して、同じ大重量および大表面積である必要がもはやないためである。
いくつかの実施形態では、磁場をギャップ中にさらに閉じ込めて操作するために、例えば、鉄を含んだ追加の材料を磁場デバイス200に加えることができる。いくつかの実施形態では、例えば、鉄および/またはチタンを含んだ追加の材料を少なくとも1つの磁石201に隣接して、および/または少なくとも1つの強磁性素子202に隣接して加えることができる。
外部フリンジ場をもたらす高磁束密度の領域は、例えば、図4Aに破線で示される、磁石の接続部に隣接して生じうることが認識されよう。いくつかの実施形態では、磁束を低減するために、通常、鉄を含んだ外部シェル(または被い)が磁気共鳴デバイスを取り囲む。
いくつかの実施形態において、第3の磁石230は、磁束の少なくとも一部分がギャップ(例えば、磁場が向けられた区域)を出るのを防ぐことができる。強い磁場を提供し、一方では低減されたデバイス重量を提供するために磁場デバイス200を利用することができ、例えば、磁気共鳴画像化(magnetic resonant imaging)のため、または強い磁場が必須となりうる他のデバイスのためにこのデバイスを利用できる。第3の磁石の追加は、例えば、フリンジ場を低減するように、例えば、図4Aに破線で示される領域における磁束に抗しうることが認識されよう。
いくつかの実施形態によれば、2つの磁石を含み、そのいずれもが第3の磁石を含まない既存の磁場システムを、例えば、ギャップ内の磁場を増加させ、および/またはフリンジ場を低減するために2つの磁石の間に少なくとも1つの第3の磁石を挿入することで修正できる。例えば、3つのシステムの間の比較:第3の磁石のない第1のシステム「A」、少なくとも1つの第3の磁石が設けられた第2のシステム「B」、および少なくとも1つの第3の磁石を追加することで修正された第3のシステム「C」。この例では、第1のシステム「A」との重量比較において、第2のシステム「B」は、約5.5%低減された重量を有することができ、一方で第3のシステム「C」は、約6.5%の重量増加を有しうる。この例では、第1のシステム「A」とのギャップ中の場の強度の比較において、第2のシステム「B」は、約15%の増加を有することができ、第3のシステム「C」は、約13%の増加を有しうる。この例では、第1のシステム「A」とのフリンジ場低減の比較において、第2のシステム「B」は、約55%の減少を有することができ、第3のシステム「C」は、約16%の減少を有しうる。それゆえに、第3の磁石の正しい配置において、新しいシステムならびに修正できる既存のシステムに様々な利点を提供できる。先に与えられた例が説明を目的とした例示的な重量低減値を与え、他の比較重量の構成が本発明の範囲内にあることが当業者には明らかである。
次に、本発明のいくつかの実施形態による、磁場を測定体積中へ向ける方法に関するフローチャートを示す、図3が参照される。
本方法は、第1の磁場強度をもつ第1の磁場を第1の方向に発生させるステップを含む(ステップ301)。例えば、図1Bに先に記載されたような第1および第2の磁石201および221は、第1の方向に第1の磁場強度を有する第1の磁場を向けることができる。
本方法は、実質的に一様な磁束を生み出すために第1の磁場を測定体積中へ分布させるステップをさらに含むことができる。(ステップ302)。例えば、図1Bに先に記載されたような、第1の強磁性素子202および/または第2の強磁性素子222は、第1の磁場を測定体積中へ分布させることができる。
本方法は、第2の磁場強度をもつ第2の磁場を第2の方向に向けることによって測定体積中への全磁束を増加させるステップをさらに含むことができて、第2の方向は、第1の方向に平行である(ステップ303)。例えば、図1に先に記載されたような第3の磁石230は、第2の方向に第2の磁場強度を有する第2の磁場を向けることができる。いくつかの実施形態において、本方法は、第3の磁場強度を有する第3の磁場を第3の方向に向けるステップを含み、第3の方向は、第1の方向に垂直である。例えば、図2に先に記載されたような第5の磁石203および/または第6の磁石223は、第3の方向に第3の磁場強度を有する第3の磁場を向けることができる。
いくつかの実施形態において、本方法は、対象を測定体積内に配置するステップと、対象に対して(例えば、NMRデバイスおよび/またはMRIデバイス内の磁性デバイス200を用いることによって)磁場解析を行うステップとを含む。
