JP2023121785A - Method for manufacturing optical laminate - Google Patents

Method for manufacturing optical laminate Download PDF

Info

Publication number
JP2023121785A
JP2023121785A JP2023102683A JP2023102683A JP2023121785A JP 2023121785 A JP2023121785 A JP 2023121785A JP 2023102683 A JP2023102683 A JP 2023102683A JP 2023102683 A JP2023102683 A JP 2023102683A JP 2023121785 A JP2023121785 A JP 2023121785A
Authority
JP
Japan
Prior art keywords
layer
optical
antifouling
forming step
optical function
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023102683A
Other languages
Japanese (ja)
Other versions
JP2023121785A5 (en
Inventor
嗣人 鈴木
Tsuguto Suzuki
臻 黄
Zhen Huang
克利 鈴木
Katsutoshi Suzuki
貴久 渡辺
Takahisa Watanabe
祐子 木伏
Yuko Kibuse
智明 小林
Tomoaki Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dexerials Corp
Original Assignee
Dexerials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022000546A external-priority patent/JP7248830B2/en
Application filed by Dexerials Corp filed Critical Dexerials Corp
Publication of JP2023121785A publication Critical patent/JP2023121785A/en
Publication of JP2023121785A5 publication Critical patent/JP2023121785A5/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

To provide a method for manufacturing an optical laminate including an antifouling layer excellent in durability.SOLUTION: The method for manufacturing an optical laminate according to the present invention manufactures an optical laminate formed by laminating a plastic film, an adhesion layer, an optical functional layer, and an antifouling layer in order and includes: an adhesion layer formation step of forming an adhesion layer; an optical functional layer formation step of forming an optical functional layer; a surface treatment step of subjecting a surface of the optical functional layer to a glow discharge treatment; and an antifouling layer formation step of forming an antifouling layer on the surface-treated optical functional layer. The integrated output of the glow discharge treatment is 130 W min/m2 or more and 2,000 W min/m2 or less.SELECTED DRAWING: Figure 1

Description

本発明は、光学積層体の製造方法に関する。 The present invention relates to a method for manufacturing an optical layered body.

例えば、フラットパネルディスプレイ(FPD)、タッチパネル、太陽電池等においては、光学積層体として、表面の反射防止用に様々な反射防止フィルムが用いられている。従来、反射防止フィルムとして、透明基板上に高屈折率層と低屈折率層とを順次積層した多層膜を備えた反射防止フィルムが提案されている。こうした反射防止フィルムの最外面には、一般的に、表面の保護、防汚を目的として、防汚層(表面保護層)が形成されている。 For example, in flat panel displays (FPDs), touch panels, solar cells, and the like, various antireflection films are used as optical laminates for antireflection on the surface. Conventionally, as an antireflection film, an antireflection film provided with a multilayer film in which a high refractive index layer and a low refractive index layer are sequentially laminated on a transparent substrate has been proposed. An antifouling layer (surface protective layer) is generally formed on the outermost surface of such an antireflection film for the purpose of surface protection and antifouling.

近年、反射防止フィルム(光学積層体)は、スマートホン、各種操作機器のタッチパネルに多用されている。このことにより、光学積層体の耐摩耗性を向上させることが求められている。
例えば、特許文献1には、防汚層の構成材料に含まれるフッ素量を特定の範囲とすることで、耐摩耗性を向上させた透明基板積層体が開示されている。
In recent years, antireflection films (optical laminates) have been widely used in touch panels of smart phones and various operating devices. Therefore, it is required to improve the abrasion resistance of the optical layered body.
For example, Patent Literature 1 discloses a transparent substrate laminate whose wear resistance is improved by setting the amount of fluorine contained in the constituent material of the antifouling layer to a specific range.

特許文献2には、防汚層を形成する前に、被処理基材上の少なくとも片面を前処理し、この前処理した表面に防汚層を成膜する防汚層の形成方法が記載されている。また、特許文献2には、前処理が、高周波放電プラズマ法、電子ビーム法、イオンビーム法、蒸着法、スパッタリング法、アルカリ処理法、酸処理法、コロナ処理法、大気圧グロー放電プラズマ法の何れかであることが記載されている。 Patent Document 2 describes a method for forming an antifouling layer, in which at least one side of a substrate to be treated is pretreated before forming the antifouling layer, and the antifouling layer is formed on the pretreated surface. ing. Further, in Patent Document 2, the pretreatment includes a high-frequency discharge plasma method, an electron beam method, an ion beam method, a vapor deposition method, a sputtering method, an alkali treatment method, an acid treatment method, a corona treatment method, and an atmospheric pressure glow discharge plasma method. It is stated that it is either

特許文献3には、蒸着によって基板表面に反射防止膜を形成後、酸素もしくはアルゴンを導入してプラズマ処理を行い、その後、フッ素含有有機ケイ素化合物を真空蒸着して防汚層を形成する、防汚性光学物品の製造方法が記載されている。 In Patent Document 3, after forming an antireflection film on the substrate surface by vapor deposition, plasma treatment is performed by introducing oxygen or argon, and then a fluorine-containing organosilicon compound is vacuum-deposited to form an antifouling layer. A method of making a smudgeable optical article is described.

国際公開第2019/078313号WO2019/078313 特開2006-175438号公報JP-A-2006-175438 特開2005-301208号公報Japanese Patent Application Laid-Open No. 2005-301208 特許第6542970号公報Japanese Patent No. 6542970

しかしながら、特許文献1に記載されている透明基板積層体は、摩擦を繰り返すと、耐摩耗性に寄与する未反応物が擦り取られてしまい、高い耐摩耗性が維持できないという課題があった。繰り返し摩擦に対しても高い耐摩耗性が維持できる防汚層を備えた光学積層体が求められていた。 However, the transparent substrate laminate described in Patent Literature 1 has a problem that when it is repeatedly rubbed, unreacted substances that contribute to wear resistance are rubbed off, and high wear resistance cannot be maintained. There has been a demand for an optical laminate having an antifouling layer capable of maintaining high wear resistance against repeated rubbing.

本発明は、上記問題に鑑みてなされたものであり、耐久性に優れた光学積層体の製造方法を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a method for manufacturing an optical layered body having excellent durability.

上記課題を解決するために、この発明は以下の手段を提案している。 In order to solve the above problems, the present invention proposes the following means.

[1]本発明の第1態様に係る光学積層体の製造方法は、プラスチックフィルムと、密着層と、光学機能層と、防汚層とが順に積層されてなる光学積層体の製造方法であって、
密着層を形成する密着層形成工程と、
光学機能層を形成する光学機能層形成工程と、
下記式(1)で表される表面粗さの変化率が1~25%、または、下記式(2)で表される要素の平均長さの変化率が7~65%となるように、前記光学機能層の表面を処理する表面処理工程と、
表面処理された前記光学機能層上に防汚層を形成する防汚層形成工程と、を含む:
表面粗さの変化率(%)=((Ra2/Ra1)-1)×100(%)・・・式(1)(式(1)中、Ra1は表面を処理する前の光学機能層の表面粗さ(Ra)を示し、Ra2は表面を処理した後の光学機能層の表面粗さ(Ra)を示す。)
要素の平均長さの変化率(%)=((RSm2/RSm1)-1)×100(%)・・・式(2)
(式(2)中、Rsm1は表面を処理する前の光学機能層の要素の平均長さ(RSm)を示し、RSm2は表面を処理した後の光学機能層の要素の平均長さ(RSm)を示す。)
[1] A method for manufacturing an optical layered body according to the first aspect of the present invention is a method for manufacturing an optical layered body in which a plastic film, an adhesion layer, an optical function layer, and an antifouling layer are laminated in order. hand,
an adhesion layer forming step of forming an adhesion layer;
an optical functional layer forming step of forming an optical functional layer;
So that the rate of change in surface roughness represented by the following formula (1) is 1 to 25%, or the rate of change in the average length of the elements represented by the following formula (2) is 7 to 65%, a surface treatment step of treating the surface of the optical function layer;
and an antifouling layer forming step of forming an antifouling layer on the surface-treated optical function layer:
Change rate of surface roughness (%)=((Ra2/Ra1)-1)×100(%) Formula (1) (wherein Ra1 is the optical function layer before surface treatment) indicates the surface roughness (Ra), and Ra2 indicates the surface roughness (Ra) of the optical function layer after surface treatment.)
Rate of change in average length of elements (%) = ((RSm2/RSm1)-1) x 100 (%) Equation (2)
(In formula (2), Rsm1 represents the average length (RSm) of the elements of the optical function layer before surface treatment, and RSm2 represents the average length (RSm) of the elements of the optical function layer after surface treatment. indicates.)

[2]本発明の第2態様に係る光学積層体の製造方法は、プラスチックフィルムと、密着層と、光学機能層と、防汚層とが順に積層されてなる光学積層体の製造方法であって、
密着層を形成する密着層形成工程と、
光学機能層を形成する光学機能層形成工程と、
前記光学機能層の表面をグロー放電処理する表面処理工程と、
表面処理された前記光学機能層上に防汚層を形成する防汚層形成工程と、を含み、
前記グロー放電処理の積算出力は、130W・min/m以上2000W・min/m以下である。
[2] A method for manufacturing an optical layered body according to the second aspect of the present invention is a method for manufacturing an optical layered body in which a plastic film, an adhesion layer, an optical function layer, and an antifouling layer are laminated in order. hand,
an adhesion layer forming step of forming an adhesion layer;
an optical functional layer forming step of forming an optical functional layer;
a surface treatment step of performing a glow discharge treatment on the surface of the optical function layer;
an antifouling layer forming step of forming an antifouling layer on the surface-treated optical function layer;
The integrated output of the glow discharge treatment is 130 W·min/m 2 or more and 2000 W·min/m 2 or less.

[3]上記態様に係る光学積層体の製造方法は、スパッタリングによって前記密着層および前記光学機能層を形成してもよい。
[4]上記態様に係る光学積層体の製造方法は、前記防汚層形成工程において、真空蒸着によって前記防汚層を形成してもよい。
[5]上記態様に係る光学積層体の製造方法は、前記密着層形成工程および前記光学機能層形成工程と前記表面処理工程と前記防汚層形成工程とを、減圧下で連続して行ってもよい。
[3] In the method for manufacturing an optical layered body according to the aspect described above, the adhesion layer and the optical function layer may be formed by sputtering.
[4] In the method for manufacturing an optical layered body according to the aspect described above, the antifouling layer may be formed by vacuum deposition in the antifouling layer forming step.
[5] In the method for manufacturing an optical laminate according to the above aspect, the adhesion layer forming step, the optical function layer forming step, the surface treatment step, and the antifouling layer forming step are continuously performed under reduced pressure. good too.

[6]上記態様に係る光学積層体の製造方法は、前記密着層形成工程の前に、ハードコート層を形成するハードコート層形成工程を有してもよい。
[7]上記態様に係る光学積層体の製造方法は、前記光学機能層は、反射防止層及び選択反射層から選ばれるいずれか1種を含んでもよい。
[8]上記態様に係る光学積層体の製造方法は、前記光学機能層が、低屈折率層を備えてもよい。
[6] The method for manufacturing an optical layered body according to the above aspect may have a hard coat layer forming step of forming a hard coat layer before the adhesion layer forming step.
[7] In the method for producing an optical layered body according to the above aspect, the optical function layer may include any one selected from an antireflection layer and a selective reflection layer.
[8] In the method for manufacturing an optical layered body according to the above aspect, the optical function layer may include a low refractive index layer.

[9]上記態様に係る光学積層体の製造方法は、前記光学機能層形成工程が、低屈折率層と高屈折率層とを交互に積層して積層体を形成する工程であってもよい。
[10]上記態様に係る光学積層体の製造方法は、前記表面処理工程において、前記低屈折率層の表面を処理してもよい。
[11]上記態様に係る光学積層体の製造方法は、前記低屈折率層が、金属の酸化物を含んでもよい。
[9] In the method for producing an optical laminate according to the above aspect, the optical function layer forming step may be a step of alternately laminating a low refractive index layer and a high refractive index layer to form a laminate. .
[10] In the method for manufacturing an optical layered body according to the above aspect, the surface of the low refractive index layer may be treated in the surface treatment step.
[11] In the method for manufacturing an optical layered body according to the above aspect, the low refractive index layer may contain a metal oxide.

[12]本発明の第3態様に係る光学積層体は、透明基材と、密着層と、光学機能層と、防汚層とが順に積層されてなる光学積層体であって、前記防汚層は、防汚性材料を蒸着させた蒸着膜からなる。
[13]上記態様に係る光学積層体は、前記光学機能層は、反射防止層及び選択反射層から選ばれるいずれか1種を含んでもよい。
[12] An optical layered body according to a third aspect of the present invention is an optical layered body formed by laminating a transparent substrate, an adhesion layer, an optical functional layer, and an antifouling layer in this order, wherein the antifouling The layer consists of a vapor-deposited film on which an antifouling material is vapor-deposited.
[13] In the optical laminate according to the above aspect, the optical function layer may include any one selected from an antireflection layer and a selective reflection layer.

[14]上記態様に係る光学積層体は、前記光学機能層が、低屈折率層を備えてもよい。
[15]上記態様に係る光学積層体は、前記光学機能層が、低屈折率層と高屈折率層とが交互に積層された積層体からなってもよい。
[16]上記態様に係る光学積層体は、前記防汚層が、前記低屈折率層に接して設けられていてもよい。
[17]上記態様に係る光学積層体は、前記密着層が、金属または金属の酸化物を含んでもよい。
[14] In the optical laminate according to the above aspect, the optical function layer may include a low refractive index layer.
[15] In the optical layered body according to the above aspect, the optical function layer may be a layered body in which low refractive index layers and high refractive index layers are alternately laminated.
[16] In the optical laminate according to the above aspect, the antifouling layer may be provided in contact with the low refractive index layer.
[17] In the optical layered body according to the above aspect, the adhesion layer may contain a metal or a metal oxide.

[18]上記態様に係る光学積層体は、前記防汚性材料が、フッ素系有機化合物を含んでもよい。
[19]上記態様に係る光学積層体は、前記透明基材と前記密着層との間に、更にハードコート層を備えてもよい。
[20]本発明の第4態様に係る物品は、上記態様に係る光学積層体を備える。
[18] In the optical laminate according to the above aspect, the antifouling material may contain a fluorine-based organic compound.
[19] The optical laminate according to the above aspect may further include a hard coat layer between the transparent substrate and the adhesion layer.
[20] An article according to a fourth aspect of the present invention includes the optical layered body according to the above aspects.

[21]本発明の第5態様に係る光学積層体の製造方法は、上記態様に係る光学積層体の製造方法であって、前記光学機能層の一面側に、真空蒸着によって防汚性材料を蒸着させた蒸着膜からなる前記防汚層を形成する防汚層形成工程を有する。
[22]上記態様に係る光学積層体の製造方法は、スパッタリングによって前記光学機能層を形成する光学機能層形成工程を有し、前記光学機能層形成工程と前記防汚層形成工程とを、減圧下で連続して行ってもよい。
[21] A method for producing an optical layered body according to the fifth aspect of the present invention is the method for producing an optical layered body according to the aspect described above, wherein an antifouling material is applied to one surface side of the optical function layer by vacuum deposition. An antifouling layer forming step of forming the antifouling layer composed of a deposited film is provided.
[22] The method for manufacturing an optical layered body according to the above aspect has an optical function layer forming step of forming the optical function layer by sputtering, and the optical function layer forming step and the antifouling layer forming step are performed under reduced pressure. You can do it continuously below.

本発明によれば、耐久性に優れた防汚層を備えた光学積層体の製造方法を提供することが可能になる。 ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to provide the manufacturing method of the optical laminated body provided with the antifouling layer excellent in durability.

本実施形態の光学積層体の一例を示した断面図である。It is a sectional view showing an example of the optical layered product of this embodiment. 本実施形態の光学積層体の他の例を示した断面図である。FIG. 3 is a cross-sectional view showing another example of the optical layered body of the present embodiment; 本実施形態の光学積層体の他の例を示した断面図である。FIG. 3 is a cross-sectional view showing another example of the optical layered body of the present embodiment; 本実施形態の光学積層体の製造方法に用いることができる製造装置の一例を説明するための概略図である。It is a schematic diagram for explaining an example of a manufacturing apparatus that can be used in the method for manufacturing an optical layered body of the present embodiment.

以下、本実施形態について、図を適宜参照しながら詳細に説明する。以下の説明で用いる図面は、本発明の特徴をわかりやすくするために便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などは実際とは異なっていることがある。以下の説明において例示される材質、寸法等は一例であって、本発明はそれらに限定されるものではなく、その効果を奏する範囲で適宜変更して実施することが可能である。 Hereinafter, this embodiment will be described in detail with appropriate reference to the drawings. In the drawings used in the following description, there are cases where characteristic portions are enlarged for convenience in order to make it easier to understand the features of the present invention, and the dimensional ratios of each component may differ from the actual ones. be. The materials, dimensions, etc. exemplified in the following description are examples, and the present invention is not limited to them, and can be implemented with appropriate modifications within the scope of the effects.

[光学積層体]
図1は、本実施形態の光学積層体の一例を説明するための断面図である。
図1に示すように、本実施形態の光学積層体101は、透明基材11と、密着層13と、光学機能層14と、防汚層15とが順に積層されてなるものである。
密着層13は、密着を発現させる層である。
光学機能層14は、光学機能を発現させる層である。光学機能とは、光の性質である反射と透過、屈折をコントロールする機能であり、例えば、反射防止機能、選択反射機能、レンズ機能などが挙げられる。
光学機能層14は、反射防止層及び選択反射層から選ばれるいずれか1種を含むことが好ましい。反射防止層、選択反射層、防眩層としては、公知のものを用いることができる。反射防止層、選択反射層、防眩層は、いずれも単層であっても良く、複数の層の積層体であってよい。
[Optical laminate]
FIG. 1 is a cross-sectional view for explaining an example of the optical laminate of this embodiment.
As shown in FIG. 1, the optical laminate 101 of this embodiment is formed by laminating a transparent substrate 11, an adhesion layer 13, an optical function layer 14, and an antifouling layer 15 in this order.
The adhesion layer 13 is a layer that develops adhesion.
The optical function layer 14 is a layer that exhibits an optical function. An optical function is a function of controlling reflection, transmission, and refraction, which are properties of light, and includes, for example, antireflection function, selective reflection function, and lens function.
The optical function layer 14 preferably contains any one selected from an antireflection layer and a selective reflection layer. Known layers can be used as the antireflection layer, the selective reflection layer, and the antiglare layer. Each of the antireflection layer, the selective reflection layer, and the antiglare layer may be a single layer, or may be a laminate of a plurality of layers.

図2は、本実施形態の光学積層体の他の例を示した断面図である。
図2に示す光学積層体102は、透明基材11と、ハードコート層12と、密着層13と、光学機能層14と、防汚層15とが順に積層されてなるものである。
密着層13は、密着を発現させる層である。
光学機能層14は、光学機能を発現させる層である。光学機能とは、光の性質である反射と透過、屈折をコントロールする機能であり、例えば、反射防止機能、選択反射機能レンズ機能などが挙げられる。
光学機能層14は、反射防止層及び選択反射層から選ばれるいずれか1種を含むことが好ましい。反射防止層及び選択反射層としては、公知のものを用いることができる。反射防止層及び選択反射層は、いずれも単層であっても良く、複数の層の積層体であってよい。
FIG. 2 is a cross-sectional view showing another example of the optical laminate of this embodiment.
The optical laminate 102 shown in FIG. 2 is formed by laminating a transparent substrate 11, a hard coat layer 12, an adhesion layer 13, an optical function layer 14, and an antifouling layer 15 in this order.
The adhesion layer 13 is a layer that develops adhesion.
The optical function layer 14 is a layer that exhibits an optical function. The optical function is a function of controlling reflection, transmission, and refraction, which are properties of light, and includes, for example, an antireflection function, a selective reflection function lens function, and the like.
The optical function layer 14 preferably contains any one selected from an antireflection layer and a selective reflection layer. Known materials can be used as the antireflection layer and the selective reflection layer. Each of the antireflection layer and the selective reflection layer may be a single layer, or may be a laminate of a plurality of layers.

図3は、本実施形態の光学積層体の他の例を示した断面図である。
図3に示す光学積層体10は、図2に示す光学積層体102における光学機能層14として、反射防止層が設けられているものである。光学機能層14(反射防止層)は、図2に示すように、低屈折率層14bと高屈折率層14aとが交互に積層された積層体からなる。図2に示す光学機能層14は、透明基材11側から順に、ハードコート層12、密着層13、高屈折率層14a、低屈折率層14b、高屈折率層14a、低屈折率層14b、防汚層15がこの順に積層されたものである。したがって、防汚層15は、光学機能層14の有する低屈折率層14bに接している。
FIG. 3 is a cross-sectional view showing another example of the optical laminate of this embodiment.
The optical layered body 10 shown in FIG. 3 is provided with an antireflection layer as the optical functional layer 14 in the optical layered body 102 shown in FIG. As shown in FIG. 2, the optical function layer 14 (anti-reflection layer) is composed of a laminate in which low refractive index layers 14b and high refractive index layers 14a are alternately laminated. The optical function layer 14 shown in FIG. 2 includes, in order from the transparent substrate 11 side, a hard coat layer 12, an adhesion layer 13, a high refractive index layer 14a, a low refractive index layer 14b, a high refractive index layer 14a, and a low refractive index layer 14b. , and the antifouling layer 15 are laminated in this order. Therefore, the antifouling layer 15 is in contact with the low refractive index layer 14b of the optical function layer 14. As shown in FIG.

透明基材11は、可視光域の光を透過可能な透明材料から形成されればよい。例えば、透明基材11として、プラスチックフィルムが好適に用いられる。プラスチックフィルムの構成材料の具体例としては、ポリエステル系樹脂、アセテート系樹脂、ポリエーテルスルホン系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリオレフィン系樹脂、(メタ)アクリル系樹脂、ポリ塩化ビニル系樹脂、ポリ塩化ビニリデン系樹脂、ポリスチレン系樹脂、ポリビニルアルコール系樹脂、ポリアリレート系樹脂、ポリフェニレンサルファイド系樹脂、が挙げられる。 The transparent base material 11 may be made of a transparent material that can transmit light in the visible light range. For example, a plastic film is suitably used as the transparent substrate 11 . Specific examples of plastic film constituent materials include polyester-based resins, acetate-based resins, polyethersulfone-based resins, polycarbonate-based resins, polyamide-based resins, polyimide-based resins, polyolefin-based resins, (meth)acrylic-based resins, and polychlorinated resins. Examples include vinyl resins, polyvinylidene chloride resins, polystyrene resins, polyvinyl alcohol resins, polyarylate resins, and polyphenylene sulfide resins.

