JP2023122527A - Charging device, and raw material production method for blast furnace - Google Patents

Charging device, and raw material production method for blast furnace Download PDF

Info

Publication number
JP2023122527A
JP2023122527A JP2022172846A JP2022172846A JP2023122527A JP 2023122527 A JP2023122527 A JP 2023122527A JP 2022172846 A JP2022172846 A JP 2022172846A JP 2022172846 A JP2022172846 A JP 2022172846A JP 2023122527 A JP2023122527 A JP 2023122527A
Authority
JP
Japan
Prior art keywords
carbon
furnace
charging
chute
vertical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022172846A
Other languages
Japanese (ja)
Inventor
成人 佐々木
Shigeto Sasaki
玲 横森
Rei YOKOMORI
大輔 今西
Daisuke Imanishi
匡平 石田
Tadahira Ishida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JP2023122527A publication Critical patent/JP2023122527A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Coke Industry (AREA)

Abstract

To provide a charging device and a raw material production method for a blast furnace which can charge a carbon-containing substance into a vertical dry distillation furnace while improving the distribution of the carbon-containing substance in the furnace.SOLUTION: A charging device for charging a carbon-containing substance into a vertical dry distillation furnace has: a cylindrical charging chute for sending and passing the carbon-containing substance; a diffusion part for diffusing the carbon-containing substance having being sent and passed through the charging chute in a direction of sending and passing the carbon-containing substance, and a diffusion direction vertical to the sending and passing direction; and a chute extension part which charges the carbon-containing substance having been diffused in the diffusion part into the vertical dry distillation furnace, and projects into the furnace.SELECTED DRAWING: Figure 1

Description

本発明は、コークスを製造するための竪型乾留炉に炭素含有物質を装入する装入装置及び装入装置を用いた高炉用原料製造方法に関する。 TECHNICAL FIELD The present invention relates to a charging device for charging a carbon-containing material into a vertical carbonization furnace for producing coke, and a method for producing raw material for a blast furnace using the charging device.

近年、地球温暖化の観点から、鉄鋼業界においてCOガスの発生量低減が求められている。このため、化石燃料使用量の削減は、急務となっている。鉄鋼業においては、高炉内で鉄鉱石を炭素(石炭をコークス炉で乾留して製造したコークス)で還元することにより、溶銑を製造している。そして、コークス原単位の低減のため、フェロコークスを高炉用原料として用いる技術の開発が行われている。フェロコークスは、石炭に鉄鉱石を一定量混合して塊成化した後、乾留処理を施すことでコークス中に微細な金属鉄粒子を分散させたものであり、金属鉄の触媒作用によりコークスの反応性を高めるものである。 In recent years, from the viewpoint of global warming, the steel industry is required to reduce the amount of CO 2 gas generated. Therefore, reduction of fossil fuel usage is an urgent task. In the steel industry, hot metal is produced by reducing iron ore with carbon (coke produced by carbonizing coal in a coke oven) in a blast furnace. In order to reduce the coke unit consumption, technology is being developed to use ferro-coke as a raw material for blast furnaces. Ferro-coke is produced by mixing coal with a certain amount of iron ore, agglomerating it, and then subjecting it to a dry distillation process to disperse fine metallic iron particles in the coke. It enhances reactivity.

フェロコークスの乾留方法として、竪型の乾留炉を用いる方法が提案されている。特許文献1には、上部に乾留ゾーン、下部に冷却ゾーンを有する竪型乾留炉が開示されている。竪型乾留炉におけるフェロコークスの製造方法は、炭素含有物質と鉄含有物質からなる成型物を装入シュート等により竪型乾留炉に装入する装入工程と、乾留ゾーンにおいて加熱ガスを吹き込むと共に成型物を乾留しフェロコークスを製造する乾留工程と、冷却ゾーンに設けられた冷却ガスを吹き込むことでフェロコークスを冷却する冷却工程と、竪型乾留炉の炉頂部の排出口から炉内ガスを排出する炉内ガス排出工程と、冷却ゾーン下部からフェロコークスを排出するフェロコークス排出工程とを有している。 A method using a vertical carbonization furnace has been proposed as a carbonization method for ferro-coke. Patent Document 1 discloses a vertical dry distillation furnace having a dry distillation zone in the upper part and a cooling zone in the lower part. The method for producing ferro-coke in a vertical carbonization furnace includes a charging step of charging a molded product composed of a carbon-containing substance and an iron-containing substance into the vertical carbonization furnace through a charging chute, etc., and blowing heated gas in the carbonization zone. A dry distillation process for dry distillation of molded products to produce ferro-coke, a cooling process for cooling the ferro-coke by blowing in cooling gas provided in the cooling zone, and the furnace gas from the outlet at the top of the vertical dry distillation furnace. It has a furnace gas discharging process for discharging and a ferro-coke discharging process for discharging ferro-coke from the lower part of the cooling zone.

乾留工程においては、竪型乾留炉の中間部分の低温ガス吹き込み羽口から低温ガスを吹き込み、下部の高温ガス吹き込み羽口から高温ガスを吹き込むこととしている。 In the dry distillation process, the low temperature gas is blown in from the low temperature gas injection tuyeres in the middle part of the vertical dry distillation furnace, and the high temperature gas is blown in from the lower high temperature gas injection tuyeres.

ここで、低温ガス及び高温ガスの吹込みは、装入シュートから供給される炭素含有物質が、竪型乾留炉の奥行方向とほぼ同じ方向に向けて竪型乾留炉の炉内に装入されるので、この炭素含有物質に対する加熱及び冷却の効果が効果的に得られるように、竪型乾留炉の炉内の奥行方向に向けて吹込む。その上で、竪型乾留炉の炉内の中央部まで低温ガス及び高温ガスを浸透させるため、竪型乾留炉の奥行方向に向けた寸法を抑える必要がある。フェロコークスの生産量を増加させるためには、竪型乾留炉の容積を大きくする必要があるので、竪型乾留炉の構造は、奥行方向に対して垂直な方向の炉幅方向の寸法を、奥行方向に比べて大きくする必要がある。 Here, the low-temperature gas and the high-temperature gas are injected into the vertical dry distillation furnace so that the carbon-containing material supplied from the charging chute is directed in substantially the same direction as the depth direction of the vertical dry distillation furnace. Therefore, in order to effectively obtain the effect of heating and cooling the carbon-containing substance, the gas is blown in the depth direction of the vertical dry distillation furnace. In addition, in order to allow the low-temperature gas and the high-temperature gas to permeate the center of the vertical dry distillation furnace, it is necessary to suppress the dimension of the vertical dry distillation furnace in the depth direction. In order to increase the production of ferro-coke, it is necessary to increase the volume of the vertical carbonization furnace. It is necessary to make it larger than in the depth direction.

この竪型乾留炉の構造上の制約を踏まえ、奥行方向に比べて炉幅方向の寸法を大きくする構造とした場合、装入シュートから供給される炭素含有物質が、炉幅方向に向けて均等に分散される必要がある。鉱物等のバラ物を搬送させる搬送装置について、特許文献2には、搬送方向中央部から出口側へ向かって材料の分散誘導部を設け、材料を放射状に分散させる搬送装置が開示されている。 Based on the structural restrictions of this vertical dry distillation furnace, if the furnace width direction is made larger than the depth direction, the carbon-containing material supplied from the charging chute will be evenly distributed in the furnace width direction. must be distributed over Regarding a conveying device for conveying bulk materials such as minerals, Patent Document 2 discloses a conveying device that radially disperses the material by providing a material dispersion guide section toward the outlet side from the center in the conveying direction.

特開2011-057970号公報JP 2011-057970 A 特開2011-162271号公報JP 2011-162271 A

しかしながら、奥行方向に比べて炉幅方向のサイズを大きくした構造を有する竪型乾留炉では、炉幅方向のサイズに対応した炭素含有物質の均等な分散のため、装入シュートを炉幅方向の全ての位置に対応するよう多数配置することが困難である。また、限られた数の装入シュートを炉幅方向に向けて配置した場合であっても、装入シュートから放出された炭素含有物質は、竪型乾留炉の炉内底部において、装入物(炭素含有物質)の安息角に応じた装入分布となり、均一な装入形状とならない。このため、成型物(炭素含有物質)を炉に装入した際に、炉幅方向に成型物(炭素含有物質)の多い箇所と少ない箇所が発生し、炉内のガス流れが不均一となり、成型物(炭素含有物質)の乾留に影響を与えるという問題がある。 However, in a vertical dry distillation furnace having a structure in which the size in the furnace width direction is larger than in the depth direction, the charging chute is arranged in the furnace width direction in order to evenly disperse the carbon-containing substances corresponding to the size in the furnace width direction. It is difficult to arrange many so as to correspond to all positions. In addition, even when a limited number of charging chutes are arranged in the furnace width direction, the carbon-containing substances released from the charging chutes are discharged into the charging material at the bottom of the vertical carbonization furnace. (Carbon-containing substance) becomes a charging distribution according to the angle of repose, and does not have a uniform charging shape. For this reason, when the molding (carbon-containing material) is charged into the furnace, there are areas where the molding (carbon-containing material) is abundant and areas where there is little molding (carbon-containing material) in the width direction of the furnace, and the gas flow in the furnace becomes uneven. There is a problem that it affects the carbonization of the molding (carbon-containing substance).