いくつかの実施形態において、第1、第2および第3の磁場は、所望の磁場強度が達成されるように向けられる。所望の磁場強度は、測定を行う特定のデバイスおよび/または測定される対象に基づくことができる。例えば、所望の磁場強度は、ヒト生体組織の磁気共鳴画像化では0.5~1.5Tの間とすることができる。当業者には明らかなように、示された所望の磁場強度は、例示を目的とするに過ぎず、所望の磁場強度は、被験体/磁場の用途に基づいて変化しうる。
いくつかの実施形態において、第1の磁場強度および第1の方向、ならびに第2の磁場強度および第2の方向は、測定体積のサイズおよび/または測定される対象のタイプ、および/またはそれらの任意の組み合わせに基づく。いくつかの実施形態において、測定体積中の全磁束を実質的に均一な場とすることができる。
次に、本発明のいくつかの実施形態による、磁場デバイス(例えば、磁場デバイス200)の磁性部品のためのいくつかの例示的な構成の上断面図を概略的に示す、図4A~4Hが参照される。図4Aは、第1の典型的な構成を概略的に示し、この構成では(図1~2に示されるような、第3の磁石230と同様の)少なくとも1つの第3の磁石430を(図1~2に示されるような、第1の磁石201と同様の)第1の磁石401に隣接して、例えば、垂直に配置できる。(図1~2に示されるような、ギャップ250と同様の)ギャップ450を少なくとも部分的に取り囲むおよび/または被うためにかかる配置を利用できる。いくつかの実施形態では、複数の第3の磁石430を利用できて、各第2の磁石430(例えば、主磁石)は、異なるサイズおよび/または形状を有することができる。いくつかの実施形態では、第3の磁石とそれらが物理的に接触しないように第5および第6の磁石を配置できる。
図4Bは、第1の例示的な構成を概略的に示し、この構成では少なくとも1つの第1の中間磁石432(例えば、主磁石)を2つの隣接した第3の磁石430の間に配置できる。図4Cは、第1の例示的な構成を概略的に示し、この構成では少なくとも1つの第2の中間磁石434(例えば、主磁石)を隣接した第3の磁石430と第1の中間磁石432との間に配置できる。いくつかの実施形態において、第1の中間磁石432および/または第2の中間磁石434のうちの少なくとも1つを永久磁石とすることができる。
いくつかの実施形態によれば、例えば、その中の素子を調節するために、例えば、システムの対称性に起因して、4つの可能な方向のいずれか1つから対象(または被験体)をギャップ(または測定領域)へ導入することができる。いくつかの実施形態では、カメラ、空気調節および/または他の設備をギャップに隣接するように導入するためのアクセスも提供できる。
図4Dは、第1の例示的な構成を概略的に示し、この構成では少なくとも1つの第1の中間磁石442を2つの隣接した第3の磁石440の間に配置できて、少なくとも1つの第2の中間磁石444を2つの隣接した第3の磁石440の間に配置できる。少なくとも1つの第1の中間磁石442および少なくとも1つの第2の中間磁石444の異なるサイズおよび/または形状は、ギャップ450内の所望の磁束を許容するために、単一の大きい磁石の代わりに、例えば、異なる形状のより小さい磁石を特定の位置に設ける磁石の差別化を可能にできる。第3の磁石の中心を通る軸の周りの形状対称性が、例えば、磁場シミングのため、および/またはギャップへのアクセスを許容する開口を生み出すために破られるケースでは、所定の磁場を維持するために他の素子(例えば、永久磁石)を修正することができる。いくつかの実施形態では、例えば、磁石の形状の対称性の破れは、外部シェルの修正も必要としうる。
図4Eは、第1の例示的な構成を概略的に示し、この構成ではギャップ450内の所望の磁束を許容するために所定の磁場強度に基づいて少なくとも1つの第1の中間磁石442を、第1の磁石401の中心からの、所定の距離に配置することができる。図4Fは、第1の例示的な構成を概略的に示し、この構成では少なくとも1つの第1の中間磁石442を2つの隣接した第3の磁石440の間に配置できて、少なくとも1つの第2の中間磁石444を2つの隣接した第3の磁石440の間に配置できる。いくつかの実施形態では、システムの構造をさらに支持し、および/またはギャップ450内に少なくとも部分的な磁気ケージを生み出すために少なくとも1つの第1の中間磁石442の追加を構成できる。
図4Gは、第1の例示的な構成を概略的に示し、この構成では円環形状の第3の磁石460がギャップ450を取り囲むことができる。図4Hは、第1の例示的な構成を概略的に示し、この構成では六角形状の第3の磁石470がギャップ450を取り囲むことができる。いくつかの実施形態では、その中への対象の挿入を許容するためにギャップ450を取り囲む第3の磁石に開口を設けることができる。