なお、本発明でいう「透明材料」とは、本発明の効果を損なわない範囲で、使用波長域の光の透過率が80%以上の材料であることをいう。
また、本実施形態において「(メタ)アクリル」は、メタクリル及びアクリルを意味する。
The term "transparent material" as used in the present invention means a material having a transmittance of 80% or more for light in the wavelength range used within a range that does not impair the effects of the present invention.
Moreover, in this embodiment, "(meth)acryl" means methacryl and acryl.

光学特性を著しく損なわない限りにおいて、透明基材11には補強材料が含まれていても良い。補強材料は、例えば、セルロースナノファイバー、ナノシリカ等である。特に、ポリエステル系樹脂、アセテート系樹脂、ポリカーボネート系樹脂、ポリオレフィン系樹脂が、補強材料として、好適に用いられる。具体的には、トリアセチルセルロース(TAC)基材が、補強材料として、好適に用いられる。
また、透明基材11には、無機基材であるガラスフィルムを用いることもできる。
The transparent substrate 11 may contain a reinforcing material as long as it does not significantly impair the optical properties. Reinforcing materials are, for example, cellulose nanofibers, nanosilica, and the like. In particular, polyester-based resins, acetate-based resins, polycarbonate-based resins, and polyolefin-based resins are preferably used as reinforcing materials. Specifically, a triacetyl cellulose (TAC) base material is preferably used as the reinforcing material.
A glass film, which is an inorganic base material, can also be used as the transparent base material 11 .

プラスチックフィルムがTAC基材であると、その一面側にハードコート層12を形成したとき、ハードコート層12を構成する成分の一部が浸透してなる浸透層が形成される。その結果、透明基材11とハードコート層12との密着性が良好になるとともに、互いの層間の屈折率差に起因した干渉縞の発生を抑制できる。 If the plastic film is a TAC base material, when the hard coat layer 12 is formed on one side thereof, a permeation layer is formed in which a part of the components constituting the hard coat layer 12 permeate. As a result, the adhesion between the transparent base material 11 and the hard coat layer 12 is improved, and the occurrence of interference fringes due to the difference in refractive index between the layers can be suppressed.

透明基材11は、光学的機能および/または物理的機能が付与されたフィルムであっても良い。光学的および/または物理的な機能を有するフィルムの例としては、偏光板、位相差補償フィルム、熱線遮断フィルム、透明導電フィルム、輝度向上フィルム、バリア性向上フィルムなどが挙げられる。 The transparent substrate 11 may be a film provided with optical and/or physical functions. Examples of films having optical and/or physical functions include polarizing plates, retardation compensation films, heat ray blocking films, transparent conductive films, brightness enhancement films, and barrier property enhancement films.

透明基材11の厚みは、特に限定されないが、例えば、25μm以上であることが好ましい。透明基材11の膜厚は、40μm以上であることがより好ましい。
透明基材11の厚みが25μm以上であると、基材自体の剛性が確保され、光学積層体10に応力が加わっても皺が発生し難くなる。また、透明基材11の厚みが25μm以上であると、透明基材11上にハードコート層12を連続的に形成しても、皺が生じにくく製造上の懸念が少なく好ましい。透明基材11の厚みが40μm以上であると、より一層皺が生じにくく、好ましい。
Although the thickness of the transparent substrate 11 is not particularly limited, it is preferably 25 μm or more, for example. More preferably, the film thickness of the transparent substrate 11 is 40 μm or more.
When the thickness of the transparent base material 11 is 25 μm or more, the rigidity of the base material itself is ensured, and even when stress is applied to the optical layered body 10, wrinkles are less likely to occur. Further, when the thickness of the transparent base material 11 is 25 μm or more, even if the hard coat layer 12 is continuously formed on the transparent base material 11, wrinkles are less likely to occur, which is preferable because there is little concern about manufacturing. When the thickness of the transparent substrate 11 is 40 μm or more, wrinkles are less likely to occur, which is preferable.

製造時において、ロールで実施する場合、透明基材11の厚みは、1000μm以下であることが好ましく、600μm以下であることがより好ましい。透明基材11の厚みが1000μm以下であると、製造途中の光学積層体10および製造後の光学積層体10をロール状に巻きつけやすく、効率良く光学積層体10を製造できる。また、透明基材11の厚みが1000μm以下であると、光学積層体10の薄膜化、軽量化が可能となる。透明基材11の厚みが600μm以下であると、より効率良く光学積層体10を製造できるとともに、より一層の薄膜化、軽量化が可能となり、好ましい。 When a roll is used during production, the thickness of the transparent substrate 11 is preferably 1000 μm or less, more preferably 600 μm or less. When the thickness of the transparent substrate 11 is 1000 μm or less, the optical layered body 10 in the middle of production and the optical layered body 10 after production can be easily wound into a roll, and the optical layered body 10 can be efficiently produced. Further, when the thickness of the transparent substrate 11 is 1000 μm or less, it is possible to reduce the thickness and weight of the optical layered body 10 . When the thickness of the transparent substrate 11 is 600 μm or less, the optical layered body 10 can be manufactured more efficiently, and further thinning and weight reduction are possible, which is preferable.

透明基材11は、表面に予めスパッタリング、コロナ放電、紫外線照射、電子線照射、化成、酸化等のエッチング処理および/または下塗り処理が施されていてもよい。これらの処理が予め施されていることで、透明基材11の上に形成されるハードコート層12との密着性を向上させることができる。また、透明基材11上にハードコート層12を形成する前に、必要に応じて、透明基材11の表面に対して溶剤洗浄、超音波洗浄等を行うことにより、透明基材11の表面を除塵、清浄化させておくことも好ましい。 The surface of the transparent substrate 11 may be previously subjected to sputtering, corona discharge, ultraviolet irradiation, electron beam irradiation, chemical conversion, etching such as oxidation, and/or undercoating. By performing these treatments in advance, it is possible to improve adhesion with the hard coat layer 12 formed on the transparent substrate 11 . In addition, before forming the hard coat layer 12 on the transparent base material 11, the surface of the transparent base material 11 is cleaned by solvent cleaning, ultrasonic cleaning, or the like, if necessary. It is also preferable to remove dust and clean the

ハードコート層12としては、公知のものを用いることができる。ハードコート層12は、バインダー樹脂のみからなるものであってもよいし、バインダー樹脂とともに、透明性を損なわない範囲でフィラーを含むものであってもよい。フィラーとしては、有機物からなるものを用いてもよいし、無機物からなるものを用いてもよいし、有機物および無機物からなるものを用いてもよい。 A known layer can be used as the hard coat layer 12 . The hard coat layer 12 may consist of only the binder resin, or may contain a filler together with the binder resin within a range that does not impair the transparency. As the filler, an organic substance may be used, an inorganic substance may be used, or an organic substance and an inorganic substance may be used.

ハードコート層12に用いられるバインダー樹脂としては、透明性のものが好ましく、例えば、紫外線、電子線により硬化する樹脂である電離放射線硬化型樹脂、熱可塑性樹脂、熱硬化性樹脂などを用いることができる。 As the binder resin used for the hard coat layer 12, a transparent one is preferable. For example, an ionizing radiation-curable resin, a thermoplastic resin, a thermosetting resin, etc., which are resins that are cured by ultraviolet rays or electron beams, can be used. can.

ハードコート層12のバインダー樹脂に用いる電離放射線硬化型樹脂としては、エチル(メタ)アクリレート、エチルヘキシル(メタ)アクリレート、スチレン、メチルスチレン、N-ビニルピロリドン等を挙げることができる。
また、2以上の不飽和結合を有する電離放射線硬化型樹脂である化合物としては、例えば、トリメチロールプロパントリ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、トリペンタエリスリトールオクタ(メタ)アクリレート、テトラペンタエリスリトールデカ(メタ)アクリレート、イソシアヌル酸トリ(メタ)アクリレート、イソシアヌル酸ジ(メタ)アクリレート、ポリエステルトリ(メタ)アクリレート、ポリエステルジ(メタ)アクリレート、ビスフェノールジ(メタ)アクリレート、ジグリセリンテトラ(メタ)アクリレート、アダマンチルジ(メタ)アクリレート、イソボロニルジ(メタ)アクリレート、ジシクロペンタンジ(メタ)アクリレート、トリシクロデカンジ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート等の多官能化合物等を挙げることができる。なかでも、ペンタエリスリトールトリアクリレート(PETA)、ジペンタエリスリトールヘキサアクリレート(DPHA)及びペンタエリスリトールテトラアクリレート(PETTA)が好適に用いられる。なお、「(メタ)アクリレート」は、メタクリレート及びアクリレートを指すものである。また、電離放射線硬化型樹脂として、上述した化合物をPO(プロピレンオキサイド)、EO(エチレンオキサイド)、CL(カプロラクトン)等で変性したものも使用できる。
Examples of the ionizing radiation-curable resin used as the binder resin of the hard coat layer 12 include ethyl (meth)acrylate, ethylhexyl (meth)acrylate, styrene, methylstyrene, N-vinylpyrrolidone, and the like.
Examples of compounds that are ionizing radiation-curable resins having two or more unsaturated bonds include trimethylolpropane tri(meth)acrylate, tripropylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, and dipropylene. glycol di(meth)acrylate, pentaerythritol tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, dipentaerythritol hexa(meth)acrylate, 1,6-hexanediol di(meth)acrylate, neopentyl glycol di(meth)acrylate ) acrylate, trimethylolpropane tri(meth)acrylate, ditrimethylolpropane tetra(meth)acrylate, dipentaerythritol penta(meth)acrylate, tripentaerythritol octa(meth)acrylate, tetrapentaerythritol deca(meth)acrylate, isocyanuric acid tri(meth)acrylate, isocyanuric acid di(meth)acrylate, polyester tri(meth)acrylate, polyester di(meth)acrylate, bisphenol di(meth)acrylate, diglycerin tetra(meth)acrylate, adamantyl di(meth)acrylate, Examples include polyfunctional compounds such as isobornyl di(meth)acrylate, dicyclopentane di(meth)acrylate, tricyclodecane di(meth)acrylate, ditrimethylolpropane tetra(meth)acrylate, and the like. Among them, pentaerythritol triacrylate (PETA), dipentaerythritol hexaacrylate (DPHA) and pentaerythritol tetraacrylate (PETTA) are preferably used. In addition, "(meth)acrylate" refers to methacrylate and acrylate. As the ionizing radiation-curable resin, the above-mentioned compounds modified with PO (propylene oxide), EO (ethylene oxide), CL (caprolactone), etc. can also be used.

ハードコート層12のバインダー樹脂に用いる熱可塑性樹脂としては、例えば、スチレン系樹脂、(メタ)アクリル系樹脂、酢酸ビニル系樹脂、ビニルエーテル系樹脂、ハロゲン含有樹脂、脂環式オレフィン系樹脂、ポリカーボネート系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、セルロース誘導体、シリコーン系樹脂及びゴム又はエラストマー等を挙げることができる。上記熱可塑性樹脂は、非結晶性で、かつ有機溶媒(特に複数のポリマー、硬化性化合物を溶解可能な共通溶媒)に可溶であることが好ましい。特に、透明性および耐候性という観点から、スチレン系樹脂、(メタ)アクリル系樹脂、脂環式オレフィン系樹脂、ポリエステル系樹脂、セルロース誘導体(セルロースエステル類等)等が好ましい。 The thermoplastic resin used as the binder resin of the hard coat layer 12 includes, for example, styrene-based resin, (meth)acrylic-based resin, vinyl acetate-based resin, vinyl ether-based resin, halogen-containing resin, alicyclic olefin-based resin, and polycarbonate-based resin. Resins, polyester-based resins, polyamide-based resins, cellulose derivatives, silicone-based resins, rubbers, elastomers, and the like can be used. The thermoplastic resin is preferably amorphous and soluble in an organic solvent (especially a common solvent capable of dissolving a plurality of polymers and curable compounds). In particular, from the viewpoint of transparency and weather resistance, styrene-based resins, (meth)acrylic-based resins, alicyclic olefin-based resins, polyester-based resins, cellulose derivatives (cellulose esters, etc.), and the like are preferable.

ハードコート層12のバインダー樹脂に用いる熱硬化性樹脂としては、例えば、フェノール樹脂、尿素樹脂、ジアリルフタレート樹脂、メラミン樹脂、グアナミン樹脂、不飽和ポリエステル樹脂、ポリウレタン樹脂、エポキシ樹脂、アミノアルキッド樹脂、メラミン-尿素共縮合樹脂、ケイ素樹脂、ポリシロキサン樹脂(かご状、ラダー状などのいわゆるシルセスキオキサン等を含む)等を挙げることができる。 Thermosetting resins used as the binder resin for the hard coat layer 12 include, for example, phenol resins, urea resins, diallyl phthalate resins, melamine resins, guanamine resins, unsaturated polyester resins, polyurethane resins, epoxy resins, aminoalkyd resins, and melamine. - urea co-condensation resin, silicon resin, polysiloxane resin (including so-called silsesquioxane in the form of cages, ladders, etc.) and the like.

ハードコート層12は、有機樹脂と無機材料を含んでいても良く、有機無機ハイブリッド材料でもよい。一例としては、ゾルゲル法で形成されたものが挙げられる。無機材料としては、例えば、シリカ、アルミナ、ジルコニア、チタニアが挙げられる。有機材料としては、例えば、アクリル樹脂が挙げられる。
ハードコート層12に含まれるフィラーは、防眩性、後述する光学機能層14との密着性、アンチブロッキング性の観点から、光学積層体10の用途に応じて種々のものを選択できる。具体的には、例えば、シリカ(Siの酸化物)粒子、アルミナ(酸化アルミニウム)粒子、有機微粒子など公知のものを用いることができる。
The hard coat layer 12 may contain an organic resin and an inorganic material, or may be an organic-inorganic hybrid material. One example is one formed by a sol-gel method. Examples of inorganic materials include silica, alumina, zirconia, and titania. Examples of organic materials include acrylic resins.
The filler contained in the hard coat layer 12 can be selected from various fillers depending on the application of the optical layered body 10 from the viewpoints of antiglare properties, adhesion with the optical function layer 14 described later, and antiblocking properties. Specifically, for example, known particles such as silica (Si oxide) particles, alumina (aluminum oxide) particles, and organic fine particles can be used.

ハードコート層12は、例えば、バインダー樹脂と、フィラーとしてのシリカ粒子および/またはアルミナ粒子とを含むものであってもよい。ハードコート層12中に、フィラーとしてシリカ粒子および/またはアルミナ粒子が分散されていることで、ハードコート層12の表面に微細な凹凸を形成できる。これらシリカ粒子および/またはアルミナ粒子は、ハードコート層12の光学機能層14側の表面に露出していてもよい。この場合、ハードコート層12のバインダー樹脂と、光学機能層14とが、強く接合される。このため、ハードコート層12と光学機能層14との密着性が向上し、ハードコート層12の硬度が高くなるとともに、光学積層体10の耐擦傷性が良好となる。 The hard coat layer 12 may contain, for example, a binder resin and silica particles and/or alumina particles as fillers. By dispersing silica particles and/or alumina particles as a filler in the hard coat layer 12 , fine unevenness can be formed on the surface of the hard coat layer 12 . These silica particles and/or alumina particles may be exposed on the surface of the hard coat layer 12 on the optical function layer 14 side. In this case, the binder resin of the hard coat layer 12 and the optical function layer 14 are strongly bonded. Therefore, the adhesion between the hard coat layer 12 and the optical function layer 14 is improved, the hardness of the hard coat layer 12 is increased, and the scratch resistance of the optical laminate 10 is improved.

ハードコート層12のフィラーの平均粒子径は、例えば、800nm以下、好ましくは780nm以下、さらに好ましくは100nm以下である。当該サイズのフィラーとして、例えば、シリカ粒子、アルミナ粒子等が好適に用いられる。フィラーの粒子径が当該範囲内とすると、光学積層体10全体のヘイズ値は2%以下となる。ヘイズが2%以下の光学積層体10は透明度が高く、いわゆるクリア型の反射防止フィルムとなる。 The average particle size of the filler in the hard coat layer 12 is, for example, 800 nm or less, preferably 780 nm or less, and more preferably 100 nm or less. For example, silica particles, alumina particles, and the like are preferably used as fillers of this size. If the particle diameter of the filler is within this range, the haze value of the entire optical layered body 10 will be 2% or less. The optical layered body 10 having a haze of 2% or less has high transparency and serves as a so-called clear antireflection film.

ハードコート層12のフィラーの平均粒子径は、例えば、0.5μm以上でもよい。当該サイズのフィラーとして、例えば、アクリル樹脂等の有機微粒子が好適に用いられる。フィラーの粒子径が当該範囲内とすると、光学積層体10全体のヘイズ値は2%超となる。ヘイズが2%超の光学積層体10は防眩性を有し、いわゆるアンチグレア(AG)型の反射防止フィルムとなる。この場合においても、フィラーの平均粒子径は、10μm以下であることが好ましく、5μm以下であることがさらに好ましく、3μm以下であることが特に好ましい。
ハードコート層12に含有されるフィラーとして、ハードコート層12に強靭性を付与するために、光学特性を損なわない範囲で、各種補強材を用いることが出来る。補強材としては、例えば、セルロースナノファイバーが挙げられる。
The average particle size of the filler in the hard coat layer 12 may be, for example, 0.5 μm or more. As the filler of this size, for example, organic fine particles such as acrylic resin are preferably used. If the particle diameter of the filler is within this range, the haze value of the entire optical layered body 10 will exceed 2%. The optical layered body 10 having a haze of more than 2% has antiglare properties, and serves as a so-called antiglare (AG) type antireflection film. Also in this case, the average particle size of the filler is preferably 10 μm or less, more preferably 5 μm or less, and particularly preferably 3 μm or less.
As the filler contained in the hard coat layer 12, various reinforcing materials can be used in order to impart toughness to the hard coat layer 12, as long as the optical properties are not impaired. Examples of reinforcing materials include cellulose nanofibers.

ハードコート層12の厚みは、特に限定されないが、例えば、0.5μm以上であることが好ましく、より好ましくは1μm以上である。ハードコート層12の厚みは、100μm以下であることが好ましい。ハードコート層12の厚みが0.5μm以上であると、十分な硬度が得られるため、製造上のひっかき傷が発生し難くなる。また、ハードコート層12の厚みが100μm以下であると、光学積層体10の薄膜化、軽量化が可能となる。また、ハードコート層12の厚みが100μm以下であると、製造途中の光学積層体10が曲がった際に発生するハードコート層12のマイクロクラックが生じにくく、生産性が良好となる。 Although the thickness of the hard coat layer 12 is not particularly limited, for example, it is preferably 0.5 μm or more, more preferably 1 μm or more. The thickness of hard coat layer 12 is preferably 100 μm or less. When the thickness of the hard coat layer 12 is 0.5 μm or more, sufficient hardness is obtained, so that scratches during manufacturing are less likely to occur. Further, when the thickness of the hard coat layer 12 is 100 μm or less, the thickness and weight of the optical layered body 10 can be reduced. Further, when the thickness of the hard coat layer 12 is 100 μm or less, microcracks in the hard coat layer 12 that occur when the optical layered body 10 is bent during production are less likely to occur, resulting in good productivity.

ハードコート層12は、単一の層であってもよく、複数の層が積層されたものであってもよい。また、ハードコート層12には、例えば、紫外線吸収性能、帯電防止性能、屈折率調整機能、硬度調整機能など公知の機能が更に付与されていてもよい。
また、ハードコート層12に付与される機能は、単一のハードコート層中に付与されていてもよいし、複数の層に分割して付与されていてもよい。
The hard coat layer 12 may be a single layer or a laminate of multiple layers. Further, the hard coat layer 12 may be further provided with known functions such as ultraviolet absorption performance, antistatic performance, refractive index adjustment function, and hardness adjustment function.
Moreover, the function imparted to the hard coat layer 12 may be imparted in a single hard coat layer, or may be imparted in a plurality of divided layers.

密着層13は、有機膜である透明基材11またはハードコート層12と、無機膜である光学機能層14との密着を良好にさせるために形成する層である。図3に示す光学積層体10では、ハードコート層12と光学機能層14との間に、密着層13が備えられている。密着層13は、ハードコート層12と光学機能層14とを密着させる機能を有する。密着層13は、酸素欠損状態の金属酸化物もしくは金属からなるものであることが好ましい。酸素欠損状態の金属酸化物とは、化学量論組成よりも酸素数が不足した状態の金属酸化物をいう。酸素欠損状態の金属酸化物としては、例えば、SiOx、AlOx、TiOx、ZrOx、CeOx、MgOx、ZnOx、TaOx、SbOx、SnOx、MnOxなどが挙げられる。また、金属としては、Si、Al、Ti、Zr、Ce、Mg、Zn、Ta、Sb、Sn、Mn、Inなどが挙げられる。密着層13は、例えば、SiOxにおけるxが、0を超え2.0未満であるものであってもよい。また、密着層は複数種の金属または金属酸化物の混合物から形成されていても良い。
密着層の厚みは、透明性と光学機能層との密着性を維持し、良好な光学特性を得る観点から、0nm超え20nm以下であることが好ましく、1nm以上10nm以下であることが特に好ましい。
The adhesion layer 13 is a layer formed to improve adhesion between the transparent substrate 11 or the hard coat layer 12, which is an organic film, and the optical function layer 14, which is an inorganic film. In the optical layered body 10 shown in FIG. 3, the adhesion layer 13 is provided between the hard coat layer 12 and the optical function layer 14 . The adhesion layer 13 has a function of adhering the hard coat layer 12 and the optical function layer 14 together. The adhesion layer 13 is preferably made of a metal oxide or metal in an oxygen-deficient state. The term "oxygen-deficient metal oxide" refers to a metal oxide in which the number of oxygen atoms is less than the stoichiometric composition. Examples of oxygen-deficient metal oxides include SiOx, AlOx, TiOx, ZrOx, CeOx, MgOx, ZnOx, TaOx, SbOx, SnOx, and MnOx. Examples of metals include Si, Al, Ti, Zr, Ce, Mg, Zn, Ta, Sb, Sn, Mn, and In. The adhesion layer 13 may be made of, for example, SiOx in which x is greater than 0 and less than 2.0. Also, the adhesion layer may be formed from a mixture of multiple kinds of metals or metal oxides.
The thickness of the adhesion layer is preferably more than 0 nm and 20 nm or less, particularly preferably 1 nm or more and 10 nm or less, from the viewpoint of maintaining transparency and adhesion with the optical function layer and obtaining good optical properties.