また、成型物と装入シュートの壁面、もしくは成型物同士が衝突することで生成した粉体は偏析しやすく、竪型乾留炉の炉内底部において、装入装置側に密集する傾向にある。これは、装入物中の粉体の大部分が、成型物の間をすり抜けて沈降することで、乾留炉へ到達するまでに装入物が成型物層(上層)と粉体層(下層)の2層に分離するためである。1トンの成型物を装入した場合、乾留炉内に突入する際の装入物の厚みは、最大で150mm程度になるが、成型物はその下側に存在する粉体分高い位置から装入されるため、装入口から離れた位置まで飛来しやすい一方で、下層の粉体は装入口近傍に落下する。成型物はその安息角に応じた山を形成するため比較的均一な分布となるものの、粉体は成型物間に潜り込むことで位置が固定されるため、粉体が一点に集中して落下した場合には著しい偏析が発生する。粉体偏析がもたらす問題としては、炉内のガス流れが不均一となり、成型物の乾留に影響を与えてしまう。そして、炉幅方向に均一に炭素含有物質が装入できない場合には、炉内において局所的に粉体圧が高い個所が発生し、その影響による局所的な重みにより成型物(炭素含有物質)に割れが生じる。 In addition, the powder generated by the collision between the moldings and the charging chute or the collision of the moldings with each other tends to segregate, and tends to concentrate on the charging device side at the bottom of the vertical dry distillation furnace. This is because most of the powder in the charge slips through the moldings and settles, and the charge is separated from the molding layer (upper layer) and the powder layer (lower layer) until it reaches the carbonization furnace. ) are separated into two layers. When 1 ton of molded material is charged, the maximum thickness of the charged material when entering the dry distillation furnace is about 150 mm, but the molded material is charged from a position higher than the powder existing below. Since the powder is put in, it tends to fly to a position distant from the charging port, while the powder in the lower layer falls in the vicinity of the charging port. Since the moldings form mountains according to their angle of repose, the distribution is relatively uniform. However, the powder is concentrated in one point and falls because the position of the powder is fixed by slipping between the moldings. In some cases, significant segregation occurs. A problem caused by powder segregation is that the gas flow in the furnace becomes uneven, which affects the carbonization of the molding. If the carbon-containing material cannot be charged uniformly in the width direction of the furnace, there will be places in the furnace where the powder pressure is locally high. Cracks occur.

さらに、特許文献2には、材料の均一装入(搬送)方法として、搬送路の幅方向中央部から出口側へ向かって放射状に下る傾斜面を有する分散誘導部を設けることで、材料を放射状に分散させる方法を開示するものの、分散誘導部の有無は粉体の飛距離に影響せず、分散誘導部の設置によっても、装入口側の粉体偏析を解消することはできない。 Furthermore, in Patent Document 2, as a method for uniformly charging (conveying) materials, a material is distributed radially by providing a dispersion guide section having an inclined surface that descends radially from the center of the conveying path in the width direction toward the outlet side. However, the presence or absence of the dispersion guide does not affect the flight distance of the powder, and the installation of the dispersion guide cannot eliminate the powder segregation on the charging port side.

本発明は、かかる事情を鑑みてなされたもので、竪型乾留炉の炉内における炭素含有物質の分布を改善しつつ装入できる装入装置及び高炉用原料製造方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a charging apparatus and a method for producing raw materials for a blast furnace that can charge while improving the distribution of carbon-containing substances in the furnace of a vertical carbonization furnace. do.

上記課題を解決する本発明の要旨構成は以下のとおりである。
[1]竪型乾留炉に炭素含有物質を装入する装入装置であって、前記炭素含有物質を内部にて送通させる筒形状の装入シュートと、前記装入シュートを送通した前記炭素含有物質を、前記炭素含有物質の送通方向及び前記送通方向に対して垂直な拡散方向に拡散させる拡散部と、前記拡散部にて拡散された後の前記炭素含有物質を前記竪型乾留炉の炉内に装入すると共に前記炉内に突出したシュート延伸部と、を有する装入装置。
[2]前記拡散部の下流において、前記拡散部にて拡散された前記炭素含有物質に対し前記シュート延伸部に向けた前記送通方向において落差を与える段差部を更に有する、[1]に記載の装入装置。
[3]前記段差部の前記落差は、30mm以上60mm以下である、[2]に記載の装入装置。
[4]前記シュート延伸部の前記送通方向の長さwは、前記竪型乾留炉の奥行寸法をWとすると、0.27≦w/W<0.47の関係を満たす、[2]又は[3]に記載の装入装置。
[5]前記シュート延伸部は、前記竪型乾留炉の奥行方向に櫛刃状に延伸した構成である、[1]に記載の装入装置。
[6]前記シュート延伸部は、櫛刃単体の幅及び隣接する櫛刃同士の間隔が50mm以上200mm以下である、[5]に記載の装入装置。
[7]前記シュート延伸部の前記奥行方向の長さxは、前記竪型乾留炉の奥行寸法をWとすると、0.20≦x/W≦0.50の関係を満たす、[5]又は[6]に記載の装入装置。
[8][1]~[7]のいずれか1つに記載の装入装置及び前記竪型乾留炉を用いて高炉用原料を製造する、高炉用原料製造方法。
The gist and configuration of the present invention for solving the above problems are as follows.
[1] A charging device for charging a carbon-containing material into a vertical dry distillation furnace, comprising: a cylindrical charging chute through which the carbon-containing material is passed; a diffusion section for diffusing the carbon-containing substance in a direction in which the carbon-containing substance is conveyed and in a diffusion direction perpendicular to the direction in which the carbon-containing substance is conveyed; and a chute extension part that is charged into a carbonization furnace and protrudes into the furnace.
[2] The method according to [1], further comprising a stepped portion downstream of the diffusion portion that provides a drop in the conveying direction toward the chute extension portion with respect to the carbon-containing substance diffused in the diffusion portion. charging device.
[3] The charging device according to [2], wherein the drop of the stepped portion is 30 mm or more and 60 mm or less.
[4] The length w of the chute extending portion in the transport direction satisfies the relationship of 0.27 ≤ w/W < 0.47, where W is the depth dimension of the vertical carbonization furnace [2] Or the charging device according to [3].
[5] The charging device according to [1], wherein the chute extension section extends in the depth direction of the vertical carbonization furnace in a comb shape.
[6] The charging device according to [5], wherein the chute extending portion has a width of a single comb blade and an interval between adjacent comb blades of 50 mm or more and 200 mm or less.
[7] The length x of the chute extending portion in the depth direction satisfies the relationship of 0.20 ≤ x/W ≤ 0.50, where W is the depth dimension of the vertical carbonization furnace, [5] or The charging device according to [6].
[8] A method for producing blast furnace raw material, comprising producing a blast furnace raw material using the charging apparatus according to any one of [1] to [7] and the vertical carbonization furnace.

本発明によれば、竪型乾留炉の炉内における炭素含有物質の分布を改善しつつ装入できる。 According to the present invention, the carbon-containing substance can be charged while improving the distribution of the carbon-containing substance in the furnace of the vertical carbonization furnace.

第1実施形態における装入装置及び竪型乾留炉の一例を示す斜視模式図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a perspective schematic diagram which shows an example of the charging apparatus in 1st Embodiment, and a vertical carbonization furnace. 第1実施形態における装入装置及び竪型乾留炉の一例を示す側面模式図である。1 is a schematic side view showing an example of a charging device and a vertical carbonization furnace in the first embodiment; FIG. 第2実施形態における装入装置及び竪型乾留炉の一例を示す斜視模式図である。It is a perspective schematic diagram which shows an example of the charging apparatus in 2nd Embodiment, and a vertical carbonization furnace. 第2実施形態における装入装置及び竪型乾留炉の一例を示す側面模式図である。It is a side schematic diagram which shows an example of the charging apparatus in 2nd Embodiment, and a vertical carbonization furnace. 段差部及びシュート延伸部を設けない装入装置及び竪型乾留炉の一例を示す側面模式図である。FIG. 2 is a schematic side view showing an example of a charging device and a vertical carbonization furnace which are not provided with a stepped portion and a chute extension portion. 段差部及びシュート延伸部を設けない装入装置を用いた炭素含有物質の分布測定結果を示す図である。FIG. 5 is a diagram showing the results of measuring the distribution of carbon-containing substances using a charging apparatus that does not have a stepped portion and a chute extending portion. 段差部及びシュート延伸部を有する装入装置を用いた炭素含有物質の分布測定結果を示す図である。FIG. 5 is a diagram showing the distribution measurement results of a carbon-containing substance using a charging device having a stepped portion and a chute extension. 段差部の落差と竪型乾留炉の炉内における炭素含有物質の細粒分布の平均値の偏差との関係を示す図である。FIG. 5 is a diagram showing the relationship between the head of the stepped portion and the deviation of the mean value of the fine particle distribution of the carbon-containing material in the vertical carbonization furnace. 段差部の落差と竪型乾留炉の炉内における炭素含有物質の成型物分布の平均値の偏差との関係を示す図である。FIG. 5 is a diagram showing the relationship between the height difference of the stepped portion and the deviation of the average value of the molded product distribution of the carbon-containing substance in the vertical carbonization furnace. 第2実施形態におけるフェロコークスの強度の測定結果を示す図である。FIG. 5 is a diagram showing measurement results of strength of ferro-coke in the second embodiment; 第2実施形態における装入装置の変形例の一例を示す上面模式図である。It is an upper surface schematic diagram which shows an example of the modification of the charging apparatus in 2nd Embodiment. 第3実施形態における装入装置及び竪型乾留炉の一例を示す斜視模式図である。It is a perspective schematic diagram which shows an example of the charging apparatus in 3rd Embodiment, and a vertical carbonization furnace. 第3実施形態における装入装置及び竪型乾留炉の一例を示す上面模式図である。It is an upper surface schematic diagram which shows an example of the charging apparatus in 3rd Embodiment, and a vertical carbonization furnace. 第3実施形態におけるシュート延伸部の櫛刃単体の幅と最大粉体率との関係を示す図である。FIG. 11 is a diagram showing the relationship between the width of a single comb blade in the chute extension portion and the maximum powder rate in the third embodiment. 第3実施形態におけるシュート延伸部の櫛刃同士の間隔と最大粉体率との関係を示す図である。It is a figure which shows the relationship between the space|interval of comb blades of a chute extension part, and the maximum powder rate in 3rd Embodiment. 第3実施形態において、竪型乾留炉の奥行寸法に対するシュート延伸部の水平方向の長さの比と最大粉体率との関係を示す図である。FIG. 10 is a diagram showing the relationship between the ratio of the horizontal length of the chute extending portion to the depth dimension of the vertical dry distillation furnace and the maximum powder rate in the third embodiment.