次に、支持素子を含んだ磁場デバイス500(例えば、図2に先に記載されたような磁場デバイス200)を示す、図5A~5Bが参照される。図5Aは、本発明のいくつかの実施形態による、第1の支持素子511を有する磁場デバイス500の前断面図を概略的に示す。磁場デバイス500は、(例えば、図1~2に示されるような)磁場デバイス200のすべての素子を、第1の強磁性素子202と第2の強磁性素子222との間の少なくとも1つの第1の支持素子511の追加とともに、含むことができることが認識されよう。
いくつかの実施形態によれば、第3の磁石530と第1および/または第2の磁石201、221との間に少なくとも1つのエアギャップ(図示されない)を生み出すことができるように、少なくとも1つの第3の磁石530を第1の支持素子511に追加できる。いくつかの実施形態では、エアギャップの代わりに、反磁性材料のギャップをそれらの中に形成できる。
図5Bは、本発明のいくつかの実施形態による、第2の支持素子513を有する磁場デバイス500の前断面図を概略的に示す。磁場デバイス500は、(例えば、図1~2に示されるような)磁場デバイス200のすべての素子を、少なくとも1つの第2の支持素子513の追加とともに、含むことができることが認識されよう。いくつかの実施形態では、第3の磁石230の配置を支持するために、外部シェル211(または被い)が少なくとも1つの第3の磁石230と少なくとも1つの第2の支持素子513によって接触できる。第3の磁石230のかかる支持は、第3の磁石230が所望の位置に留まることができるように、第3の磁石230に作用する磁気引力に抗しうることが認識されよう。いくつかの実施形態では、少なくとも1つの第2の支持素子513が第3の磁石230を外部シェル211ならびに第1および第2の強磁性素子202、222のうちの少なくとも1つと結合させることができる。
次に、本発明のいくつかの実施形態による、頭部磁場デバイス600の前断面図を概略的に示す、図6が参照される。頭部磁場デバイス600は、第1の磁石201および第1の磁石201に結合された第1の強磁性素子202、ならびに第2の磁石221および第2の磁石221に結合された第2の強磁性素子222を含む。第1の磁石201および第2の磁石221をそれらの間にギャップ250を生み出すように配置できて、ギャップ250に隣接して、ギャップ250とそれぞれの第1の磁石201および第2の磁石221との間に第1の強磁性素子202および第2の強磁性素子222が配置される。頭部磁場デバイス600は、開口650を含むこともできて、この開口は、例えば、患者の頭部610のギャップ250(または測定体積)内における少なくとも部分的な収容を許容するように構成される。いくつかの実施形態では、頭部磁場デバイス600が少なくとも1つの第3の磁石230を含むこともできる。ここでは患者の頭部610が記載されるが、その他の体の部分、例えば、腕または脚を検査のためにギャップ250へ同様に導入できることが認識されよう。
いくつかの実施形態では、患者の頭部610をギャップ250内で画像化することを許容するために、磁気共鳴画像化素子(例えば、RFコイル)を頭部磁場デバイス600に結合させることができる。例示的な実施形態では、かかる頭部磁石の磁場強度は、4900ガウス超または約4988ガウスである。例示的な実施形態では、ギャップ250内のMRI画像化のための視野は、約190ミリメートルの直径をもつ球である。例示的な実施形態では、ギャップ250への開口650の直径は、660ミリメートル超または約665ミリメートルである。例示的な実施形態では、頭部永久磁石のための寸法は、1226×1226×866ミリメートルである。
いくつかの実施形態によれば、修正された磁場を達成するために外部シェルと磁石との間の距離を修正できる。いくつかの実施形態では、外部シェルの厚さを外部シェルと磁石との間の距離の変化に従って修正できる。
次に、本発明のいくつかの実施形態による、磁石からシェルへの距離の関数としてのフリンジ磁場のグラフを示す、図7が参照される。(シェルで被われた)磁石からのシェルの距離の関数としてのフリンジ磁場の変化が、シェル、例えば、図1Bに示されるようなシェル211の一定のおよび変化する厚さについて示される。いくつかの実施形態では、(シェルおよび磁石を含む)磁場デバイスの全重量を低減できるようにシェルの厚さを変化させることができる。