光学機能層14は、反射防止機能を発現させる積層体である。図3に示す光学機能層14は、密着層13側から順に高屈折率層14aと低屈折率層14bとが交互に積層された合計4層の積層体である。高屈折率層14aと低屈折率層14bの層数は、特に限定されるものではなく、高屈折率層14aおよび低屈折率層14bの層数は、任意の層数とすることができる。 The optical function layer 14 is a laminate that exhibits an antireflection function. The optical function layer 14 shown in FIG. 3 is a four-layer laminate in which high refractive index layers 14a and low refractive index layers 14b are alternately laminated in this order from the adhesion layer 13 side. The number of layers of the high refractive index layers 14a and the low refractive index layers 14b is not particularly limited, and the number of layers of the high refractive index layers 14a and the low refractive index layers 14b can be any number of layers.

図3に示す光学積層体10では、光学機能層14が、低屈折率層14bと高屈折率層14aとが交互に積層された積層体からなるものであるため、防汚層15側から入射した光が光学機能層14によって拡散される。したがって、防汚層15側から入射した光が、一方向に反射されることを防止する反射防止機能が得られる。 In the optical layered body 10 shown in FIG. 3, the optical function layer 14 is composed of a layered body in which the low refractive index layers 14b and the high refractive index layers 14a are alternately layered. The emitted light is diffused by the optical function layer 14 . Therefore, it is possible to obtain an antireflection function that prevents the light incident from the antifouling layer 15 side from being reflected in one direction.

低屈折率層14bは、例えば、金属の酸化物を含む。低屈折率層14bは、入手の容易さとコストの点からSiの酸化物を含んでもよく、SiO(Siの酸化物)等を主成分とした層であることが好ましい。SiO単層膜は、無色透明である。本実施形態において、低屈折率層14bの主成分とは、低屈折率層14b中に50質量%以上含まれる成分であることを意味する。
低屈折率層14bが、Siの酸化物を主成分とした層である場合、50質量%未満の別の元素を含んでも良い。Siの酸化物とは別の元素の含有量は、好ましくは10%以下である。別の元素としては、例えば、耐久性向上の目的でNa、硬度向上の目的でZr、Al、またはN、耐アルカリ性向上の目的で、Zr、Alを含有できる。
The low refractive index layer 14b contains, for example, metal oxide. The low refractive index layer 14b may contain an oxide of Si from the viewpoint of availability and cost, and is preferably a layer containing SiO 2 (oxide of Si) or the like as a main component. The SiO2 monolayer film is colorless and transparent. In the present embodiment, the main component of the low refractive index layer 14b means a component contained in the low refractive index layer 14b in an amount of 50% by mass or more.
When the low refractive index layer 14b is a layer containing Si oxide as a main component, it may contain less than 50% by mass of another element. The content of elements other than Si oxide is preferably 10% or less. Other elements may include, for example, Na for the purpose of improving durability, Zr, Al, or N for the purpose of improving hardness, and Zr and Al for the purpose of improving alkali resistance.

低屈折率層14bの屈折率は、好ましくは1.20~1.60であり、より好ましくは1.30~1.50である。低屈折率層14bに用いられる誘電体としては、フッ化マグネシウム(MgF、屈折率1.38)などが挙げられる。 The refractive index of the low refractive index layer 14b is preferably 1.20 to 1.60, more preferably 1.30 to 1.50. As a dielectric used for the low refractive index layer 14b, magnesium fluoride (MgF 2 , refractive index 1.38) and the like are listed.

高屈折率層14aの屈折率は、好ましくは2.00~2.60であり、より好ましくは2.10~2.45である。高屈折率層14aに用いられる誘電体としては、五酸化ニオブ(Nb、屈折率2.33)、酸化チタン(TiO、屈折率2.33~2.55)、酸化タングステン(WO、屈折率2.2)、酸化セリウム(CeO、屈折率2.2)、五酸化タンタル(Ta、屈折率2.16)、酸化亜鉛(ZnO、屈折率2.1)、酸化インジウムスズ(ITO、屈折率2.06)、酸化ジルコニウム(ZrO、屈折率2.2)などが挙げられる。
高屈折率層14aに導電特性を付与したい場合、例えば、ITO、酸化インジウム酸化亜鉛(IZO)を選択できる。
The refractive index of the high refractive index layer 14a is preferably 2.00 to 2.60, more preferably 2.10 to 2.45. Dielectrics used for the high refractive index layer 14a include niobium pentoxide (Nb 2 O 5 , refractive index 2.33), titanium oxide (TiO 2 , refractive index 2.33 to 2.55), tungsten oxide (WO 3 , refractive index 2.2 ), cerium oxide ( CeO2 , refractive index 2.2), tantalum pentoxide ( Ta2O5 , refractive index 2.16), zinc oxide (ZnO, refractive index 2.1), Indium tin oxide (ITO, refractive index 2.06), zirconium oxide (ZrO 2 , refractive index 2.2), and the like.
For example, ITO or indium zinc oxide (IZO) can be selected to impart conductive properties to the high refractive index layer 14a.

光学機能層14は、例えば、高屈折率層14aとして五酸化ニオブ(Nb、屈折率2.33)からなるものを用い、低屈折率層14bとしてSiOからなるもの用いることが好ましい。 For the optical function layer 14, it is preferable to use, for example, niobium pentoxide (Nb 2 O 5 , refractive index 2.33) as the high refractive index layer 14a and SiO 2 as the low refractive index layer 14b. .

低屈折率層14bの膜厚は、1nm以上200nm以下の範囲であればよく、反射防止機能を必要とする波長域に応じて適宜選択される。
高屈折率層14aの膜厚は、例えば、1nm以上200nm以下であればよく、反射防止機能を必要とする波長域に応じて適宜選択される。
高屈折率層14aおよび低屈折率層14bの膜厚は、それぞれ光学機能層14の設計に応じて適宜選択できる。
例えば、密着層13側から順に、5~50nmの高屈折率層14a、10~80nmの低屈折率層14b、20~200nmの高屈折率層14a、50~200nmの低屈折率層14bとすることができる。
The film thickness of the low refractive index layer 14b may be in the range of 1 nm or more and 200 nm or less, and is appropriately selected according to the wavelength range requiring the antireflection function.
The film thickness of the high refractive index layer 14a may be, for example, 1 nm or more and 200 nm or less, and is appropriately selected according to the wavelength region requiring the antireflection function.
The film thicknesses of the high refractive index layer 14a and the low refractive index layer 14b can be appropriately selected according to the design of the optical function layer 14, respectively.
For example, from the adhesion layer 13 side, a high refractive index layer 14a of 5 to 50 nm, a low refractive index layer 14b of 10 to 80 nm, a high refractive index layer 14a of 20 to 200 nm, and a low refractive index layer 14b of 50 to 200 nm. be able to.

光学機能層14を形成している層のうち、防汚層15側には、低屈折率層14bが配置されている。光学機能層14の低屈折率層14bが防汚層15と接している場合、光学機能層14の反射防止性能が良好となるため、好ましい。 Among the layers forming the optical function layer 14, a low refractive index layer 14b is arranged on the antifouling layer 15 side. When the low refractive index layer 14b of the optical functional layer 14 is in contact with the antifouling layer 15, the antireflection performance of the optical functional layer 14 is improved, which is preferable.

防汚層15は、光学機能層14の最外面に形成され、光学機能層14の汚損を防止する。また、防汚層15は、タッチパネル等に適用する際に、耐摩耗性によって光学機能層14の損耗を抑制する。
本実施形態の防汚層15は、例えば、防汚性材料を蒸着させた蒸着膜からなる。本実施形態では、防汚層15は、光学機能層14を構成する低屈折率層14bの一面に、防汚性材料としてフッ素系有機化合物を真空蒸着することによって形成される。本実施形態では、防汚性材料が、フッ素系有機化合物を含むため、より一層耐摩擦性および耐アルカリ性の良好な光学積層体10となる。
The antifouling layer 15 is formed on the outermost surface of the optical functional layer 14 to prevent the optical functional layer 14 from being soiled. In addition, the antifouling layer 15 suppresses wear of the optical function layer 14 due to its abrasion resistance when applied to a touch panel or the like.
The antifouling layer 15 of the present embodiment is made of, for example, a deposited film obtained by vapor-depositing an antifouling material. In this embodiment, the antifouling layer 15 is formed on one surface of the low refractive index layer 14b constituting the optical function layer 14 by vacuum-depositing a fluorine-based organic compound as an antifouling material. In the present embodiment, since the antifouling material contains a fluorine-based organic compound, the optical layered body 10 with even better abrasion resistance and alkali resistance can be obtained.

防汚層15を構成するフッ素系有機化合物としては、フッ素変性有機基と、反応性シリル基(例えば、アルコキシシラン)とからなる化合物が好ましく用いられる。市販品としては、オプツールDSX(ダイキン株式会社製)、KY-100シリーズ(信越化学工業株式会社製)などが挙げられる。 As the fluorine-based organic compound constituting the antifouling layer 15, a compound composed of a fluorine-modified organic group and a reactive silyl group (for example, alkoxysilane) is preferably used. Commercially available products include OPTOOL DSX (manufactured by Daikin Co., Ltd.) and KY-100 series (manufactured by Shin-Etsu Chemical Co., Ltd.).

防汚層15を構成するフッ素系有機化合物として、フッ素系有機化合物としては、フッ素変性有機基と、反応性シリル基(例えば、アルコキシシラン)とからなる化合物を用い、防汚層15に接する光学機能層14の低屈折率層14bとして、SiOからなるものを用いた場合、フッ素系有機化合物の骨格であるシラノール基とSiOと間でシロキサン結合が形成される。このため、光学機能層14と防汚層15との密着性が良好となり、好ましい。 As the fluorine-based organic compound constituting the antifouling layer 15, a compound composed of a fluorine-modified organic group and a reactive silyl group (eg, alkoxysilane) is used as the fluorine-based organic compound, and the optical When a layer made of SiO 2 is used as the low refractive index layer 14b of the functional layer 14, a siloxane bond is formed between the silanol group, which is the skeleton of the fluorine-based organic compound, and SiO 2 . Therefore, the adhesion between the optical function layer 14 and the antifouling layer 15 is improved, which is preferable.

防汚層15の光学厚みは、1nm以上、20nm以下の範囲であればよく、好ましくは3nm以上、10nm以下の範囲である。防汚層15の厚みが1nm以上であると、光学積層体10をタッチパネル用途などに適用した際に、耐摩耗性を十分に確保できる。また、防汚層15の厚みが20nm以下であると、蒸着に要する時間が短時間で済み、効率よく製造できる。 The optical thickness of the antifouling layer 15 may be in the range of 1 nm or more and 20 nm or less, preferably in the range of 3 nm or more and 10 nm or less. When the antifouling layer 15 has a thickness of 1 nm or more, sufficient abrasion resistance can be ensured when the optical layered body 10 is applied to a touch panel or the like. Further, when the thickness of the antifouling layer 15 is 20 nm or less, the time required for vapor deposition can be shortened, and efficient production can be achieved.

防汚層15の表面粗さRaは、光学積層体の用途や構成によって異なる。例えば、光学積層体が防眩機能を持たない透明な反射防止層(クリア型の反射防止フィルム)である場合は、防汚層15の表面粗さRaは、例えば3nm以上であることが好ましい。上限は特に制限はないが、例えば耐擦傷性の点からは9nm以下であることが好ましい。他方、光学積層体が防眩機能を持つ反射防止層(AG型の反射防止フィルム)である場合は、防汚層15の表面粗さRaは、例えば10nm以上であることが好ましく、30nm以上であることがより好ましい。なお、ここでいう防汚層15の表面粗さRaは、耐擦傷性試験を行う前の値である。 The surface roughness Ra of the antifouling layer 15 varies depending on the application and configuration of the optical layered body. For example, when the optical laminate is a transparent antireflection layer (clear antireflection film) that does not have antiglare function, the surface roughness Ra of the antifouling layer 15 is preferably 3 nm or more, for example. Although the upper limit is not particularly limited, it is preferably 9 nm or less from the viewpoint of scratch resistance, for example. On the other hand, when the optical laminate is an antireflection layer (AG type antireflection film) having an antiglare function, the surface roughness Ra of the antifouling layer 15 is preferably 10 nm or more, for example, 30 nm or more. It is more preferable to have The surface roughness Ra of the antifouling layer 15 referred to here is the value before the scratch resistance test.

防汚層15の要素の平均長さRSmは、光学積層体の用途や構成によって異なる。例えば、光学積層体が防眩機能を持つ反射防止層(AG型の反射防止フィルム)である場合は、防汚層15の要素の平均長さRSmは、例えば、59nm以上であることが好ましく、92nm以下であることがより好ましい。なお、ここでいう防汚層15の要素の平均長さRSmは、耐擦傷性試験を行う前の値である。 The average length RSm of the elements of the antifouling layer 15 varies depending on the application and configuration of the optical laminate. For example, when the optical laminate is an antireflection layer (AG type antireflection film) having an antiglare function, the average length RSm of the elements of the antifouling layer 15 is preferably, for example, 59 nm or more. It is more preferably 92 nm or less. The average length RSm of the elements of the antifouling layer 15 referred to here is the value before the scratch resistance test.

防汚層15は、必要に応じて、光安定剤、紫外線吸収剤、着色剤、帯電防止剤、滑剤、レベリング剤、消泡剤、酸化防止剤、難燃剤、赤外線吸収剤、界面活性剤などの添加剤を含んでいてもよい。 The antifouling layer 15 may contain a light stabilizer, an ultraviolet absorber, a coloring agent, an antistatic agent, a lubricant, a leveling agent, an antifoaming agent, an antioxidant, a flame retardant, an infrared absorber, a surfactant, etc., as necessary. may contain additives.

蒸着によって形成された防汚層15は、光学機能層14と強固に結合し、空隙が少なく緻密である。これにより、本実施形態の防汚層15は、防汚性材料の塗布など従来の方法によって形成された防汚層とは異なる特性を示す。 The antifouling layer 15 formed by vapor deposition is firmly bonded to the optical function layer 14 and is dense with few voids. As a result, the antifouling layer 15 of the present embodiment exhibits properties different from those of the antifouling layer formed by a conventional method such as coating of an antifouling material.

例えば、本実施形態のクリア型の光学積層体10の防汚層15は、以下の特性を有する。
(1)スチールウールを500回水平往復運動させることによる擦傷性試験後の水に対する接触角差が12°以下である。
(2)スチールウールを500回水平往復運動させることによる擦傷性試験後の水に対する接触角が109°以上である。
For example, the antifouling layer 15 of the clear optical laminate 10 of this embodiment has the following properties.
(1) The difference in contact angle with water is 12° or less after the abrasion test by horizontally reciprocating steel wool 500 times.
(2) A water contact angle of 109° or more after a scratch resistance test in which steel wool is horizontally reciprocated 500 times.

(3)ウェス(不織布ワイパー)を4000回往復させることによる擦傷性試験後の水に対する接触角が108°以上である。
(4)スチールウールを500回水平往復運動させることによる擦傷性試験前後のSCI(Specular Component Include、正反射光を考慮に入れた反射色の測定方法)による下記式(3)で示されるL*a*b*値の変化量(ΔE値)が、3.0以下である。
(3) A water contact angle of 108° or more after a scratch resistance test by reciprocating a waste cloth (nonwoven cloth wiper) 4000 times.
(4) L* represented by the following formula (3) by SCI (Specular Component Include, a method for measuring reflected color in consideration of specular light) before and after a scratch resistance test by horizontally reciprocating steel wool 500 times The amount of change in a*b* values (ΔE value) is 3.0 or less.

Figure 2023121785000002
(式(3)中、L0、a0、b0は、擦傷性試験前の値であり、L1、a1、b1は、擦傷性試験後の値である。)
Figure 2023121785000002
(In formula (3), L0 * , a0 * , b0 * are the values before the abrasion test, and L1 * , a1 * , b1 * are the values after the abrasion test.)

(5)スチールウールを500回水平往復運動させることによる擦傷性試験前後のSCE(Specular Component Exclude、正反射光を考慮に入れない反射色の測定法)による下記式(4)で示されるL*a*b*値の変化量(ΔE値)が、0.5以下である。 (5) L* represented by the following formula (4) by SCE (Specular Component Exclude, a method of measuring reflected color that does not take specular light into consideration) before and after a scratch resistance test by horizontally reciprocating steel wool 500 times The amount of change in a*b* values (ΔE value) is 0.5 or less.

Figure 2023121785000003
(式(4)中、L0、a0、b0は、擦傷性試験前の値であり、L1、a1、b1は、擦傷性試験後の値である。)
Figure 2023121785000003
(In formula (4), L0 * , a0 * , b0 * are the values before the abrasion test, and L1 * , a1 * , b1 * are the values after the abrasion test.)

(6)濃度0.1mol/LのNaOH溶液(液温55℃)に4時間浸漬後の蛍光X線分析法(XRF)によって測定したフッ素残存率が70%以上である。 (6) The fluorine residual rate measured by X-ray fluorescence spectrometry (XRF) after being immersed in an NaOH solution having a concentration of 0.1 mol/L (liquid temperature of 55° C.) for 4 hours is 70% or more.

(7)超音波洗浄試験後の蛍光X線分析法(XRF)によって測定したフッ素残存率が79%以上である。 (7) The fluorine residual rate measured by X-ray fluorescence analysis (XRF) after the ultrasonic cleaning test is 79% or more.

また例えば、本実施形態のAG型の光学積層体10の防汚層15は、以下の特性を有する。
(1)ウェス(不織布ワイパー)を4000回往復させることによる擦傷性試験後に、X線光電子分光測定器(ESCA)によって測定したフッ素残存率が78%以上である。
(2)濃度0.1mol/LのNaOH溶液(液温55℃)に4時間浸漬後の蛍光X線分析法(XRF)によって測定したフッ素残存率が90%以上である。
(3)超音波洗浄試験後の蛍光X線分析法(XRF)によって測定したフッ素残存率が77%以上である。
Further, for example, the antifouling layer 15 of the AG-type optical laminate 10 of the present embodiment has the following characteristics.
(1) The fluorine residual rate measured by an X-ray photoelectron spectrometer (ESCA) is 78% or more after a scratch resistance test by reciprocating a rag (nonwoven fabric wiper) 4000 times.
(2) The fluorine residual rate measured by X-ray fluorescence analysis (XRF) after being immersed in an NaOH solution having a concentration of 0.1 mol/L (liquid temperature of 55° C.) for 4 hours is 90% or more.
(3) The fluorine residual rate measured by X-ray fluorescence analysis (XRF) after the ultrasonic cleaning test is 77% or more.

蒸着によって形成した本実施形態の防汚層15を備えた光学積層体10は、塗布によって形成した防汚層と比較して、空隙が少なく緻密に形成されている。また、本実施形態の光学積層体10では、防汚層15が、防汚層15と接する低屈折率層14bに対して強固に接合している。したがって、本実施形態の光学積層体10は、可視光透過性に優れ、繰り返し摩擦に対して高い耐摩耗性を維持できるとともに、耐アルカリ性に対しても高い耐性を維持できる。 The optical layered body 10 provided with the antifouling layer 15 of the present embodiment formed by vapor deposition is densely formed with fewer voids than the antifouling layer formed by coating. In addition, in the optical layered body 10 of the present embodiment, the antifouling layer 15 is firmly bonded to the low refractive index layer 14b in contact with the antifouling layer 15 . Therefore, the optical layered body 10 of the present embodiment has excellent visible light transmittance, can maintain high wear resistance against repeated friction, and can maintain high alkali resistance.

[光学積層体の製造方法]
図3に示す本実施形態の光学積層体10は、例えば、以下に示す方法により製造できる。
本実施形態では、光学積層体10の製造方法の一例として、ロール状に巻き付けられた透明基材11を用いて光学積層体10を製造する場合を例に挙げて説明する。
まず、ロール状に巻き付けられた透明基材11を巻き出す。そして、公知の方法により透明基材11上にハードコート層12となる材料を含むスラリーを塗布し、ハードコート層12となる材料に対応する公知の方法により硬化させる。このことにより、ハードコート層12を形成する(ハードコート層形成工程)。その後、表面にハードコート層12の形成された透明基材11を、公知の方法によりロール状に巻き取る。
[Method for producing an optical laminate]
The optical laminate 10 of this embodiment shown in FIG. 3 can be manufactured, for example, by the method described below.
In this embodiment, as an example of the method for manufacturing the optical layered body 10, a case of manufacturing the optical layered body 10 using the transparent substrate 11 wound in a roll shape will be described.
First, the transparent base material 11 wound in a roll is unwound. Then, a slurry containing a material for the hard coat layer 12 is applied onto the transparent substrate 11 by a known method, and cured by a known method corresponding to the material for the hard coat layer 12 . Thus, the hard coat layer 12 is formed (hard coat layer forming step). After that, the transparent substrate 11 with the hard coat layer 12 formed on the surface thereof is wound into a roll by a known method.

次に、ハードコート層12上に、密着層13を形成する密着層形成工程、および光学機能層14を形成する光学機能層形成工程を行う。その後、光学機能層14上に防汚層15を形成する防汚層形成工程を行う。本実施形態では、光学機能層形成工程の前に、ハードコート層12の表面を処理する第1表面処理工程を行ってから、密着層形成工程および光学機能層形成工程を行うことが好ましい。また、本実施形態では、光学機能層形成工程の後に、光学機能層14の表面を処理する第2表面処理工程を行ってから、防汚層形成工程を行うことが好ましい。 Next, an adhesion layer forming step of forming an adhesion layer 13 and an optical function layer forming step of forming an optical function layer 14 are performed on the hard coat layer 12 . After that, an antifouling layer forming step for forming an antifouling layer 15 on the optical function layer 14 is performed. In this embodiment, it is preferable to perform the adhesion layer forming step and the optical functional layer forming step after performing the first surface treatment step of treating the surface of the hard coat layer 12 before the optical function layer forming step. Further, in the present embodiment, it is preferable to perform the antifouling layer forming step after performing the second surface treatment step of treating the surface of the optical functional layer 14 after the optical functional layer forming step.