以下、成型コークスの一種であるフェロコークスを製造する場合を例に、本発明の実施形態を通じて本発明を説明する。ここで、各図面は模式的なものであって、現実のものとは異なる場合がある。また、以下の実施形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであり、構成を下記のものに特定するものでない。すなわち、本発明の技術的思想は、特許請求の範囲に記載された技術的範囲内において、種々の変更を加えることができる。 Hereinafter, the present invention will be described through embodiments of the present invention, taking as an example the case of producing ferro-coke, which is a type of molded coke. Here, each drawing is schematic and may differ from the actual one. Moreover, the following embodiments are intended to exemplify devices and methods for embodying the technical idea of the present invention, and are not intended to limit the configurations to those described below. That is, the technical idea of the present invention can be modified in various ways within the technical scope described in the claims.

<第1実施形態>
図1及び図2を参照して、本発明の第1実施形態である装入装置9の構成について説明する。図1は、装入装置9及び竪型乾留炉20の斜視模式図を示す。図2は、装入装置9及び竪型乾留炉20の側面模式図を示す。
<First embodiment>
A configuration of a charging device 9 according to a first embodiment of the present invention will be described with reference to FIGS. 1 and 2. FIG. FIG. 1 shows a schematic perspective view of a charging device 9 and a vertical carbonization furnace 20 . FIG. 2 shows a schematic side view of the charging device 9 and the vertical carbonization furnace 20. As shown in FIG.

装入装置9は、成型物とされた炭素含有物質を竪型乾留炉20に装入する。竪型乾留炉20は、装入装置9から装入された炭素含有物質を乾留してコークスを製造する。装入装置9は、竪型乾留炉20においてフェロコークスを製造させるため、フェロコークスの原料となる炭素含有物質(石炭等)と鉄含有物質(鉄鉱石等)とを含む成型物を竪型乾留炉20に装入してもよい。 The charging device 9 charges the molded carbon-containing material into the vertical dry distillation furnace 20 . The vertical carbonization furnace 20 carbonizes the carbon-containing material charged from the charging device 9 to produce coke. In order to produce ferro-coke in the vertical carbonization furnace 20, the charging device 9 vertically carbonizes a molding containing a carbon-containing substance (coal, etc.) and an iron-containing substance (iron ore, etc.), which are raw materials of ferro-coke. Furnace 20 may be charged.

装入装置9は、装入シュート1と、拡散部2と、シュート延伸部3とを有する。装入シュート1は、炭素含有物質を内部にて送通させる筒形状である。装入シュート1は、出口に開閉可能なゲート等の開閉部1aを有する。拡散部2は、四角錘の形状である。拡散部2は、四角錘の頂部が装入シュート1の出口の下方に位置するように配置されている。拡散部2は、装入シュート1を送通した炭素含有物質を、送通方向M及び送通方向Mに対して垂直な拡散方向Nに拡散させる。拡散部2は、拡散方向Nにおいて、四角錘の底部の寸法が、装入シュート1の筒直径の寸法よりも大きい。拡散方向Nは、図1に示す通り、竪型乾留炉20の炉幅方向に相当する。シュート延伸部3は、図2に示す通り、竪型乾留炉20の炉内に延伸し突出して設けられる。シュート延伸部3は、拡散部2にて拡散された後の炭素含有物質を竪型乾留炉20の炉内に装入する。 The charging device 9 has a charging chute 1 , a diffusion section 2 and a chute extension section 3 . The charging chute 1 has a cylindrical shape through which the carbon-containing substance is passed. The charging chute 1 has an opening/closing part 1a such as a gate that can be opened/closed at the outlet. The diffusing portion 2 is in the shape of a quadrangular pyramid. The diffusion part 2 is arranged so that the top of the square pyramid is positioned below the outlet of the charging chute 1 . The diffusing section 2 diffuses the carbon-containing substance fed through the charging chute 1 in the feeding direction M and the diffusion direction N perpendicular to the feeding direction M. As shown in FIG. In the diffusing part 2 , the size of the bottom of the quadrangular pyramid is larger than the diameter of the charging chute 1 in the diffusing direction N. The diffusion direction N corresponds to the furnace width direction of the vertical carbonization furnace 20, as shown in FIG. As shown in FIG. 2, the chute extension part 3 is provided so as to extend and protrude into the vertical carbonization furnace 20 . The chute extension section 3 charges the carbon-containing material diffused in the diffusion section 2 into the vertical dry distillation furnace 20 .

第1実施形態においては、図2に示す炭素含有物質の送通方向Mに沿った上流から下流に向けて、装入シュート1と、拡散部2と、シュート延伸部3と、竪型乾留炉20とが順に設けられている。図2に示す通り、装入装置9の装入シュート1と、拡散部2と、シュート延伸部3とは、奥行方向Pに対して傾斜角θだけ傾いている。このため、装入シュート1を送通する炭素含有物質は、傾斜角θを有する傾斜により、装入シュート1と、拡散部2と、シュート延伸部3とに沿って流下し、最終的に、竪型乾留炉20の炉内に装入される。 In the first embodiment, the charging chute 1, the diffusion section 2, the chute extension section 3, and the vertical carbonization furnace are arranged from upstream to downstream along the conveying direction M of the carbon-containing material shown in FIG. 20 are provided in order. As shown in FIG. 2, the charging chute 1, the diffusion section 2, and the chute extension section 3 of the charging device 9 are inclined with respect to the depth direction P by an inclination angle θ. Therefore, the carbon-containing material fed through the charging chute 1 flows down along the charging chute 1, the diffusion section 2, and the chute extension section 3 due to the inclination having the inclination angle θ, and finally, It is charged into the vertical dry distillation furnace 20 .

装入シュート1に設けられた開閉部1aは、図2において閉鎖された状態を示す。装入シュート1を開閉部1aにより閉鎖された状態にすることで、装入シュート1の内部を送通してきた炭素含有物質を、一旦、開閉部1aの上流側にて貯留できる。装入シュート1を開閉部1aにより閉鎖された状態にすることで、開閉部1aの上流側において例えば1バッチ分の炭素含有物質を貯留できる。装入シュート1を開閉部1aによって閉鎖された状態から開放された状態にすることで、装入シュート1の内部に貯留された炭素含有物質が拡散部2に向けて放出される。 The opening/closing portion 1a provided on the charging chute 1 is shown in a closed state in FIG. By closing the charging chute 1 by the opening/closing part 1a, the carbon-containing substance that has been sent through the inside of the charging chute 1 can be temporarily stored on the upstream side of the opening/closing part 1a. By closing the charging chute 1 by the opening/closing part 1a, for example, one batch of the carbon-containing material can be stored on the upstream side of the opening/closing part 1a. By opening the charging chute 1 from the closed state by the opening/closing portion 1 a , the carbon-containing substance stored inside the charging chute 1 is discharged toward the diffusion portion 2 .

第1実施形態として示した構成、即ち、装入シュート1と、拡散部2と、シュート延伸部3とを順に設けた構成により、装入シュート1を介して炭素含有物質を送通した際に、シュート延伸部3を有することで、竪型乾留炉の炉内における炭素含有物質の分布を改善できる。そして、炉内における炭素含有物質の分布が改善されたことに伴い、乾留後のフェロコークスの強度を向上することができる。 With the configuration shown as the first embodiment, that is, the configuration in which the charging chute 1, the diffusion section 2, and the chute extension section 3 are provided in order, when the carbon-containing substance is conveyed through the charging chute 1, By having the chute extension part 3, the distribution of carbon-containing substances in the furnace of the vertical carbonization furnace can be improved. Further, the strength of the ferro-coke after carbonization can be improved as the distribution of carbon-containing substances in the furnace is improved.

<第2実施形態>
次に、図3及び図4を参照して、本発明の第2実施形態である装入装置10の構成について説明する。第1実施形態に示した構成と同様の構成については、図中の付与番号を同じものとし、説明を省略する。図3は、装入装置10及び竪型乾留炉20の斜視模式図を示す。図4は、装入装置10及び竪型乾留炉20の側面模式図を示す。図3及び図4に示す通り、第2実施形態における装入装置10は、第1実施形態における装入装置9に対して、段差部5を設けた構成となっている。
<Second embodiment>
Next, with reference to FIGS. 3 and 4, the configuration of the charging device 10, which is a second embodiment of the present invention, will be described. Configurations that are the same as those shown in the first embodiment are assigned the same numbers in the drawings, and descriptions thereof are omitted. FIG. 3 shows a schematic perspective view of the charging device 10 and the vertical carbonization furnace 20. As shown in FIG. FIG. 4 shows a schematic side view of the charging device 10 and the vertical carbonization furnace 20. As shown in FIG. As shown in FIGS. 3 and 4, the charging device 10 according to the second embodiment has a configuration in which a step portion 5 is provided in comparison with the charging device 9 according to the first embodiment.

