JP2023119769A - ターボ式流体機械 - Google Patents

ターボ式流体機械 Download PDF

Info

Publication number
JP2023119769A
JP2023119769A JP2022022811A JP2022022811A JP2023119769A JP 2023119769 A JP2023119769 A JP 2023119769A JP 2022022811 A JP2022022811 A JP 2022022811A JP 2022022811 A JP2022022811 A JP 2022022811A JP 2023119769 A JP2023119769 A JP 2023119769A
Authority
JP
Japan
Prior art keywords
impeller
passage
chamber
fluid
rectifying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022022811A
Other languages
English (en)
Inventor
亮 楳山
Akira Umeyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2022022811A priority Critical patent/JP2023119769A/ja
Priority to US18/104,980 priority patent/US20230258200A1/en
Priority to CN202310109024.XA priority patent/CN116608138A/zh
Priority to DE102023103647.5A priority patent/DE102023103647A1/de
Publication of JP2023119769A publication Critical patent/JP2023119769A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • F04D17/12Multi-stage pumps
    • F04D17/122Multi-stage pumps the individual rotor discs being, one for each stage, on a common shaft and axially spaced, e.g. conventional centrifugal multi- stage compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • F04D17/12Multi-stage pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D25/0606Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/441Fluid-guiding means, e.g. diffusers especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/582Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
    • F04D29/5826Cooling at least part of the working fluid in a heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/582Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
    • F04D29/584Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps cooling or heating the machine

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

【課題】第2圧縮流体の圧力を十分に高くできるとともに、製造コストの低廉化と、小型化とを実現可能なターボ式流体機械を提供する。【解決手段】本発明のターボ式流体機械は、ハウジング1、第1、2インペラ7、8、圧縮流体通路9及び第1整流路31a~31g等を備えている。ハウジング1には、第1、2インペラ室27a、29aが形成されている。第1インペラ7は第1インペラ室27aに収容されており、空気を圧縮して第1圧縮空気とする。第2インペラ8は第2インペラ室29aに収容されており、第1圧縮空気を圧縮して第2圧縮空気とする。圧縮流体通路9は第1圧縮空気を第2インペラ室29aに供給する。第1整流路31a~31gは圧縮流体通路9の内部に設けられている。第1整流路31a~31gは、圧縮流体通路9が延びる方向に延び、第1圧縮流体を整流しつつ第2インペラ室29aに供給する。【選択図】図1