いくつかの実施形態では、シェルを磁石からの所定の距離に配置できて、所定の距離は、所望の磁場強度に基づくことができる。いくつかの実施形態では、シェルの厚さが所定の距離に対応する。シェルと磁石との間の距離を変化させると、フリンジ場も低減できることが認識されよう。
いくつかの実施形態では、シェルの厚さは、シェルと磁石との間の距離の増加とともに厚さが減少するように、所定の距離の逆に対応する。いくつかの実施形態では、シェルの厚さは、所定の閾値を超えた所定の距離に基づく。いくつかの実施形態では、所定の距離は、少なくとも1つの磁石の重量にも基づく。いくつかの実施形態では、所定の距離は、50ミリメートルである。
第1の曲線701は、シェルの一定の厚さに対応し、図1Bに示されるような「Y」軸に沿ってフリンジ場に対して距離が変化する。外部シェルの厚さを所定の厚さへ低減して、一方では磁石からのシェルの距離を増加させれば、磁場デバイスの全重量を維持できる。第2の曲線702は、シェルの変化する厚さに対応し、図1Bに示されるような「Y」軸に沿ってフリンジ場に対して距離が変化する。第3の曲線711は、シェルの一定の厚さに対応し、図1Bに示されるような「X」軸に沿ってフリンジ場に対して距離が変化する。第4の曲線712は、シェルの変化する厚さに対応し、図1Bに示されるような「X」軸に沿ってフリンジ場に対して距離が変化する。
当業者には明らかでありうるように、フリンジ場は、外部シェルを遠ざけることで低減され、約50ミリメートルの距離では、すべての曲線についてフリンジ磁場が実質的に減少する。従って、シェルと磁石との間の距離を変化させることによって低減されたフリンジ磁場を達成できる。
いくつかの実施形態によれば、測定体積内の磁場は、シェルと磁石との間の距離の増加によりもたらされるフリンジ場の低減によっては実質的には影響されない。
次に、本発明のいくつかの実施形態による、磁場を測定体積中へ向ける方法に関するフローチャートを示す、図8が参照される。
本方法は、第1の磁場強度をもつ第1の磁場を第1の方向に発生させるステップを含む(ステップ801)。例えば、図1Bに先に記載されたような第1および第2の磁石201および221は、第1の方向に第1の磁場強度を有する第1の磁場を向けることができる。
本方法は、実質的に一様な磁束を生み出すために第1の磁場を測定体積中に分布させるステップ(ステップ802)をさらに含むことができる。例えば、図1Bに先に記載されたような、第1の強磁性素子202および/または第2の強磁性素子222は、第1の磁場を測定体積中へ分布させることができる。
本方法は、第2の磁場強度をもつ第2の磁場を第2の方向に向けることによって測定体積中への全磁束を増加させるステップをさらに含むことができて、第2の方向は、第1の方向に平行である(ステップ803)。例えば、図1に先に記載されたような第3の磁石230は、第2の方向に第2の磁場強度を有する第2の磁場を向けることができる。いくつかの実施形態において、本方法は、第3の磁場強度を有する第3の磁場を第3の方向に向けるステップを含み、第3の方向は、第1の方向に垂直である。例えば、図2に先に記載されたような第5の磁石203および/または第6の磁石223は、第3の方向に第3の磁場強度を有する第3の磁場を向けることができる。
本方法は、シェルを配置するための、第1の磁場強度および第2の磁場強度を発生させることができる測定体積からの距離を測定体積のサイズに基づいて決定するステップをさらに含むことができて、測定体積からのその距離にシェルを配置するステップがシェルの外側の磁場を実質的になくす(ステップ804)。例えば、シェルの外側の磁場が所定の閾値より低いように、シェルを配置するための測定体積からの距離を決定する。
いくつかの実施形態において、本方法は、所定の距離が所定の閾値を超えるならばシェルの厚さを低減するステップをさらに含むことができる。いくつかの実施形態において、本方法は、所定の距離が所定の閾値を超えるならば少なくとも1つの磁石の重量を低減するステップと、所望の磁場強度を維持するステップとをさらに含むことができる。いくつかの実施形態において、所定の距離はフリンジ磁場の強度にも基づく。
明示的に述べられない限り、本明細書に記載される方法の実施形態は、時間における特定の順序または時系列には制約されない。加えて、記載された方法の要素のいくつかを省略できるか、または方法の動作のシーケンスの間にそれらを繰り返すことができる。
様々な実施形態を提示してきた。これらの実施形態の各々が、もちろん、提示された他の実施形態からの特徴を含むことができて、具体的には記載されない実施形態が本明細書に記載される様々な特徴を含むことができる。