段差部5は、拡散部2とシュート延伸部3との間に設けられる。段差部5は、拡散部2の下流において、拡散部2にて拡散された炭素含有物質に対しシュート延伸部3に向けた送通方向Mにおいて落差を与える。落差は、段差部5における頂辺と送通方向Mの下流側の底辺との距離である。 The stepped portion 5 is provided between the diffusion portion 2 and the chute extension portion 3 . The stepped portion 5 gives a drop in the conveying direction M toward the chute extending portion 3 to the carbon-containing substance diffused in the diffusing portion 2 downstream of the diffusing portion 2 . The drop is the distance between the top side of the stepped portion 5 and the bottom side on the downstream side in the feeding direction M. As shown in FIG.

第2実施形態においては、図3に示す炭素含有物質の送通方向Mに沿った上流から下流に向けて、装入シュート1と、拡散部2と、段差部5と、シュート延伸部3と、竪型乾留炉20とが順に設けられている。そして、炭素含有物質の送通方向Mは、竪型乾留炉20の水平方向における奥行方向Pに対して傾斜角θだけ傾いている。図4に示す通り、装入装置10の装入シュート1と、拡散部2と、段差部5と、シュート延伸部3とは、奥行方向Pに対して傾斜角θだけ傾いている。このため、装入シュート1を送通する炭素含有物質は、傾斜角θを有する傾斜により、装入シュート1と、拡散部2と、段差部5と、シュート延伸部3とに沿って流下し、最終的に、竪型乾留炉20の炉内に装入される。 In the second embodiment, a charging chute 1, a diffusion section 2, a stepped section 5, and a chute extension section 3 are arranged from upstream to downstream along the feeding direction M of the carbon-containing substance shown in FIG. , and a vertical dry distillation furnace 20 are provided in this order. The conveying direction M of the carbon-containing material is inclined by an inclination angle θ with respect to the depth direction P in the horizontal direction of the vertical dry distillation furnace 20 . As shown in FIG. 4, the charging chute 1, the diffusion section 2, the stepped section 5, and the chute extension section 3 of the charging device 10 are inclined with respect to the depth direction P by an inclination angle θ. Therefore, the carbon-containing material fed through the charging chute 1 flows down along the charging chute 1, the diffusion section 2, the stepped section 5, and the chute extension section 3 due to the inclination having the inclination angle θ. , and finally charged into the vertical carbonization furnace 20 .

本実施形態である図4に示す構成と、図5に示すように段差部5及びシュート延伸部3を設けない構成とを用いて、成型物である炭素含有物質を竪型乾留炉20に装入し、炉内の奥行方向Pにおける炭素含有物質の分布の測定を行った。シュート延伸部3は、長さwを500mmとし、段差部5は、落差を40mmとした。装入装置10は、実機で用いるものと同様のものを用いた。測定は、装入シュート1の出側に竪型乾留炉20に見立てた回収ボックスを設置して、実施した。 Using the configuration shown in FIG. 4, which is the present embodiment, and the configuration without providing the stepped portion 5 and the chute extension portion 3 as shown in FIG. The distribution of carbon-containing substances in the depth direction P in the furnace was measured. The length w of the chute extending portion 3 was set to 500 mm, and the height difference of the stepped portion 5 was set to 40 mm. A charging device 10 similar to that used in the actual machine was used. The measurement was carried out by installing a recovery box that looked like a vertical carbonization furnace 20 on the delivery side of the charging chute 1 .

測定は、先ず、炭素含有物質を装入シュート1から一定時間装入した際における、竪型乾留炉20の炉内底部での奥行方向Pの各位置の炭素含有物質の重量を測定した。そして、測定された重量から、細粒に関する分布も測定した。重量の測定は、竪型乾留炉20の炉内底部における奥行方向Pを8つに分割し、分割された領域ごとに炭素含有物質の重量を測定して行った。また、炉内底部の奥行方向Pにおける炭素含有物質の分布の測定は、装入シュート1から装入される炭素含有物質の1バッチあたりの重量(装入量)を、250kgと500kgとして、それぞれ行った。 For the measurement, first, the weight of the carbon-containing material was measured at each position in the depth direction P at the bottom of the vertical dry distillation furnace 20 when the carbon-containing material was charged from the charging chute 1 for a certain period of time. Then, from the measured weight, the distribution for the granules was also determined. The weight measurement was performed by dividing the depth direction P of the bottom of the vertical dry distillation furnace 20 into eight regions and measuring the weight of the carbon-containing substance for each divided region. In addition, the distribution of the carbon-containing substance in the depth direction P of the bottom of the furnace was measured by setting the weight (charging amount) per batch of the carbon-containing substance charged from the charging chute 1 to 250 kg and 500 kg, respectively. went.

図6に、段差部5及びシュート延伸部3を設けない構成(図5参照)を用いて、炉内の奥行方向Pにおける炭素含有物質の分布の測定を行った結果を示す。図6(a)は、竪型乾留炉20の炉内底部の奥行方向Pにおける8つの領域について、炭素含有物質の重量比率を示す。図6(b)は、竪型乾留炉20の炉内底部の奥行方向Pにおける8つの領域について、炭素含有物質の細粒の重量比率を示す。図6(a)は、縦軸を炭素含有物質の重量比率(%)とし、横軸を奥行方向Pにおける8つの領域として装入装置10側「1」~装入装置10の反対側「8」として示す。図6(b)は、縦軸を炭素含有物質の細粒の重量比率(%)とし、横軸を奥行方向Pにおける8つの領域として装入装置10側「1」~装入装置10の反対側「8」として示す。 FIG. 6 shows the results of measuring the distribution of carbon-containing substances in the depth direction P in the furnace using a configuration (see FIG. 5) that does not have the stepped portion 5 and the chute extension portion 3 . FIG. 6( a ) shows the weight ratio of the carbon-containing material for eight regions in the depth direction P of the bottom of the vertical dry distillation furnace 20 . FIG. 6(b) shows the weight ratio of the fine particles of the carbon-containing material for eight regions in the depth direction P of the bottom of the vertical dry distillation furnace 20. As shown in FIG. In FIG. 6(a), the vertical axis represents the weight ratio (%) of the carbon-containing substance, and the horizontal axis represents eight regions in the depth direction P. ”. In FIG. 6(b), the vertical axis is the weight ratio (%) of the fine particles of the carbon-containing substance, and the horizontal axis is eight regions in the depth direction P, from "1" on the side of the charging device 10 to the opposite side of the charging device 10. Shown as side "8".

炭素含有物質の細粒の重量比率(%)は、奥行方向Pにおける8つの領域ごとに炭素含有物質を回収し、回収された炭素含有物質を篩分けして、篩目20mm以上を成型物とし、篩目20mm未満を細粒として分別して算出した。 The weight ratio (%) of the fine particles of the carbon-containing substance is obtained by collecting the carbon-containing substance for each of eight regions in the depth direction P, sieving the collected carbon-containing substance, and using a sieve mesh of 20 mm or more as a molded product. , sieve meshes of less than 20 mm were classified as fine grains.

図6(a)に示す通り、拡散部2の下流側に段差部5及びシュート延伸部3を設置しない場合、奥行方向Pにおいて、炭素含有物質が不均一に分散されることが確認できた。また、図6(b)に示す通り、拡散部2の下流側に段差部5及びシュート延伸部3を設置しない場合、細粒が装入装置10側に偏在することが確認できた。 As shown in FIG. 6( a ), it was confirmed that the carbon-containing material was unevenly dispersed in the depth direction P when the stepped portion 5 and the chute extension portion 3 were not installed on the downstream side of the diffusion portion 2 . Further, as shown in FIG. 6(b), it was confirmed that when the step portion 5 and the chute extension portion 3 were not installed downstream of the diffusion portion 2, the fine grains were unevenly distributed on the charging device 10 side.

図7に、本実施形態である段差部5及びシュート延伸部3を設けた構成(図4参照)を用いて、炉内の奥行方向Pにおける炭素含有物質の分布の測定を行った結果を示す。図7(a)は、竪型乾留炉20の炉内底部の奥行方向Pにおける8つの領域について、炭素含有物質の重量比率を示す。図7(b)は、竪型乾留炉20の炉内底部の奥行方向Pにおける8つの領域について、炭素含有物質の細粒の重量比率を示す。図7(a)は、縦軸を炭素含有物質の重量比率(%)とし、横軸を奥行方向Pにおける8つの領域として装入装置10側「1」~装入装置10の反対側「8」として示す。図7(b)は、縦軸を炭素含有物質の細粒の重量比率(%)とし、横軸を奥行方向Pにおける8つの領域として装入装置10側「1」~装入装置10の反対側「8」として示す。 FIG. 7 shows the result of measuring the distribution of the carbon-containing substance in the depth direction P in the furnace using the configuration (see FIG. 4) provided with the stepped portion 5 and the chute extension portion 3 according to the present embodiment. . FIG. 7( a ) shows the weight ratio of the carbon-containing substance for eight regions in the depth direction P of the bottom of the vertical dry distillation furnace 20 . FIG. 7(b) shows the weight ratio of the fine particles of the carbon-containing substance for eight regions in the depth direction P of the bottom of the vertical dry distillation furnace 20. As shown in FIG. In FIG. 7(a), the vertical axis represents the weight ratio (%) of the carbon-containing substance, and the horizontal axis represents eight regions in the depth direction P. ”. In FIG. 7(b), the vertical axis is the weight ratio (%) of the fine particles of the carbon-containing material, and the horizontal axis is eight regions in the depth direction P, from "1" on the side of the charging device 10 to the opposite side of the charging device 10. Shown as side "8".