Description

本発明はターボ式流体機械に関する。
特許文献1、2に従来のターボ式流体機械が開示されている。特許文献1のターボ式流体機械は、ハウジングと、電動モータと、インペラと、駆動軸と、圧縮流体通路とを備えている。ハウジングには、インペラ室及びモータ室が形成されている。インペラ室は、第1インペラ室と、第1インペラ室に対して駆動軸の軸方向に離隔する第2インペラ室とからなる。モータ室は、第1インペラ室と第2インペラ室との間に配置されている。電動モータはモータ室内に収容されている。
インペラは、第1インペラ室に収容された第1インペラと、第2インペラ室に収容された第2インペラとからなる。駆動軸はハウジング内に収容されており、軸方向に延びて第1、2インペラと電動モータとを連結している。また、ハウジングには、吐出口と吸入口とが形成されている。吐出口は第1インペラ室と連通しており、吸入口は第2インペラ室と連通している。圧縮流体通路は、ハウジングの外部に位置しており、吐出口と吸入口とを接続している。
このターボ式流体機械では、電動モータの回転によって第1、2インペラが回転することで流体が2段階に圧縮される。具体的には、第1インペラは、第1インペラ室内の流体を圧縮して第1圧縮流体とする。この第1圧縮流体は、圧縮流体通路によって、第1インペラ室から第2インペラ室に供給される。そして、第2インペラは、第1圧縮流体を圧縮して第2圧縮流体とする。
このターボ式流体機械は、回転する第1インペラ及び第2インペラによって、第1圧縮流体及び第2圧縮流体には回転成分が付与される。ここで、このターボ式流体機械では、第1圧縮流体が回転成分を有したまま圧縮流体通路を流通して第2インペラ室に供給される。このため、第2インペラによって第1圧縮流体を圧縮して第2圧縮流体とするに当たって、第1圧縮流体の回転成分により、第2圧縮流体の圧力を高くし難く、流体の圧縮性能が低い。
これに対し、特許文献2のターボ式流体機械では、圧縮流体通路の内部に仕切板が設けられている。仕切板は、中心部に第1圧縮流体が流通可能な開口が形成されており、円環状をなしている。また、仕切板には、複数のリターンガイドベーンが形成されている。各リターンガイドベーンは、仕切板の周方向に配置されている。
このターボ式流体機械では、圧縮流体通路を流通する第1圧縮流体は、各リターンガイドベーンにより、仕切板の外周側から開口に案内されて開口内を流通しつつ、吸入口に向かって流通する。このように、このターボ式流体機械では、仕切板が各リターンガイドベーンによって第1圧縮流体を整流しつつ第2インペラ室に供給する。この結果、このターボ式流体機械は、第2圧縮流体の圧力を十分に高くできる。
特開2015-187444号公報 特開平8-200296号公報
この種のターボ式流体機械は、車両等への搭載性を向上させるために小型化が要求される。しかし、特許文献2のターボ式流体機械は、仕切板の構成が複雑であるため、仕切板を小型化することが難しい。また、仕切板を設けるためのスペースを確保するために圧縮流体通路も大型化が不可避となる。このため、このターボ式流体機械では小型化が難しい。また、仕切板の構成が複雑であることから、このターボ式流体機械では製造コストが高騰化する。
本発明は、上記従来の実情に鑑みてなされたものであって、高い圧縮性能を発揮しつつ、小型化及び製造コストの低廉化を実現可能なターボ式流体機械を提供することを解決すべき課題としている。
本発明のターボ式流体機械は、インペラ室及びモータ室が形成されたハウジングと、
前記モータ室に収容された電動モータと、
前記インペラ室に収容され、前記電動モータの回転によって流体を圧縮するインペラと、
前記ハウジング内に収容され、前記インペラと前記電動モータとを連結する駆動軸とを備え、
前記インペラ室は、第1インペラ室と、前記第1インペラ室に対して前記駆動軸の軸方向に離隔する第2インペラ室とを有し、
前記インペラは、前記第1インペラ室に収容され、前記流体を圧縮して第1圧縮流体とする第1インペラと、前記第2インペラ室に収容され、前記第1圧縮流体を圧縮して第2圧縮流体とする第2インペラとを有しているターボ式流体機械であって、
前記第1圧縮流体を前記第2インペラ室に供給する圧縮流体通路と、
前記圧縮流体通路の内部に設けられて前記圧縮流体通路が延びる方向に延び、前記第1圧縮流体を整流しつつ前記第2インペラ室に供給する複数の整流路とをさらに備えていることを特徴とする。
本発明のターボ式流体機械は、圧縮流体通路の内部に設けられた各整流路が第1圧縮流体を整流しつつ第2インペラ室に供給する。これにより、第1圧縮流体を整流せずに第2インペラ室に供給する場合に比べて、このターボ式流体機械は、第2インペラ室に供給された第1圧縮流体の回転成分を低減させることができる。このため、このターボ式流体機械では、第2インペラによって第2圧縮流体の圧力を十分に高くできる。
ここで、各整流路は、前記圧縮流体通路が延びる方向に延びる形状であるため、このターボ式流体機械では、各整流路の構成を簡素化して小型化と低廉化とを図りつつも、各整流路を第1圧縮流体が流通する過程で第1圧縮流体を好適に整流することができる。また、このターボ式流体機械では、複数の整流路を内部に設けつつも圧縮流体通路の大型化を抑制できる。
したがって、本発明のターボ式流体機械は、高い圧縮性能を発揮しつつ、小型化及び製造コストの低廉化を実現可能である。
各整流路は、第1インペラ室よりも第2インペラ室に近い位置に配置されていることが好ましい。この場合には、各整流路によって整流された第1圧縮流体について、圧力損失を可及的に少なくしつつ第2インペラ室に供給することが可能となる。
また、各整流路は、直線状に延びる円筒体からなることが好ましい。この場合には、各整流路を容易に形成できるため、製造コストをより低廉化することができる。また、各整流路が円筒体であるため、第1圧縮流体が各整流路の内部を好適に流通できるとともに、各整流路の内部を流通する過程で第1圧縮流体を好適に整流することができる。
圧縮流体通路には、各整流路を流通する第1圧縮流体の冷却を行う冷却部が設けられていることが好ましい。この場合には、第1圧縮流体を冷却しつつ第2インペラ室に供給することができるため、第2インペラについて、過度に高い耐熱性を有する材料で形成する必要がない。この点においても、このターボ式流体機械では製造コストを低廉化できる。
また、第1圧縮流体を冷却することにより、第2圧縮流体の高温化も抑制できる。このため、このターボ式流体機械では、第2圧縮流体を冷却するための冷却部を必ずしも設ける必要がない。さらに、このターボ式流体機械では、圧縮流体通路が高温となることも抑制できる。
本発明のターボ式流体機械は、高い圧縮性能を発揮しつつ、小型化及び製造コストの低廉化を実現可能である。
図1は、実施例1のターボ式流体機械を示す断面図である。 図2は、実施例1のターボ式流体機械に係り、図1のX部分を示す要部拡大断面図である。 図3は、実施例1のターボ式流体機械に係り、図2のA-A矢視断面を示す断面図である。 図4は、実施例1のターボ式流体機械に係り、圧縮流体通路の通路断面積と、整流路の通路断面積とを示す模式図である。図4の(A)は、圧縮流体通路の通路断面積を示している。図4の(B)は、整流路の通路断面積を示している。 図5は、実施例2のターボ式流体機械に係り、圧縮流体通路、整流路及び冷却部を示す図2と同様の要部拡大断面図である。 図6は、実施例2のターボ式流体機械に係り、図5のB-B矢視断面を示す断面図である。 図7は、実施例2のターボ式流体機械に係り、圧縮流体通路の通路断面積と、整流路の通路断面積とを示す模式図である。図7の(A)は、圧縮流体通路の通路断面積を示している。図7の(B)は、整流路の通路断面積を示している。 図8は、実施例2のターボ式流体機械に係り、図5のC-C矢視断面を示す断面図である。 図9は、実施例3のターボ式流体機械に係り、図3と同方向の断面図である。 図10は、実施例3のターボ式流体機械に係り、圧縮流体通路の通路断面積と、整流路の通路断面積とを示す模式図である。図10の(A)は、圧縮流体通路の通路断面積を示している。図10の(B)は、整流路の通路断面積を示している。
以下、本発明を具体化した実施例1~3を図面を参照しつつ説明する。実施例1~3のターボ式流体機械は、いずれも燃料電池車に搭載されており、燃料電池スタックと接続している。なお、燃料電池車及び燃料電池スタックの図示は省略する。
図1~3に示すように、実施例1のターボ式流体機械は、ハウジング1と、電動モータ3と、駆動軸5と、第1インペラ7と、第2インペラ8と、圧縮流体通路9と、7本の第1整流路31a~31gとを備えている。各第1整流路31a~31gは、本発明における「整流路」の一例である。