本実施形態の光学積層体10の製造方法において、第1表面処理工程と密着層形成工程と光学機能層形成工程と第2表面処理工程と防汚層形成工程とは、製造途中の光学積層体を減圧下の状態に維持したまま連続して行うことが好ましい。第1表面処理工程と密着層形成工程と光学機能層形成工程と第2表面処理工程と防汚層形成工程を、製造途中の光学積層体を減圧下の状態に維持したまま連続して行う場合、例えば、スパッタリング装置として特許文献4に記載された薄膜形成装置を備えた装置などを用いることができる。 In the method for manufacturing the optical layered body 10 of the present embodiment, the first surface treatment step, the adhesion layer forming step, the optical function layer forming step, the second surface treatment step, and the antifouling layer forming step is preferably carried out continuously while maintaining the state under reduced pressure. When the first surface treatment step, the adhesion layer formation step, the optical function layer formation step, the second surface treatment step, and the antifouling layer formation step are continuously performed while the optical layered body in the middle of production is kept under reduced pressure. For example, an apparatus equipped with a thin film forming apparatus described in Patent Document 4 can be used as the sputtering apparatus.

本実施形態の光学積層体の製造方法に用いることができる製造装置としては、具体的には、図4に示す製造装置20が挙げられる。
図4に示す製造装置20は、ロール巻き出し装置4と、前処理装置2Aと、スパッタリング装置1と、前処理装置2Bと、蒸着装置3と、ロール巻き取り装置5とを備えている。図4に示すように、これらの装置4、2A、1、2B、3、5は、この順に連結されている。図4に示す製造装置20は、ロールから基材を巻き出し、連結された装置(図4では、前処理装置2A、スパッタリング装置1、前処理装置2B、蒸着装置3)を連続して通過させた後に巻き取ることにより、基材上に複数層を連続的に形成するロールトゥロール方式の製造装置である。
Specifically, a manufacturing apparatus 20 shown in FIG. 4 can be mentioned as a manufacturing apparatus that can be used in the method for manufacturing the optical layered body of the present embodiment.
A manufacturing apparatus 20 shown in FIG. 4 includes a roll unwinding device 4 , a pretreatment device 2A, a sputtering device 1 , a pretreatment device 2B, a vapor deposition device 3 and a roll winding device 5 . As shown in FIG. 4, these devices 4, 2A, 1, 2B, 3, 5 are connected in this order. The manufacturing apparatus 20 shown in FIG. 4 unwinds the base material from the roll and continuously passes through the connected apparatuses (pretreatment apparatus 2A, sputtering apparatus 1, pretreatment apparatus 2B, and vapor deposition apparatus 3 in FIG. 4). It is a roll-to-roll manufacturing apparatus that continuously forms a plurality of layers on a base material by winding it after rolling.

ロールトゥロール方式の製造装置を用いて光学積層体10を製造する場合、製造途中の光学積層体10の搬送速度(ラインスピード)は、適宜設定することができる。搬送速度は、例えば、0.5~20m/minとすることが好ましく、0.5~10m/minとすることがより好ましい。 When the optical layered body 10 is manufactured using a roll-to-roll type manufacturing apparatus, the transport speed (line speed) of the optical layered body 10 during manufacturing can be appropriately set. The conveying speed is, for example, preferably 0.5 to 20 m/min, more preferably 0.5 to 10 m/min.

<ロール巻き出し装置>
図4に示すロール巻き出し装置4は、内部が所定の減圧雰囲気とされたチャンバー34と、チャンバー34内の気体を排出して減圧雰囲気とする1つまたは複数の真空ポンプ21(図4においては1つ)と、チャンバー34内に設置された巻き出しロール23およびガイドロール22を有する。図4に示すように、チャンバー34は、スパッタリング装置1のチャンバー31と前処理装置2Aを介して連結されている。
巻き出しロール23には、表面にハードコート層12の形成された透明基材11が巻き付けられている。巻き出しロール23は、所定の搬送速度で、表面にハードコート層12の形成された透明基材11を、前処理装置2Aに供給する。
<Roll unwinding device>
The roll unwinding device 4 shown in FIG. 4 includes a chamber 34 having a predetermined reduced pressure atmosphere therein, and one or more vacuum pumps 21 (in FIG. 4, 1), and an unwind roll 23 and a guide roll 22 located within the chamber 34 . As shown in FIG. 4, the chamber 34 is connected to the chamber 31 of the sputtering apparatus 1 via the pretreatment apparatus 2A.
A transparent base material 11 having a hard coat layer 12 formed on its surface is wound around the feed roll 23 . The unwinding roll 23 supplies the transparent substrate 11 with the hard coat layer 12 formed on the surface to the pretreatment device 2A at a predetermined transport speed.

<前処理装置2A>
図4に示す前処理装置2Aは、内部が所定の減圧雰囲気とされたチャンバー32と、キャンロール26と、複数(図4では2つ)のガイドロール22と、プラズマ放電装置42とを有する。図4に示すように、キャンロール26と、ガイドロール22と、プラズマ放電装置42は、チャンバー32内に設置されている。図4に示すように、チャンバー32は、スパッタリング装置1のチャンバー31と連結されている。
<Pretreatment device 2A>
The pretreatment apparatus 2A shown in FIG. 4 includes a chamber 32 whose interior is in a predetermined reduced pressure atmosphere, a can roll 26, a plurality of (two in FIG. 4) guide rolls 22, and a plasma discharge device . As shown in FIG. 4, the can roll 26, the guide roll 22, and the plasma discharge device 42 are installed inside the chamber 32. As shown in FIG. As shown in FIG. 4 , the chamber 32 is connected with the chamber 31 of the sputtering apparatus 1 .

キャンロール26およびガイドロール22は、所定の搬送速度で、ロール巻き出し装置4から送られたハードコート層12が形成された透明基材11を搬送し、ハードコート層12の表面が処理された透明基材11をスパッタリング装置1に送り出す。
プラズマ放電装置42は、図4に示すように、キャンロール26の外周面と所定の間隔で離間して対向配置されている。プラズマ放電装置42は、気体をグロー放電により電離させる。気体としては、安価かつ不活性で光学特性に影響を及ぼさないものが好ましく、例えば、アルゴンガス、酸素ガス、窒素ガス、ヘリウムガス等を使用できる。気体としては、質量が大きく化学的に安定であり、入手も容易であるため、アルゴンガスを用いることが好ましい。
本実施形態では、プラズマ放電装置42として、アルゴンガスを高周波プラズマによりイオン化するグロー放電装置を用いることが好ましい。
The can roll 26 and the guide roll 22 transported the transparent substrate 11 with the hard coat layer 12 formed thereon sent from the roll unwinding device 4 at a predetermined transport speed, and the surface of the hard coat layer 12 was treated. A transparent base material 11 is delivered to the sputtering apparatus 1 .
As shown in FIG. 4, the plasma discharge device 42 is arranged facing the outer peripheral surface of the can roll 26 at a predetermined distance. The plasma discharge device 42 ionizes the gas by glow discharge. As the gas, it is preferable to use a gas that is inexpensive, inert, and does not affect optical properties. For example, argon gas, oxygen gas, nitrogen gas, helium gas, and the like can be used. Argon gas is preferably used as the gas because it has a large mass, is chemically stable, and is easily available.
In this embodiment, as the plasma discharge device 42, it is preferable to use a glow discharge device that ionizes argon gas with high-frequency plasma.

<スパッタリング装置>
図4に示すスパッタリング装置1は、内部が所定の減圧雰囲気とされたチャンバー31と、チャンバー31内の気体を排出して減圧雰囲気とする1つまたは複数の真空ポンプ21(図4においては2つ)と、成膜ロール25と、複数(図4では2つ)のガイドロール22と、複数(図4に示す例では4つ)の成膜部41とを有する。図4に示すように、成膜ロール25と、ガイドロール22と、成膜部41は、チャンバー31内に設置されている。図4に示すように、チャンバー31は、前処理装置2Bのチャンバー32と連結されている。
<Sputtering device>
The sputtering apparatus 1 shown in FIG. 4 includes a chamber 31 having a predetermined reduced-pressure atmosphere therein, and one or more vacuum pumps 21 (two pumps in FIG. ), a film forming roll 25 , a plurality of (two in FIG. 4 ) guide rolls 22 , and a plurality of (four in the example shown in FIG. 4 ) film forming sections 41 . As shown in FIG. 4 , the film forming roll 25 , the guide roll 22 and the film forming section 41 are installed inside the chamber 31 . As shown in FIG. 4, the chamber 31 is connected with the chamber 32 of the pretreatment device 2B.

成膜ロール25およびガイドロール22は、所定の搬送速度で、前処理装置2Aから送られた表面が処理されたハードコート層12の形成された透明基材11を搬送し、ハードコート層12上に、密着層13および光学機能層14の形成された透明基材11を前処理装置2Bに供給する。
図4に示すスパッタリング装置1では、成膜ロール25上を走行する透明基材11のハードコート層12上に、スパッタリングによって密着層13が積層され、その上に高屈折率層14aと低屈折率層14bが交互に積層されて、光学機能層14が形成される。
The film-forming roll 25 and the guide roll 22 convey the transparent substrate 11 having the surface-treated hard coat layer 12 formed thereon, which is sent from the pretreatment apparatus 2A, at a predetermined conveying speed. Next, the transparent substrate 11 having the adhesion layer 13 and the optical function layer 14 formed thereon is supplied to the pretreatment device 2B.
In the sputtering apparatus 1 shown in FIG. 4, the adhesive layer 13 is laminated by sputtering on the hard coat layer 12 of the transparent base material 11 running on the film forming roll 25, and the high refractive index layer 14a and the low refractive index layer 14a are laminated thereon. The layers 14b are alternately laminated to form the optical function layer 14. FIG.

成膜部41は、図4に示すように、成膜ロール25の外周面と所定の間隔で離間して対向配置され、成膜ロール25を囲むように複数設けられている。成膜部41の数は、密着層13と、光学機能層14を形成している高屈折率層14aと低屈折率層14bとの合計積層数に応じて決定される。密着層13および光学機能層14を形成している高屈折率層14aと低屈折率層14bの合計積層数が多いために、隣接する成膜部41間の距離を確保しにくい場合には、チャンバー31内に成膜ロール25を複数設け、各成膜ロール25の周囲に成膜部41を配置してもよい。成膜ロール25を複数設ける場合、必要に応じてさらにガイドロール22を設置してもよい。成膜ロール25と成膜部41が設けられたチャンバー31を複数台連結してもよい。また、隣接する成膜部41間の距離を確保しやすくするために、成膜ロール25の直径を適宜変更してもよい。 As shown in FIG. 4 , the film forming units 41 are arranged to face the outer peripheral surface of the film forming roll 25 at a predetermined interval, and are provided in plurality so as to surround the film forming roll 25 . The number of film-forming portions 41 is determined according to the total lamination number of the adhesion layer 13 and the high refractive index layers 14 a and low refractive index layers 14 b forming the optical function layer 14 . When it is difficult to secure the distance between the adjacent film-forming portions 41 because the total number of layers of the high-refractive-index layers 14a and the low-refractive-index layers 14b forming the adhesion layer 13 and the optical function layer 14 is large, A plurality of film forming rolls 25 may be provided in the chamber 31 and the film forming section 41 may be arranged around each film forming roll 25 . When a plurality of film forming rolls 25 are provided, guide rolls 22 may be further provided as necessary. A plurality of chambers 31 in which the film forming rolls 25 and the film forming units 41 are provided may be connected. Further, the diameter of the film-forming roll 25 may be appropriately changed in order to easily secure the distance between the adjacent film-forming units 41 .

各成膜部41には、それぞれ所定のターゲット(不図示)が設置されている。ターゲットには、公知の構造により、電圧が印加されるようになっている。本実施形態では、ターゲットの近傍に、ターゲットに所定の反応性ガスおよびキャリアガスを所定の流量で供給するガス供給部(不図示)と、ターゲットの表面に磁場を形成する公知の磁場発生源(不図示)とが設けられている。 A predetermined target (not shown) is installed in each film forming unit 41 . A voltage is applied to the target by a known structure. In this embodiment, in the vicinity of the target, a gas supply unit (not shown) that supplies a predetermined reactive gas and a carrier gas to the target at a predetermined flow rate, and a known magnetic field generation source that forms a magnetic field on the surface of the target ( (not shown) are provided.

ターゲットの材料、および反応性ガスの種類および流量は、成膜部41と成膜ロール25との間を通過することによって透明基材11上に形成される密着層13、高屈折率層14a、低屈折率層14bの組成に応じて適宜決定される。例えば、SiOからなる層を形成する場合、ターゲットとしてSiを用い、反応性ガスとしてOを用いる。また、例えば、Nbからなる層を形成する場合、ターゲットとしてNbを用い、反応性ガスとしてOを用いる。 The material of the target and the type and flow rate of the reactive gas are determined by the adhesion layer 13, the high refractive index layer 14a, It is appropriately determined according to the composition of the low refractive index layer 14b. For example, when forming a layer made of SiO 2 , Si is used as the target and O 2 is used as the reactive gas. Further, for example, when forming a layer made of Nb 2 O 5 , Nb is used as the target and O 2 is used as the reactive gas.

本実施形態では、成膜速度の高速化の観点から、スパッタ法として、マグネトロンスパッタ法を用いることが好ましい。
なお、スパッタ法は、マグネトロンスパッタ法に限定されるものではなく、直流グロー放電または高周波によって発生させたプラズマを利用する2極スパッタ方式、熱陰極を付加する3極スパッタ方式などを用いてもよい。
In the present embodiment, it is preferable to use magnetron sputtering as the sputtering method from the viewpoint of increasing the film formation speed.
The sputtering method is not limited to the magnetron sputtering method, and a two-electrode sputtering method using plasma generated by DC glow discharge or high frequency, a three-electrode sputtering method using a hot cathode, or the like may be used. .

スパッタリング装置1は、密着層13および光学機能層14となる各層を成膜した後に、光学特性を測定する測定部としての光学モニター(不図示)を備える。これにより、形成された密着層13および光学機能層14の品質を確認できる。スパッタリング装置1が、例えば、2つ以上のチャンバーを有する場合、各チャンバー内に光学モニターを設置することが好ましい。 The sputtering apparatus 1 includes an optical monitor (not shown) as a measurement unit for measuring optical characteristics after forming the respective layers to be the adhesion layer 13 and the optical function layer 14 . Thereby, the quality of the adhesion layer 13 and the optical function layer 14 which were formed can be confirmed. When the sputtering apparatus 1 has, for example, two or more chambers, it is preferable to install an optical monitor in each chamber.

光学モニター(不図示)としては、例えば、幅方向にスキャン可能な光学ヘッドにより、ハードコート層12上に形成された密着層13および光学機能層14の幅方向の光学特性を測定するものが挙げられる。このような光学モニターが備えられている場合、例えば、光学特性として反射率のピーク波長を測定し、光学厚みに換算することにより、密着層13および光学機能層14の幅方向の光学厚み分布を測定できる。光学モニターを用いて光学特性を測定することにより、リアルタイムでスパッタ条件を調整しながら、最適な光学特性を有する密着層13および光学機能層14を備える光学積層体10を形成できる。 An example of the optical monitor (not shown) is one that measures the optical characteristics in the width direction of the adhesion layer 13 and the optical function layer 14 formed on the hard coat layer 12 with an optical head capable of scanning in the width direction. be done. When such an optical monitor is provided, for example, the optical thickness distribution in the width direction of the adhesion layer 13 and the optical function layer 14 is obtained by measuring the peak wavelength of the reflectance as an optical characteristic and converting it into an optical thickness. can be measured. By measuring the optical properties using an optical monitor, the optical layered body 10 including the adhesion layer 13 and the optical function layer 14 having optimum optical properties can be formed while adjusting the sputtering conditions in real time.

<前処理装置2B>
図4に示す前処理装置2Bは、内部が所定の減圧雰囲気とされたチャンバー32と、キャンロール26と、複数(図4では2つ)のガイドロール22と、プラズマ放電装置42とを有する。図4に示すように、キャンロール26と、ガイドロール22と、プラズマ放電装置42は、チャンバー32内に設置されている。図4に示すように、チャンバー32は、蒸着装置3のチャンバー33と連結されている。
<Pretreatment device 2B>
The pretreatment apparatus 2B shown in FIG. 4 has a chamber 32 whose interior is in a predetermined reduced pressure atmosphere, a can roll 26, a plurality of (two in FIG. 4) guide rolls 22, and a plasma discharge device . As shown in FIG. 4, the can roll 26, the guide roll 22, and the plasma discharge device 42 are installed inside the chamber 32. As shown in FIG. As shown in FIG. 4, the chamber 32 is connected with the chamber 33 of the vapor deposition device 3 .

キャンロール26およびガイドロール22は、所定の搬送速度で、スパッタリング装置1から送られた光学機能層14までの各層が形成された透明基材11を搬送し、光学機能層14の表面が処理された透明基材11を蒸着装置3に送り出す。
プラズマ放電装置42としては、例えば、前処理装置2Aと同様のものを用いることができる。プラズマ放電装置42は、気体をグロー放電により電離させる。気体としては、安価かつ不活性で光学特性に影響を及ぼさないものが好ましく、例えば、アルゴンガス、酸素ガス、窒素ガス、ヘリウムガス等を使用できる。アルゴンガス又は酸素ガスは、光学機能層14の表面に与える影響が大きい。特に、質量の大きいアルゴンガスを用いると、光学機能層14の表面粗さRa又は要素の平均長さRSmを調整しやすい。
The can roll 26 and the guide roll 22 transport the transparent substrate 11 having the layers up to the optical function layer 14 sent from the sputtering apparatus 1 at a predetermined transport speed, and the surface of the optical function layer 14 is processed. Then, the transparent base material 11 is sent to the vapor deposition device 3 .
As the plasma discharge device 42, for example, the same one as the pretreatment device 2A can be used. The plasma discharge device 42 ionizes the gas by glow discharge. As the gas, it is preferable to use a gas that is inexpensive, inert, and does not affect optical properties. For example, argon gas, oxygen gas, nitrogen gas, helium gas, and the like can be used. Argon gas or oxygen gas has a great effect on the surface of the optical function layer 14 . In particular, the use of argon gas with a large mass makes it easy to adjust the surface roughness Ra of the optical function layer 14 or the average length RSm of the elements.

<蒸着装置>
図4に示す蒸着装置3は、内部が所定の減圧雰囲気とされたチャンバー33と、チャンバー33内の気体を排出して減圧雰囲気とする1つまたは複数の真空ポンプ21(図4においては1つ)と、複数(図4では4つ)のガイドロール22と、蒸着源43と、加熱装置53とを有する。図4に示すように、ガイドロール22と、蒸着源43は、チャンバー33内に設置されている。チャンバー33は、ロール巻き取り装置5のチャンバー35と連結されている。
<Evaporation equipment>
The vapor deposition apparatus 3 shown in FIG. 4 includes a chamber 33 having a predetermined reduced-pressure atmosphere therein, and one or more vacuum pumps 21 (in FIG. 4, one ), a plurality of (four in FIG. 4 ) guide rolls 22 , a vapor deposition source 43 , and a heating device 53 . As shown in FIG. 4, the guide roll 22 and the vapor deposition source 43 are installed inside the chamber 33 . The chamber 33 is connected with the chamber 35 of the roll winding device 5 .

蒸着源43は、隣接する2つのガイドロール22間を略水平に搬送されている、光学機能層14の表面が処理された透明基材11と、対向して配置されている。蒸着源43は、防汚層15となる材料からなる蒸発ガスを、光学機能層14上に供給する。蒸着源43の向きは、任意に設定できる。
加熱装置53は、防汚層15となる材料を蒸気圧温度に加熱する。加熱装置53としては、抵抗加熱方式、ヒーター加熱方式、誘導加熱方式、電子ビーム方式で加熱するものなどを用いることができる。抵抗加熱方式では、防汚層15となる防汚性材料を収容する容器を抵抗体として通電加熱する。ヒーター加熱方式では、容器の外周に配置したヒーターで容器を加熱する。誘導加熱方式では、外部に設置した誘導コイルから電磁誘導作用によって容器又は防汚性材料を加熱する。
The vapor deposition source 43 is arranged to face the transparent substrate 11 having the surface of the optical function layer 14 treated, which is conveyed substantially horizontally between two adjacent guide rolls 22 . The vapor deposition source 43 supplies an evaporative gas made of a material for the antifouling layer 15 onto the optical function layer 14 . The direction of the vapor deposition source 43 can be set arbitrarily.
The heating device 53 heats the material for the antifouling layer 15 to the vapor pressure temperature. As the heating device 53, a device that heats by a resistance heating method, a heater heating method, an induction heating method, an electron beam method, or the like can be used. In the resistance heating method, a container containing an antifouling material to be the antifouling layer 15 is electrically heated as a resistor. In the heater heating method, the container is heated by a heater arranged around the outer periphery of the container. In the induction heating method, the container or the antifouling material is heated by an electromagnetic induction action from an induction coil installed outside.

図4に示す蒸着装置3は、蒸着源43で蒸発させた蒸着材料を所定の位置に導く案内板(不図示)と、蒸着により形成された防汚層15の厚みを観察する膜厚計(不図示)と、チャンバー33内の圧力を測定する真空圧計(不図示)と、電源装置(不図示)とを備えている。
案内板は、蒸発させた蒸着材料を、所望の位置に導くことができれば如何なる形状であってもよい。案内板は、必要でなければ備えなくとも差し支えない。
真空圧計としては、例えば、イオンゲージなどを用いることができる。
電源装置としては、例えば、高周波電源などが挙げられる。
The vapor deposition apparatus 3 shown in FIG. 4 includes a guide plate (not shown) that guides the vapor deposition material evaporated by the vapor deposition source 43 to a predetermined position, and a film thickness gauge (not shown) that observes the thickness of the antifouling layer 15 formed by vapor deposition. (not shown), a vacuum pressure gauge (not shown) for measuring the pressure in the chamber 33, and a power supply (not shown).
The guide plate may have any shape as long as it can guide the evaporated vapor deposition material to a desired position. If the guide plate is not necessary, it does not matter if it is not provided.
For example, an ion gauge or the like can be used as the vacuum pressure gauge.
Examples of the power supply include a high frequency power supply.

<ロール巻き取り装置>
図4に示すロール巻き取り装置5は、内部が所定の減圧雰囲気とされたチャンバー35と、チャンバー35内の気体を排出して減圧雰囲気とする1つまたは複数の真空ポンプ21(図4においては1つ)と、チャンバー35内に設置された巻き取りロール24およびガイドロール22とを有する。
巻き取りロール24には、表面に防汚層15までの各層の形成された透明基材11(光学積層体10)が巻き付けられている。巻き取りロール24およびガイドロール22は、所定の巻き取り速度で、光学積層体10を巻き取る。
必要に応じ、キャリアフィルムも用いても良い。
<Roll take-up device>
The roll winding device 5 shown in FIG. 4 includes a chamber 35 having a predetermined reduced-pressure atmosphere therein, and one or more vacuum pumps 21 (in FIG. 4, 1), and take-up roll 24 and guide roll 22 located within chamber 35 .
The take-up roll 24 is wound with the transparent substrate 11 (optical layered body 10 ) having layers up to the antifouling layer 15 formed on the surface thereof. The take-up roll 24 and the guide roll 22 take up the optical laminate 10 at a predetermined take-up speed.
A carrier film may also be used as necessary.

