JP2023108416A - pavement structure - Google Patents

pavement structure Download PDF

Info

Publication number
JP2023108416A
JP2023108416A JP2022009534A JP2022009534A JP2023108416A JP 2023108416 A JP2023108416 A JP 2023108416A JP 2022009534 A JP2022009534 A JP 2022009534A JP 2022009534 A JP2022009534 A JP 2022009534A JP 2023108416 A JP2023108416 A JP 2023108416A
Authority
JP
Japan
Prior art keywords
pavement structure
section
thermoelectric conversion
road surface
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022009534A
Other languages
Japanese (ja)
Inventor
浩 守友
Hiroshi Moritomo
勝 島崎
Masaru Shimazaki
一成 平川
Kazunari Hirakawa
穂高 岡島
Hodaka Okajima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Rotec Corp
University of Tsukuba NUC
Original Assignee
Taisei Rotec Corp
University of Tsukuba NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Rotec Corp, University of Tsukuba NUC filed Critical Taisei Rotec Corp
Priority to JP2022009534A priority Critical patent/JP2023108416A/en
Priority to PCT/JP2023/001375 priority patent/WO2023145579A1/en
Publication of JP2023108416A publication Critical patent/JP2023108416A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C5/00Pavings made of prefabricated single units
    • E01C5/22Pavings made of prefabricated single units made of units composed of a mixture of materials covered by two or more of groups E01C5/008, E01C5/02 - E01C5/20 except embedded reinforcing materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N15/00Thermoelectric devices without a junction of dissimilar materials; Thermomagnetic devices, e.g. using the Nernst-Ettingshausen effect

Abstract

To provide a pavement structure excellent in workability and durability and capable of continuously taking out power from an environment such as facility infrastructure.SOLUTION: A pavement structure 1 is a pavement structure in which a roadbed layer 2 and a road surface layer 3 supported by the roadbed layer 2 are installed. The roadbed layer 2 includes a lamination part 80 formed by laminating unit structures 81 having voids, and a box-shaped device part 10. The device part 10 has at least one of a tertiary battery part 30 for generating power by the temperature change of an electrode, and a thermoelectric conversion cell part 20 for generating power by a temperature difference between the electrodes.SELECTED DRAWING: Figure 2

Description

本発明は、設備インフラ等の環境における温度を利用する発電装置を備え、電力を供給することができる舗装構造物に関する。 TECHNICAL FIELD The present invention relates to a pavement structure capable of supplying electric power with a power generating device that utilizes the temperature in the environment such as facility infrastructure.

従来、設備インフラ等には照明や信号といった電力を必要とする付帯施設がある。例えば道路では、昨今の高度道路交通システム(ITS)の取り組みにおいて、各種機器を相互に連携させる技術の開発が進められており、道路周辺に設けられる各種機器も電力を必要としている。特許文献1には、これらの付帯施設や各種機器に電力を供給するため、温度差によって発電する装置を備える舗装路が記載されている。 Conventionally, facilities such as infrastructure include ancillary facilities that require electric power, such as lighting and signals. For example, on roads, technology for interconnecting various types of equipment is being developed in recent efforts toward intelligent transport systems (ITS), and various types of equipment installed around roads also require electric power. Patent Literature 1 describes a paved road equipped with a device that generates electricity based on a temperature difference in order to supply power to these incidental facilities and various types of equipment.

特開2005-264558号公報JP 2005-264558 A

特許文献1の発電装置は、Bi-Te系等の熱電変換素子を使用している。薄い部材である熱電変換素子は路面と平行に設置され、熱電変換素子の上方及び下方に、多数の板状の熱伝導部材が設けられている。多数の板状の部材が突出する装置を埋設するためには、施工において特別な手順や工程が必要となり、広い範囲に施工する場合には、施工に要する時間及び費用が問題となることが予想される。また、板状の熱伝導部材は、交通荷重に対する耐久性において不利となることが予想される。そして、温度差を利用するだけでなく、他の発電手段を併用できれば、発電手段が相互に補い合って、電力供給の安定化を図ることができる。
本発明は、かかる課題を解決するためになされたものであり、施工性及び耐久性に優れ、設備インフラ等の環境から持続的に電力を取り出すことができる舗装構造物を提供することを目的とする。
The power generating device of Patent Document 1 uses thermoelectric conversion elements such as Bi—Te system. A thermoelectric conversion element, which is a thin member, is installed parallel to the road surface, and a large number of plate-like heat-conducting members are provided above and below the thermoelectric conversion element. In order to bury a device with many protruding plate-shaped members, special procedures and processes are required for construction, and it is expected that the time and cost required for construction will become a problem when constructing over a wide area. be done. Moreover, it is expected that the plate-shaped heat-conducting member will be disadvantageous in terms of durability against traffic loads. In addition to using the temperature difference, if other power generating means can be used together, the power generating means will complement each other, and the power supply can be stabilized.
The present invention was made in order to solve such problems, and aims to provide a pavement structure that is excellent in workability and durability, and that can sustainably extract power from the environment such as facility infrastructure. do.