Claims (19)

  1. 磁場デバイスであって、
    第1の磁石、
    前記第1の磁石に隣接して配置された第1の強磁性素子、
    第2の磁石、
    前記第1の強磁性素子と第2の強磁性素子との間にギャップを生み出すために前記第2の磁石に隣接して前記第1の強磁性素子に対して配置された前記第2の強磁性素子、
    前記第1の強磁性素子と前記第2の強磁性素子との間で前記ギャップ内に配置された第3の磁石、および
    少なくとも前記第1の磁石および前記第2の磁石を被うために、前記第1の磁石および前記第2の磁石からの所定の距離に配置されたシェル
    を備え、前記所定の距離は、所望の磁場強度に基づき、前記シェルの厚さは、前記所定の距離に対応する、
    磁場デバイス。
  2. 前記シェルは、前記第1の強磁性素子および前記第2の強磁性素子も少なくとも部分的に被う、請求項1に記載の磁場デバイス。
  3. 前記第1の強磁性素子と前記第2の強磁性素子との間で前記ギャップ内に、かつ前記シェル内に配置された第4の磁石をさらに備える、請求項1に記載の磁場デバイス。
  4. 前記ギャップは、画像化される対象のタイプに基づく寸法を有する、請求項1に記載の磁場デバイス。
  5. 前記シェルの前記厚さは、前記所定の距離に逆比例する、請求項1に記載の磁場デバイス。
  6. 前記シェルの前記厚さは、所定の閾値を超えた前記所定の距離に基づく、請求項5に記載の磁場デバイス。
  7. 前記所定の距離は、少なくとも1つの磁石の重量にも基づく、請求項1に記載の磁場デバイス。
  8. 前記第1の磁石、前記第2の磁石および前記第3の磁石のうちの少なくとも1つは、永久磁石、超伝導磁石、抵抗磁石、またはそれらの任意の組み合わせである、請求項1に記載の磁場デバイス。
  9. 前記第1の磁石、前記第2の磁石、前記第3の磁石、および前記シェルは、前記所望の磁場強度、画像化される対象のタイプ、またはそれらの任意の組み合わせに基づく寸法を有する、請求項1に記載の磁場デバイス。
  10. 前記シェルは、金属合金を備える、請求項1に記載の磁場デバイス。
  11. 前記所定の距離は、50ミリメートルである、請求項1に記載の磁場デバイス。
  12. 磁場を測定体積中へ向ける方法であって、前記方法は、
    第1の磁場強度をもつ第1の磁場を第1の方向に発生させるステップと、
    実質的に一様な磁束を生み出すために前記第1の磁場を前記測定体積中へ分布させるステップと、
    第2の磁場強度をもつ第2の磁場を第2の方向に向けることによって前記測定体積中への全磁束を増加させるステップであって、前記第2の方向が前記第1の方向に平行である、前記ステップと、
    シェルを配置するための、前記第1の磁場強度および前記第2の磁場強度を発生させることができる前記測定体積からの距離を前記測定体積のサイズに基づいて決定するステップであって、前記測定体積からの前記距離に前記シェルを配置するステップが前記シェルの外側の磁場を実質的になくす、前記ステップと、
    を含む、方法。
  13. 前記所定の距離が所定の閾値を超えるならば前記シェルの前記厚さを低減するステップをさらに含む、請求項12に記載の方法。
  14. 前記所定の距離は前記フリンジ磁場の強度にも基づく、請求項12に記載の方法。
  15. 前記所定の距離が所定の閾値を超えるならば少なくとも1つの磁石の重量を減少させるステップと、
    所望の磁場強度を維持するステップと
    をさらに含む、請求項12に記載の方法。
  16. 前記測定体積中への第3の磁場を第3の方向に向けるステップをさらに含み、前記第3の方向が前記第1の方向に垂直である、請求項12に記載の方法。
  17. 対象を前記測定体積内に配置するステップと、
    前記対象に対して磁場解析を行うステップと
    をさらに含む、請求項12に記載の方法。
  18. 前記第1の磁場強度および前記第1の方向、ならびに前記第2の磁場強度および前記第2の方向は、前記測定体積のサイズ、測定される対象のタイプ、またはそれらの任意の組み合わせに基づく、請求項12に記載の方法。
  19. 前記測定体積中の前記全磁束は、実質的に均一な場である、請求項12に記載の方法。
JP2023102418A 2016-08-08 2023-06-22 永久磁石を用いて磁気測定結果を得るためのデバイス、システムおよび方法 Pending JP2023123651A (ja)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US201662372065P 2016-08-08 2016-08-08
US62/372,065 2016-08-08
US15/402,438 2017-01-10
US15/402,438 US10224135B2 (en) 2016-08-08 2017-01-10 Device, system and method for obtaining a magnetic measurement with permanent magnets
JP2019506651A JP7041122B2 (ja) 2016-08-08 2017-03-26 永久磁石を用いて磁気測定結果を得るためのデバイス、システムおよび方法
PCT/IL2017/050371 WO2018029666A1 (en) 2016-08-08 2017-03-26 Device, system and method for obtaining a magnetic measurement with permanent magnets
JP2022036467A JP2022095630A (ja) 2016-08-08 2022-03-09 永久磁石を用いて磁気測定結果を得るためのデバイス、システムおよび方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2022036467A Division JP2022095630A (ja) 2016-08-08 2022-03-09 永久磁石を用いて磁気測定結果を得るためのデバイス、システムおよび方法