図4に示す製造装置20に備えられている真空ポンプ21としては、例えば、ドライポンプ、油回転ポンプ、ターボ分子ポンプ、油拡散ポンプ、クライオポンプ、スパッタイオンポンプ、ゲッターポンプなどを用いることができる。真空ポンプ21は、各チャンバー31、32、33、34、35において、所望の減圧状態を作り出すために適宜選択し、あるいは組み合わせて用いることができる。 As the vacuum pump 21 provided in the manufacturing apparatus 20 shown in FIG. 4, for example, a dry pump, an oil rotary pump, a turbomolecular pump, an oil diffusion pump, a cryopump, a sputter ion pump, a getter pump, or the like can be used. . The vacuum pump 21 can be appropriately selected or used in combination to create a desired reduced pressure state in each of the chambers 31 , 32 , 33 , 34 and 35 .

真空ポンプ21は、スパッタリング装置1のチャンバー31と蒸着装置3のチャンバー33の双方を所望の減圧状態に維持できればよく、製造装置20における真空ポンプ21の設置位置および数は特に限定されない。また、図4に示す製造装置20では、ロール巻き出し装置4と前処理装置2Aとスパッタリング装置1と前処理装置2Bと蒸着装置3とロール巻き取り装置5とが、連結されている。このため、真空ポンプ21は、チャンバー31、32、33、34、35にそれぞれ設置されていてもよいし、スパッタリング装置1のチャンバー31と蒸着装置3のチャンバー33の双方を所望の減圧状態に維持できるのであれば、チャンバー31、32、33、34、35のうち、一部のチャンバーにのみ設置されていてもよい。 The vacuum pump 21 only needs to keep both the chamber 31 of the sputtering apparatus 1 and the chamber 33 of the vapor deposition apparatus 3 in a desired reduced pressure state, and the installation position and number of the vacuum pumps 21 in the manufacturing apparatus 20 are not particularly limited. 4, the roll unwinding device 4, the pretreatment device 2A, the sputtering device 1, the pretreatment device 2B, the deposition device 3, and the roll winding device 5 are connected. For this reason, the vacuum pumps 21 may be installed in the chambers 31, 32, 33, 34, and 35, respectively, and both the chamber 31 of the sputtering apparatus 1 and the chamber 33 of the vapor deposition apparatus 3 are maintained at a desired reduced pressure state. If possible, it may be installed only in some of the chambers 31, 32, 33, 34, and 35.

次に、図4に示す製造装置20を用いて、第1表面処理工程と密着層形成工程および光学機能層形成工程と第2表面処理工程と防汚層形成工程を、製造途中の光学積層体10を減圧下の状態に維持したまま連続して行う方法について、説明する。
まず、ロール巻き出し装置4のチャンバー34内に、表面にハードコート層12の形成された透明基材11が巻き付けられた巻き出しロール23を設置する。そして、巻き出しロール23およびガイドロール22を回転させて、所定の搬送速度で、表面にハードコート層12の形成された透明基材11を、前処理装置2Aに送り出す。
Next, using the manufacturing apparatus 20 shown in FIG. 4, the first surface treatment step, the adhesion layer forming step, the optical function layer forming step, the second surface treatment step, and the antifouling layer forming step are performed on the optical laminate in the middle of production. 10 will be described below.
First, in the chamber 34 of the roll unwinding device 4, the unwinding roll 23 around which the transparent base material 11 having the hard coat layer 12 formed on the surface is wound is installed. Then, the unwinding roll 23 and the guide roll 22 are rotated to feed the transparent base material 11 having the hard coat layer 12 formed thereon to the pretreatment apparatus 2A at a predetermined conveying speed.

次に、前処理装置2Aのチャンバー32内で、密着層13および光学機能層14の形成される表面に対する前処理として、第1表面処理工程を行う。本実施形態では、ハードコート層12の形成された透明基材11に対して第1表面処理工程を行う。
第1表面処理工程では、キャンロール26およびガイドロール22を回転させて、所定の搬送速度で、ハードコート層12の形成された透明基材11を搬送しながら、キャンロール26上を走行するハードコート層12の表面を処理する。
Next, in the chamber 32 of the pretreatment device 2A, a first surface treatment step is performed as a pretreatment for the surface on which the adhesion layer 13 and the optical function layer 14 are to be formed. In this embodiment, the first surface treatment step is performed on the transparent substrate 11 on which the hard coat layer 12 is formed.
In the first surface treatment step, the can roll 26 and the guide roll 22 are rotated to convey the transparent base material 11 having the hard coat layer 12 formed thereon at a predetermined conveying speed, while a hardware traveling on the can roll 26 is carried out. The surface of the coat layer 12 is treated.

ハードコート層12の表面処理方法としては、例えば、グロー放電処理、プラズマ処理、イオンエッチング、アルカリ処理などを用いることができる。これらの中でも、大面積処理が可能であるため、グロー放電処理を用いることが好ましい。グロー放電処理は、例えば、0.1~10kwhの処理強度で行うことができる。
ハードコート層12の表面に対して、グロー放電処理を行うことにより、ハードコート層12の表面がナノレベルで粗面化されるとともに、ハードコート層12の表面に存在する結合力の弱い物質が除去される。その結果、ハードコート層12と、ハードコート層12上に形成される光学機能層14との密着性が良好となる。
As a surface treatment method for the hard coat layer 12, for example, glow discharge treatment, plasma treatment, ion etching, alkali treatment, or the like can be used. Among these, it is preferable to use glow discharge treatment because it is possible to treat a large area. Glow discharge treatment can be performed at a treatment intensity of, for example, 0.1 to 10 kwh.
By performing a glow discharge treatment on the surface of the hard coat layer 12, the surface of the hard coat layer 12 is roughened at the nano level, and substances with weak binding force existing on the surface of the hard coat layer 12 are removed. removed. As a result, the adhesion between the hard coat layer 12 and the optical function layer 14 formed on the hard coat layer 12 is improved.

次に、スパッタリング装置1のチャンバー31内で、密着層形成工程および光学機能層形成工程を行う。具体的には、成膜ロール25およびガイドロール22を回転させて、所定の搬送速度で、ハードコート層12の形成された透明基材11を搬送しながら、成膜ロール25上を走行するハードコート層12上に、密着層13および光学機能層14を形成する。 Next, an adhesion layer forming step and an optical function layer forming step are performed in the chamber 31 of the sputtering apparatus 1 . Specifically, the film-forming roll 25 and the guide roll 22 are rotated to convey the transparent base material 11 having the hard coat layer 12 formed thereon at a predetermined conveying speed, while the hardware traveling on the film-forming roll 25 is carried out. An adhesion layer 13 and an optical function layer 14 are formed on the coat layer 12 .

本実施形態では、各成膜部41に設置するターゲットの材料、またはガス供給部から供給する反応性ガスの種類および流量を変化させてスパッタリングすることによって、密着層13を形成し、その上に高屈折率層14aと低屈折率層14bとを交互に積層する。すなわち、密着層形成工程と光学機能層形成工程は、スパッタリング装置1内で連続して行われる。このことにより、密着層13と反射防止層である光学機能層14とを形成する。 In the present embodiment, the adhesion layer 13 is formed by sputtering while changing the material of the target installed in each film forming unit 41 or the type and flow rate of the reactive gas supplied from the gas supply unit. The high refractive index layers 14a and the low refractive index layers 14b are alternately laminated. That is, the adhesion layer forming process and the optical function layer forming process are continuously performed within the sputtering apparatus 1 . As a result, the adhesion layer 13 and the optical function layer 14, which is an antireflection layer, are formed.

密着層13としてSiO膜を成膜する場合、シリコンターゲットを用いて、酸素ガスとアルゴンガスの混合ガス雰囲気による反応性スパッタリングにより形成することが好ましい。
密着層13と高屈折率層14aと低屈折率層14bとをスパッタリングによって連続して積層する場合、密着層13の成膜時と高屈折率層14aの成膜時と低屈折率層14bの成膜時とでターゲットの材料を変えて成膜してもよい。また、例えば、1種類の材料をターゲットとして用い、スパッタリング時の酸素(反応性ガス)流量を変えることによって、ターゲット材料からなる層とターゲット材料の酸化物からなる層とを交互に形成し、密着層13と高屈折率層14aと低屈折率層14bとしても良い。
When a SiO x film is formed as the adhesion layer 13, it is preferably formed by reactive sputtering in a mixed gas atmosphere of oxygen gas and argon gas using a silicon target.
When the adhesion layer 13, the high refractive index layer 14a, and the low refractive index layer 14b are successively laminated by sputtering, the adhesion layer 13 is deposited, the high refractive index layer 14a is deposited, and the low refractive index layer 14b is deposited. The film may be formed by changing the material of the target during film formation. In addition, for example, by using one type of material as a target and changing the flow rate of oxygen (reactive gas) during sputtering, a layer made of the target material and a layer made of the oxide of the target material are alternately formed and adhered to each other. The layer 13, the high refractive index layer 14a and the low refractive index layer 14b may be used.

密着層13および光学機能層14を形成するためのスパッタリング時の圧力は、スパッタする金属により異なるが、2Pa以下であってもよく、1Pa以下であることが好ましく、0.6Pa以下であることがより好ましく、0.2Pa以下であることが特に好ましい。スパッタリング時の圧力が1Pa以下の減圧下の状態であると、成膜分子の平均自由工程が長くなり、成膜分子のエネルギーが高いまま積層されるため、緻密でより良好な膜質となる。 The pressure during sputtering for forming the adhesion layer 13 and the optical function layer 14 varies depending on the metal to be sputtered, but may be 2 Pa or less, preferably 1 Pa or less, and 0.6 Pa or less. It is more preferably 0.2 Pa or less, and particularly preferably 0.2 Pa or less. When the pressure during sputtering is a reduced pressure of 1 Pa or less, the mean free path of the film-forming molecules is lengthened, and the films are laminated while the energy of the film-forming molecules is high, resulting in a dense and better film quality.

その後、ハードコート層12上に密着層13および光学機能層14の形成された透明基材11を、成膜ロール25およびガイドロール22の回転によって、前処理装置2Bに送り出す。
次に、前処理装置2Bのチャンバー32内で、防汚層15の形成される表面に対する前処理として、第2表面処理工程を行う。本実施形態では、光学機能層形成工程によって得られた光学機能層14の形成された透明基材11を、大気に触れさせることなく、減圧下の状態に維持したまま連続して第2表面処理工程を行う。
第2表面処理工程では、キャンロール26およびガイドロール22を回転させて、所定の搬送速度で、光学機能層14までの各層が形成された透明基材11を搬送しながら、キャンロール26上を走行する光学機能層14の表面に、放電処理を行う。
After that, the transparent substrate 11 having the adhesion layer 13 and the optical function layer 14 formed on the hard coat layer 12 is fed to the pretreatment device 2B by the rotation of the film forming roll 25 and the guide roll 22 .
Next, in the chamber 32 of the pretreatment device 2B, a second surface treatment step is performed as a pretreatment for the surface on which the antifouling layer 15 is to be formed. In the present embodiment, the transparent substrate 11 having the optical functional layer 14 formed thereon obtained by the optical functional layer forming step is continuously subjected to the second surface treatment while being kept under reduced pressure without being exposed to the atmosphere. carry out the process.
In the second surface treatment step, the can roll 26 and the guide roll 22 are rotated, and the transparent substrate 11 on which the layers up to the optical function layer 14 are formed is conveyed at a predetermined conveying speed. A discharge treatment is performed on the surface of the optical function layer 14 that runs.

光学機能層14の表面処理方法としては、例えば、グロー放電処理、プラズマ処理、イオンエッチング、アルカリ処理などを用いることができる。これらの中でも、大面積処理が可能であるため、グロー放電処理を用いることが好ましい。グロー放電処理は、Oガス又はアルゴンガスの雰囲気下で行うことが好ましい。これらのガスを用いると、光学機能層14の表面粗さの調整が容易になる。
光学機能層14の表面に放電処理を行うと、光学機能層14の表面がエッチングされ、光学機能層14の表面の粗さが変化する。光学機能層14の表面の粗さRaは、放電処理の際の積算出力を適切な範囲とすることにより、制御できる。放電処理の際の積算出力は、130W・min/m以上2000W・min/m以下である。本実施形態において、積算出力とは、放電処理の際に、光学機能層14に照射されたグロー放電出力と照射時間の積を、単位面積当たりで除した値である。
As a surface treatment method for the optical function layer 14, for example, glow discharge treatment, plasma treatment, ion etching, alkali treatment, or the like can be used. Among these, it is preferable to use glow discharge treatment because it is possible to treat a large area. The glow discharge treatment is preferably performed in an atmosphere of O2 gas or argon gas. Using these gases facilitates adjustment of the surface roughness of the optical function layer 14 .
When the surface of the optical function layer 14 is subjected to the discharge treatment, the surface of the optical function layer 14 is etched and the roughness of the surface of the optical function layer 14 changes. The roughness Ra of the surface of the optical function layer 14 can be controlled by setting the integrated output during the discharge process within an appropriate range. The integrated output during discharge treatment is 130 W·min/m 2 or more and 2000 W·min/m 2 or less. In the present embodiment, the integrated output is a value obtained by dividing the product of the glow discharge output with which the optical function layer 14 is irradiated during the discharge treatment and the irradiation time per unit area.

放電処理の条件は、適宜設定できる。放電処理の条件を適切に設定することで、光学機能層14と、その上に形成される防汚層15との密着性が良好となり、より一層耐摩擦性および耐アルカリ性の良好な光学積層体10が得られる。
放電処理後の光学機能層14の表面の粗さRa及び要素の平均長さRSmは、光学機能層14の下に設けられているハードコート層12の表面粗さ要素の平均長さによって異なる。
また、放電処理後の光学機能層14の表面粗さRa及び要素の平均長さRSmは、光学機能層14の上に形成される防汚層15の表面粗さRa及び要素の平均長さRSmに影響する。
Conditions for the discharge treatment can be set as appropriate. By appropriately setting the conditions of the discharge treatment, the adhesion between the optical function layer 14 and the antifouling layer 15 formed thereon is improved, and the optical layered body has even better abrasion resistance and alkali resistance. 10 is obtained.
The surface roughness Ra and the average length RSm of the elements of the optical function layer 14 after the discharge treatment differ depending on the average length of the surface roughness elements of the hard coat layer 12 provided under the optical function layer 14 .
Further, the surface roughness Ra and the average length RSm of the elements of the optical function layer 14 after the discharge treatment are the surface roughness Ra and the average length RSm of the elements of the antifouling layer 15 formed on the optical function layer 14. affects

第2表面処理工程では、下記式(1)で表される表面粗さの変化率が1~25%となるように、光学機能層の表面を処理する。特にクリア型の反射防止フィルムの場合にこの条件で光学機能層の表面を処理する。例えば、放電処理の際の積算出力は、表面粗さの変化率に影響を及ぼすパラメータの一つである。
表面粗さの変化率(%)=((Ra2/Ra1)-1)×100(%)・・・式(1)(式(1)中、Ra1は表面を処理する前の光学機能層の表面粗さ(Ra)を示し、Ra2は表面を処理した後の光学機能層の表面粗さ(Ra)を示す。)
In the second surface treatment step, the surface of the optical function layer is treated so that the rate of change in surface roughness represented by the following formula (1) is 1 to 25%. Especially in the case of a clear type antireflection film, the surface of the optical function layer is treated under these conditions. For example, the integrated output during discharge treatment is one of the parameters that affect the rate of change in surface roughness.
Change rate of surface roughness (%)=((Ra2/Ra1)-1)×100(%) Formula (1) (wherein Ra1 is the optical function layer before surface treatment) indicates the surface roughness (Ra), and Ra2 indicates the surface roughness (Ra) of the optical function layer after surface treatment.)

第2表面処理工程は、式(1)で表される表面粗さの変化率が、5%~25%となるように行うことが好ましく、8%~25%となるように行うことがより好ましく、8%~20%となるように行うことがさらに好ましく、8%~15%となるように行うことが一層好ましく、10%~14%となるように行うことがなお一層好ましい。式(1)で表される表面粗さの変化率が1%以上であると、第2表面処理工程を行うことによる光学機能層14と防汚層15との密着性向上効果が顕著となる。また、式(1)で表される表面粗さの変化率が、25%以下であると、光学機能層14の厚みが適切であるため、光学機能層14上に厚みの均一な防汚層15が形成される。 The second surface treatment step is preferably performed so that the surface roughness change rate represented by formula (1) is 5% to 25%, more preferably 8% to 25%. preferably 8% to 20%, more preferably 8% to 15%, even more preferably 10% to 14%. When the change rate of the surface roughness represented by the formula (1) is 1% or more, the effect of improving the adhesion between the optical function layer 14 and the antifouling layer 15 by performing the second surface treatment step becomes remarkable. . Further, when the rate of change in surface roughness represented by formula (1) is 25% or less, the thickness of the optical function layer 14 is appropriate. 15 is formed.

また第2表面処理工程では、下記式(2)で表される要素の平均長さの変化率が7~65%となるように、光学機能層の表面を処理する。特にAG型の反射防止フィルムの場合にこの条件で光学機能層の表面を処理する。例えば、放電処理の際の積算出力は、要素の平均長さに影響を及ぼすパラメータの一つである。
要素の平均長さの変化率(%)=((RSm2/RSm1)-1)×100(%)…式(2)
(式(2)中、RSm1は表面を処理する前の光学機能層の要素の平均長さ(RSm)を示し、RSm2は表面を処理した後の光学機能層の要素の平均長さ(RSm)を示す。)
In the second surface treatment step, the surface of the optical function layer is treated so that the average length change rate of the elements represented by the following formula (2) is 7 to 65%. Especially in the case of an AG type antireflection film, the surface of the optical function layer is treated under these conditions. For example, the integrated output during discharge treatment is one of the parameters that affects the average length of the element.
Rate of change in average length of elements (%) = ((RSm2/RSm1)-1) x 100 (%) Equation (2)
(In formula (2), RSm1 indicates the average length (RSm) of the elements of the optical function layer before surface treatment, and RSm2 indicates the average length (RSm) of the elements of the optical function layer after surface treatment. indicates.)

第2表面処理工程は、式(2)で表される要素の平均長さ(RSm)の変化率が、11%~62%となるように行うことが好ましく、11%~45%となるように行うことがより好ましく、11%~17%となるように行うことがさらに好ましい。式(2)で表される要素の平均長さの変化率が上記範囲内であると、第2表面処理工程を行うことによる光学機能層14と防汚層15との密着性向上効果が顕著となる。また、式(2)で表される要素の平均長さの変化率が、所定値以下であると、光学機能層14の厚みが適切であるため、光学機能層14上に厚みの均一な防汚層15が形成される。 The second surface treatment step is preferably performed so that the rate of change in the average length (RSm) of the elements represented by formula (2) is 11% to 62%, more preferably 11% to 45%. It is more preferable to carry out to 11% to 17%. When the change rate of the average length of the elements represented by the formula (2) is within the above range, the effect of improving the adhesion between the optical function layer 14 and the antifouling layer 15 by performing the second surface treatment step is remarkable. becomes. Further, when the rate of change in the average length of the elements represented by the formula (2) is equal to or less than a predetermined value, the thickness of the optical function layer 14 is appropriate. A dirty layer 15 is formed.

本実施形態において、光学機能層14の表面粗さ(Ra)は、以下に示す方法により測定できる。原子間力顕微鏡(AFM:Atomic Force Microscope)を用いて、光学機能層14の表面の面積1μmの範囲における表面粗さRaを測定する。表面粗さ(Ra)は、JIS B0601(ISO4287)に準拠して測定する。また要素の平均長さ(RSm)は、原子間力顕微鏡を用いて、光学機能層14の表面の面積0.5μmの範囲で測定する。要素の平均長さ(RSm)も、JIS B0601(ISO4287)に準拠して測定する。 In this embodiment, the surface roughness (Ra) of the optical function layer 14 can be measured by the method described below. An atomic force microscope (AFM) is used to measure the surface roughness Ra in the range of 1 μm 2 on the surface of the optical function layer 14 . Surface roughness (Ra) is measured according to JIS B0601 (ISO4287). Also, the average length (RSm) of the elements is measured with an atomic force microscope in the area of 0.5 μm 2 of the surface of the optical function layer 14 . The average length (RSm) of the elements is also measured according to JIS B0601 (ISO4287).

その後、光学機能層14の表面が処理された透明基材11を、キャンロール26およびガイドロール22の回転によって、蒸着装置3に送り出す。
次に、蒸着装置3のチャンバー33内で、防汚層形成工程を行う。本実施形態では、第2表面処理工程によって得られた光学機能層14の表面が処理された透明基材11を、大気に触れさせることなく、減圧下の状態に維持したまま連続して防汚層形成工程を行う。防汚層形成工程では、ガイドロール22を回転させて、所定の搬送速度で、光学機能層14の表面が処理された透明基材11を搬送しながら、光学機能層14の表面に蒸着源43を蒸着する。
Thereafter, the transparent substrate 11 with the surface of the optical function layer 14 treated is delivered to the vapor deposition device 3 by rotating the can roll 26 and the guide roll 22 .
Next, an antifouling layer forming step is performed in the chamber 33 of the vapor deposition device 3 . In the present embodiment, the transparent substrate 11 having the surface of the optical function layer 14 obtained by the second surface treatment step is continuously subjected to antifouling treatment while being kept under reduced pressure without being exposed to the atmosphere. A layer formation process is performed. In the antifouling layer forming step, the guide rolls 22 are rotated to transport the transparent substrate 11 having the surface of the optical function layer 14 treated at a predetermined transport speed, while depositing the vapor deposition source 43 on the surface of the optical function layer 14. is vapor-deposited.