かかる課題を解決するために、本発明に係る舗装構造物は、路盤層及び前記路盤層に支持される路面層が設置される舗装構造物であって、前記路盤層は、空隙を有する単位構造体を重ね合わせて形成される積層部と、箱状の装置部と、を備え、前記装置部は、電極の温度変化によって発電する三次電池部及び電極間の温度差によって発電する熱電変換セル部の少なくとも何れかを有する。 In order to solve such problems, a pavement structure according to the present invention is a pavement structure in which a roadbed layer and a road surface layer supported by the roadbed layer are installed, wherein the roadbed layer is a unit structure having voids. A lamination part formed by stacking bodies and a box-shaped device part are provided, and the device part includes a tertiary battery part that generates power according to temperature changes of the electrodes and a thermoelectric conversion cell part that generates power according to the temperature difference between the electrodes. have at least one of

本発明によれば、施工性及び耐久性に優れ、設備インフラ等の環境から持続的に電力を取り出すことができる舗装構造物を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, it is excellent in workability and durability, and can provide the pavement structure which can extract electric power sustainably from environments, such as a facility infrastructure.

本発明に係る舗装構造物の設置例を示す概略図である。1 is a schematic diagram showing an installation example of a pavement structure according to the present invention; FIG. 本発明に係る舗装構造物の概略を例示する断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is sectional drawing which illustrates the outline of the pavement structure which concerns on this invention. 本発明に係る熱電変換セルの概略を例示する斜視図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a perspective view which illustrates the outline of the thermoelectric conversion cell which concerns on this invention. 熱電変換セルの電極の変形例を例示する斜視図である。FIG. 10 is a perspective view illustrating a modification of the electrodes of the thermoelectric conversion cell; 本発明に係る三次電池セルの概略を例示する斜視図である。1 is a perspective view illustrating an outline of a tertiary battery cell according to the present invention; FIG. 本発明に係る装置部の構成の一例を示すブロック図である。1 is a block diagram showing an example of the configuration of an apparatus section according to the present invention; FIG.

本発明の実施形態について、図面を参照しながら説明する。本発明に係る舗装構造物1は、歩道や車道等の設備インフラをはじめ、公園、商業施設、駅前広場、港湾施設等の舗装に広く使用することができる。
図1に一例を示すように、舗装構造物1は、路盤層2及び路面層3を備え、路面層3の上面が地面200の高さで地表に露出するように、地盤100の上方に設置されている。舗装構造物1と地盤100との間に基盤層4が設けられてもよい。
An embodiment of the present invention will be described with reference to the drawings. The pavement structure 1 according to the present invention can be widely used for pavement of facility infrastructure such as sidewalks and roadways, as well as parks, commercial facilities, station plazas, harbor facilities, and the like.
As an example is shown in FIG. 1, the pavement structure 1 includes a roadbed layer 2 and a road surface layer 3, and is installed above the ground 100 so that the upper surface of the road surface layer 3 is exposed to the ground surface at the height of the ground 200. It is A base layer 4 may be provided between the pavement structure 1 and the ground 100 .

(路盤層)
路盤層2は、路面層3を支持する構造体である。図2に一例を示すように、路盤層2は、装置部10及び積層部80を備え、積層部80によって路面層3を支持すると共に、装置部10を設置する空間を確保している。
(base course layer)
The roadbed layer 2 is a structure that supports the road surface layer 3 . As an example is shown in FIG. 2, the roadbed layer 2 includes a device section 10 and a laminated section 80. The laminated section 80 supports the road surface layer 3 and secures a space in which the device section 10 is installed.

(装置部)
装置部10は、発電等に係る電気的装置を内部に有する箱状の部材である。装置部10は、内部への水等の浸入を防ぐ防水性能を有し、例えば大量の雨等で舗装構造物1が水没した場合でも、内部の電気的装置の故障を抑えることができる。また、装置部10は、外部からの衝撃等から内部の電気的装置を保護することができる。
装置部10は、熱電変換セル部20と、三次電池部30と、蓄電部40と、制御部50と、を有している。
(Equipment part)
The device section 10 is a box-shaped member having an electrical device for power generation or the like inside. The device section 10 has a waterproof performance to prevent water or the like from entering into the interior, so that even if the pavement structure 1 is submerged due to, for example, a large amount of rain, it is possible to suppress failure of internal electrical devices. In addition, the device section 10 can protect internal electrical devices from external shocks and the like.
The device section 10 has a thermoelectric conversion cell section 20 , a tertiary battery section 30 , a power storage section 40 and a control section 50 .