Publications (1)

Publication Number Publication Date
JP2023123651A true JP2023123651A (ja) 2023-09-05

Family

ID=61161885

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2019506651A Active JP7041122B2 (ja) 2016-08-08 2017-03-26 永久磁石を用いて磁気測定結果を得るためのデバイス、システムおよび方法
JP2022036467A Pending JP2022095630A (ja) 2016-08-08 2022-03-09 永久磁石を用いて磁気測定結果を得るためのデバイス、システムおよび方法
JP2023102418A Pending JP2023123651A (ja) 2016-08-08 2023-06-22 永久磁石を用いて磁気測定結果を得るためのデバイス、システムおよび方法

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2019506651A Active JP7041122B2 (ja) 2016-08-08 2017-03-26 永久磁石を用いて磁気測定結果を得るためのデバイス、システムおよび方法
JP2022036467A Pending JP2022095630A (ja) 2016-08-08 2022-03-09 永久磁石を用いて磁気測定結果を得るためのデバイス、システムおよび方法

Country Status (5)

Country Link
EP (1) EP3497458A4 (ja)
JP (3) JP7041122B2 (ja)
CN (1) CN109804261A (ja)
CA (2) CA3033328C (ja)
WO (1) WO2018029666A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10076266B2 (en) 2010-07-07 2018-09-18 Aspect Imaging Ltd. Devices and methods for a neonate incubator, capsule and cart
US11287497B2 (en) 2016-08-08 2022-03-29 Aspect Imaging Ltd. Device, system and method for obtaining a magnetic measurement with permanent magnets
US11988730B2 (en) 2016-08-08 2024-05-21 Aspect Imaging Ltd. Device, system and method for obtaining a magnetic measurement with permanent magnets
US10224135B2 (en) 2016-08-08 2019-03-05 Aspect Imaging Ltd. Device, system and method for obtaining a magnetic measurement with permanent magnets