本実施形態では、例えば、防汚層15となるフッ素系有機化合物からなる防汚性材料を、加熱装置53によって蒸気圧温度に加熱し、得られた蒸発ガスを減圧環境下において蒸着源43から供給し、表面が処理された光学機能層14に付着させ、防汚層15を真空蒸着によって形成する。
防汚層15の真空蒸着を行う際の圧力は、例えば、0.05Pa以下であることが好ましく、0.01Pa以下であることがより好ましく、0.001Pa以下であることが特に好ましい。真空蒸着を行う際の圧力が、0.05Pa以下の減圧下の状態であると、成膜分子の平均自由工程が長く、蒸着エネルギーが高くなるため、緻密でより良好な防汚層15が得られる。
In the present embodiment, for example, an antifouling material made of a fluorine-based organic compound that serves as the antifouling layer 15 is heated to the vapor pressure temperature by the heating device 53, and the resulting evaporative gas is emitted from the deposition source 43 under a reduced pressure environment. and adhered to the surface-treated optical function layer 14 to form an antifouling layer 15 by vacuum deposition.
The pressure at which the antifouling layer 15 is vacuum-deposited is, for example, preferably 0.05 Pa or less, more preferably 0.01 Pa or less, and particularly preferably 0.001 Pa or less. When the vacuum deposition is performed under a reduced pressure of 0.05 Pa or less, the mean free path of film-forming molecules is long and the deposition energy is high, so that a dense and better antifouling layer 15 can be obtained. be done.

以上の方法により、スパッタリングによって形成された密着層13および光学機能層14上に、真空蒸着によって防汚層15が形成された光学積層体10が得られる。 By the above method, the optical laminate 10 is obtained in which the antifouling layer 15 is formed by vacuum deposition on the adhesion layer 13 and the optical function layer 14 formed by sputtering.

その後、防汚層15までの各層が形成された透明基材11(光学積層体10)を、ガイドロール22の回転によって、ロール巻き取り装置5に送り出す。
そして、ロール巻き取り装置5のチャンバー35内で、巻き取りロール24およびガイドロール22の回転によって、光学積層体10を巻き取りロール24に巻き付ける。
After that, the transparent substrate 11 (optical layered body 10 ) on which the layers up to the antifouling layer 15 are formed is sent out to the roll winding device 5 by rotating the guide roll 22 .
Then, the optical laminate 10 is wound around the take-up roll 24 by rotating the take-up roll 24 and the guide roll 22 in the chamber 35 of the roll take-up device 5 .

本実施形態では、光学機能層形成工程と防汚層形成工程とを、減圧下で連続して行うことが好ましい。特に、図4に示す製造装置20を用いる本実施形態の製造方法のように、光学積層体10をロールトゥロール方式で巻重体として連続的に製造する場合には、光学機能層形成工程と防汚層形成工程とを、減圧状態を維持したままインラインで連続して行うことがより好ましい。インラインとは、光学機能層形成工程において形成した光学機能層14を大気に触れさせることなく、防汚層形成工程を行うことを意味する。光学機能層形成工程と防汚層形成工程とを減圧下で連続して行うことにより、防汚層15を形成する前に、光学機能層形成工程において形成した光学機能層14上に、自然酸化膜が生成されることが抑制される。また、ロールを巻き取る際の異物などのコンタミネーションが、光学機能層14上に付着して、光学機能層14と防汚層15との密着性を阻害することを防止できる。したがって、光学機能層形成工程後、光学機能層14までの各層の形成された透明基材11を減圧状態のチャンバーから取り出し、その後、再びチャンバー内に設置して減圧下で防汚層形成工程を行う場合と比較して、光学機能層14と防汚層15との密着性が良好で、透明性に優れる光学積層体が得られる。 In this embodiment, it is preferable to continuously perform the optical functional layer forming step and the antifouling layer forming step under reduced pressure. In particular, when the optical layered body 10 is continuously manufactured as a wound body by a roll-to-roll method as in the manufacturing method of the present embodiment using the manufacturing apparatus 20 shown in FIG. It is more preferable to continuously perform the contamination layer forming step in-line while maintaining the reduced pressure state. In-line means that the antifouling layer forming step is performed without exposing the optical functional layer 14 formed in the optical functional layer forming step to the atmosphere. By continuously performing the optical functional layer forming step and the antifouling layer forming step under reduced pressure, the optical functional layer 14 formed in the optical functional layer forming step is naturally oxidized before the antifouling layer 15 is formed. The formation of films is suppressed. In addition, it is possible to prevent contamination such as foreign matter from adhering to the optical function layer 14 and inhibiting the adhesion between the optical function layer 14 and the antifouling layer 15 when the roll is wound. Therefore, after the optical functional layer forming step, the transparent substrate 11 on which the layers up to the optical functional layer 14 are formed is removed from the chamber under reduced pressure, and then placed in the chamber again to perform the antifouling layer forming step under reduced pressure. As compared with the case of carrying out, the adhesion between the optical function layer 14 and the antifouling layer 15 is good, and an optical layered body having excellent transparency can be obtained.

また、本実施形態の光学積層体10の有する防汚層15は、蒸着膜であるため、例えば、塗布法により形成した防汚膜と比較して、高い耐摩耗性及び耐液性が得られる。これは、以下に示す理由によるものと推定される。すなわち、塗布法により形成した防汚膜中には、塗料に含まれている溶剤に起因する空隙が存在している。これに対し、蒸着膜には、溶剤に起因する空隙が存在しない。このため、蒸着膜は、塗布法により形成した防汚膜と比較して、高密度であり、高い耐摩耗性や耐アルカリ性が得られるものと推定される。 In addition, since the antifouling layer 15 of the optical layered body 10 of the present embodiment is a vapor deposition film, high wear resistance and liquid resistance can be obtained as compared with, for example, an antifouling film formed by a coating method. . It is presumed that this is due to the following reasons. That is, the antifouling film formed by the coating method has voids caused by the solvent contained in the paint. On the other hand, the evaporated film does not have voids caused by the solvent. For this reason, it is presumed that the deposited film has a higher density than an antifouling film formed by a coating method, and that high abrasion resistance and alkali resistance can be obtained.

本実施形態の光学積層体10の製造方法は、密着層13を形成する密着層形成工程と、高屈折率層14aと低屈折率層14bとを交互に積層することにより光学機能層14を形成する光学機能層形成工程と、光学機能層14の表面を処理する第2表面処理工程と、表面処理された光学機能層14上に防汚層15を形成する防汚層形成工程とを含む。このため、光学機能層14と、光学機能層14上に形成された防汚層15との密着性が良好であり、より一層摩擦性および耐アルカリ性の良好なものとなる。 The method for manufacturing the optical layered body 10 of the present embodiment includes an adhesion layer forming step for forming the adhesion layer 13, and the optical function layer 14 is formed by alternately laminating the high refractive index layer 14a and the low refractive index layer 14b. a second surface treatment step of treating the surface of the optical function layer 14; and an antifouling layer forming step of forming the antifouling layer 15 on the surface-treated optical function layer 14. Therefore, the adhesion between the optical function layer 14 and the antifouling layer 15 formed on the optical function layer 14 is good, and the friction and alkali resistance are further improved.

特に、第2表面処理工程において、式(1)で表される表面粗さの変化率が1~25%となるように、光学機能層の表面を処理した場合、光学機能層14の表面が適切な粗さに変化し、かつ、エッチングされることにより表面が活性化されるため、光学機能層14上に形成される防汚層15との反応性が向上するため好ましい。また第2表面処理工程において、式(2)で表される要素の平均長さの変化率が7~65%となるように光学機能層の表面を処理した場合も同様である。
また、本実施形態の光学積層体10の製造方法では、ロールトゥロール方式で光学積層体10を連続して形成でき、かつ、高精度で膜厚をコントロールできるため、光学機能層形成工程において、スパッタリングによって光学機能層14を形成することが好ましい。
In particular, in the second surface treatment step, when the surface of the optical functional layer is treated so that the surface roughness change rate represented by formula (1) is 1 to 25%, the surface of the optical functional layer 14 is Since the surface is activated by changing to an appropriate roughness and being etched, the reactivity with the antifouling layer 15 formed on the optical function layer 14 is improved, which is preferable. The same is true when the surface of the optical function layer is treated in the second surface treatment step so that the average length change rate of the elements represented by formula (2) is 7 to 65%.
In addition, in the method for manufacturing the optical layered body 10 of the present embodiment, the optical layered body 10 can be continuously formed by a roll-to-roll method, and the film thickness can be controlled with high accuracy. It is preferable to form the optical function layer 14 by sputtering.

本実施形態において、第1表面処理工程と光学機能層形成工程と第2表面処理工程と防汚層形成工程を、製造途中の光学積層体を減圧下の状態に維持したまま連続して行う場合、各製造工程に支障のない範囲であれば、例えば、スパッタリング装置と蒸着装置とで、チャンバー内の減圧条件が異なっていても構わない。 In the present embodiment, when the first surface treatment step, the optical function layer forming step, the second surface treatment step, and the antifouling layer forming step are continuously performed while the optical layered body during production is maintained under reduced pressure. For example, the pressure reduction conditions in the chamber may be different between the sputtering apparatus and the vapor deposition apparatus, as long as they do not interfere with each manufacturing process.

本実施形態においては、密着層形成工程、光学機能層形成工程、防汚層形成工程のいずれか1つ以上の工程において、経時的に成膜結果を測定器により測定し、その結果を後工程にあたる製造工程の条件にフィードバックすることが好ましい。このことにより、光学積層体全体の特性を最適化しやすくなり、光学積層体の面内での特性を均一にできる。また、測定器により同一工程における製造条件のフィードバックを行うこともできる。この場合、その工程で成膜された層が、均一で安定した特性を有するものとなる。 In the present embodiment, in one or more steps of the adhesion layer forming step, the optical function layer forming step, and the antifouling layer forming step, the film formation results are measured with a measuring instrument over time, and the results are used in the post-process. It is preferable to feed back to the conditions of the manufacturing process corresponding to This makes it easier to optimize the properties of the entire optical layered body, and makes it possible to make the properties of the optical layered body uniform within the plane. In addition, it is also possible to feed back manufacturing conditions in the same process using a measuring instrument. In this case, the layer formed in that process has uniform and stable characteristics.

本実施形態においては、光学機能層形成工程と防汚層形成工程との間に第2表面処理工程を行う場合を例に挙げて説明したが、第2表面処理工程は必要に応じて行えばよく、行わなくてもよい。第2表面処理工程を行わない場合においても、光学機能層形成工程と防汚層形成工程とを、減圧下で連続して行うことが好ましい。 In the present embodiment, the case where the second surface treatment step is performed between the optical function layer forming step and the antifouling layer forming step has been described as an example. Well, you don't have to. Even when the second surface treatment step is not performed, it is preferable to continuously perform the optical functional layer forming step and the antifouling layer forming step under reduced pressure.

本実施形態においては、前処理装置2Aと、スパッタリング装置1と、前処理装置2Bと、蒸着装置3と、ロール巻き出し装置4と、ロール巻き取り装置5とを備えている図4に示す製造装置20を用いて、ロールトゥロール方式で光学積層体10を連続的に製造する場合を例に挙げて説明したが、光学積層体10を製造する製造装置は、図4に示す製造装置20に限定されない。
例えば、前処理装置2Aおよび前処理装置2Bを含まず、ロール巻き出し装置4と、スパッタリング装置1と、蒸着装置3と、ロール巻き取り装置5とが、この順に連結された製造装置を用いてもよい。
In this embodiment, the manufacturing process shown in FIG. The case where the optical layered body 10 is continuously manufactured by the roll-to-roll method using the apparatus 20 has been described as an example, but the manufacturing apparatus for manufacturing the optical layered body 10 is the manufacturing apparatus 20 shown in FIG. Not limited.
For example, using a manufacturing apparatus in which the roll unwinding device 4, the sputtering device 1, the vapor deposition device 3, and the roll winding device 5 are connected in this order without including the pretreatment device 2A and the pretreatment device 2B. good too.

図4に示す製造装置20には、蒸着装置3のチャンバー33と前処理装置2Bのチャンバー32との間に、防汚層15の形成される光学機能層14の表面を洗浄するための前処理室(不図示)が設けられていてもよい。
図4に示す製造装置20には、蒸着装置3のチャンバー33とロール巻き取り装置5のチャンバー35との間に、防汚層15までの各層が形成された透明基材11の冷却および/または検査を行うための後処理室(不図示)が設けられていてもよい。
In the manufacturing apparatus 20 shown in FIG. 4, a pretreatment for cleaning the surface of the optical function layer 14 on which the antifouling layer 15 is formed is provided between the chamber 33 of the vapor deposition apparatus 3 and the chamber 32 of the pretreatment apparatus 2B. A chamber (not shown) may be provided.
The manufacturing apparatus 20 shown in FIG. 4 includes a cooling and/or A post-processing chamber (not shown) may be provided for inspection.

図4に示す製造装置20には、ロール巻き出し装置4とスパッタリング装置1との間に、透明基材11の表面にハードコート層12を形成するためのハードコート層形成装置が設けられていてもよい。この場合、光学機能層14と防汚層15だけでなく、ハードコート層12も、ロールトゥロール方式で連続的に製造でき、好ましい。 A manufacturing apparatus 20 shown in FIG. 4 is provided with a hard coat layer forming apparatus for forming the hard coat layer 12 on the surface of the transparent substrate 11 between the roll unwinding apparatus 4 and the sputtering apparatus 1. good too. In this case, not only the optical function layer 14 and the antifouling layer 15 but also the hard coat layer 12 can be continuously manufactured by a roll-to-roll method, which is preferable.

本実施形態においては、スパッタリング装置を用いて光学機能層形成工程を行い、蒸着装置を用いて防汚層形成工程を行う場合を例に挙げて説明したが、第2表面処理工程を行わない場合には、光学機能層形成工程と防汚層形成工程とを同じ装置(1つのチャンバー内)で行ってもよい。 In the present embodiment, the case where the optical function layer forming step is performed using a sputtering device and the antifouling layer forming step is performed using a vapor deposition device has been described as an example, but the case where the second surface treatment step is not performed. Alternatively, the optical functional layer forming step and the antifouling layer forming step may be performed in the same apparatus (in one chamber).

本実施形態の光学積層体10に於いて、透明基材の光学機能層などが形成された面と対向する面に、必要に応じて各種の層を設けてもよい。例えば、他の部材との接着に用いられる粘着剤層が設けられていても良い。また、この粘着剤層を介して他の光学フィルムが設けられていても良い。他の光学フィルムとしては、例えば偏光フィルム、位相差補償フィルム、1/2波長板、1/4波長板として機能するフィルムなどが挙げられる。 In the optical layered body 10 of the present embodiment, various layers may be provided on the surface of the transparent substrate opposite to the surface on which the optical functional layer and the like are formed, if necessary. For example, a pressure-sensitive adhesive layer used for bonding with other members may be provided. Further, another optical film may be provided via this pressure-sensitive adhesive layer. Other optical films include, for example, films functioning as polarizing films, retardation compensation films, half-wave plates, and quarter-wave plates.

また、透明基材の対向する面に、反射防止、選択反射、防眩、偏光、位相差補償、視野角補償又は拡大、導光、拡散、輝度向上、色相調整、導電などの機能を有する層が直接形成されていても良い。
また、光学積層体の形状は、平滑な形状であってもよいし、モスアイ、防眩機能を発現するナノオーダーの凹凸構造を有する形状でもよい。また、レンズ、プリズムなどのマイクロからミリオーダーの幾何学形状であっても良い。形状は、例えば、フォトリソグラフィーとエッチングの組み合わせ、形状転写、熱プレス等によって形成できる。本実施形態においては、蒸着等により成膜するため、基材に例えば凹凸形状がある場合でも、その凹凸形状を維持できる。
In addition, a layer having functions such as antireflection, selective reflection, antiglare, polarization, phase difference compensation, viewing angle compensation or enlargement, light guide, diffusion, luminance improvement, hue adjustment, and conductivity is provided on the opposite surface of the transparent base material. may be formed directly.
The shape of the optical layered body may be a smooth shape, or a shape having a nano-order concave-convex structure that exhibits moth-eye and anti-glare functions. Also, it may be a geometric shape of micro to millimeter order such as a lens or a prism. The shape can be formed by, for example, a combination of photolithography and etching, shape transfer, heat pressing, and the like. In this embodiment, since the film is formed by vapor deposition or the like, even if the substrate has an uneven shape, the uneven shape can be maintained.

本実施形態の物品は、例えば液晶表示パネル、有機EL表示パネルなど、画像表示部の表示面に上述した光学積層体10を設けたものである。これにより、例えば、スマートホンや操作機器のタッチパネル表示部に対して、高い耐摩耗性および耐アルカリ性を付与することができ、耐久性に優れた、実使用に好適な画像表示装置を実現できる。 The article of the present embodiment is, for example, a liquid crystal display panel, an organic EL display panel, or the like, in which the above-described optical layered body 10 is provided on the display surface of the image display portion. As a result, for example, it is possible to impart high wear resistance and alkali resistance to the touch panel display portion of a smart phone or an operation device, and realize an image display device that is excellent in durability and suitable for practical use.

また、物品としては画像表示装置に限定されず、例えば本実施形態の光学積層体が表面に設けられた窓ガラスやゴーグル、太陽電池の受光面、スマートホンの画面やパーソナルコンピューターのディスプレイ、情報入力端末、タブレット端末、AR(拡張現実)デバイス、VR(仮想現実)デバイス、電光表示板、ガラステーブル表面、遊技機、航空機や電車などの運行支援装置、ナビゲーションシステム、計器盤、光学センサーの表面など光学積層体10が適用可能なものであれば、どのようなものでもよい。 In addition, the article is not limited to an image display device, and for example, a window glass or goggles having the optical laminate of the present embodiment provided on the surface, a light-receiving surface of a solar cell, a screen of a smartphone or a display of a personal computer, and an information input device. Terminals, tablet terminals, AR (augmented reality) devices, VR (virtual reality) devices, electronic display panels, glass table surfaces, game machines, operation support devices for aircraft and trains, navigation systems, dashboards, surfaces of optical sensors, etc. Any material to which the optical layered body 10 can be applied may be used.

以上、本発明の実施形態を説明したが、この実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。この実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
例えば、ハードコート層12に代えて、アンチグレア層を形成したり、柔軟性を有するソフトコート層など、必要に応じて任意の機能層を付加したりすることができる。これらは積層されていても良い。
Although the embodiment of the present invention has been described above, this embodiment is presented as an example and is not intended to limit the scope of the invention. This embodiment can be implemented in various other forms, and various omissions, replacements, and modifications can be made without departing from the scope of the invention. These embodiments and their modifications are included in the scope and spirit of the invention, as well as the scope of the invention described in the claims and equivalents thereof.
For example, instead of the hard coat layer 12, any functional layer such as an anti-glare layer or a flexible soft coat layer can be added as required. These may be laminated.

本発明の効果を検証した。
尚、以下の実施例および比較例で作成される光学積層体は、反射防止フィルムとして機能する一例であり、本発明の趣旨はこれらに限定されるものではない。
The effects of the present invention have been verified.
It should be noted that the optical laminates produced in the following examples and comparative examples are examples that function as antireflection films, and the gist of the present invention is not limited to these.

(実施例1~5、比較例2、比較例4)
まず、平均粒径50nmのシリカ粒子(フィラー)の含有量が樹脂組成物(バインダー樹脂)の固形分全体に対し、28質量%である光硬化性の樹脂組成物を準備した。樹脂組成物は、表1に示すように、シリカ粒子、アクリレート、レベリング剤、及び光重合開始剤を溶剤に溶解させて調製した。
(Examples 1 to 5, Comparative Example 2, Comparative Example 4)
First, a photocurable resin composition was prepared in which the content of silica particles (filler) with an average particle size of 50 nm was 28% by mass with respect to the total solid content of the resin composition (binder resin). A resin composition, as shown in Table 1, was prepared by dissolving silica particles, an acrylate, a leveling agent, and a photopolymerization initiator in a solvent.

Figure 2023121785000004
Figure 2023121785000004

SR610:ポリエチレングリコールジアクリレート、ポリエチレングリコール鎖の平均分子量600
CN968:ポリエステル骨格を有する6官能脂肪族ウレタンアクリレート
Irgacure184:1-ヒドロキシ-シクロヘキシル-フェニル-ケトン
SR610: polyethylene glycol diacrylate, polyethylene glycol chain average molecular weight 600
CN968: 6-functional aliphatic urethane acrylate having a polyester skeleton Irgacure184: 1-hydroxy-cyclohexyl-phenyl-ketone

<ハードコート層形成工程>
透明基材11として厚さ80μm、長さ3900mのロール状のTACフィルムを用意し、TACフィルム上に表1に示す光硬化性の樹脂組成物をグラビアコーターによって塗布し、光を照射して硬化させ、厚み5μmのハードコート層12を形成した。
<Hard coat layer forming step>
A roll-shaped TAC film having a thickness of 80 μm and a length of 3900 m was prepared as the transparent substrate 11, and the photocurable resin composition shown in Table 1 was applied onto the TAC film using a gravure coater, and cured by irradiation with light. to form a hard coat layer 12 having a thickness of 5 μm.

次に、ロールトゥロール方式で、以下に示す方法により、ハードコート層12の形成された透明基材11上に、密着層13と光学機能層14と防汚層15とをこの順で連続的に製造し、実施例1~5、比較例2、比較例4の光学積層体(反射防止フィルム)を作成した。
製造装置としては、図4に示す製造装置20を用いた。また、ラインスピードは2m/minとした。第1表面処理工程と密着層形成工程と光学機能層形成工程と第2表面処理工程と防汚層形成工程を、製造途中の光学積層体を減圧下の状態に維持したまま連続して行った。
Next, by a roll-to-roll method, the adhesion layer 13, the optical function layer 14, and the antifouling layer 15 are continuously formed in this order on the transparent substrate 11 on which the hard coat layer 12 is formed by the method described below. , and optical laminates (antireflection films) of Examples 1 to 5, Comparative Examples 2 and 4 were prepared.
As a manufacturing apparatus, the manufacturing apparatus 20 shown in FIG. 4 was used. Also, the line speed was set to 2 m/min. The first surface treatment step, the adhesion layer formation step, the optical function layer formation step, the second surface treatment step, and the antifouling layer formation step were continuously performed while the optical layered body in the middle of production was kept under reduced pressure. .

<第1表面処理工程>
次に、ハードコート層12に対して、グロー放電処理の処理強度を4000W・min/mにして、グロー放電処理を行った。
<First surface treatment step>
Next, the hard coat layer 12 was subjected to glow discharge treatment at a treatment intensity of 4000 W·min/m 2 .