図7(a)に示す通り、拡散部2の下流側に段差部5及びシュート延伸部3を設置した場合、奥行方向Pにおいて、炭素含有物質が効率的にほぼ均等に分散されることが確認できた。また、図7(b)に示す通り、拡散部2の下流側に段差部5及びシュート延伸部3を設置した場合、細粒が特定の位置に偏在することなく、効率的にほぼ均等に分散されることが確認できた。 As shown in FIG. 7( a ), when the stepped portion 5 and the chute extension portion 3 are installed downstream of the diffusion portion 2 , it is confirmed that the carbon-containing substances are efficiently and almost evenly dispersed in the depth direction P. did it. Further, as shown in FIG. 7B, when the stepped portion 5 and the chute extension portion 3 are installed downstream of the diffusion portion 2, the fine particles are not unevenly distributed at a specific position, and are dispersed efficiently and almost evenly. It was confirmed that

次に、図4に示す本実施形態において、段差部5の落差を変更した場合における、竪型乾留炉20の炉内底部の炭素含有物質の分布の状況を確認した。分布の状況は、先ず、段差部5の落差ごとに、竪型乾留炉20の炉内底部の奥行方向Pにおける8つの領域ごとの細粒の重量比率(%)を算出した。そして、8つの領域ごとの細粒の重量比率(%)の平均である平均値を算出した。その後、その算出された落差ごとの平均値の全ての総平均値を算出し、その総平均値に対する落差ごとの平均値の偏差の最大値(以下の記載及び図8において、「炭素含有物質の偏差(%)」という。)を算出した。 Next, in the present embodiment shown in FIG. 4, the state of distribution of the carbon-containing material at the bottom of the vertical dry distillation furnace 20 was confirmed when the head of the stepped portion 5 was changed. Regarding the state of distribution, first, the weight ratio (%) of fine grains was calculated for each of the eight regions in the depth direction P of the bottom of the vertical dry distillation furnace 20 for each drop of the stepped portion 5 . Then, an average value, which is the average of the weight ratios (%) of the fine granules for each of the eight regions, was calculated. After that, the total average value of all the calculated average values for each head is calculated, and the maximum value of the deviation of the average value for each head from the total average value (referred to in the following description and FIG. Deviation (%)”) was calculated.

図8に、段差部5の落差と炭素含有物質の偏差との関係を示す。図8は、縦軸を炭素含有物質の偏差(%)とし、横軸を段差部5の落差(mm)として示す。図8に示す通り、炭素含有物質の偏差の許容範囲を5%以下とすることを踏まえると、段差部5の落差が30mm未満の場合、又は、落差が60mmを超える場合に、炭素含有物質の偏差が大きくなることが確認できた。つまり、段差部5の落差を30mm以上60mm以下とすることで、炉内の炭素含有物質の細粒の分布をより効率的にほぼ均等にできることが確認できた。 FIG. 8 shows the relationship between the head of the step portion 5 and the deviation of the carbon-containing material. In FIG. 8 , the vertical axis represents the deviation (%) of the carbon-containing substance, and the horizontal axis represents the drop (mm) of the step portion 5 . As shown in FIG. 8, considering that the allowable range of the deviation of the carbon-containing substance is 5% or less, when the drop of the stepped portion 5 is less than 30 mm or exceeds 60 mm, the carbon-containing substance It was confirmed that the deviation increased. In other words, it was confirmed that the distribution of the fine particles of the carbon-containing substance in the furnace can be made more efficient and substantially uniform by setting the drop of the stepped portion 5 to 30 mm or more and 60 mm or less.

次に、図4に示す本実施形態において、シュート延伸部3の長さを変更した場合における、竪型乾留炉20の炉内底部の炭素含有物質の分布の状況を確認した。具体的には、シュート延伸部3の送通方向Mにおける長さをw、竪型乾留炉20の奥行方向Pにおける奥行寸法をWとして、シュート延伸部3の長さwを変更した際における、竪型乾留炉20の炉内底部の炭素含有物質の分布の状況を確認した。 Next, in this embodiment shown in FIG. 4, the distribution of carbon-containing substances in the bottom of the vertical dry distillation furnace 20 was confirmed when the length of the chute extension 3 was changed. Specifically, when the length w of the chute extension portion 3 in the transport direction M is w, and the depth dimension in the depth direction P of the vertical dry distillation furnace 20 is W, when the length w of the chute extension portion 3 is changed, The distribution of carbon-containing substances in the bottom of the vertical dry distillation furnace 20 was checked.

分布の状況は、先ず、シュート延伸部3の長さwごとに、シュート延伸部3の長さwを竪型乾留炉20の奥行寸法Wで除した値(w/W:以下、「w/W」という。)を算出した。そして、w/Wごとに、竪型乾留炉20の炉内底部の奥行方向Pにおける8つの領域ごとの成型物の重量比率(%)の平均値を算出した。そして、8つの領域ごとの平均値の全ての平均である全平均値を算出した。その後、算出されたw/Wごとの全平均値の全ての総平均値を算出し、その総平均値に対するw/Wごとの全平均値の偏差の最大値(以下の記載及び図7において、「重量比率の偏差(%)」という。)を算出した。 First, for each length w of the chute extension portion 3, the distribution is the value obtained by dividing the length w of the chute extension portion 3 by the depth dimension W of the vertical dry distillation furnace 20 (w/W: hereinafter referred to as “w/ W”) was calculated. Then, for each w/W, the average value of the weight ratio (%) of the moldings for each of the eight regions in the depth direction P of the bottom of the vertical dry distillation furnace 20 was calculated. Then, a total average value, which is the average of all the average values for each of the eight regions, was calculated. After that, the total average value of all the calculated total average values for each w/W is calculated, and the maximum value of the deviation of the total average values for each w/W from the total average value (described below and in FIG. 7, (referred to as "weight ratio deviation (%)") was calculated.

図9に、w/Wと重量比率の偏差との関係を示す。図9は、縦軸を重量比率の偏差(%)とし、横軸をw/W(-(無次元数))として示す。図9に示す通り、重量比率の偏差の許容範囲を5%以下とすることを踏まえると、w/Wが0.27未満の場合、又は、w/Wが0.47以上の場合に、重量比率の偏差が大きくなることが確認できた。つまり、w/Wを0.27以上0.47未満(0.27≦w/W<0.47)とすることで、炉内の炭素含有物質の成型物の分布をより効率的にほぼ均等にできることが確認できた。 FIG. 9 shows the relationship between w/W and the weight ratio deviation. In FIG. 9, the vertical axis indicates the weight ratio deviation (%), and the horizontal axis indicates w/W (-(dimensionless number)). As shown in FIG. 9, considering that the allowable range of deviation of the weight ratio is 5% or less, when w/W is less than 0.27 or when w/W is 0.47 or more, the weight It was confirmed that the deviation of the ratio became large. In other words, by setting w/W to 0.27 or more and less than 0.47 (0.27≤w/W<0.47), the distribution of the carbon-containing substance moldings in the furnace can be more efficiently and substantially uniform. I was able to confirm what I can do.

次に、本実施形態である図4に示す構成と、図5に示すように段差部5及びシュート延伸部3を設けない構成とを用いて、成型物である炭素含有物質を竪型乾留炉20に装入し、竪型乾留炉20にて乾留して製造された各々のフェロコークスの強度を測定した。測定は、JIS K2151に記載の回転強度試験法に従い、フェロコークスの強度として、DI150 15を(以下、「DI」という。)測定して行った。 Next, using the configuration shown in FIG. 4, which is the present embodiment, and the configuration without the stepped portion 5 and the chute extension portion 3 as shown in FIG. 20 and carbonized in the vertical carbonization furnace 20 to measure the strength of each ferro-coke produced. The measurement was performed by measuring DI 150-15 (hereinafter referred to as "DI") as the strength of ferro-coke according to the rotational strength test method described in JIS K2151 .

図10に、フェロコークスの強度の測定結果を示す。図10に示す通り、装入装置10に段差部5及びシュート延伸部3を設けた構成(図10における「本発明」)として炭素含有物質を竪型乾留炉20に装入し、フェロコークスを製造することで、段差部5及びシュート延伸部3を設けない構成(図10における「従来」)に比べ、当該フェロコークスの強度が効率的に向上することが確認できた。 FIG. 10 shows the measurement results of the ferro-coke strength. As shown in FIG. 10, a carbon-containing material is charged into a vertical carbonization furnace 20 as a configuration in which a charging device 10 is provided with a stepped portion 5 and a chute extension portion 3 (the "present invention" in FIG. 10), and ferro-coke is produced. It was confirmed that the strength of the ferro-coke was efficiently improved by the production, compared to the configuration without the stepped portion 5 and the chute extension portion 3 (“Conventional” in FIG. 10).

ここで、本実施形態においては、図3及び図4に示す通り、装入装置10の一例として竪型乾留炉20の奥行方向Pにおいて、片側に複数列配置する構成を示したが、その構成に限定するものではない。つまり、図11に示す通り、竪型乾留炉20の奥行方向Pにおいて、竪型乾留炉20の両側に装入装置10を配置する構成としてもよい。 Here, in the present embodiment, as shown in FIGS. 3 and 4, as an example of the charging device 10, a configuration in which a plurality of rows are arranged on one side in the depth direction P of the vertical dry distillation furnace 20 is shown. is not limited to That is, as shown in FIG. 11 , the charging device 10 may be arranged on both sides of the vertical dry distillation furnace 20 in the depth direction P of the vertical dry distillation furnace 20 .