本実施例では、図1に示す実線矢印によって、ターボ式流体機械の前後方向を規定している。この前後方向は、本発明における「駆動軸の軸方向」の一例である。なお、ターボ式流体機械は、搭載される車両に応じて、自己の姿勢を適宜変更可能である。
ハウジング1はアルミニウム合金製である。図1に示すように、ハウジング1は、モータハウジング10と、第1プレート11と、第2プレート12と、第3プレート13と、第1コンプレッサハウジング14と、第2コンプレッサハウジング15とからなる。
モータハウジング10は、端壁10aと周壁10bとを有している。端壁10aは、モータハウジング10の後端に位置しており、モータハウジング10の径方向に延びている。端壁10aは、前方に面する第1端面101と、第1端面101の反対側に位置して後方に面する第2端面102とを有している。第2端面102は、モータハウジング10の後端面を構成している。
周壁10bは、端壁10aと一体をなしており、端壁10aから前方に向かって筒状に延びている。周壁10bは、前方が開口している。これらの端壁10a及び周壁10bにより、モータハウジング10は有底の筒状をなしている。また、周壁10bの前端にはフランジ部10cが形成されている。フランジ部10cは、周壁10bよりもモータハウジング10の径方向に突出している。
第1プレート11はモータハウジング10の前方に位置している。第1プレート11は、前方に位置する第1前面11aと、後方に位置する第1後面11bとを有している。第1プレート11は、第1後面11bをフランジ部10cと当接させつつ、フランジ部10cと連結されている。これにより、第1プレート11は、周壁10bの開口を閉塞している。こうして、端壁10a、周壁10b及び第1後面11bによって、モータハウジング10の内部にモータ室30が区画されている。
第1プレート11には、第1ボス部11cと、第1凹部11dと、第1軸孔11eとが形成されている。第1ボス部11cは、第1後面11bから後方に向かって円筒状に突出しており、モータ室30内に延びている。第1ボス部11cの内部には、第1ラジアル軸受21aが設けられている。
第1凹部11dは、第1前面11aから後方に向かって凹設されている。第1凹部11dの内部には、第1スラスト軸受23a及び第2スラスト軸受23bが設けられている。第1軸孔11eは、第1プレート11の中央部に位置しており、第1プレート11を前後方向に貫通している。これにより、第1軸孔11eは、前端で第1凹部11dと連通しており、後端で第1ボス部11cと連通している。これらの第1ボス部11c、第1凹部11d及び第1軸孔11eは、互いに同軸をなしている。
また、モータハウジング10の端壁10aには、第2ボス部10dと、第2軸孔10eとが形成されている。第2ボス部10dは、第1端面101から前方に向かって円筒状に突出しており、モータ室30内に延びている。第2ボス部10dの内部には、第2ラジアル軸受21bが設けられている。第2軸孔10eは、端壁10aの中央部に位置しており、端壁10aを前後方向に貫通している。これにより、第2軸孔10eは、前端で第2ボス部10dと連通している。第2ボス部10d及び第2軸孔10eは、第1ボス部11c、第1凹部11d及び第1軸孔11eと同軸をなしている。
第2プレート12は第1プレート11の前方に位置している。第2プレート12は、前方に位置する第2前面12aと、後方に位置する第2後面12bとを有している。第2プレート12は、第2後面12bを第1前面11aに当接させつつ、第1プレート11と連結されている。
第2プレート12には、第2凹部12cと第3軸孔12dとが形成されている。第2凹部12cは、第2前面12aから後方に向かって凹設されている。第2凹部12cは第1凹部11dよりも小径に形成されている。第2凹部12cの内部には、第1シール部材25aが設けられている。第3軸孔12dは、第2プレート12の中央部に位置しており、第2プレート12を前後方向に貫通している。これにより、第3軸孔12dは、前端で第2凹部12cと連通しており、後端で第1凹部11dと連通している。第2凹部12c及び第3軸孔12dは、第1ボス部11c、第1凹部11d及び第1軸孔11eと同軸をなしている。
第3プレート13はモータハウジング10の後方に位置している。第3プレート13は、前方に位置する第3前面13aと、後方に位置する第3後面13bとを有している。第3プレート13は、第3前面13aを端壁10aの第2端面102に当接させつつ、モータハウジング10と連結されている。
第3プレート13には、第3凹部13cと第4軸孔13dとが形成されている。第3凹部13cは、第3後面13bから前方に向かって凹設されている。第3凹部13cは第2凹部12cと同径に形成されている。第3凹部13cの内部には、第2シール部材25bが設けられている。第4軸孔13dは、第3プレート13の中央部に位置しており、第3プレート13を前後方向に貫通している。これにより、第4軸孔13dは、前端で第2軸孔10eと連通しており、後端で第3凹部13cと連通している。第3凹部13c及び第4軸孔13dは、第2ボス部10d及び第2軸孔10eと同軸をなしている。つまり、第3凹部13c及び第4軸孔13dは、第1ボス部11c、第1凹部11d、第1軸孔11e、第2凹部12c及び第3軸孔12dと同軸をなしている。
第1コンプレッサハウジング14は第2プレート12の前方に位置している。第1コンプレッサハウジング14は筒状をなしており、第2プレート12の第2前面12aと当接しつつ第2プレート12に連結されている。これにより、第1コンプレッサハウジング14は、ハウジング1の前端部を構成している。また、第1コンプレッサハウジング14には、第1吸入口14aと、第1吐出口14bとが形成されている。
第1吸入口14aは、第3軸孔12dと同軸をなしており、第1コンプレッサハウジング14の内部を前後方向に延びている。第1吸入口14aは、前端が第1コンプレッサハウジング14の前端面140に開口している。第1吸入口14aには、吸入配管37が接続されている。第1吸入口14aには、吸入配管37を通じてハウジング1の外部から、酸素を含む空気が吸入される。空気は本発明における「流体」の一例である。
第1吐出口14bは、第1コンプレッサハウジング14の内部を径方向に延びており、第1コンプレッサハウジング14の外周面141に開口している。第1吐出口14bには、後述する圧縮流体通路9の第1直線通路9aが接続されている。
また、第1コンプレッサハウジング14と第2前面12aとの間には、第1インペラ室27aと、第1吐出室27bと、第1ディフューザ流路27cとが形成されている。第1インペラ室27aは第1吸入口14aに連通している。第1吐出室27bは、第1インペラ室27aの周囲で第1吸入口14aの軸心周りに延びている。第1吐出室27bは第1吐出口14bと連通している。第1ディフューザ流路27cは、第1インペラ室27aと第1吐出室27bとを連通している。これにより、第1インペラ室27aは、第1ディフューザ流路27c及び第1吐出室27bを通じて第1吐出口14bと連通している。
第2コンプレッサハウジング15は第3プレート13の後方に位置している。第1コンプレッサハウジング14と同様、第2コンプレッサハウジング15も筒状をなしている。第2コンプレッサハウジング15は、第3プレート13の第3後面13bと当接しつつ第3プレート13に連結されている。これにより、第2コンプレッサハウジング15は、ハウジング1の後端部を構成している。また、第2コンプレッサハウジング15には、第2吸入口15aと、第2吐出口15bとが形成されている。
第2吸入口15aは、第1吸入口14aと同軸をなしており、第2コンプレッサハウジング15の内部を前後方向に延びている。また、第2吸入口15aは、後端が第2コンプレッサハウジング15の後端面150に開口している。第2吸入口15aには、後述する圧縮流体通路9の第4直線通路9dが接続されている。
第2吐出口15bは第2コンプレッサハウジング15の内部を第2コンプレッサハウジング15の径方向に延びており、第2コンプレッサハウジング15の外周面151に開口している。第2吐出口15bには、吐出配管39が接続している。この吐出配管39を通じて、ターボ式流体機械は、燃料電池スタックと接続している。
また、第2コンプレッサハウジング15と第3後面13bとの間には、第2インペラ室29aと、第2吐出室29bと、第2ディフューザ流路29cとが形成されている。第2インペラ室29aは第2吸入口15aに連通している。第2吐出室29bは、第2インペラ室29aの周囲で第2吸入口15aの軸心周りに延びている。第2吐出室29bは第2吐出口15bと連通している。第2ディフューザ流路29cは、第2インペラ室29aと第2吐出室29bとを連通している。これにより、第2インペラ室29aは、第2ディフューザ流路29c及び第2吐出室29bを通じて第2吐出口15bと連通している。