(熱電変換セル部)
熱電変換セル部20は、溶液を用いる熱電変換セル21を有し、熱電変換セル21の電極間の温度差によって発電することができる装置である。溶液は、所定の電解質溶液である。電解質溶液は、水や有機化合物を溶媒としている。
熱電変換セル21は、例えば酸化還元反応における平衡電位の違いを利用して発電することができる。図3Aに一例を示すように、熱電変換セル21は、電解質溶液25が充填された筐体26の中に、電極22が互いに離隔して配置されている。ここでは、熱電変換セル21の両端に2枚の電極22A、22Bが離隔して配置されている。電極22A、22Bの表面には所定の材料からなる膜231、232が形成されている。膜231、232は、同じ材料とすることができる。電極22A、22Bには、電線75及び後記する熱伝導部材70が接続されている。
熱電変換セル21は、電極間の温度差によって起電力を生じる。熱電変換セル21の起電力は、電極22A、22B間の温度差が、例えば40℃程度であれば、60mV程度とすることができる。熱電変換セル部20は、直列接続される複数の熱電変換セル21を有することができる。直列する個数は特に制限されず、例えば20個から30個の熱電変換セル21を直列接続することで、1.5V程度の起電力とすることができる。なお、熱電変換セル21は並列接続してもよく、並列接続と直列接続とを組み合わせてもよい。
(Thermoelectric conversion cell part)
The thermoelectric conversion cell unit 20 is a device that has a thermoelectric conversion cell 21 that uses a solution and that can generate electricity by a temperature difference between the electrodes of the thermoelectric conversion cell 21 . The solution is a given electrolyte solution. The electrolyte solution uses water or an organic compound as a solvent.
The thermoelectric conversion cell 21 can generate electric power, for example, by utilizing the difference in equilibrium potential in the oxidation-reduction reaction. As an example is shown in FIG. 3A, the thermoelectric conversion cell 21 has the electrodes 22 spaced apart from each other in a housing 26 filled with an electrolytic solution 25 . Here, two electrodes 22A and 22B are arranged separately at both ends of the thermoelectric conversion cell 21 . Films 231 and 232 made of a predetermined material are formed on the surfaces of the electrodes 22A and 22B. Membranes 231, 232 may be of the same material. An electric wire 75 and a heat conducting member 70, which will be described later, are connected to the electrodes 22A and 22B.
The thermoelectric conversion cell 21 generates an electromotive force due to a temperature difference between electrodes. The electromotive force of the thermoelectric conversion cell 21 can be about 60 mV if the temperature difference between the electrodes 22A and 22B is about 40° C., for example. The thermoelectric conversion cell section 20 can have a plurality of thermoelectric conversion cells 21 connected in series. The number of cells to be connected in series is not particularly limited. For example, by connecting 20 to 30 thermoelectric conversion cells 21 in series, an electromotive force of about 1.5 V can be obtained. The thermoelectric conversion cells 21 may be connected in parallel, or may be connected in parallel and connected in series.

熱電変換セル部20は、電極22A、22B間の温度差が大きいほど発電量を大きくすることができる。電極間に設けられる材料の熱伝導率が大きいと、温度差は生じにくい。例えば、半導体材料を用いる熱電変換素子では、半導体材料の熱伝導率が例えば数百W/m・Kと大きいため、電極間に温度差が生じにくい。これに対し、熱電変換セル部20に用いる溶液の材料となる水は0.6W/m・K、有機溶媒は0.2~0.3W/m・Kであり、熱伝導率は一般的な道路の材料であるアスファルトやコンクリートの1~2W/m・Kよりも小さい。舗装構造物1は、溶液を用いる熱電変換セル部20を有することで、熱電変換セル21における熱伝導率を小さくすることができ、舗装構造物1が設置される環境等に起因する温度差の効果的な利用を図ることができる。 The thermoelectric conversion cell unit 20 can increase the amount of power generation as the temperature difference between the electrodes 22A and 22B increases. If the thermal conductivity of the material provided between the electrodes is high, the temperature difference is less likely to occur. For example, in a thermoelectric conversion element using a semiconductor material, since the thermal conductivity of the semiconductor material is as high as several hundred W/m·K, it is difficult for the temperature difference to occur between the electrodes. On the other hand, water, which is the material of the solution used in the thermoelectric conversion cell unit 20, is 0.6 W/m·K, and the organic solvent is 0.2 to 0.3 W/m·K. It is smaller than 1 to 2 W/m·K of asphalt and concrete, which are road materials. Since the pavement structure 1 has the thermoelectric conversion cell unit 20 using a solution, the thermal conductivity of the thermoelectric conversion cell 21 can be reduced, and the temperature difference caused by the environment in which the pavement structure 1 is installed can be reduced. Effective utilization can be planned.

(熱伝導部材)
熱伝導部材70は、一端を基端部71、他端を先端部72とし、基端部71と先端部72との間で熱の伝導路となる部材である。熱伝導部材70は、例えば銅やアルミニウム等の熱伝導率の大きい金属で断面積の大きい線材を形成し、グラスウール等の断熱材で覆ったものとすることができる。また、熱伝導部材70は、粉体状や繊維状に加工した熱伝導率の大きい物質を分散させた樹脂等で形成することができる。
熱電変換セル21に接続される熱伝導部材70では、基端部71は、電極22A、22Bに接続されている。先端部72は、後記する路面層3に配置されている。電極22Aに基端部71を接続する熱伝導部材70の先端部72と、電極22Bに基端部71を接続する熱伝導部材70の先端部72とは、温度差が大きくなる位置に配置するのが好ましい。
基端部71は、例えば、電極22A及び電極22Bに隣接するように、熱伝導率の大きい材料で形成される壁を設け、その壁に接続してもよい。
(Heat conduction member)
The heat-conducting member 70 has one end as a base end portion 71 and the other end as a tip portion 72 , and serves as a heat conduction path between the base end portion 71 and the tip portion 72 . The heat-conducting member 70 may be formed by forming a wire rod having a large cross-sectional area from a metal having a high thermal conductivity such as copper or aluminum, and covering the wire rod with a heat insulating material such as glass wool. Also, the thermally conductive member 70 can be formed of a resin or the like in which a substance having a high thermal conductivity processed into powder or fiber is dispersed.
In the heat conducting member 70 connected to the thermoelectric conversion cell 21, the base end portion 71 is connected to the electrodes 22A and 22B. The tip portion 72 is arranged on the road surface layer 3 which will be described later. The distal end portion 72 of the heat conducting member 70 connecting the base end portion 71 to the electrode 22A and the distal end portion 72 of the heat conducting member 70 connecting the base end portion 71 to the electrode 22B are arranged at positions where the temperature difference is large. is preferred.
The proximal end 71 may be connected to a wall formed of a material having a high thermal conductivity, for example, adjacent to the electrodes 22A and 22B.