<第3実施形態>
次に、図12及び図13を参照して、本発明の第3実施形態である装入装置30の構成について説明する。第1実施形態及び第2実施形態に示した構成と同様の構成については、図中の付与番号を同じものとし、説明を省略する。図12は、装入装置30及び竪型乾留炉20の斜視模式図を示す。図13は、装入装置30及び竪型乾留炉20の上面模式図を示す。図12及び図13に示す通り、第3実施形態における装入装置30は、第2実施形態における装入装置10に対して、段差部5を設けない構成となっている。
<Third Embodiment>
Next, with reference to FIGS. 12 and 13, the configuration of a charging device 30 according to a third embodiment of the present invention will be described. Configurations that are the same as those shown in the first and second embodiments are assigned the same numbers in the drawings, and descriptions thereof are omitted. FIG. 12 shows a schematic perspective view of the charging device 30 and the vertical carbonization furnace 20. As shown in FIG. FIG. 13 shows a schematic top view of the charging device 30 and the vertical carbonization furnace 20. As shown in FIG. As shown in FIGS. 12 and 13, the charging device 30 according to the third embodiment has a configuration in which the stepped portion 5 is not provided as compared with the charging device 10 according to the second embodiment.

第3実施形態においては、図12に示す通り、炭素含有物質が流下する上流から下流に向けて、装入シュート1と、拡散部2と、シュート延伸部3と、竪型乾留炉20とが順に設けられている。そして、装入シュート1のみが竪型乾留炉20の水平方向における奥行方向Pに対して傾斜角θだけ傾いている。つまり、装入シュート1の内部にて炭素含有物質が流下する方向のみが送通方向Mに相当する。また、図12に示す通り、拡散部2は、水平方向の面上に設けられ、シュート延伸部3は、水平方向における奥行方向Pに延伸するように配置される。 In the third embodiment, as shown in FIG. 12, a charging chute 1, a diffusion section 2, a chute extension section 3, and a vertical carbonization furnace 20 are arranged from upstream to downstream where the carbon-containing substance flows down. are set in order. Only the charging chute 1 is inclined at an inclination angle θ with respect to the depth direction P in the horizontal direction of the vertical carbonization furnace 20 . That is, only the direction in which the carbon-containing substance flows down inside the charging chute 1 corresponds to the conveying direction M. Further, as shown in FIG. 12, the diffusing section 2 is provided on a horizontal plane, and the chute extending section 3 is arranged so as to extend in the depth direction P in the horizontal direction.

図12及び図13に示す通り、第3実施形態において、シュート延伸部3は、奥行方向Pに櫛刃状に延伸した櫛刃形状の構成となっている。シュート延伸部3は、竪型乾留炉20における炭素含有物質の分散の均一化の効果をより効率良く向上させるため、櫛刃単体の幅L及び隣接する櫛刃同士の間隔Dが50mm以上200mm以下とすることが望ましい。櫛刃単体の幅Lが50mmを下回ると、櫛刃上を通過する炭素含有物質が櫛刃の根本近傍(竪型乾留炉20の入口近傍)で落下し易くなり、竪型乾留炉20の炉内底部における炭素含有物質の均等な分散をより効率的に行えなくなるためである。一方、櫛刃単体の幅Lが200mmを超えると、櫛刃上を通過した炭素含有物質に含まれる粉体が、竪型乾留炉20の炉内空間において、装入装置30から離れた位置に飛来し易くなり、竪型乾留炉20の炉内底部における炭素含有物質の均等な分散をより効率的に行えなくなるためである。 As shown in FIGS. 12 and 13, in the third embodiment, the chute extending portion 3 has a comb tooth shape extending in the depth direction P in a comb tooth shape. In the chute extension part 3, the width L of the single comb blade and the interval D between the adjacent comb blades are 50 mm or more and 200 mm or less in order to more efficiently improve the effect of uniforming the dispersion of the carbon-containing substance in the vertical dry distillation furnace 20. It is desirable to When the width L of the single comb blade is less than 50 mm, the carbon-containing material passing over the comb blade tends to drop near the root of the comb blade (near the entrance of the vertical dry distillation furnace 20), and the vertical dry distillation furnace 20 is not allowed to fall. This is because the uniform distribution of the carbon-containing material in the inner bottom cannot be performed more efficiently. On the other hand, when the width L of the single comb blade exceeds 200 mm, the powder contained in the carbon-containing substance that has passed over the comb blade is moved to a position away from the charging device 30 in the furnace space of the vertical dry distillation furnace 20. This is because the carbon-containing substances are more likely to fly, and the carbon-containing substances cannot be uniformly dispersed in the bottom portion of the vertical dry distillation furnace 20 more efficiently.

隣接する櫛刃同士の間隔Dについては、50mmを下回ると、櫛刃の根本近傍に炭素含有物質が供給され難くなり、竪型乾留炉20の炉内底部における炭素含有物質の均等な分散をより効率的に行えなくなる。一方、隣接する櫛刃同士の間隔Dは、200mmを超えると、櫛刃上を通過する炭素含有物質が櫛刃の根本近傍で落下し易くなり、竪型乾留炉20の炉内底部における炭素含有物質の均等な分散をより効率的に行えなくなる。 If the interval D between the adjacent comb blades is less than 50 mm, it becomes difficult to supply the carbon-containing substance to the vicinity of the base of the comb blades, and even distribution of the carbon-containing substance at the bottom of the vertical dry distillation furnace 20 becomes more difficult. unable to do so effectively. On the other hand, if the distance D between the adjacent comb blades exceeds 200 mm, the carbon-containing substance passing over the comb blades tends to drop near the base of the comb blades, and the carbon content at the bottom of the vertical dry distillation furnace 20 is reduced. Even distribution of substances cannot be done more efficiently.

第3実施形態において、シュート延伸部3の奥行方向Pの長さxを竪型乾留炉20の奥行寸法Wで除した値(x/W:以下、「x/W」という。)は、0.20≦x/W≦0.50の関係を満たすことが望ましい。x/Wは、0.20を下回ると、シュート延伸部3の奥行方向Pの長さxが短くなり、竪型乾留炉20の炉内における炭素含有物質の均一な分散をより効率的に行えなくなるからである。一方、x/Wは、0.50を超える程、シュート延伸部3の奥行方向Pの長さxを長くしても、x/W=0.50の状態を上回る効果を得られないからである。これは、櫛刃上を通過する炭素含有物質の大部分が、x/W=0.50の状態におけるシュート延伸部3の先端部に到達する前に、竪型乾留炉20の炉内に落下するためである。 In the third embodiment, the value obtained by dividing the length x of the chute extension portion 3 in the depth direction P by the depth dimension W of the vertical dry distillation furnace 20 (x/W: hereinafter referred to as “x/W”) is 0. It is desirable to satisfy the relationship .20≤x/W≤0.50. When x/W is less than 0.20, the length x in the depth direction P of the chute extension part 3 becomes short, and the carbon-containing material can be uniformly dispersed in the vertical dry distillation furnace 20 more efficiently. because it will be gone. On the other hand, when x/W exceeds 0.50, even if the length x of the chute extending portion 3 in the depth direction P is increased, the effect exceeding the state of x/W=0.50 cannot be obtained. be. This is because most of the carbon-containing material passing over the comb blades falls into the vertical carbonization furnace 20 before reaching the tip of the shoot extension 3 in the state of x/W = 0.50. It is for

なお、櫛刃上を通過する炭素含有物質が、シュート延伸部3の先端部に到達する確率を上げるためには、シュート延伸部3の断面形状を多段形状(例えば二段であれば、凸形状が好ましい)もしくは台形にすることも可能である。ただし、この場合も櫛刃単体の幅Lは50mm以上200mm以下とすることが望ましい。 In order to increase the probability that the carbon-containing substance passing over the comb blades reaches the tip of the chute stretched portion 3, the cross-sectional shape of the chute stretched portion 3 should be a multi-stage shape (for example, if it is two-stage, it should be a convex shape). is preferred) or trapezoidal. However, in this case as well, it is desirable that the width L of the single comb blade is 50 mm or more and 200 mm or less.

以上、本発明に係る装入装置の実施形態として、第1~第3実施形態を用いて説明した。そして、これら実施形態においては、高炉用原料としてフェロコークスを製造する場合を例として説明したものの、フェロコークスに限定するものではない。つまり、種々のコークスを製造するための高炉用原料製造方法として、本発明に係る装入装置及び竪型乾留炉を用いて高炉用原料を製造することとしてもよい。 The first to third embodiments have been described above as embodiments of the charging apparatus according to the present invention. In these embodiments, the case of producing ferro-coke as a raw material for blast furnaces has been described as an example, but the present invention is not limited to ferro-coke. That is, as a method for producing blast furnace raw materials for producing various types of coke, blast furnace raw materials may be produced using the charging apparatus and the vertical carbonization furnace according to the present invention.

以下、本実施形態に係る装入装置を用いて行った実施例を説明する。 Examples performed using the charging apparatus according to the present embodiment will be described below.