このように、ハウジング1では、第1インペラ室27aと第2インペラ室29aとが前後方向に離隔しており、第1インペラ室27aと第2インペラ室29aとの間にモータ室30が配置されている。
電動モータ3はモータ室30内に収容されている。電動モータ3は、ステータ3aとロータ3bとを有している。ステータ3aは前後方向に延びる円筒状に形成されており、周壁10bの内周面に固定されている。ステータ3aは、ハウジング1の外部に設けられた給電装置(図示略)と接続されている。ロータ3bはステータ3aよりも小径をなして前後方向に延びる円筒状に形成されている。ロータ3bはステータ3a内に配置されている。
駆動軸5は、軸方向、すなわち前後方向に延びる円柱状に形成されており、前方から後方に向かって順に、第1軸部5a、第2軸部5b、第3軸部5c、第4軸部5d及び第5軸部5eを有している。第1軸部5aと第5軸部5eとは同径に形成されており、駆動軸5において最も小径に形成されている。第2軸部5bと第4軸部5dとは同径に形成されており、第1、5軸部5a、5eよりも大径に形成されている。第2軸部5bは前端で第1軸部5aと接続している。第4軸部5dは後端で第5軸部5eと接続している。第3軸部5cは駆動軸5において最も大径に形成されている。第3軸部5cは前端で第2軸部5bと接続しており、後端で第4軸部5dと接続している。
駆動軸5はハウジング1内に挿通されており、駆動軸心O周りで回転可能となっている。また、駆動軸5では、第1軸部5aが第1インペラ室27a内に延びている。なお、駆動軸心Oは、ターボ式流体機械の前後方向と平行に延びている。
第2軸部5bは、第3軸孔12d及び第1軸孔11eに挿通されつつ、第2凹部12c内及び第1凹部11d内に延びている。また、第2軸部5bは、第2凹部12c内において第1シール部材25aに挿通されている。これにより、第1シール部材25aは、第1インペラ室27aと第1凹部11d及びモータ室30との間を封止している。さらに、第2軸部5bは、第1凹部11d内において、第1、2スラスト軸受23a、23bに挿通されている他、支持プレート51に圧入されている。支持プレート51は、第1スラスト軸受23aと第2スラスト軸受23bとの間に位置している。これにより、支持プレート51は、第2後面12bとの間で第1スラスト軸受23aを前後方向に挟持しているとともに、第1凹部11dの壁面との間で第2スラスト軸受23bを前後方向に挟持している。
第3軸部5cはモータ室30内に延びており、ロータ3bに挿通されつつロータ3bに固定されている。また、第3軸部5cは、第1ボス部11c内において第1ラジアル軸受21aに支承されているとともに、第2ボス部10d内において第2ラジアル軸受21bに支承されている。
第4軸部5dは、第4軸孔13dに挿通されつつ、第3凹部13cに延びている。また、第4軸部5dは、第3凹部13c内において第2シール部材25bに挿通されている。これにより、第2シール部材25bは、第2インペラ室29aとモータ室30との間を封止している。そして、第5軸部5eは第2インペラ室29a内に延びている。
第1インペラ7は第1インペラ室27a内に収容されている。第1インペラ7は、前方から後方に向かうにつれて次第に拡径する略円錐形状に形成されている。一方、第2インペラ8は第2インペラ室29a内に収容されている。第2インペラ8は、第1インペラ7と前後方向に対称の形状をなしている。つまり、第2インペラ8は、前方から後方に向かうにつれて次第に縮径する略円錐形状に形成されている。第1インペラ7はアルミニウム合金製とされており、第2インペラ8は鉄鋼製とされている。
第1インペラ7は駆動軸5の第1軸部5aに固定されている。そして、第2インペラ8は駆動軸5の第5軸部5eに固定されている。こうして駆動軸5は、第1、2インペラ7、8と電動モータ3とを連結している。
圧縮流体通路9は、ハウジング1とは別体をなしており、ハウジング1の外部に設けられている。圧縮流体通路9は、第1直線通路9aと、第2直線通路9bと、第3直線通路9cと、第4直線通路9dと、第1コーナ通路9eと、第2コーナ通路9fと、第3コーナ通路9gとを有している。これらの第1~4直線通路9a~9d及び第1~3コーナ通路9e~9g、すなわち圧縮流体通路9は、円筒状をなす金属製の配管によって形成されており、内部を第1圧縮空気が流通可能となっている。なお、第1圧縮空気についての詳細は後述する。
第1~4直線通路9a~9dは、第1圧縮空気が長手方向に流通可能となっており、長手方向に直線状に延びている。図2及び図3に示すように、第3直線通路9cは、内径の長さが第1長さL1とされている。図1に示す第1、2、4直線通路9a、9b、9dについても同様に、内径の長さが第1長さL1とされている。第1~3コーナ通路9e~9gは、略直角に屈曲している。第1~3コーナ通路9e~9gは、第1~4直線通路9a~9dよりも内径が大きく形成されており、内部に第1~4直線通路9a~9dを挿通可能となっている。
圧縮流体通路9では、後述する第1圧縮空気の流通方向において、第1直線通路9a、第1コーナ通路9e、第2直線通路9b、第2コーナ通路9f、第3直線通路9c、第3コーナ通路9g及び第4直線通路9dがこの順で配置されている。そして、圧縮流体通路9では、第1直線通路9aの一端側が第1吐出口14bに接続されている。また、第1コーナ通路9eによって、第1直線通路9aの他端側と第2直線通路9bの一端側とが接続されている。さらに、第2コーナ通路9fによって、第2直線通路9bの他端側と第3直線通路9cの一端側とが接続されている。また、第3コーナ通路9gによって、第3直線通路9cの他端側と第4直線通路9dの一端側とが接続されている。そして、第4直線通路9dの他端側が第2吸入口15aに接続されている。こうして、圧縮流体通路9は、第1吐出口14bと第2吸入口15aとを接続している。また、第1~4直線通路9a~9dは、圧縮流体通路9における直線部を構成しており、第1~3コーナ通路9e~9gは、圧縮流体通路9におけるコーナ部を構成している。
ここで、圧縮流体通路9において、第3直線通路9cから第2吸入口15aまでの距離は、第1吐出口14bから第3直線通路9cまでの距離に比べて短くなっている。つまり、圧縮流体通路9において第3直線通路9cは、第1吐出口14bよりも第2吸入口15aに近い位置、すなわち、第1インペラ室27aよりも第2インペラ室29aに近い位置に配置されている。なお圧縮流体通路9の形状は適宜設計可能である。
図1~3に示すように、第1整流路31a~31gは、第3直線通路9cの内部に設けられている。これにより、第1整流路31a~31gは、圧縮流体通路9において、第1インペラ室27aよりも第2インペラ室29aに近い位置に配置されている。
図2及び図3に示すように、第1整流路31a~31gはいずれも同一の構成であり、第3直線通路9cの長手方向と平行で直線状に延びる金属製の円筒体によって形成されている。より具体的には、第1整流路31a~31gは、公用品の金属製のパイプによって形成されている。これにより、第1整流路31a~31gでは、内部を第1圧縮空気が流通可能となっている。第1整流路31a~31gは、長手方向が第3直線通路9cの長手方向よりも短く形成されている。なお、第1整流路31a~31gは、複数であれば、その個数は適宜設計可能である。また、第1整流路31a~31gを樹脂製の円筒体で形成しても良い。
また、第1整流路31a~31gの各内径の長さは、第2長さL2とされている。ここで、第2長さL2は、圧縮流体通路9の内径の長さである第1長さL1よりも短い長さとなっている。より具体的には、第2長さL2は、第1長さL1の3分の1の長さよりも短い長さとなっている。これにより、図4の(B)に示すように、第1整流路31a~31gの個々の通路断面積である第2通路断面積S2は、図4の(A)に示す第3直線通路9cの通路断面積である第1通路断面積S1よりも小さくなっている。さらに、第1整流路31a~31gの個数に対応した7つの第2通路断面積S2の和についても、第1通路断面積S1よりも小さくなっている。
図3に示すように、第1整流路31a~31gは、中心部分に第1整流路31aを位置させつつ、第1整流路31aの周方向に他の第1整流路31b~31gを並べた状態で互いに接着されている。そして、第1整流路31a~31gは、この状態で第3直線通路9cの内部に挿通されており、第3直線通路9cの内周面901に接着されて固定されている。こうして、第1整流路31a~31gは第3直線通路9cの内部に設けられている。
以上のように構成されたこのターボ式流体機械では、給電装置から図1に示す電動モータ3に給電が行われることで、電動モータ3が作動し、駆動軸5が駆動軸心O周りで回転する。このため、第1インペラ室27a内で第1インペラ7が駆動軸心O周りで回転するとともに、第2インペラ室29a内で第2インペラ8が駆動軸心O周りで回転する。これにより、このターボ式流体機械では、第1吸入口14aから吸入された空気を第1インペラ7及び第2インペラ8によって2段階で圧縮する。