(三次電池部)
三次電池部30は、溶液を用いる三次電池セル31を有し、三次電池セル31の電極における温度変化によって発電することができる装置である。
三次電池セル31は、例えば電極における電極電位の温度係数の違いを利用して発電することができる。図4に一例を示すように、三次電池セル31は、電解質溶液35が充填された筐体36の中に、電極32と、電極32同士を離隔させるセパレータ34とを配置して構成されている。ここでは、三次電池セル31の両端に2枚の電極32A、32Bが離隔して配置されている。電極32A、32Bの表面には所定の材料からなる膜331、332が形成されている。膜331と膜332とは、異なる材料で形成されている。
(Tertiary battery part)
The tertiary battery unit 30 is a device that has a tertiary battery cell 31 that uses a solution, and that can generate power according to temperature changes in the electrodes of the tertiary battery cell 31 .
The tertiary battery cell 31 can generate electric power, for example, by utilizing a difference in temperature coefficient of electrode potential between electrodes. As an example is shown in FIG. 4, a tertiary battery cell 31 is configured by arranging an electrode 32 and a separator 34 separating the electrodes 32 in a housing 36 filled with an electrolytic solution 35. . Here, two electrodes 32A and 32B are arranged separately at both ends of the tertiary battery cell 31 . Films 331 and 332 made of a predetermined material are formed on the surfaces of the electrodes 32A and 32B. The films 331 and 332 are made of different materials.

三次電池セル31は、電極32の温度が同じであっても、温度変化があることで起電力を生じる。三次電池セル31の起電力は、電極32間に温度差がない状態で、例えば30℃の温度変化をした場合、40mV程度とすることができる。
三次電池部30は、直列接続される複数の三次電池セル31を有することができる。三次電池セル31の接続は、電線75によって行うことができる。直列接続は、例えば、膜332を有する電極32Bが、次の三次電池セル31の膜331を有する電極32Aに接続されるようにする。直列する個数は特に制限されず、例えば20個から30個の三次電池セル31を直列接続することで、1V程度の起電力とすることができる。なお、三次電池セル31は並列接続してもよく、並列接続と直列接続とを組み合わせてもよい。
The tertiary battery cell 31 generates an electromotive force due to a change in temperature even if the temperature of the electrode 32 is the same. The electromotive force of the tertiary battery cell 31 can be about 40 mV when the temperature changes by 30° C., for example, in a state where there is no temperature difference between the electrodes 32 .
The tertiary battery section 30 can have a plurality of tertiary battery cells 31 connected in series. Connection of the tertiary battery cells 31 can be performed by electric wires 75 . The series connection is such that, for example, electrode 32B with membrane 332 is connected to electrode 32A with membrane 331 of the next tertiary battery cell 31 . The number of cells to be connected in series is not particularly limited. For example, by connecting 20 to 30 tertiary battery cells 31 in series, an electromotive force of about 1 V can be obtained. The tertiary battery cells 31 may be connected in parallel, or may be connected in parallel and connected in series.

三次電池セル31の両端に位置する電極32A、32Bには、電線75及び熱伝導部材70が接続されている。
三次電池セル31に接続される熱伝導部材70では、基端部71は、電極32A、32Bに接続されている。先端部72は、路面層3に配置されている。電極32Aに基端部71を接続する熱伝導部材70の先端部72と、電極32Bに基端部71を接続する熱伝導部材70の先端部72とは、絶縁されていれば、同じ温度の位置に配置することができる。
基端部71は、例えば、筐体36全体を熱伝導率の大きい材料で覆う被覆体を設け、その被覆体に接続してもよい。
A wire 75 and a heat conducting member 70 are connected to the electrodes 32A and 32B positioned at both ends of the tertiary battery cell 31 .
In the heat conducting member 70 connected to the tertiary battery cell 31, the base end portion 71 is connected to the electrodes 32A and 32B. The tip portion 72 is arranged on the road surface layer 3 . If the distal end portion 72 of the heat conducting member 70 connecting the base end portion 71 to the electrode 32A and the distal end portion 72 of the heat conducting member 70 connecting the base end portion 71 to the electrode 32B are insulated, they have the same temperature. can be placed in position.
For example, the proximal end portion 71 may be connected to a covering that covers the entire housing 36 with a material having a high thermal conductivity.