<実施例1>
第1実施形態として示した装入装置9(図1参照)及び第2実施形態として示した装入装置10(図3参照)を用いて、竪型乾留炉20への装入重量(kg)を変更した場合におけるフェロコークスの強度を測定した。比較例は、段差部5やシュート延伸部3を設置しない構成を用いて、竪型乾留炉20への装入重量を変更した場合におけるフェロコークスの強度を測定した。
<Example 1>
Using the charging device 9 shown as the first embodiment (see FIG. 1) and the charging device 10 shown as the second embodiment (see FIG. 3), the charging weight (kg) to the vertical dry distillation furnace 20 The strength of ferro-coke was measured when In a comparative example, the strength of ferro-coke was measured when the charging weight to the vertical carbonization furnace 20 was changed using a configuration in which the stepped portion 5 and the chute extension portion 3 were not installed.

測定は、竪型乾留炉20における炭素含有物質の乾留を行った後、竪型乾留炉20の炉内の炉幅方向Qにおける10箇所のフェロコークスを採取し、当該フェロコークスの強度を測定すると共に、当該強度の最大値及び最小値を確認した。強度の測定は、JIS K2151に記載の回転強度試験法に従い、フェロコークスの強度として、DI150 15(以下、「DI」という。)を測定して行った。 After the carbon-containing material is carbonized in the vertical carbonization furnace 20, the ferro-coke is sampled at 10 locations in the furnace width direction Q in the vertical carbonization furnace 20, and the strength of the ferro-coke is measured. Together, the maximum and minimum values of the intensity were confirmed. The strength was measured by measuring DI 150 15 (hereinafter referred to as "DI") as the strength of ferro-coke according to the rotational strength test method described in JIS K2151.

Figure 2023122527000002
Figure 2023122527000002

表1に、第1実施形態における装入装置9を用いてフェロコークスを製造し、フェロコークスの強度を測定した結果(発明例1~4)を示す。また、第2実施形態における装入装置10を用いてフェロコークスを製造し、フェロコークスの強度を測定した結果(発明例5~12)も示す。表1に示す通り、シュート延伸部3を有する構成の発明例1~4は、全ての条件でフェロコークスの強度(最大値及び最小値)が72以上となった。つまり、竪型乾留炉20の炉内における炭素含有物質の分布を改善でき、乾留後のフェロコークスの強度を向上できることが確認できた。また、段差部5及びシュート延伸部3を有する構成の発明例5~12は、全ての条件でフェロコークスの強度(最大値及び最小値)が77以上となった。発明例5~12は、最大値及び最小値のバラツキは少なく、高品質なフェロコークスの製造が可能であることが確認できた。即ち、竪型乾留炉20の炉内における炭素含有物質の分布を効率良く改善でき、乾留後のフェロコークスの強度を効率良く向上できることが確認できた。 Table 1 shows the results (invention examples 1 to 4) of measuring the strength of ferro-coke produced by using the charging apparatus 9 in the first embodiment. In addition, the results of measuring the strength of ferro-coke produced by using the charging apparatus 10 in the second embodiment (Invention Examples 5 to 12) are also shown. As shown in Table 1, Inventive Examples 1 to 4 having the chute extension portion 3 had a ferro-coke strength (maximum value and minimum value) of 72 or more under all conditions. That is, it was confirmed that the distribution of carbon-containing substances in the vertical carbonization furnace 20 could be improved, and the strength of ferro-coke after carbonization could be improved. In addition, in the invention examples 5 to 12 having the stepped portion 5 and the chute extension portion 3, the ferro-coke strength (maximum value and minimum value) was 77 or more under all conditions. It was confirmed that invention examples 5 to 12 have little variation in the maximum and minimum values, and can produce high-quality ferro-coke. That is, it was confirmed that the distribution of carbon-containing substances in the vertical carbonization furnace 20 can be efficiently improved, and the strength of ferro-coke after carbonization can be efficiently improved.

一方、シュート延伸部3を設けていない比較例1~4は、発明例1~12に比べてフェロコークスの強度が低く、フェロコークスの強度(最大値及び最小値)のバラツキも大きいことが確認できた。 On the other hand, in Comparative Examples 1 to 4 in which the chute extension part 3 is not provided, the strength of ferro-coke is lower than that in Examples 1 to 12, and the strength of ferro-coke (maximum value and minimum value) varies greatly. did it.

<実施例2>
次に、第3実施形態として示した、装入シュート1と、拡散部2と、櫛刃形状のシュート延伸部3とを有する装入装置30(図12参照)を模擬した試験用装置を用い、成型物である炭素含有物質を装入した際における、竪型乾留炉20の炉内底部の奥行方向Pの装入物分布を調査した。本実施例における装入装置30は、実機に設置されているものと同形状のものを用いた。また、本実施例における竪型乾留炉20として、装入装置30の出側に乾留炉に見立てた回収ボックスを設置した。
<Example 2>
Next, a testing apparatus simulating the charging apparatus 30 (see FIG. 12) having the charging chute 1, the diffusion section 2, and the comb-shaped chute extension section 3 shown as the third embodiment was used. , the charge distribution in the depth direction P of the furnace bottom of the vertical dry distillation furnace 20 was investigated when the carbon-containing material, which is a molded product, was charged. The charging device 30 used in this embodiment has the same shape as that installed in the actual machine. Further, as the vertical dry distillation furnace 20 in this embodiment, a recovery box that looks like a dry distillation furnace is installed on the outlet side of the charging device 30 .

調査は、装入シュート1から一定量の炭素含有物質を装入した後、回収ボックスの底部について、奥行方向に4等分かつ幅方向に5等分(合計20等分)した領域に存在する炭素含有物質の分布を調査した。具体的に、20等分した領域ごとに炭素含有物質を回収した後、回収した炭素含有物質を篩目20mmの篩分けを行い、篩上(直径20mm以上)を成型物、篩下(直径20mm未満)を粉体として選別した。そして、成型物及び粉体の重量を測定し、「粉体率」(各領域の内容物に占める粉体の重量割合(%))を算出した。粉体率は、20等分した領域ごとに得られるものの、後述する図14~図16においては、粉体偏析の指標として「最大粉体率(%)」を示す。最大粉体率は、20等分した領域の粉体率を比較して得られる粉体率の最大値である。 After charging a certain amount of carbon-containing material from the charging chute 1, the investigation was carried out by dividing the bottom of the collection box into 4 equal parts in the depth direction and 5 equal parts in the width direction (20 equal parts in total). The distribution of contained substances was investigated. Specifically, after recovering the carbon-containing substance for each of 20 equally divided regions, the recovered carbon-containing substance was sieved with a sieve mesh of 20 mm, and the upper sieve (diameter of 20 mm or more) was molded, and the lower sieve (diameter of 20 mm) was molded. less than) were sorted out as powder. Then, the weights of the molding and the powder were measured, and the "powder ratio" (the weight ratio (%) of the powder in the contents of each region) was calculated. Although the powder rate is obtained for every 20 equally divided regions, "maximum powder rate (%)" is shown as an index of powder segregation in FIGS. 14 to 16 described later. The maximum powder ratio is the maximum value of the powder ratio obtained by comparing the powder ratio of 20 equally divided regions.

シュート延伸部3の櫛刃単体の幅Lと最大粉体率との関係を調査した結果を図14に示す。図14は、縦軸を最大粉体率(%)とし、横軸をシュート延伸部3の櫛刃単体の幅L(mm)として示す。装入シュート1への炭素含有物質の装入重量は250kg、シュート延伸部3の櫛刃単体の奥行方向Pの長さxは500mm(x/W:0.33)、櫛刃同士の間隔Dは100mmとした。図14に示す通り、より効率的な粉体の分散性の改善のため、許容可能な最大粉体率(40%以下)とするために、シュート延伸部3の櫛刃単体の幅Lを50mm以上200mm以下とすることが好ましいことが確認できた。 FIG. 14 shows the result of investigating the relationship between the width L of the single comb blade of the chute extension portion 3 and the maximum powder rate. In FIG. 14 , the vertical axis represents the maximum powder ratio (%), and the horizontal axis represents the width L (mm) of the single comb blade of the chute extending portion 3 . The weight of the carbon-containing material charged into the charging chute 1 was 250 kg, the length x in the depth direction P of the single comb blade of the chute extension 3 was 500 mm (x/W: 0.33), and the interval D between the comb blades was 500 mm. was 100 mm. As shown in FIG. 14, in order to more efficiently improve the dispersibility of the powder, the width L of the single comb blade of the chute extending portion 3 was set to 50 mm in order to achieve the allowable maximum powder rate (40% or less). It has been confirmed that it is preferable to set the distance to 200 mm or less.

次に、シュート延伸部3の櫛刃同士の間隔Dと最大粉体率との関係を調査した結果を図15に示す。図15は、縦軸を最大粉体率(%)とし、横軸をシュート延伸部3の櫛刃同士の間隔D(mm)として示す。また、図14に示した場合と同じく、装入シュート1への炭素含有物質の装入重量は250kg、シュート延伸部3の櫛刃単体の奥行方向Pの長さxは500mm(x/W:0.33)、櫛刃同士の間隔Dは100mmとした。図15に示す通り、より効率的な粉体の分散性改善のため、許容可能な最大粉体率(40%以下)とするために、シュート延伸部3の櫛刃同士の間隔Dを、櫛刃単体の幅Lと同じく、50mm以上200mm以下とすることが好ましいことが確認できた。 Next, FIG. 15 shows the result of investigating the relationship between the interval D between the comb blades of the chute extending portion 3 and the maximum powder rate. In FIG. 15 , the vertical axis represents the maximum powder ratio (%), and the horizontal axis represents the interval D (mm) between the comb blades of the chute extending portion 3 . 14, the weight of the carbon-containing substance charged into the charging chute 1 is 250 kg, and the length x in the depth direction P of the single comb blade of the chute extending portion 3 is 500 mm (x/W: 0.33), and the interval D between the comb blades was 100 mm. As shown in FIG. 15, in order to achieve the maximum allowable powder rate (40% or less) in order to improve the dispersibility of powder more efficiently, the interval D between the comb blades of the chute extension part 3 was adjusted to It was confirmed that the width L of the single blade is preferably 50 mm or more and 200 mm or less.