具体的には、第1インペラ7は、第1吸入口14aから第1インペラ室27a内に吸入され吸入された空気を圧縮して第1圧縮空気としつつ、第1インペラ室27aから第1吐出室27bに向けて流通させる。つまり、第1圧縮空気は、第1吸入口14aから第1インペラ室27a内に吸入された際の空気よりも高圧となっている。
そして、第1圧縮空気は第1吐出口14bから圧縮流体通路9内に吐出され、第1直線通路9a、第1コーナ通路9e、第2直線通路9b、第2コーナ通路9f、第3直線通路9c、第1整流路31a~31g、第3コーナ通路9g及び第4直線通路9dの順で流通し、第2吸入口15aから第2インペラ室29a内に供給される。
そして、第2インペラ8は、第2インペラ室29a内に供給された第1圧縮空気をさらに圧縮し、第1圧縮空気よりも高圧の第2圧縮空気としつつ、第2インペラ室29aから第2吐出室29bに向けて流通させる。こうして、この第2圧縮空気は第2吐出口15bから吐出配管39内に吐出され、吐出配管39内を経て燃料電池スタックのカソードに供給される。
このターボ式流体機械では、駆動軸心O周りに回転する第1インペラ7及び第2インペラ8によって、第1圧縮空気及び第2圧縮流体には、それぞれ回転成分が付与される。ここで、このターボ式流体機械では、第1整流路31a~31gによって、圧縮流体通路9内を流通する第1圧縮空気を整流しつつ、第2インペラ室29a内に供給することが可能となっている。
すなわち、図2の破線矢印で示すように、第1吐出口14bから吐出された第1圧縮空気は、回転成分を多く有した状態で第1直線通路9a、第1コーナ通路9e、第2直線通路9b、第2コーナ通路9f及び第3直線通路9cを経て、第1整流路31a~31gに至る。そして、第1整流路31a~31gに至った第1圧縮空気は、各第1整流路31a~31gの内部を流通する。これらの各第1整流路31a~31gの各内径の長さは第2長さL2とされており、第3直線通路9cの内径の長さである第1長さL1よりも短くなっている。このため、第1整流路31a~31gは、第3直線通路9cよりも小径であり、第2通路断面積S2は、第1通路断面積S1よりも小さくなっている。つまり、第1整流路31a~31gの内部は、第3直線通路9cの内部よりも狭くなっている。
このため、第1整流路31a~31gの内部を流通する第1圧縮空気は、その過程で徐々に整流され、回転成分を低減させる。この結果、第1整流路31a~31gを経た第1圧縮空気は、第1整流路31a~31gに至る前よりも回転成分を低減させた状態で第3コーナ通路9g及び第4直線通路9dを流通することになる。このため、第1圧縮流体は、第1吐出口14bに吐出された際よりも、回転成分を低減させた状態で第2吸入口15aから第2インペラ室29a内に供給される。
こうして、このターボ式流体機械では、第2インペラ8によって第1圧縮流体を圧縮して第2圧縮流体とする際、第2圧縮流体の圧力を十分に高くすることが可能となっている。これにより、このターボ式流体機械では、燃料電池スタックのカソードに対し、高い圧力を有した第2圧縮空気を供給することが可能となっている。なお、厳密には、第1整流路31a~31g同士の間と、第3直線通路9cとの間には隙間が存在するため、第1圧縮流体の一部は、この隙間内を流通する。そして、この隙間内を流通した第1圧縮空気は、第1整流路31a~31gの内部を流通した第1圧縮流体とともに第2インペラ室29a内に供給されて第2インペラ8に圧縮されることになる。
ここで、第1整流路31a~31gは、第1通路断面積S1よりも小さい第2通路断面積S2を有して直線状に延びる円筒体、より具体的には公用品のパイプによって形成されている。また、第1整流路31a~31gの個数に対応した7つ第2通路断面積S2の和は、第1通路断面積S1よりも小さくなっている。これにより、このターボ式流体機械では、第1整流路31a~31gの構成を簡素化して小型化と低廉化とを図りつつも、第1整流路31a~31gの内部を第1圧縮空気が流通する過程で第1圧縮空気を好適に整流することが可能となっている。また、このターボ式流体機械では、第1整流路31a~31gを内部に設けつつも、第3直線通路9c、ひいては圧縮流体通路9の大型化を抑制することが可能となっている。
したがって、実施例1のターボ式流体機械は、高い圧縮性能を発揮しつつ、小型化及び製造コストの低廉化を実現可能である。
特に、第1整流路31a~31gは第3直線通路9cに設けられることにより、第1インペラ室27aよりも第2インペラ室29aに近い位置に配置されている。このため、このターボ式流体機械は、第1整流路31a~31gを経た後、第2吸入口15aから第2インペラ室29aに供給されるまでの間における第1圧縮空気の圧力損失を可及的に少なくすることが可能となっている。
また、第1整流路31a~31gは円筒体で形成されているため、例えば、第1整流路31a~31gが矩形の筒体で形成されている場合に比べて、第1圧縮空気は第1整流路の内部を好適に流通することが可能となっている。このため、第1整流路31a~31gの内部を流通する際における第1圧縮空気の圧力損失も少なくすることが可能となっている。
(実施例2)
実施例2のターボ式流体機械では、第1インペラ7及び第2インペラ8(図1参照)がともにアルミニウム合金製とされている。また、図5及び図6に示すように、このターボ式流体機械は、第3直線通路9cの内部に7本の第2整流路33a~33gが設けられている。各第2整流路33a~33gも本発明における「整流路」の一例である。
第2整流路33a~33gはいずれも同一の構成である。図5に示すように、第2整流路33a~33gについても、第3直線通路9cの長手方向と平行で直線状に延びる金属製の円筒体によって形成されている。より具体的には、第2整流路33a~33gも、公用品の金属製のパイプによって形成されている。これにより、第2整流路33a~33gの内部を第1圧縮空気が流通可能となっている。なお、第2整流路33a~33gについても、複数であれば、その個数は適宜設計可能である。また、第2整流路33a~33gを樹脂製の円筒体で形成しても良い。
ここで、第2整流路33a~33gの各内径の長さは第3長さL3とされている。この第3長さL3は、実施例1における第1整流路31a~31gの各内径の長さである第2長さL2よりも短くなっている。このため、図7の(B)に示すように、第2整流路33a~33gの個々の通路断面積である第3通路断面積S3は、図7の(A)に示す第3直線通路9cの通路断面積である第1通路断面積S1よりも小さくなっている。さらに、第2整流路33a~33gの個数に対応した7つ第3通路断面積S3の和についても、第1通路断面積S1よりも小さくなっている。第2整流路33a~33gにおける他の構成は、第1整流路31a~31gと同様である。なお、第3直線通路9cに対する第2整流路33a~33gの取り付けについては後述する。
また、図5に示すように、このターボ式流体機械では、圧縮流体通路9に冷却部41が設けられている。冷却部41は、第1接続口41aと、第2接続口41bと、供給配管41cと、還流配管41dと、ポンプ41eと、第1区画壁41fと、第2区画壁41gと、冷却室41hとからなる。
第1接続口41aと第2接続口41bは、互いに離隔した状態で第3直線通路9cに形成されている。より具体的には、第1接続口41a及び第2接続口41bは、第3直線通路9cにおいて、第2整流路33a~33gが設けられた箇所に形成されている。そして、第1接続口41aは、第2接続口41bよりも第1圧縮空気の流通方向の下流側に形成されている。第1接続口41a及び第2接続口41bは、第3直線通路9cを径方向に貫通しており、第3直線通路9cの内部と外部とを連通している。
供給配管41cは、一端側が第1接続口41aに接続されており、他端側が車両のラジエータ(図示略)に接続されている。還流配管41dは、他端側が第2接続口41bに接続されており、一端側がラジエータに接続されている。供給配管41c及び還流配管41dは、内部に水やロングライフクーラント等の冷却液43(図8参照)が流通可能となっている。図5に示すポンプ41eは供給配管41cに設けられており、供給配管41c及び還流配管41dを通じて、冷却室41hとラジエータとの間で冷却液43を循環させる。なお、ポンプ41eは、還流配管41dに設けられても良い。
第1区画壁41fと第2区画壁41gとは同一の構成であり、合成ゴム等の樹脂製である。以下、第1区画壁41fを基に説明する。図6に示すように、第1区画壁41fは、直径の長さが第3直線通路9cの内径の長さと同じ第1長さL1とされた円板状に形成されている。また、第1区画壁41fには、7つの取付孔411~417が貫設されている。なお、第1区画壁41f及び第2区画壁41gを金属製としても良い。