熱電変換セル21及び三次電池セル31は、筐体26、36と電解質溶液25、35と電極22、32とで構成することができるため、例えば太陽光パネル等と比較して低コストで製造することができ、簡単な構造のため故障が少ない。また、筐体26、36の強度を高めることによって耐荷重性能の要求に応えることができる。
熱電変換セル21及び三次電池セル31は、例えば、コンクリートやプラスチックの筐体26、36を施工現場に設置して、施工現場で電解質溶液25、35及び電極22、32を筐体26、36に入れるという方法で施工することができ、容易に舗装体に埋設することができる。
Since the thermoelectric conversion cell 21 and the tertiary battery cell 31 can be composed of the housings 26, 36, the electrolyte solutions 25, 35, and the electrodes 22, 32, they can be manufactured at low cost compared to solar panels, for example. The simple structure reduces failures. Further, by increasing the strength of the housings 26 and 36, it is possible to meet the demand for load bearing performance.
For the thermoelectric conversion cell 21 and the tertiary battery cell 31, for example, concrete or plastic housings 26, 36 are installed at the construction site, and electrolyte solutions 25, 35 and electrodes 22, 32 are placed in the housings 26, 36 at the construction site. It can be constructed by a method of putting it in, and can be easily embedded in the pavement.

(蓄電部)
蓄電部40は、充電及び放電が可能な蓄電池を有する装置である。蓄電池は、例えばリチウムイオン電池等とすることができる。蓄電部40は、熱電変換セル部20、三次電池部30、後記する光電変換部60が発電する電気を蓄えることができる。蓄電部40の充放電は、制御部50によって制御されている。
(storage unit)
The power storage unit 40 is a device having a storage battery that can be charged and discharged. The storage battery can be, for example, a lithium ion battery or the like. The electricity storage unit 40 can store electricity generated by the thermoelectric conversion cell unit 20, the tertiary battery unit 30, and the photoelectric conversion unit 60 described later. Charging and discharging of power storage unit 40 is controlled by control unit 50 .

(制御部)
制御部50は、熱電変換セル部20、三次電池部30、後記する光電変換部60が発電する電気を受け取り、蓄電部40の充放電を制御する装置である。また、制御部50は、電力を調整して装置部10の外部に出力することができる。図5に一例を示すように、制御部50は、熱電変換セル部20、三次電池部30、光電変換部60及び蓄電部40と接続されており、電力出力端子POUTを有している。
制御部50は、熱電変換セル部20、三次電池部30及び光電変換部60のそれぞれに対し、発電した電気を受け取るかどうかを選択することができ、また、受け取る量を調整することができる。
また、制御部50は、蓄電部40の充放電を制御する。余剰の電力は、過充電とならないように調整しながら蓄電部40に送って充電し、出力する電力が不足する場合には、蓄電部40に放電させて補うことができる。
(control part)
The control unit 50 is a device that receives electricity generated by the thermoelectric conversion cell unit 20 , the tertiary battery unit 30 , and a photoelectric conversion unit 60 described later, and controls charging and discharging of the power storage unit 40 . Further, the control unit 50 can adjust the power and output it to the outside of the device unit 10 . As an example is shown in FIG. 5, the control unit 50 is connected to the thermoelectric conversion cell unit 20, the tertiary battery unit 30, the photoelectric conversion unit 60, and the electricity storage unit 40, and has a power output terminal POUT.
The control unit 50 can select whether or not to receive the generated electricity for each of the thermoelectric conversion cell unit 20, the tertiary battery unit 30, and the photoelectric conversion unit 60, and can also adjust the amount of received electricity.
Control unit 50 also controls charging and discharging of power storage unit 40 . Excess power can be sent to power storage unit 40 and charged while being adjusted so as not to overcharge, and when output power is insufficient, power storage unit 40 can be discharged to compensate.

(積層部)
積層部80は、路面層3を支持する部材である。積層部80は、空隙を有する単位構造体81を重ね合わせて形成されている。単位構造体81は、各層を90度ずつ回転させて重ね合わせている。また、単位構造体81は、例えば上面に有する凸部を下面に有する凹部と噛み合うように設置することで、層間の滑りを抑えている。積層部80は、単位構造体81の層数を調整することで、路盤層2の厚さに合わせて形成することができる。単位構造体81の材料は、例えばプラスチックとすることができる。
積層部80は、単位構造体81が空隙を有することで、浸透した雨水を路盤層2に貯留することができる。また、積層部80は、舗装構造物1上を通行する人や車等の交通荷重に耐える十分な強度を有しており、路盤層2に装置部10を設置するための空間を確保することができる。
(Laminate part)
The laminated portion 80 is a member that supports the road surface layer 3 . The laminated portion 80 is formed by stacking unit structures 81 having voids. In the unit structure 81, each layer is rotated by 90 degrees and overlapped. In addition, the unit structure 81 suppresses slippage between the layers, for example, by arranging the protrusions on the upper surface so as to mesh with the recesses on the lower surface. The laminated portion 80 can be formed to match the thickness of the roadbed layer 2 by adjusting the number of layers of the unit structures 81 . The material of the unit structure 81 can be plastic, for example.
Since the unit structures 81 of the laminated portion 80 have voids, the permeated rainwater can be stored in the roadbed layer 2 . In addition, the laminated portion 80 has sufficient strength to withstand the traffic load of people and vehicles passing on the pavement structure 1, and a space for installing the device portion 10 in the roadbed layer 2 is secured. can be done.