<密着層形成工程および光学機能層形成工程>
グロー放電処理後のハードコート層12上に、圧力1.0Pa以下のチャンバー内で、スパッタリングにより厚み5nmのSiOxからなる密着層13を成膜し、密着層上に厚み15nmのNb膜(高屈折率層)、厚み38nmのSiO膜(低屈折率層)、厚み30nmのNb膜(高屈折率層)、および厚み102nmのSiO膜(低屈折率層)からなる光学機能層14(積層体)を成膜した。
<Adhesion Layer Forming Step and Optical Function Layer Forming Step>
On the hard coat layer 12 after the glow discharge treatment, an adhesion layer 13 made of SiOx with a thickness of 5 nm is formed by sputtering in a chamber at a pressure of 1.0 Pa or less, and a Nb 2 O 5 film with a thickness of 15 nm is formed on the adhesion layer. (high refractive index layer), a 38 nm thick SiO2 film (low refractive index layer), a 30 nm thick Nb2O5 film (high refractive index layer), and a 102 nm thick SiO2 film (low refractive index layer). An optical function layer 14 (laminate) was deposited.

<第2表面処理工程>
光学機能層14の表面にグロー放電処理を行った。グロー放電は、まずチャンバー内の圧力を2×10-5Paとした後に、リニアイオンソース内からチャンバー内に800sccmでアルゴンガスを導入し、チャンバー内の圧力を0.4Paとした。グロー放電の電圧、電流値、処理時間によってグロー放電の積算出力を調整した。
<Second surface treatment step>
A glow discharge treatment was performed on the surface of the optical function layer 14 . In the glow discharge, after first setting the pressure in the chamber to 2×10 −5 Pa, argon gas was introduced into the chamber from the linear ion source at 800 sccm to set the pressure in the chamber to 0.4 Pa. The integrated glow discharge output was adjusted according to the glow discharge voltage, current value, and treatment time.

実施例1~3については、グロー放電処理の積算出力を326W・min/mとした。
実施例4については、グロー放電処理の積算出力を760W・min/mとした。
実施例5については、グロー放電処理の積算出力を1086W・min/mとした。
比較例2については、グロー放電処理の積算出力を3260W・min/mとした。
比較例4については、グロー放電処理の積算出力を109W・min/mとした。
For Examples 1 to 3, the integrated output of glow discharge treatment was set to 326 W·min/m 2 .
For Example 4, the integrated output of the glow discharge treatment was set to 760 W·min/m 2 .
For Example 5, the integrated output of the glow discharge treatment was set to 1086 W·min/m 2 .
For Comparative Example 2, the integrated output of glow discharge treatment was set to 3260 W·min/m 2 .
For Comparative Example 4, the integrated output of glow discharge treatment was set to 109 W·min/m 2 .

また、下記式(1)で表される表面粗さの変化率を表2に示す。
表面粗さの変化率(%)=((Ra2/Ra1)-1)×100(%)・・・式(1)(式(1)中、Ra1は表面を処理する前の光学機能層の表面粗さ(Ra)を示し、Ra2は表面を処理した後の光学機能層の表面粗さ(Ra)を示す。)
Table 2 shows the rate of change in surface roughness represented by the following formula (1).
Change rate of surface roughness (%)=((Ra2/Ra1)-1)×100(%) Formula (1) (wherein Ra1 is the optical function layer before surface treatment) indicates the surface roughness (Ra), and Ra2 indicates the surface roughness (Ra) of the optical function layer after surface treatment.)

<防汚層形成工程>
次に、光学機能層14上に、蒸着チャンバー内圧力0.01Pa以下、蒸着温度230℃、ラインスピード2.0m/min、フッ素を有する有機化合物であるパーフルオロポリエーテル基を有するアルコキシシラン化合物(KY-1901、信越化学工業株式会社製)からなる防汚層15を蒸着によって形成した。得られた防汚層15の光学膜厚を表2に示す。
その後、ロール状に巻き取り、実施例1~5、比較例2、比較例4の光学積層体(反射防止フィルム)を得た。
<Anti-fouling layer forming step>
Next, on the optical function layer 14, an alkoxysilane compound having a perfluoropolyether group, which is an organic compound containing fluorine, is deposited at a deposition chamber pressure of 0.01 Pa or less, a deposition temperature of 230° C., a line speed of 2.0 m/min, and an alkoxysilane compound having a perfluoropolyether group ( KY-1901 (manufactured by Shin-Etsu Chemical Co., Ltd.) was formed by vapor deposition. Table 2 shows the optical film thickness of the obtained antifouling layer 15 .
Then, it was wound into a roll, and optical laminates (antireflection films) of Examples 1 to 5, Comparative Examples 2 and 4 were obtained.

Figure 2023121785000005
Figure 2023121785000005

(比較例1)
実施例1同様にして光学機能層形成工程まで行った後、第2表面処理工程を行わずに防汚層形成工程を行って、光学機能層14上に防汚層15を形成したこと以外は、実施例1同様にして、比較例1の光学積層体(反射防止フィルム)を作製した。
(Comparative example 1)
In the same manner as in Example 1, except that after performing up to the optical functional layer forming step, the antifouling layer forming step was performed without performing the second surface treatment step, and the antifouling layer 15 was formed on the optical functional layer 14. An optical laminate (antireflection film) of Comparative Example 1 was produced in the same manner as in Example 1.

(比較例3)
実施例1と同様にして光学機能層形成工程まで行った後、ハードコート層12と密着層13と光学機能層14の形成されたTACフィルムを巻き取って製造装置から取り出し、ロールトゥロール方式の塗布装置(コーター)に設置した。その後、大気圧下で、ハードコート層12と密着層13と光学機能層14の形成されたTACフィルムを巻き出し、ラインスピード20m/minで、グラビアコーターを用いて光学機能層14のSiO膜(低屈折率層)上に防汚剤を塗布した。
(Comparative Example 3)
After performing up to the optical functional layer forming step in the same manner as in Example 1, the TAC film on which the hard coat layer 12, the adhesion layer 13 and the optical functional layer 14 are formed is wound up and taken out from the manufacturing apparatus, and a roll-to-roll method is performed. It was installed in a coating device (coater). Thereafter, under atmospheric pressure, the TAC film formed with the hard coat layer 12, the adhesion layer 13, and the optical function layer 14 was unwound, and the SiO 2 film of the optical function layer 14 was coated using a gravure coater at a line speed of 20 m/min. An antifouling agent was applied on the (low refractive index layer).

防汚剤としては、パーフルオロポリエーテル基を有するアルコキシシラン化合物(KY-1901、信越化学工業株式会社製)を、フッ素溶剤(フロリナートFC-3283:スリーエムジャパン株式会社製)を用いて濃度0.1質量%に希釈したものを用いた。防汚剤は、乾燥後の厚みが表2に示す膜厚となるように塗布した。 As the antifouling agent, an alkoxysilane compound having a perfluoropolyether group (KY-1901, manufactured by Shin-Etsu Chemical Co., Ltd.) was diluted with a fluorine solvent (Fluorinert FC-3283, manufactured by 3M Japan Ltd.) to a concentration of 0.5. The one diluted to 1% by mass was used. The antifouling agent was applied so that the thickness after drying would be the film thickness shown in Table 2.

得られた実施例1~5、比較例1~4の光学積層体(反射防止フィルム)について、以下に示す方法により、それぞれ防汚層の表面の粗さRaを調べた。その結果を表2に示す。 The surface roughness Ra of the antifouling layer of each of the obtained optical laminates (antireflection films) of Examples 1 to 5 and Comparative Examples 1 to 4 was examined by the method described below. Table 2 shows the results.

(防汚層の表面粗さRaの測定)
光学積層体を巻き取った各ロールの長さ方向中央の位置かつロール幅方向中央の位置から、50mm×50mmの測定サンプルを切り出した。サンプルの表面を原子間力顕微鏡(AFM:Atomic Force Microscope)(商品名SPA400、NanoNaviII;日立株式会社製)を用いて観察し、面積1μmの範囲における表面粗さRaを測定した。測定はサンプル上の3か所で行い、その平均値を測定値とした。
(Measurement of surface roughness Ra of antifouling layer)
A measurement sample of 50 mm×50 mm was cut from the center position in the length direction and the center position in the width direction of each roll on which the optical laminate was wound. The surface of the sample was observed with an atomic force microscope (AFM) (trade name: SPA400, NanoNaviII; manufactured by Hitachi, Ltd.) to measure the surface roughness Ra in an area of 1 μm 2 . The measurement was performed at three points on the sample, and the average value was taken as the measured value.

防汚層の表面粗さRaはその下の光学機能層の表面粗さRaの影響を受ける。特に、蒸着により形成された防汚層では、塗布法により形成した防汚層のように塗料に含まれている溶剤に起因する空隙が存在せず、高密度に形成されるため、塗布法により形成した防汚層に比べてその下の光学機能層の表面粗さRaの影響が大きい。光学機能層の表面はグロー放電処理を行って表面粗さが大きくなり、その影響を受けて防汚層の表面粗さが大きくなる。また、光学機能層が大気に触れる場合、光学機能層の上に自然酸化膜が形成され、グロー放電処理による表面の粗面化効果が小さくなるのに対して、光学機能層及び防汚層が大気に触れることなく形成されている場合にはそのような影響は受けない。また、実施例1と比較例1との表面粗さの差はグロー放電処理の有無に起因する。 The surface roughness Ra of the antifouling layer is affected by the surface roughness Ra of the optical function layer therebelow. In particular, the antifouling layer formed by vapor deposition does not have voids caused by the solvent contained in the paint, unlike the antifouling layer formed by the coating method, and is formed at a high density. The influence of the surface roughness Ra of the optical function layer thereunder is greater than that of the formed antifouling layer. The surface of the optical functional layer is subjected to a glow discharge treatment to increase the surface roughness, which in turn increases the surface roughness of the antifouling layer. In addition, when the optical function layer is exposed to the air, a natural oxide film is formed on the optical function layer, and the effect of roughening the surface by glow discharge treatment is reduced. If it is formed without contact with the atmosphere, it will not be affected. Moreover, the difference in surface roughness between Example 1 and Comparative Example 1 is caused by the presence or absence of glow discharge treatment.

(実施例6~8、比較例5~8)
実施例6~8、比較例5~8は、ハードコートの構成を変えた点が実施例1~5、比較例1~3と異なる。実施例6~8、比較例5~8では、ハードコート層形成工程を行わず、市販品(大日本印刷株式会社製)のフィルムを用いた。ハードコート層は、平均粒子径2μmのフィラーを有するアクリル系樹脂組成物の硬化物である。ハードコート層の膜厚は3μmであった。当該ハードコート層を厚み80μmのTAC(透明基材)上に積層した。そして、実施例6~8、比較例5及び6は、当該ハードコート層に対し、第1表面処理工程、密着層形成工程、光学機能層形成工程、第2表面処理工程及び防汚層形成工程を順に行った。比較例7は、第2表面処理工程を行わなかった。比較例8は、第2表面処理工程を行わず、防汚層を比較例3と同様に、塗布法により形成した。
(Examples 6-8, Comparative Examples 5-8)
Examples 6 to 8 and Comparative Examples 5 to 8 differ from Examples 1 to 5 and Comparative Examples 1 to 3 in that the constitution of the hard coat is changed. In Examples 6 to 8 and Comparative Examples 5 to 8, a commercially available film (manufactured by Dai Nippon Printing Co., Ltd.) was used without performing the hard coat layer forming step. The hard coat layer is a cured product of an acrylic resin composition having a filler with an average particle size of 2 μm. The film thickness of the hard coat layer was 3 μm. The hard coat layer was laminated on a TAC (transparent substrate) having a thickness of 80 μm. In Examples 6 to 8 and Comparative Examples 5 and 6, the hard coat layer was subjected to a first surface treatment step, an adhesion layer forming step, an optical function layer forming step, a second surface treatment step, and an antifouling layer forming step. were performed in order. Comparative Example 7 did not perform the second surface treatment step. In Comparative Example 8, the antifouling layer was formed by the coating method in the same manner as in Comparative Example 3 without performing the second surface treatment step.

第2表面処理工程においてグロー放電処理を行ったそれぞれの例の積算出力は以下である。
実施例6、8については、グロー放電処理の積算出力を1086W・min/mとした。
実施例7については、グロー放電処理の積算出力を1629W・min/mとした。
比較例5については、グロー放電処理の積算出力を3260W・min/mとした。
比較例6については、グロー放電処理の積算出力を109W・min/mとした。
The integrated output of each example in which glow discharge treatment was performed in the second surface treatment step is as follows.
For Examples 6 and 8, the integrated output of glow discharge treatment was set to 1086 W·min/m 2 .
For Example 7, the integrated output of the glow discharge treatment was set to 1629 W·min/m 2 .
For Comparative Example 5, the integrated output of glow discharge treatment was set to 3260 W·min/m 2 .
For Comparative Example 6, the integrated output of the glow discharge treatment was set to 109 W·min/m 2 .

また、これらの実施例及び比較例では、下記式(2)で表される要素の平均長さの変化率を測定した。
要素の平均長さの変化率(%)=((RSm2/RSm1)-1)×100(%)・・・式(2)(式(2)中、RSm1は表面を処理する前の光学機能層の要素の平均長さ(RSm)を示し、RSm2は表面を処理した後の光学機能層の要素の平均長さ(RSm)を示す。)
Also, in these examples and comparative examples, the rate of change in the average length of the elements represented by the following formula (2) was measured.
Element average length change rate (%) = ((RSm2/RSm1)-1) × 100 (%) Equation (2) (In Equation (2), RSm1 is the optical function before surface treatment indicates the average length (RSm) of the elements of the layer, and RSm2 indicates the average length (RSm) of the elements of the optical function layer after surface treatment.)

(防汚層の要素の平均長さRSmの測定)
光学積層体を巻き取った各ロールの長さ方向中央の位置かつロール幅方向中央の位置から、50mm×50mmの測定サンプルを切り出した。サンプルの表面を原子間力顕微鏡(AFM:Atomic Force Microscope)(商品名SPA400、NanoNaviII;日立株式会社製)を用いて測定し、ハードコート層に含まれる防眩機能を発現するためのフィラーの影響を受けない上面視に於ける直線を3か所選定し、当該3か所の直線に於ける実際の凹凸から面積0.5μmの範囲における要素の平均長さRSmを平均値として算出した。これらの例の結果を表3にまとめる。
(Measurement of average length RSm of elements of antifouling layer)
A measurement sample of 50 mm×50 mm was cut from the center position in the length direction and the center position in the width direction of each roll on which the optical laminate was wound. The surface of the sample was measured using an atomic force microscope (AFM: Atomic Force Microscope) (trade name SPA400, NanoNaviII; manufactured by Hitachi, Ltd.), and the effect of the filler contained in the hard coat layer for expressing the antiglare function. Three straight lines were selected as seen from the top, and the average length RSm of the elements in the area of 0.5 μm 2 was calculated as the average value from the actual unevenness on the three straight lines. The results of these examples are summarized in Table 3.

Figure 2023121785000006
Figure 2023121785000006

(実施例9~12、比較例9~12)
実施例9~12、比較例9~12は、ハードコートの構成を変えた点が実施例1~5、比較例1~3と異なる。実施例9~12、比較例9~12では、ハードコート層形成工程を行わず、市販品(大日本印刷株式会社製)のフィルムを用いた。ハードコート層は、平均粒子径2μmのフィラーを有するアクリル系樹脂組成物の硬化物である。ハードコート層の膜厚は5μmであった。当該ハードコート層を厚み60μmのTAC(透明基材)上に積層した。そして、実施例9~12、比較例9及び10は、当該ハードコート層に対し、第1表面処理工程、密着層形成工程、光学機能層形成工程、第2表面処理工程及び防汚層形成工程を順に行った。比較例11は、第2表面処理工程を行わなかった。比較例12は、第2表面処理工程を行わず、防汚層を比較例3と同様に、塗布法により形成した。
(Examples 9-12, Comparative Examples 9-12)
Examples 9 to 12 and Comparative Examples 9 to 12 differ from Examples 1 to 5 and Comparative Examples 1 to 3 in that the constitution of the hard coat was changed. In Examples 9 to 12 and Comparative Examples 9 to 12, a commercially available film (manufactured by Dai Nippon Printing Co., Ltd.) was used without performing the hard coat layer forming step. The hard coat layer is a cured product of an acrylic resin composition having a filler with an average particle size of 2 μm. The film thickness of the hard coat layer was 5 μm. The hard coat layer was laminated on a TAC (transparent substrate) having a thickness of 60 μm. In Examples 9 to 12 and Comparative Examples 9 and 10, the hard coat layer was subjected to a first surface treatment step, an adhesion layer forming step, an optical function layer forming step, a second surface treatment step, and an antifouling layer forming step. were performed in order. Comparative Example 11 did not perform the second surface treatment step. In Comparative Example 12, the antifouling layer was formed by the coating method in the same manner as in Comparative Example 3 without performing the second surface treatment step.

第2表面処理工程においてグロー放電処理を行ったそれぞれの例の積算出力は以下である。
実施例9、12については、グロー放電処理の積算出力を1086W・min/mとした。
実施例10については、グロー放電処理の積算出力を1629W・min/mとした。
実施例11については、グロー放電処理の積算出力を543W・min/mとした。
比較例9については、グロー放電処理の積算出力を3260W・min/mとした。
比較例10については、グロー放電処理の積算出力を109W・min/mとした。
これらの例の結果を表4にまとめる。
The integrated output of each example in which glow discharge treatment was performed in the second surface treatment step is as follows.
For Examples 9 and 12, the integrated output of the glow discharge treatment was set to 1086 W·min/m 2 .
For Example 10, the integrated output of the glow discharge treatment was set to 1629 W·min/m 2 .
For Example 11, the integrated output of the glow discharge treatment was set to 543 W·min/m 2 .
For Comparative Example 9, the integrated output of the glow discharge treatment was set to 3260 W·min/m 2 .
For Comparative Example 10, the integrated output of glow discharge treatment was set to 109 W·min/m 2 .
The results of these examples are summarized in Table 4.

Figure 2023121785000007
Figure 2023121785000007

また、上記の実施例及び比較例の光学積層体(反射防止フィルム)について、それぞれ特性を調べた。その結果を以下の表に示す。特性測定に用いた試験片は、光学積層体を巻き取ったロールの長さ方向略中央付近から切り出したものである。 Further, the characteristics of the optical laminates (antireflection films) of the above examples and comparative examples were examined. The results are shown in the table below. A test piece used for property measurement was cut from the vicinity of the approximate center in the length direction of the roll on which the optical layered body was wound.

Figure 2023121785000008
Figure 2023121785000008

Figure 2023121785000009
Figure 2023121785000009

Figure 2023121785000010
Figure 2023121785000010

Figure 2023121785000011
Figure 2023121785000011

Figure 2023121785000012
Figure 2023121785000012

Figure 2023121785000013
Figure 2023121785000013

(1)接触角(防汚性)
(1-1)純水に対する接触角測定試験
全自動接触角計DM-700(協和界面化学株式会社製)を用い、以下の条件で楕円フィッティング法によって測定した。蒸留水をガラスシリンジに入れて、その先端にステンレス製の針を取り付けて、光学積層体(試験片)に純水を滴下した。
純水の滴下量:2.0μL
測定温度:25℃
純水を滴下して4秒経過後の接触角を、試験片表面の任意の6か所で測定し、その平均値を純水接触角とした。
(1) Contact angle (antifouling property)
(1-1) Contact Angle Measurement Test for Pure Water Using a fully automatic contact angle meter DM-700 (manufactured by Kyowa Interface Science Co., Ltd.), measurement was performed by an ellipse fitting method under the following conditions. Distilled water was placed in a glass syringe, a stainless steel needle was attached to the tip of the syringe, and pure water was dropped onto the optical layered body (test piece).
Drop amount of pure water: 2.0 μL
Measurement temperature: 25°C
After 4 seconds from dropping the pure water, the contact angle was measured at six arbitrary points on the surface of the test piece, and the average value was taken as the pure water contact angle.

(1-2)オレイン酸、n-ヘキサデカン、ジヨードメタン(試薬)に対する接触角測定試験
全自動接触角計DM-700(協和界面化学株式会社製)を用い、以下の条件で楕円フィッティング法によって測定した。上記の各試薬をガラスシリンジに入れて、その先端にステンレス製の針を取り付けて、光学積層体(試験片)に各試薬をそれぞれ滴下した。
各試薬の滴下量:2.0μL
測定温度:25℃
各試薬を滴下して4秒経過後の接触角を、試験片表面の任意の10か所で測定し、その平均値をオレイン酸、n-ヘキサデカン、ジヨードメタンのそれぞれの接触角とした。
(1-2) Contact angle measurement test for oleic acid, n-hexadecane, and diiodomethane (reagent) Using a fully automatic contact angle meter DM-700 (manufactured by Kyowa Interface Science Co., Ltd.), measurement was performed by an ellipse fitting method under the following conditions. . Each of the above reagents was placed in a glass syringe, a stainless steel needle was attached to the tip of the syringe, and each reagent was dropped onto the optical layered body (test piece).
Drop amount of each reagent: 2.0 μL
Measurement temperature: 25°C
After 4 seconds from dropping each reagent, the contact angle was measured at arbitrary 10 points on the surface of the test piece, and the average value was taken as the contact angle of each of oleic acid, n-hexadecane and diiodomethane.

(2)フッ素量測定試験
光学積層体(試験片)のフッ素量(cps:単位時間当たりのカウント数)を測定した(洗浄前フッ素量(初期状態のフッ素量))。
(2) Fluorine content measurement test The fluorine content (cps: counts per unit time) of the optical laminate (test piece) was measured (fluorine content before cleaning (initial fluorine content)).

フッ素量の測定には、X線光電子分光測定器(Electron Spectroscopy for Chemical Analysis、ESCA)(PHI5000 VersaProb*eIII、アルバック・ファイ株式会社製)、および蛍光X線分析法(X-ray fluorescence analysis、XRF)(EDX-8000、株式会社島津製作所製)を用いた。X線光電子分光測定器および蛍光X線分析法によって求めたフッ素値(cps)は、初期状態はn=3、耐アルカリ試験後はn=15測定して得た結果から算出した平均値である。 For measuring the amount of fluorine, an X-ray photoelectron spectrometer (Electron Spectroscopy for Chemical Analysis, ESCA) (PHI5000 VersaProb * eIII, manufactured by ULVAC-Phi, Inc.) and a fluorescent X-ray analysis method (X-ray fluorescence analysis, XRF ) (EDX-8000, manufactured by Shimadzu Corporation) was used. The fluorine value (cps) obtained by the X-ray photoelectron spectrometer and the fluorescent X-ray analysis method is the average value calculated from the results obtained by measuring n = 3 in the initial state and n = 15 after the alkali resistance test. .