図5に示すように、第1区画壁41f及び第2区画壁41gは、第1圧縮空気の流通方向で互いに離隔しつつ、第3直線通路9cの内部に設けられている。より具体的には、第1区画壁41fは、第3直線通路9cの内部において、第2接続口41bよりも第1圧縮空気の流通方向の上流側に設けられている。一方、第2区画壁41gは、第3直線通路9cの内部において、第1接続口41aよりも第1圧縮空気の流通方向の下流側に設けられている。第1区画壁41f及び第2区画壁41gは、第3直線通路9cの内周面901に密着しつつ接着されている。こうして、第1区画壁41f及び第2区画壁41gは、第3直線通路9cの内部を区画している。
冷却室41hは、第3直線通路9cの内部において、第1区画壁41f、第2区画壁41g及び内周面901との間に形成されている。また、冷却室41hは、第1区画壁41f及び第2区画壁41gによって、内部と外部との間が封止されている。そして、冷却室41hには、第1接続口41aを通じて供給配管41cが接続されているとともに、第2接続口41bを通じて還流配管41dが接続されている。
第2整流路33a~33gは、第1区画壁41f及び第2区画壁41gの各取付孔411~417にそれぞれ挿通されている。具体的には、図6に示すように、第2整流路33aは取付孔411に挿通されており、第2整流路33bは取付孔412に挿通されており、第2整流路33cは取付孔413に挿通されており、第2整流路33dは取付孔414に挿通されており、第2整流路33eは取付孔415に挿通されており、第2整流路33fは取付孔416に挿通されており、第2整流路33gは取付孔417に挿通されている。これにより、第2整流路33a~33gは、中心部分に第2整流路33aを位置させつつ、第2整流路33aの周方向に他の第2整流路33b~33gを並べた状態で配置されて、第1区画壁41f及び第2区画壁41gに固定されている。
こうして、第2整流路33a~33gは、第1区画壁41f及び第2区画壁41gに固定されつつ、冷却室41hの内部に設けられている。ここで、このターボ式流体機械では、実施例1のターボ式流体機械に比べて、第2整流路33a~33g同士の間隔と、第2整流路33a~33gと第3直線通路9cの内周面901との間隔とがそれぞれ広くなっている。このターボ式流体機械における他の構成は実施例1のターボ式流体機械と同様であり、同一の構成については同一の符号を付して構成に関する詳細な説明を省略する。
このターボ式流体機械は、第2整流路33a~33gに至った第1圧縮空気は、第2整流路33a~33gの内部を流通する。これにより、実施例1のターボ式流体機械と同様、このターボ式流体機械でも、第1圧縮空気は、回転成分を低減させた状態で第2吸入口15aから第2インペラ室29a内に供給される。
また、このターボ式流体機械では、ポンプ41eを作動させることにより、図8に示すように、供給配管41cから冷却室41h内に冷却液43が流入する。これにより、冷却室41hでは、第2整流路33a~33gの内部を流通する第1圧縮空気と、冷却液43とで熱交換が行われる。これにより、冷却部41は、第2整流路33a~33gの内部を流通する第1圧縮空気の冷却を行う。
ここで、冷却部41では、第1接続口41aが第2接続口41bよりも第1圧縮空気の流通方向の下流側に設けられている。このため、図5の実線矢印で示すように、供給配管41cから冷却室41hの内部に流入した冷却液43は、第2接続口41b及び還流配管41dに向かって、冷却室41hを第1圧縮空気の流通方向の上流側に流通する。このため、第2整流路33a~33gの内部を流通する第1圧縮空気の流通方向と、冷却室41hを流通する冷却液43の流通方向とは反対となる。これにより、第2整流路33a~33gの内部を流通する第1圧縮空気と、冷却液43とで熱交換が好適に行われるため、冷却部41は、第1圧縮空気を十分に冷却することが可能となっている。
このように、このターボ式流体機械では、第1圧縮流体を冷却しつつ第2インペラ室29a内に供給することができるため、第2インペラ8について、過度に高い耐熱性を要求する必要がない。このため、このターボ式流体機械では、第2インペラ8をアルミニウム合金製とすることで、第2インペラ8の軽量化を図りつつ、製造コストの低廉化が可能となっている。
また、冷却部41によって第1圧縮空気の冷却を行うことにより、このターボ式流体機械では、第2圧縮流体の高温化も抑制できるため、第2圧縮流体を冷却するための冷却部を必ずしも設ける必要がない。さらに、このターボ式流体機械では、第1圧縮流体によって圧縮流体通路9が高温となることも抑制できるため、圧縮流体通路9の熱によってハウジング1が高温となることも抑制できる。このターボ式流体機械における他の作用は実施例1のターボ式流体機械と同様である。
(実施例3)
図9に示すように、実施例3のターボ式流体機械では、第3直線通路9cに4つの第3整流路35a~35dが設けられている。第3整流路35a~35dも本発明における「整流路」の一例である。また、このターボ式流体機械では、第3直線通路9cの内部に仕切板45が設けられている。
仕切板45は金属製であり、第3直線通路9cの径方向に十字形状に延びているとともに、第3直線通路9cと平行で長手方向に直線状に延びている。ここで、第3直線通路9cの径方向における仕切板45の長さは、第3直線通路9cの内径の長さである第1長さL1と等しくなっている。また、図示を省略するものの、仕切板45の長手方向の長さは、上述の第1整流路31a~31gと同様となっている。なお、仕切板45の形状は適宜設計可能である。また、仕切板45を樹脂製としても良い。
そして、この仕切板45によって、第3直線通路9cの内部に第3整流路35a~35dが区画されている。ここで、仕切板45が第3直線通路9cと平行で長手方向に直線状に延びているため、各第3整流路35a~35dについても、第3直線通路9cと平行で長手方向に直線状に延びている。
第3整流路35a~35dは、第1圧縮流体の流通方向に直交する方向の断面の形状が第3直線通路9cを略四等分した扇形状をなしている。これにより、図10の(B)に示すように、第3整流路35a~35dの個々の通路断面積である第4通路断面積S4は、図10の(A)に示す第3直線通路9cの通路断面積である第1通路断面積S1よりも小さくなっている。さらに、第3整流路35a~35dの個数に対応した4つの第4通路断面積S4の和についても、第1通路断面積S1よりも小さくなっている。このターボ式流体機械における他の構成は実施例1のターボ式流体機械と同様である。
このターボ式流体機械は、第3整流路35a~35dに至った第1圧縮空気は、第3整流路35a~35d内を流通する。これにより、このターボ式流体機械でも、第1圧縮空気は、回転成分を低減させた状態で第2吸入口15aから第2インペラ室29a内に供給される。また、このターボ式流体機械では、仕切板45を第3直線通路9cの内部に設けることにより、第3整流路35a~35dを第3直線通路9cに容易に設けることが可能となっている。このため、このターボ式流体機械では、第3整流路35a~35dの構成をより簡素化することが可能となっている。このターボ式流体機械における他の作用は、実施例1のターボ式流体機械と同様である。
以上において、本発明を実施例1~3に即して説明したが、本発明は上記実施例1~3に制限されるものではなく、その趣旨を逸脱しない範囲で適宜変更して適用できることはいうまでもない。
例えば、実施例1のターボ式流体機械では、第1整流路31a~31gを圧縮流体通路9の第3直線通路9cに設けているが、これに限らず、第1直線通路9aや第4直線通路9d等に第1整流路31a~31gを設けても良い。実施例2、3のターボ式流体機械についても同様である。
また、実施例1のターボ式流体機械において、圧縮流体通路9の複数の個所に対して第1整流路31a~31gを設ける構成としても良い。実施例2、3のターボ式流体機械についても同様である。
さらに、実施例1~3のターボ式流体機械において、圧縮流体通路9をハウジング1の内部に一体に形成しても良い。
また、実施例1~3のターボ式流体機械では、本発明における「流体」を空気としているが、これに限らず、空調に用いる冷媒等を本発明における「流体」としても良い。
本発明は、燃料電池システムや空調装置等に利用可能である。
1…ハウジング
3…電動モータ
5…駆動軸
7…第1インペラ(インペラ)
8…第2インペラ(インペラ)
9…圧縮流体通路
27a…第1インペラ室(インペラ室)
29a…第2インペラ室(インペラ室)
30…モータ室
31a~31g…第1整流路(整流路)
33a~33g…第2整流路(整流路)
35a~35d…第3整流路(整流路)
41…冷却部