(路面層)
路面層3は、舗装構造物1における路面となる層である。路面層3は、板状の部材である温度差発現板65を並べて形成され、温度差発現板65の内部に、光によって発電する光電変換部60を有している。
(road surface layer)
The road surface layer 3 is a layer that becomes the road surface of the pavement structure 1 . The road surface layer 3 is formed by arranging temperature difference producing plates 65 which are plate-shaped members, and has a photoelectric conversion unit 60 that generates electricity by light inside the temperature difference producing plate 65 .

(光電変換部)
光電変換部60は、直列及び並列に接続されている太陽電池セルを有し、光によって発電することができる装置である。太陽電池セルは、例えば単結晶又は多結晶のシリコンとすることができる。単結晶又は多結晶のシリコンでは、可視光に近い赤外線領域である約1.1μmよりも短い波長の光を発電に利用することができる。
(Photoelectric converter)
The photoelectric conversion unit 60 is a device that has solar cells that are connected in series and in parallel and that can generate power using light. A solar cell can be, for example, monocrystalline or polycrystalline silicon. In single-crystal or polycrystalline silicon, light with a wavelength shorter than about 1.1 μm, which is an infrared region close to visible light, can be used for power generation.

(温度差発現板)
温度差発現板65は、深さ方向に温度差を発現させることができる板状の部材である。温度差発現板65の上表面側には、板状の面方向に広がるように光電変換部60が配置されている。
熱電変換セル21の2種類の電極からの熱伝導部材70の先端部72は、例えば一方を温度差発現板65の下面に、他方を温度差発現板65における厚さ方向の中心付近に配置することで、熱電変換セル21の2種類の電極の温度差を大きくすることができる。
三次電池セル31の熱電変換セル21の2種類の電極からの熱伝導部材70の先端部72は、例えば温度差発現板65の下面に配置することで、熱伝導部材70の長さを短くして、三次電池セル31の電極の温度変化を効果的に大きくすることができる。また、温度差発現板65の上面に配置することで、路面付近の温度変化を利用することができる。
温度差発現板65の光電変換部60よりも上表面側は、光電変換部60が発電に利用できる波長帯の光を透過する材料で形成されている。温度差発現板65の材料は、板状の強化プラスチックとするのが好ましい。温度差発現板65の厚さは、例えば5cm程度とすることができる。
路面層3の上表面となる温度差発現板65の上表面は、歩行者や車等の滑りを抑える加工がされている。滑りを抑える加工は、例えば、上表面に骨材を散布して凹凸を形成し、骨材を保持する結合材で上表面を覆ってもよく、摩擦係数の大きい樹脂で上表面をコーティングしてもよい。
(Temperature difference plate)
The temperature difference producing plate 65 is a plate-like member capable of producing a temperature difference in the depth direction. On the upper surface side of the temperature difference expression plate 65, the photoelectric conversion section 60 is arranged so as to extend in the planar direction of the plate.
For example, one of the tip portions 72 of the heat conduction member 70 from the two types of electrodes of the thermoelectric conversion cell 21 is arranged on the lower surface of the temperature difference expression plate 65, and the other is arranged near the center of the temperature difference expression plate 65 in the thickness direction. Thus, the temperature difference between the two types of electrodes of the thermoelectric conversion cell 21 can be increased.
The tip portion 72 of the heat conduction member 70 from the two types of electrodes of the thermoelectric conversion cell 21 of the tertiary battery cell 31 is arranged, for example, on the lower surface of the temperature difference expression plate 65, thereby shortening the length of the heat conduction member 70. Therefore, the temperature change of the electrodes of the tertiary battery cell 31 can be effectively increased. Also, by arranging it on the upper surface of the temperature difference manifesting plate 65, it is possible to utilize the temperature change in the vicinity of the road surface.
The upper surface side of the temperature difference expression plate 65 relative to the photoelectric conversion unit 60 is formed of a material that transmits light in a wavelength band that can be used by the photoelectric conversion unit 60 for power generation. It is preferable that the material of the temperature difference manifesting plate 65 is plate-shaped reinforced plastic. The thickness of the temperature difference producing plate 65 can be, for example, about 5 cm.
The upper surface of the temperature difference expression plate 65, which is the upper surface of the road surface layer 3, is processed to prevent slipping of pedestrians, vehicles, and the like. To prevent slipping, for example, aggregates are scattered on the upper surface to form unevenness, and the upper surface may be covered with a binder that holds the aggregates, or the upper surface may be coated with a resin having a large friction coefficient. good too.