(3)耐アルカリ性試験
光学積層体(試験片)の光学特性を測定した(処理前サンプル)。
次に、濃度0.1mol/Lの水酸化ナトリウム水溶液(試薬)を調整した。
そして、光学積層体(試験片)に、内径38mmの円筒状部材を密着させ、その中に試薬を滴下し、ガラス板で上面開口に蓋をした。そして、液温55℃に保って4時間静置後、各試験片を蒸留水で洗浄し、処理後サンプルを得た。
(3) Alkali Resistance Test The optical properties of the optical layered body (test piece) were measured (pre-treatment sample).
Next, a sodium hydroxide aqueous solution (reagent) with a concentration of 0.1 mol/L was prepared.
Then, a cylindrical member having an inner diameter of 38 mm was brought into close contact with the optical laminate (test piece), a reagent was dropped therein, and the top opening was covered with a glass plate. After standing for 4 hours while maintaining the liquid temperature at 55° C., each test piece was washed with distilled water to obtain a post-treatment sample.

(3-1)光学特性測定(色相変化)
上述した処理前サンプルおよび処理後サンプルの裏面を透明テープで黒色アクリル板に貼着し、裏面反射を無くした。そして、光学特性を測定した。
光学測定には、積分球分光測色計(SP-64:X-rite株式会社製)を使用した。設定は、D65光源、10°とし、処理前サンプルおよび処理後サンプルのSCI(Specular Component Include、正反射光を考慮に入れた反射色の測定方法)による上記式(2)で示されるL*a*b*(CIE1976に準拠)値の変化量であるΔE値を算出した。
(3-2)アルカリ溶液によるフッ素残留量測定試験
上述した(2)の試験と同様にして、ESCA又はXRFを用いてアルカリ溶液による処理後サンプルのフッ素量(cps)を測定し、処理後サンプルのフッ素の残存率(%)を算出した。
(3-1) Optical property measurement (hue change)
The back surfaces of the samples before treatment and after treatment described above were attached to a black acrylic plate with a transparent tape to eliminate back surface reflection. Then, the optical properties were measured.
An integrating sphere spectrophotometer (SP-64: manufactured by X-rite Co., Ltd.) was used for the optical measurement. The setting is D65 light source, 10°, and L*a shown by the above formula (2) by SCI (Specular Component Include, a method of measuring the reflected color in consideration of specular light) of the sample before processing and the sample after processing. The ΔE value, which is the amount of change in the *b* (according to CIE1976) value, was calculated.
(3-2) Fluorine residual amount measurement test with alkaline solution In the same manner as the test in (2) above, the fluorine content (cps) of the sample after treatment with an alkaline solution is measured using ESCA or XRF, and the sample after treatment The fluorine residual rate (%) was calculated.

(4)スチールウールを用いた擦傷性試験
JIS L0849に準拠した摩擦試験機I形を用いて、光学積層体(試験片)の表面に沿って、摩擦体を水平往復運動させ、試験片を得た。
摩擦体としてスチールウール(ボンスター株式会社製 #0000番)を用いた。試験設定は、荷重1000g/cm、ストローク75mm、速度7mm/sとした。表に摩擦体の水平往復回数を示す。
(4) Abrasion resistance test using steel wool Using a friction tester type I conforming to JIS L0849, the friction body was horizontally reciprocated along the surface of the optical laminate (test piece) to obtain a test piece. Ta.
Steel wool (#0000 manufactured by Bonstar Co., Ltd.) was used as the friction body. The test settings were a load of 1000 g/cm 2 , a stroke of 75 mm and a speed of 7 mm/s. The table shows the number of horizontal reciprocations of the friction body.

(4-1)接触角
上述した(1-1)の試験と同様にして、摩擦後の試験片の接触角を測定し、摩擦前と500回水平往復運動(実施例6~12、比較例5~12は100回水平往復運動)させた摩擦後の試験片の接触角差を求めた。試験は摩擦後30分以内に実施した。
(4-2)光学特性測定(色相変化)
上述した(3-1)の試験と同様にして、摩擦前と500回水平往復運動(実施例6~12、比較例5~12は100回水平往復運動)させた摩擦後の試験片のSCIによるΔL値の変化量であるΔE値を算出した。
また、上述した(3-1)の試験と同様にして、摩擦前と500回水平往復運動(実施例6~12、比較例5~12は100回水平往復運動)させた摩擦後の試験片のSCE(Specular Component Exclude、正反射光を考慮に入れない反射色の測定法)による上記式(3)で示されるL値の変化量であるΔE値を算出した。
(4-1) Contact angle In the same manner as in the test (1-1) described above, the contact angle of the test piece after friction was measured, and 500 horizontal reciprocating motions before friction (Examples 6 to 12, Comparative Example 5 to 12), the contact angle difference of the test piece after 100 horizontal reciprocating motions) was determined. Testing was performed within 30 minutes after rubbing.
(4-2) Optical property measurement (hue change)
In the same manner as in the test (3-1) described above, the SCI of the test piece before rubbing and after rubbing 500 times of horizontal reciprocating motion (Examples 6 to 12, Comparative Examples 5 to 12 were 100 times of horizontal reciprocating motion). The ΔE value, which is the amount of change in the ΔL * a * b * values, was calculated.
In addition, in the same manner as in the test (3-1) described above, the test piece after friction was subjected to 500 horizontal reciprocating motions (Examples 6 to 12 and 100 horizontal reciprocating motions for Comparative Examples 5 to 12) before rubbing. The ΔE value, which is the amount of change in the L * a * b * values shown in the above formula (3), was calculated by SCE (Specular Component Exclude, a method of measuring reflected color that does not take into account specular reflected light).

(5)ウェス(不織布ワイパー)を用いた擦傷性試験
摩擦体としてウェス(不織布ワイパー)(ベンコットリントフリーCT-8、旭化成工業株式会社製)を用いたほかは、スチールウールを用いた擦傷性試験と同様にして擦傷性試験を実施した。試験設定は、荷重250g/cm、ストローク25mm、速度50mm/sとした。表に摩擦体の水平往復運動回数を示す。
(5-1)接触角
上述した(1-1)の試験と同様にして、摩擦後の試験片の接触角を測定し、摩擦前と4000回水平往復運動させた摩擦後の試験片の接触角差を求めた。試験は摩擦後30分以内に実施した。
(5) Scratchability test using a rag (nonwoven fabric wiper) In addition to using a rag (nonwoven fabric wiper) (Bemcot Lint-free CT-8, manufactured by Asahi Chemical Industry Co., Ltd.) as a friction body, an abrasion test using steel wool An abrasion test was carried out in the same manner as above. The test settings were a load of 250 g/cm 2 , a stroke of 25 mm and a speed of 50 mm/s. The table shows the number of horizontal reciprocating motions of the friction body.
(5-1) Contact angle In the same manner as in the test (1-1) described above, the contact angle of the test piece after friction was measured, and the contact of the test piece after friction and horizontal reciprocation 4000 times before friction. Find the angle difference. Testing was performed within 30 minutes after rubbing.

(5-2)フッ素残留量測定試験
上述した(2)の試験と同様にして、ESCAを用いてウェスを用いた水平往復運動を4000回行った後の処理後サンプルのフッ素量(cps)を測定し、処理後サンプルのフッ素の残存率(%)を算出した。
(5-2) Fluorine residual amount measurement test In the same manner as in the test (2) described above, the fluorine amount (cps) of the treated sample after performing 4000 horizontal reciprocating motions using a waste cloth using ESCA was measured. The fluorine residual rate (%) of the treated sample was calculated.

(6)超音波洗浄試験
フッ素系溶剤(フロリナートFC-3283:スリーエムジャパン株式会社製)を容器に入れ、光学積層体(試験片)を浸漬させて、超音波洗浄機(USK-5R、アズワン社製)を用い、40KHz、240Wで10分間超音波を印加した。その後、上記フッ素系溶剤を用いて試験片を洗い流した。そしてXRFを用いて超音波洗浄後サンプルのフッ素量(cps)を測定し、洗浄後サンプルのフッ素の残存率(%)を算出した。
(6) Ultrasonic cleaning test A fluorine-based solvent (Fluorinert FC-3283: manufactured by 3M Japan Co., Ltd.) is placed in a container, the optical laminate (test piece) is immersed, and an ultrasonic cleaning machine (USK-5R, AS ONE Corporation) is used. (manufacturer), and ultrasonic waves were applied at 40 KHz and 240 W for 10 minutes. After that, the test piece was washed away with the fluorine-based solvent. Then, the fluorine content (cps) of the sample after ultrasonic cleaning was measured using XRF, and the fluorine residual rate (%) of the sample after cleaning was calculated.

表2~表4に示すように、光学機能層14の表面を処理する表面処理工程と、表面処理された光学機能層14上に防汚層15を形成する防汚層形成工程とを行った実施例1~5の光学積層体は、表面処理工程を行わなかった比較例1と比較して、耐アルカリ試験のフッ素の残留率高く、色相変化ΔEも5以下と小さく、耐アルカリ性が良好であることが確認できた。
また、実施例1~5の光学積層体は、比較例1および2と比較して、ウェス(不織布ワイパー)を用いた擦傷性試験での接触角差が14以下と小さく、フッ素の残留率が高かった。
実施例1~5の光学積層体は、比較例1および2と比較して、耐アルカリ性試験での色相変化が小さく、フッ素の残留率が高かった。
As shown in Tables 2 to 4, a surface treatment step of treating the surface of the optical functional layer 14 and an antifouling layer forming step of forming the antifouling layer 15 on the surface-treated optical functional layer 14 were performed. The optical laminates of Examples 1 to 5 had a high fluorine residual rate in the alkali resistance test, a small hue change ΔE of 5 or less, and good alkali resistance as compared with Comparative Example 1 in which the surface treatment process was not performed. I was able to confirm something.
In addition, the optical laminates of Examples 1 to 5 had a contact angle difference of 14 or less in a scratch resistance test using a waste cloth (nonwoven fabric wiper), which is small, compared to Comparative Examples 1 and 2, and the fluorine residual rate was it was high.
Compared to Comparative Examples 1 and 2, the optical layered bodies of Examples 1 to 5 exhibited a smaller change in hue in the alkali resistance test and a higher percentage of residual fluorine.

実施例1~5の光学積層体は、比較例3と比較して、ウェス(不織布ワイパー)を用いた擦傷性試験での接触角差が14以下と小さく、かつ、耐アルカリ性試験での色相変化が小さく、フッ素の残存率が高かった。 Compared to Comparative Example 3, the optical laminates of Examples 1 to 5 had a smaller contact angle difference of 14 or less in a scratch resistance test using a waste cloth (non-woven fabric wiper), and a change in hue in an alkali resistance test. was small and the residual fluorine rate was high.

10、101、102…光学積層体
11…透明基材
12…ハードコート層
13…密着層
14…光学機能層
14a…高屈折率層
14b…低屈折率層
15…防汚層
20…製造装置
1…スパッタリング装置
2A、2B…前処理装置
3…蒸着装置
4…ロール巻き出し装置
5…ロール巻き取り装置
20…製造装置
21…真空ポンプ
22…ガイドロール
23…巻き出しロール
24…巻き取りロール
25…成膜ロール
26…キャンロール
31、32、33、34、35…チャンバー
41…成膜部
42…プラズマ放電装置
43…蒸着源
53…加熱装置
DESCRIPTION OF SYMBOLS 10, 101, 102... Optical laminated body 11... Transparent base material 12... Hard-coat layer 13... Adhesion layer 14... Optical function layer 14a... High-refractive-index layer 14b... Low-refractive-index layer 15... Antifouling layer 20... Manufacturing apparatus 1 Sputtering device 2A, 2B Pretreatment device 3 Vapor deposition device 4 Roll unwinding device 5 Roll winding device 20 Manufacturing device 21 Vacuum pump 22 Guide roll 23 Unwinding roll 24 Winding roll 25 Film formation roll 26 Can roll 31, 32, 33, 34, 35 Chamber 41 Film formation unit 42 Plasma discharge device 43 Vapor deposition source 53 Heating device

Claims (8)

透明基材と、ハードコート層と、密着層と、光学機能層と、防汚層とが順に積層されてなる光学積層体の製造方法であって、
ハードコート層を形成するハードコート層形成工程と、
密着層を形成する密着層形成工程と、
光学機能層を形成する光学機能層形成工程と、
前記光学機能層の表面をグロー放電処理する表面処理工程と、
表面処理された前記光学機能層上に防汚層を形成する防汚層形成工程と、を含み、
前記ハードコート層は、バインダ樹脂と、平均粒子径100nm以下のシリカ粒子と、を含有する硬化性樹脂組成物の硬化物からなり、
前記防汚層は、パーフルオロポリエーテル基を有するアルコキシシラン化合物を蒸着させた蒸着膜からなり、
前記密着層の厚みが1nm以上10nm以下であり、
前記光学機能層は、前記密着層側から順に、5~50nmの高屈折率層、10~80nmの低屈折率層、20~200nmの高屈折率層、50~200nmの低屈折率層とからなり、
前記防汚層は、厚み3nm以上10nm以下かつ表面粗さRaが3nm以上9nm以下であり、
前記密着層形成工程および前記光学機能層形成工程と前記表面処理工程と前記防汚層形成工程とを、減圧下で行い、
前記グロー放電処理の積算出力は、130W・min/m以上2000W・min/m以下である、光学積層体の製造方法。
A method for producing an optical laminate in which a transparent base material, a hard coat layer, an adhesion layer, an optical function layer, and an antifouling layer are laminated in order, comprising:
A hard coat layer forming step of forming a hard coat layer;
an adhesion layer forming step of forming an adhesion layer;
an optical functional layer forming step of forming an optical functional layer;
a surface treatment step of performing a glow discharge treatment on the surface of the optical function layer;
an antifouling layer forming step of forming an antifouling layer on the surface-treated optical function layer;
The hard coat layer is made of a cured product of a curable resin composition containing a binder resin and silica particles having an average particle size of 100 nm or less,
The antifouling layer is made of a vapor-deposited film obtained by vapor-depositing an alkoxysilane compound having a perfluoropolyether group,
The adhesion layer has a thickness of 1 nm or more and 10 nm or less,
The optical function layer comprises, in order from the adhesion layer side, a high refractive index layer of 5 to 50 nm, a low refractive index layer of 10 to 80 nm, a high refractive index layer of 20 to 200 nm, and a low refractive index layer of 50 to 200 nm. become,
The antifouling layer has a thickness of 3 nm or more and 10 nm or less and a surface roughness Ra of 3 nm or more and 9 nm or less,
The adhesion layer forming step, the optical function layer forming step, the surface treatment step, and the antifouling layer forming step are performed under reduced pressure,
The method for producing an optical laminate, wherein the glow discharge treatment has an integrated output of 130 W·min/m 2 or more and 2000 W·min/m 2 or less.
透明基材と、ハードコート層と、密着層と、光学機能層と、防汚層とが順に積層されてなる光学積層体の製造方法であって、
ハードコート層を形成するハードコート層形成工程と、
密着層を形成する密着層形成工程と、
光学機能層を形成する光学機能層形成工程と、
前記光学機能層の表面をグロー放電処理する表面処理工程と、
表面処理された前記光学機能層上に防汚層を形成する防汚層形成工程と、を含み、
前記ハードコート層は、バインダ樹脂と、平均粒子径0.5μm以上10μm以下の有機微粒子と、を含有する硬化性樹脂組成物の硬化物からなり、
前記防汚層は、パーフルオロポリエーテル基を有するアルコキシシラン化合物を蒸着させた蒸着膜からなり、
前記密着層の厚みが1nm以上10nm以下であり、
前記光学機能層は、前記密着層側から順に、5~50nmの高屈折率層、10~80nmの低屈折率層、20~200nmの高屈折率層、50~200nmの低屈折率層とからなり、
前記防汚層は、厚み3nm以上10nm以下かつ要素の平均長さ(RSm)が59.2nm以上86.2nm以下であり、
前記密着層形成工程および前記光学機能層形成工程と前記表面処理工程と前記防汚層形成工程とを、減圧下で行い、
前記グロー放電処理の積算出力は、130W・min/m以上2000W・min/m以下である、光学積層体の製造方法。
A method for producing an optical laminate in which a transparent base material, a hard coat layer, an adhesion layer, an optical function layer, and an antifouling layer are laminated in order, comprising:
A hard coat layer forming step of forming a hard coat layer;
an adhesion layer forming step of forming an adhesion layer;
an optical functional layer forming step of forming an optical functional layer;
a surface treatment step of performing a glow discharge treatment on the surface of the optical function layer;
an antifouling layer forming step of forming an antifouling layer on the surface-treated optical function layer;
The hard coat layer is made of a cured product of a curable resin composition containing a binder resin and organic fine particles having an average particle size of 0.5 μm or more and 10 μm or less,
The antifouling layer is made of a vapor-deposited film obtained by vapor-depositing an alkoxysilane compound having a perfluoropolyether group,
The adhesion layer has a thickness of 1 nm or more and 10 nm or less,
The optical function layer comprises, in order from the adhesion layer side, a high refractive index layer of 5 to 50 nm, a low refractive index layer of 10 to 80 nm, a high refractive index layer of 20 to 200 nm, and a low refractive index layer of 50 to 200 nm. become,
The antifouling layer has a thickness of 3 nm or more and 10 nm or less and an average element length (RSm) of 59.2 nm or more and 86.2 nm or less,
The adhesion layer forming step, the optical function layer forming step, the surface treatment step, and the antifouling layer forming step are performed under reduced pressure,
The method for producing an optical laminate, wherein the glow discharge treatment has an integrated output of 130 W·min/m 2 or more and 2000 W·min/m 2 or less.
前記密着層形成工程および前記光学機能層形成工程において、スパッタリングによって前記密着層および前記光学機能層を形成する、請求項1又は2に記載の光学積層体の製造方法。 3. The method for manufacturing an optical laminate according to claim 1, wherein the adhesion layer and the optical function layer are formed by sputtering in the adhesion layer forming step and the optical function layer forming step. 前記防汚層形成工程において、真空蒸着によって前記防汚層を形成する、請求項1~請求項3のいずれか一項に記載の光学積層体の製造方法。 The method for producing an optical layered body according to any one of claims 1 to 3, wherein in the antifouling layer forming step, the antifouling layer is formed by vacuum deposition. 前記光学機能層は、反射防止層及び選択反射層から選ばれるいずれか1種を含む、請求項1~請求項4のいずれか一項に記載の光学積層体の製造方法。 5. The method for producing an optical laminate according to claim 1, wherein the optical functional layer includes one selected from an antireflection layer and a selective reflection layer. 前記表面処理工程において、前記低屈折率層の表面を処理する、請求項1~請求項5のいずれか一項に記載の光学積層体の製造方法。 The method for producing an optical laminate according to any one of claims 1 to 5, wherein in the surface treatment step, the surface of the low refractive index layer is treated. 前記低屈折率層が、金属の酸化物を含む、請求項1~請求項6のいずれか一項に記載の光学積層体の製造方法。 The method for producing an optical laminate according to any one of claims 1 to 6, wherein the low refractive index layer contains a metal oxide. 前記密着層が、金属又は金属酸化物を含む、請求項1~請求項7のいずれか一項に記載の光学積層体の製造方法。 The method for producing an optical layered body according to any one of claims 1 to 7, wherein the adhesion layer contains a metal or a metal oxide.
JP2023102683A 2020-07-17 2023-06-22 Method for manufacturing optical laminate Pending JP2023121785A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020123317 2020-07-17
JP2020123317 2020-07-17
JP2022000546A JP7248830B2 (en) 2020-07-17 2022-01-05 Method for manufacturing optical laminate
JP2023040986A JP7303954B2 (en) 2020-07-17 2023-03-15 Method for manufacturing optical laminate

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2023040986A Division JP7303954B2 (en) 2020-07-17 2023-03-15 Method for manufacturing optical laminate

Publications (2)

Publication Number Publication Date
JP2023121785A true JP2023121785A (en) 2023-08-31
JP2023121785A5 JP2023121785A5 (en) 2024-06-04

Family

ID=81124835

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2023040986A Active JP7303954B2 (en) 2020-07-17 2023-03-15 Method for manufacturing optical laminate
JP2023102683A Pending JP2023121785A (en) 2020-07-17 2023-06-22 Method for manufacturing optical laminate

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2023040986A Active JP7303954B2 (en) 2020-07-17 2023-03-15 Method for manufacturing optical laminate

Country Status (1)

Country Link
JP (2) JP7303954B2 (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3360898B2 (en) * 1993-10-05 2003-01-07 日東電工株式会社 Method for producing antireflection member and polarizing plate
JP2008062460A (en) * 2006-09-06 2008-03-21 Konica Minolta Holdings Inc Optical film and image display element using it
JP2011013654A (en) * 2008-10-23 2011-01-20 Seiko Epson Corp Multilayer antireflection layer and method of producing the same, and plastic lens
JP2010191144A (en) * 2009-02-18 2010-09-02 Toppan Printing Co Ltd Antireflection film
CN105835465A (en) * 2015-01-13 2016-08-10 南昌欧菲光学技术有限公司 Antireflective anti-fingerprint laminate and manufacturing method thereof
JP6825825B2 (en) * 2015-05-27 2021-02-03 デクセリアルズ株式会社 Laminated thin film and manufacturing method of laminated thin film
US11624858B2 (en) * 2017-04-20 2023-04-11 Shin-Etsu Chemical Co., Ltd. Antireflective member and method of manufacture therefor
JP2021177200A (en) * 2018-07-31 2021-11-11 日本電産株式会社 Coating method, optical component and lens assembly
EP4116083A1 (en) * 2020-03-04 2023-01-11 Dexerials Corporation Optical laminate, article, and method for producing optical laminate
CN115175806A (en) * 2020-03-04 2022-10-11 迪睿合株式会社 Method for manufacturing optical laminate

Also Published As

Publication number Publication date
JP7303954B2 (en) 2023-07-05
JP2023068038A (en) 2023-05-16

Similar Documents

Publication Publication Date Title
JP7228067B2 (en) OPTICAL LAMINATED PRODUCT, ARTICLE, AND OPTICAL LAMINATED MANUFACTURING METHOD
JP7101297B2 (en) Manufacturing method of optical laminate, article, optical laminate
JP7147095B2 (en) Method for manufacturing optical laminate
WO2022014701A1 (en) Method for producing optical multilyer body
JP7273238B2 (en) Method for manufacturing optical laminate
JP7089609B2 (en) Manufacturing method of optical laminate, article, optical laminate
JP7303954B2 (en) Method for manufacturing optical laminate
JP7248830B2 (en) Method for manufacturing optical laminate
JP7089610B2 (en) Manufacturing method of optical laminate
WO2022014696A1 (en) Optical laminate, article, and method for producing optical laminate
TW202216458A (en) Method for manufacturing optical laminate

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240527

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240527