そして、竪型乾留炉20の奥行寸法Wに対するシュート延伸部3の奥行方向Pの長さxの比(x/W)と最大粉体率との関係を調査した結果を図16に示す。また、装入シュート1への炭素含有物質の装入重量は250kg、シュート延伸部3の櫛刃単体の幅L及び櫛刃同士の間隔Dは共に100mmとした。図16に示す通り、より効率的な粉体の分散性改善のため、許容可能な最大粉体率(40%以下)とするために、竪型乾留炉20の奥行寸法Wに対するシュート延伸部3の奥行方向Pの長さxの比(x/W)を、0.20以上0.50以下とすることが好ましいことが確認できた。なお、シュート延伸部3の奥行方向Pの長さxを更に伸ばし、竪型乾留炉20の奥行寸法Wに対するシュート延伸部3の奥行方向Pの長さxの比(x/W)が0.50を超えたとしても、x/Wを0.50とした場合における効果をより効率的に向上させることはできないことが確認できた。 FIG. 16 shows the result of investigating the relationship between the ratio (x/W) of the length x in the depth direction P of the chute extending portion 3 to the depth W of the vertical dry distillation furnace 20 and the maximum powder rate. Further, the weight of the carbon-containing material charged into the charging chute 1 was 250 kg, and the width L of the single comb blade of the chute extending portion 3 and the interval D between the comb blades were both 100 mm. As shown in FIG. 16, in order to more efficiently improve the dispersibility of the powder, the chute extension part 3 with respect to the depth dimension W of the vertical dry distillation furnace 20 in order to achieve the maximum allowable powder rate (40% or less) It has been confirmed that it is preferable to set the ratio (x/W) of the length x in the depth direction P to 0.20 or more and 0.50 or less. In addition, the length x of the chute extension portion 3 in the depth direction P is further extended, and the ratio (x/W) of the length x of the depth direction P of the chute extension portion 3 to the depth dimension W of the vertical dry distillation furnace 20 is 0.5. It was confirmed that even if it exceeded 50, the effect in the case of x/W being 0.50 could not be improved more efficiently.

1 装入シュート
1a 開閉部
2 拡散部
3 シュート延伸部
5 段差部
9、10、30 装入装置
20 竪型乾留炉
D 櫛刃同士の間隔
L 櫛刃単体の幅
M 送通方向
N 拡散方向
P 奥行方向
Q 炉幅方向
θ 傾斜角
1 charging chute 1a opening/closing part 2 diffusion part 3 chute extending part 5 stepped part 9, 10, 30 charging device 20 vertical dry distillation furnace D interval between comb blades L width of single comb blade M feeding direction N diffusion direction P Depth direction Q Furnace width direction θ Tilt angle

Claims (10)

竪型乾留炉に炭素含有物質を装入する装入装置であって、
前記炭素含有物質を内部にて送通させる筒形状の装入シュートと、
前記装入シュートを送通した前記炭素含有物質を、前記炭素含有物質の送通方向及び前記送通方向に対して垂直な拡散方向に拡散させる拡散部と、
前記拡散部にて拡散された後の前記炭素含有物質を前記竪型乾留炉の炉内に装入すると共に前記炉内に突出したシュート延伸部と、
を有する装入装置。
A charging device for charging a carbon-containing material into a vertical dry distillation furnace,
a cylindrical charging chute through which the carbon-containing material is passed;
a diffusion section that diffuses the carbon-containing substance fed through the charging chute in a feeding direction of the carbon-containing substance and a diffusion direction perpendicular to the feeding direction;
a chute extension part for charging the carbon-containing material after diffusion in the diffusion part into the furnace of the vertical carbonization furnace and protruding into the furnace;
A charging device with
前記拡散部の下流において、前記拡散部にて拡散された前記炭素含有物質に対し、前記シュート延伸部に向けた前記送通方向において落差を与える段差部を更に有する、請求項1に記載の装入装置。 2. The apparatus according to claim 1, further comprising a stepped portion downstream of said diffusion portion that provides a drop in said conveying direction toward said chute extension portion with respect to said carbon-containing substance diffused in said diffusion portion. input device. 前記段差部の前記落差は、30mm以上60mm以下である、請求項2に記載の装入装置。 3. The charging device according to claim 2, wherein the drop of the stepped portion is 30 mm or more and 60 mm or less. 前記シュート延伸部の前記送通方向の長さwは、前記竪型乾留炉の奥行寸法をWとすると、0.27≦w/W<0.47の関係を満たす、請求項2に記載の装入装置。 3. The length w of the chute extending portion in the conveying direction satisfies the relationship of 0.27≦w/W<0.47, where W is the depth dimension of the vertical dry distillation furnace. charging device. 前記シュート延伸部の前記送通方向の長さwは、前記竪型乾留炉の奥行寸法をWとすると、0.27≦w/W<0.47の関係を満たす、請求項3に記載の装入装置。 4. The length w of the chute extending portion in the conveying direction satisfies the relationship of 0.27≦w/W<0.47, where W is the depth dimension of the vertical dry distillation furnace. charging device. 前記シュート延伸部は、前記竪型乾留炉の奥行方向に櫛刃状に延伸した構成である、請求項1に記載の装入装置。 2. The charging apparatus according to claim 1, wherein said chute extending portion extends in a comb-tooth shape in the depth direction of said vertical carbonization furnace. 前記シュート延伸部は、櫛刃単体の幅及び隣接する櫛刃同士の間隔が50mm以上200mm以下である、請求項6に記載の装入装置。 7. The charging device according to claim 6, wherein the chute extending portion has a width of a single comb blade and an interval between adjacent comb blades of 50 mm or more and 200 mm or less. 前記シュート延伸部の前記奥行方向の長さxは、前記竪型乾留炉の奥行寸法をWとすると、0.20≦x/W≦0.50の関係を満たす、請求項6に記載の装入装置。 7. The equipment according to claim 6, wherein the length x of the chute extending portion in the depth direction satisfies the relationship of 0.20≦x/W≦0.50, where W is the depth dimension of the vertical carbonization furnace. input device. 前記シュート延伸部の前記奥行方向の長さxは、前記竪型乾留炉の奥行寸法をWとすると、0.20≦x/W≦0.50の関係を満たす、請求項7に記載の装入装置。 8. The apparatus according to claim 7, wherein the length x of the chute extending portion in the depth direction satisfies the relationship of 0.20≦x/W≦0.50, where W is the depth dimension of the vertical carbonization furnace. input device. 請求項1~9のいずれか1項に記載の装入装置及び前記竪型乾留炉を用いて高炉用原料を製造する、高炉用原料製造方法。 A method for producing blast furnace raw material, comprising producing a blast furnace raw material using the charging apparatus according to any one of claims 1 to 9 and the vertical carbonization furnace.
JP2022172846A 2022-02-22 2022-10-28 Charging device, and raw material production method for blast furnace Pending JP2023122527A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022025362 2022-02-22
JP2022025362 2022-02-22

Publications (1)

Publication Number Publication Date
JP2023122527A true JP2023122527A (en) 2023-09-01

Family

ID=87799037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022172846A Pending JP2023122527A (en) 2022-02-22 2022-10-28 Charging device, and raw material production method for blast furnace

Country Status (1)

Country Link
JP (1) JP2023122527A (en)

Similar Documents

Publication Publication Date Title
JP2820478B2 (en) Feeding method for bellless blast furnace
JP4972758B2 (en) Raw material charging equipment for sintering machine
EP2851437B1 (en) Method for loading raw material into blast furnace
JP2023122527A (en) Charging device, and raw material production method for blast furnace
JP6102462B2 (en) Raw material charging method to blast furnace
JP2019014951A (en) Raw material charging method for charging coke to central portion of blast furnace
JP5338309B2 (en) Raw material charging method to blast furnace
JP2010150646A (en) Method for charging raw material into blast furnace
JP5751037B2 (en) Blast furnace operation method
Andrade et al. Impact of key parameters on the iron ore pellets roller screening performance
JP5338308B2 (en) Raw material charging method to blast furnace
JP6102497B2 (en) Raw material charging method for bell-less blast furnace
JP2018080358A (en) Method for charging raw materials to blast furnace
JP5338310B2 (en) Raw material charging method to blast furnace
JP2023121968A (en) Charging device, raw material production apparatus for blast furnace, charging method, and raw material production method for blast furnace
JP2023122862A (en) Apparatus and method for manufacturing raw material for blast furnace
JP2023121969A (en) Apparatus and method for manufacturing raw material for blast furnace
JP2019143225A (en) Method for charging blast furnace feed
JP2024051223A (en) Apparatus and method for producing raw materials for blast furnaces
JP5217650B2 (en) Raw material charging method to blast furnace
JP2018070954A (en) Method for loading raw materials into blast furnace
JP3758386B2 (en) Raw material charging method to sintering pallet
JP2024044476A (en) Vertical carbonization furnace, blast furnace raw material manufacturing device, and blast furnace raw material manufacturing method
JPH062912B2 (en) Pretreatment method of raw material for smelting furnace
JP7339516B2 (en) Method for producing sintered ore

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230926