本発明に係る舗装構造物1は、装置部10が、電極の温度変化によって発電する三次電池部30及び電極間の温度差によって発電する熱電変換セル部20の少なくとも何れかを有する。三次電池部30は、温度が上昇していく日中及び温度が低下していく夜間において、舗装構造物1に生じる温度変化を利用して発電することができ、熱電変換セル部20は、例えば舗装構造物1の深さ方向に生じる温度差を利用して発電することができる。このため、舗装構造物1は、設備インフラ等の環境から持続的に電力を取り出すことができる。また、例えば太陽光発電の日射量や日照時間が確保できない場合でも、設備インフラ等の環境における温度変化や温度差を有効に利用して発電することができる。
舗装構造物1は、積層部80が単位構造体81を重ね合わせて形成されることで、交通荷重に対する十分な強度を有しながら、舗装作業の効率を高め、施工性の向上を図ることができる。舗装構造物1は、積層部80が空隙を有することで、雨水を路盤層2に貯留して、路面における水溜りを減らすことができる。また、箱状の装置部10は、内部に発電等に係る電気的装置を設置することができ、雨水や衝撃等から電気的装置を保護することができる。
In the pavement structure 1 according to the present invention, the device section 10 has at least one of a tertiary battery section 30 that generates power by a temperature change of electrodes and a thermoelectric conversion cell section 20 that generates power by a temperature difference between electrodes. The tertiary battery unit 30 can generate electricity by utilizing temperature changes that occur in the pavement structure 1 during the day when the temperature rises and at night when the temperature decreases, and the thermoelectric conversion cell unit 20 is, for example, Power can be generated by utilizing the temperature difference that occurs in the depth direction of the pavement structure 1 . Therefore, the pavement structure 1 can continuously extract electric power from the environment such as facility infrastructure. In addition, for example, even if the amount of sunlight and the hours of sunlight for photovoltaic power generation cannot be ensured, it is possible to effectively utilize temperature changes and temperature differences in environments such as facility infrastructure to generate power.
The pavement structure 1 is formed by stacking the unit structures 81 in the laminated part 80, so that the pavement structure 1 has sufficient strength against the traffic load, improves the efficiency of the paving work, and improves the workability. can. In the pavement structure 1, since the laminated portion 80 has voids, rainwater can be stored in the roadbed layer 2 to reduce puddles on the road surface. In addition, the box-shaped device section 10 can be installed with an electrical device for power generation or the like inside, and can protect the electrical device from rainwater, impact, or the like.

舗装構造物1は、熱の伝導路となる熱伝導部材70の基端部71が、三次電池部30に備わる電極に接続され、先端部72が路面層3に配置されることで、三次電池部30の電極が受け取る温度変化を大きくすることができ、発電量を大きくすることができる。
舗装構造物1は、熱の伝導路となる熱伝導部材70の基端部71が、熱電変換セル部20の2種類の電極にそれぞれ接続され、それぞれの基端部71に対応する先端部72が路面層3における異なる深さに配置されることで、熱電変換セル部20の電極が受け取る温度差を大きくすることができ、発電量を大きくすることができる。
In the pavement structure 1, the base end portion 71 of the heat conducting member 70, which serves as a heat conduction path, is connected to an electrode provided in the tertiary battery portion 30, and the tip portion 72 is arranged on the road surface layer 3, thereby forming a tertiary battery. The change in temperature received by the electrodes of the section 30 can be increased, and the amount of power generation can be increased.
In the pavement structure 1, the base ends 71 of the heat conducting members 70, which serve as heat conduction paths, are connected to the two types of electrodes of the thermoelectric conversion cell unit 20, respectively, and the tip ends 72 corresponding to the respective base ends 71 are arranged at different depths in the road surface layer 3, the temperature difference received by the electrodes of the thermoelectric conversion cell unit 20 can be increased, and the amount of power generation can be increased.

舗装構造物1は、路面層3が光によって発電する光電変換部60を有することで、例えば道路等の広い面積を有効に活用することができる。
舗装構造物1は、路面層3が板状の強化プラスチックであることで、例えば工場等で製造することができ、光電変換部60を路面層3内に予め設けることができる。また、板状の強化プラスチックを並べることで路面層3とすることができ、路面層3の強度を確保しながら、施工現場における作業の効率化を図ることができる。
舗装構造物1は、装置部10が蓄電部40を有することで、熱電変換セル部20、三次電池部30及び光電変換部60の発電量が大きい時間帯に蓄電部40に充電し、発電量が小さい時間帯に蓄電部40を放電させて電力を供給することができ、24時間安定した自然エネルギーとして電力を供給することができる。
The road surface layer 3 of the pavement structure 1 has the photoelectric conversion unit 60 that generates electricity by light, so that a wide area such as a road can be effectively utilized.
Since the road surface layer 3 is made of plate-shaped reinforced plastic, the pavement structure 1 can be manufactured, for example, in a factory or the like, and the photoelectric conversion unit 60 can be provided in the road surface layer 3 in advance. In addition, by arranging plate-shaped reinforced plastics, the road surface layer 3 can be formed, and the efficiency of work at the construction site can be improved while ensuring the strength of the road surface layer 3 .
In the pavement structure 1, since the device unit 10 has the power storage unit 40, the power storage unit 40 is charged during a time period when the power generation amount of the thermoelectric conversion cell unit 20, the tertiary battery unit 30, and the photoelectric conversion unit 60 is large, and the power generation amount Electric power can be supplied by discharging the power storage unit 40 during a period when the energy is small, and electric power can be supplied as stable natural energy for 24 hours.