Claims (4)

  1. インペラ室及びモータ室が形成されたハウジングと、
    前記モータ室に収容された電動モータと、
    前記インペラ室に収容され、前記電動モータの回転によって流体を圧縮するインペラと、
    前記ハウジング内に収容され、前記インペラと前記電動モータとを連結する駆動軸とを備え、
    前記インペラ室は、第1インペラ室と、前記第1インペラ室に対して前記駆動軸の軸方向に離隔する第2インペラ室とを有し、
    前記インペラは、前記第1インペラ室に収容され、前記流体を圧縮して第1圧縮流体とする第1インペラと、前記第2インペラ室に収容され、前記第1圧縮流体を圧縮して第2圧縮流体とする第2インペラとを有しているターボ式流体機械であって、
    前記第1圧縮流体を前記第2インペラ室に供給する圧縮流体通路と、
    前記圧縮流体通路の内部に設けられて前記圧縮流体通路が延びる方向に延び、前記第1圧縮流体を整流しつつ前記第2インペラ室に供給する複数の整流路とをさらに備えていることを特徴とするターボ式流体機械。
  2. 前記各整流路は、前記第1インペラ室よりも前記第2インペラ室に近い位置に配置されている請求項1記載のターボ式流体機械。
  3. 前記各整流路は、直線状に延びる円筒体からなる請求項1又は2記載のターボ式流体機械。
  4. 前記圧縮流体通路には、前記各整流路を流通する前記第1圧縮流体の冷却を行う冷却部が設けられている請求項1乃至3のいずれか1項記載のターボ式流体機械。
JP2022022811A 2022-02-17 2022-02-17 ターボ式流体機械 Pending JP2023119769A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022022811A JP2023119769A (ja) 2022-02-17 2022-02-17 ターボ式流体機械
US18/104,980 US20230258200A1 (en) 2022-02-17 2023-02-02 Turbo fluid machine
CN202310109024.XA CN116608138A (zh) 2022-02-17 2023-02-14 涡轮式流体机械
DE102023103647.5A DE102023103647A1 (de) 2022-02-17 2023-02-15 Turbofluidmaschine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022022811A JP2023119769A (ja) 2022-02-17 2022-02-17 ターボ式流体機械