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1191621A (en) * 1966-03-11 1970-05-13 Rex Edward Richards Improvements in or relating to Nuclear Magnetic Resonance Spectroscopy.
US4646045A (en) * 1985-03-25 1987-02-24 General Electric Company Aperture sized disc shaped end caps of a ferromagnetic shield for magnetic resonance magnets
JPS61280852A (ja) * 1985-06-07 1986-12-11 株式会社 日立メデイコ 核磁気共鳴イメ−ジング装置
JPS62139304A (ja) * 1985-12-13 1987-06-23 Hitachi Metals Ltd 磁界均一性のよい磁気回路
FR2611975B1 (fr) * 1987-03-03 1995-02-17 Commissariat Energie Atomique Systeme d'aimants permanents pour un champ magnetique intense
GB9206014D0 (en) * 1992-03-19 1992-04-29 Oxford Instr Ltd Magnet assembly
US5635889A (en) * 1995-09-21 1997-06-03 Permag Corporation Dipole permanent magnet structure
IT1298022B1 (it) * 1997-12-05 1999-12-20 Esaote Spa Magnete permanente per il rilevamento d'immagini in risonaza magnetica nucleare.
JP4182712B2 (ja) 2002-09-26 2008-11-19 日立金属株式会社 磁界発生装置
US20070108850A1 (en) 2005-11-17 2007-05-17 Tiax Llc Linear electrical machine for electric power generation or motive drive
WO2007094844A2 (en) 2005-12-19 2007-08-23 Jianyu Lian Open mri magnetic field generator
US20100219833A1 (en) 2007-07-26 2010-09-02 Emscan Limited Magnet assembly
CN101388271A (zh) 2007-09-14 2009-03-18 Ge医疗系统环球技术有限公司 磁体系统和mri设备
US9696269B2 (en) 2012-05-15 2017-07-04 Schlumberger Technology Corporation NMR analysis of a core sample employing an open permanent magnet removable from a core holder

Also Published As

Publication number Publication date
JP2022095630A (ja) 2022-06-28
WO2018029666A1 (en) 2018-02-15
EP3497458A1 (en) 2019-06-19
CA3033328C (en) 2022-06-21
CA3033328A1 (en) 2018-02-15
JP7041122B2 (ja) 2022-03-23
EP3497458A4 (en) 2020-04-22
CN109804261A (zh) 2019-05-24
JP2019526789A (ja) 2019-09-19
CA3154755A1 (en) 2018-02-15

Similar Documents

Publication Publication Date Title
US10847295B2 (en) Device, system and method for obtaining a magnetic measurement with permanent magnets
JP2023123651A (ja) 永久磁石を用いて磁気測定結果を得るためのデバイス、システムおよび方法
US11287497B2 (en) Device, system and method for obtaining a magnetic measurement with permanent magnets
CN112384816A (zh) 磁共振成像系统用的b0磁体方法和设备
RU2624315C2 (ru) Устройство и способ оказания влияния и обнаружения магнитных частиц, имеющие большое поле зрения
JP6185929B2 (ja) Mpiにおけるバックグラウンド信号の除去
US6002255A (en) Planar open magnet MRI system having active target field shimming
JPH03188827A (ja) 核磁気共鳴断層撮影装置
JPH04504067A (ja) 磁石装置
US9927500B2 (en) Device for generating a magnetic field profile which meets the requirements for MPI and for MRI
US5744960A (en) Planar open magnet MRI system
US20150316628A1 (en) Device for sequential examination of a measurement object by means of MPI and MRI methods
EP0307981A1 (en) Magnetic resonance apparatus comprising integrated gradient r.f. coils
US5914600A (en) Planar open solenoidal magnet MRI system
Irfan et al. Selection field generation using permanent magnets and electromagnets for a magnetic particle imaging scanner
US11422214B2 (en) Gradient coil system
JP6039896B2 (ja) 電磁石装置及びシムコイルの製造方法
McDonough et al. Implementation of the surface gradiometer receive coils for the improved detection limit and sensitivity in the single-sided MPI scanner
US11988730B2 (en) Device, system and method for obtaining a magnetic measurement with permanent magnets
Popella et al. Design and optimization of the magnetic circuit of a mobile nuclear magnetic resonance device for magnetic resonance imaging
US20030218470A1 (en) High efficiency planar open magnet MRI system structured and arranged to provide orthogonal ferrorefractory effect
US20120200295A1 (en) Method to generate magnetic fields of high uniformity and compensation of external dispersed field, and system for its embodiment
US6831463B1 (en) Ferrorefraction MRI system having two orthogonal remote field polarization axes
JP3780306B2 (ja) コイル装置
JP3372098B2 (ja) 磁気共鳴イメージング装置用静磁場発生装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230706

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230706