Publications (1)

Publication Number Publication Date
JP2023119769A true JP2023119769A (ja) 2023-08-29

Family

ID=87430883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022022811A Pending JP2023119769A (ja) 2022-02-17 2022-02-17 ターボ式流体機械

Country Status (4)

Country Link
US (1) US20230258200A1 (ja)
JP (1) JP2023119769A (ja)
CN (1) CN116608138A (ja)
DE (1) DE102023103647A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023080448A (ja) * 2021-11-30 2023-06-09 株式会社豊田自動織機 ターボ式流体機械

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3290039B2 (ja) 1995-01-30 2002-06-10 株式会社日立製作所 一軸多段遠心圧縮機
US9732766B2 (en) 2014-02-19 2017-08-15 Honeywell International Inc. Electric motor-driven compressor having a heat shield forming a wall of a diffuser

Also Published As

Publication number Publication date
DE102023103647A1 (de) 2023-08-17
US20230258200A1 (en) 2023-08-17
CN116608138A (zh) 2023-08-18

Similar Documents

Publication Publication Date Title
US7704056B2 (en) Two-stage vapor cycle compressor
US20080199326A1 (en) Two-stage vapor cycle compressor
US20070018516A1 (en) Internal thermal management for motor driven machinery
US20050169788A1 (en) Scroll type fluid machinery
CN112460047A (zh) 一种两级离心式压缩机和氢燃料电池系统
JP7012371B2 (ja) インペラ手段の冷却ファンが形成された燃料電池用ターボ送風機
US10036404B2 (en) Turbo machine system
JP6011571B2 (ja) 電動ターボ式圧縮機
US11261879B2 (en) Fluid machine
KR20180124402A (ko) 터보 압축기
KR102448437B1 (ko) 전동 압축기
JP2021148121A (ja) アキシャル型熱交換器構成における冷風通路および冷却液通路を有する圧縮機
US20020039534A1 (en) Scroll compressor having an electric motor incorporated
US20230117537A1 (en) Centrifugal compressor
CN116538110B (zh) 一种磁悬浮空气压缩机
JP2023119769A (ja) ターボ式流体機械
KR20150109270A (ko) 모터­구동형 터보 압축기
US20190195240A1 (en) Electric compressor
WO2022013985A1 (ja) 多段電動遠心圧縮機
US20230336047A1 (en) Fluid machine
US20020094289A1 (en) Scroll-type compressor with cooling fins included inside a discharge port of a compressed gas
JP2012087674A (ja) インバータ一体型電動圧縮機
JP7206929B2 (ja) 電動圧縮機
CN217421641U (zh) 空压机壳体、空压机及燃料电池系统
CN218829490U (zh) 一种燃料电池及其具有双冷却系统的离心式空压机