舗装構造物1は、装置部10の制御部50が蓄電部40の充放電を制御することで、過充電を抑え、安定した電力の供給を図ることができる。また、制御部50が電力を調整して供給することで、照明や信号、監視カメラ等の道路付帯設備や、電子機器、重電機、温度センサ等の機器に合わせて電力を供給することができ、環境から収穫した電力を汎用的に活用することができる。
舗装構造物1は、路面層3の上表面が、骨材及び骨材を保持する結合材で被覆されていることで、歩行者や車等の滑りを抑え、例えば歩行者が通行する場所であっても、歩行者の安全及び円滑な利用を図ることができる。
The control unit 50 of the device unit 10 controls charging and discharging of the power storage unit 40 , so that the pavement structure 1 can suppress overcharging and stably supply electric power. In addition, since the control unit 50 adjusts and supplies power, it is possible to supply power in accordance with roadside equipment such as lighting, signals, and surveillance cameras, and equipment such as electronic equipment, heavy electric machinery, and temperature sensors. , the power harvested from the environment can be used for general purposes.
In the pavement structure 1, the upper surface of the road surface layer 3 is coated with aggregates and a binder that holds the aggregates, thereby suppressing the slipping of pedestrians and vehicles. Even if there is, pedestrian safety and smooth use can be achieved.

(変形例)
次に、熱電変換セルの変形例21Sについて説明する。図3Bに一例を示すように、変形例21Sは、電極22Aの外側の面に突起28Aが形成され、突起28Aの先端部が筐体26から突出している点が熱電変換セル21と異なる。その他の構成は、熱電変換セル21と共通する。なお、電極22Bの外側の面には、突起28Aと同様に突起28Bが形成され、突起28Bの先端部は筐体26から突出している。
突起28A、28Bの材料は、金属でもよく、粉体状や繊維状に加工した熱伝導率の大きい物質を分散させた樹脂等でもよい。
変形例21Sは、電極22A、22Bの突起28A、28Bによって、周囲との熱接触を向上させて電極22A、22B間の温度差を大きくし、発電量の増加を図ることができる。
(Modification)
Next, a modification 21S of the thermoelectric conversion cell will be described. As an example is shown in FIG. 3B, the modification 21S is different from the thermoelectric conversion cell 21 in that protrusions 28A are formed on the outer surfaces of the electrodes 22A and the tips of the protrusions 28A protrude from the housing 26. Other configurations are common to the thermoelectric conversion cell 21 . A protrusion 28B is formed on the outer surface of the electrode 22B in the same manner as the protrusion 28A, and the tip of the protrusion 28B protrudes from the housing 26. As shown in FIG.
The material of the protrusions 28A and 28B may be metal, or resin or the like in which a substance having high thermal conductivity processed into powder or fiber is dispersed.
Modification 21S can improve thermal contact with the surroundings by means of protrusions 28A and 28B of electrodes 22A and 22B, increase the temperature difference between electrodes 22A and 22B, and increase the amount of power generation.

なお、装置部10は、熱電変換セル部20及び三次電池部30の何れか一方のみを有してもよく、両方を有してもよい。装置部10を複数設け、複数の装置部10ごとに電気的装置の組み合わせが異なっていてもよい。複数設けた装置部10の熱電変換セル部20、三次電池部30及び蓄電部40は、1つの制御部50によって、又は複数の制御部50を連携させて制御することができる。
制御部50は、例えば蓄電部40に外部から充電することができる電力入力端子を備えていてもよい。
制御部50は、例えば外部から制御信号や温度情報等を入力することができる信号入力端子を備えていてもよい。例えば、熱電変換セル部20、三次電池部30及び光電変換部60の発電量等をモニタすることができる信号出力端子を備えていてもよい。例えば、舗装構造物1が備える温度センサから入力される温度情報から発電量をシミュレートし、シミュレート結果が受け取る発電量と大きく異なる場合には、信号出力端子からアラーム信号を発するようにしてもよい。
The device section 10 may have either one of the thermoelectric conversion cell section 20 and the tertiary battery section 30, or both. A plurality of device units 10 may be provided, and the combination of electrical devices may be different for each of the plurality of device units 10 . The thermoelectric conversion cell units 20 , the tertiary battery units 30 , and the power storage units 40 of the device unit 10 provided in plurality can be controlled by one control unit 50 or in cooperation with a plurality of control units 50 .
The control unit 50 may include, for example, a power input terminal that allows the power storage unit 40 to be charged from the outside.
The control unit 50 may have a signal input terminal for inputting a control signal, temperature information, etc. from the outside, for example. For example, a signal output terminal capable of monitoring the amount of power generated by the thermoelectric conversion cell unit 20, the tertiary battery unit 30, and the photoelectric conversion unit 60 may be provided. For example, the power generation amount may be simulated from the temperature information input from the temperature sensor provided in the pavement structure 1, and if the simulation result is significantly different from the received power generation amount, an alarm signal may be issued from the signal output terminal. good.

熱電変換セル21、21Sは、電極22A、22Bが舗装構造物1における深さ方向に離隔する向きに設置してもよい。これにより、舗装構造物1の深さ方向の温度差を効率よく熱電変換セル21、21Sの電極に伝えることができる。さらに、熱電変換セル21、21Sの上下に熱伝導率の大きい材料を配置するのも好ましい。これにより、熱電変換セル21、21Sの位置に温度差を集中させることができる。
熱電変換セル部20は、路面層3に温度差発現板65を配置しない領域を設けて設置してもよい。熱電変換セル21、21Sは、熱伝導率の小さいデバイスであるため、路面層3の位置に生じている温度差を活かすことができる。また、筐体26の強度は、必要に応じて高めることができ、路面層3に設置された場合でも、交通荷重等に対する十分な耐久性を実現することができる。
装置部10の形状は、各種の柱体状や球体状であってもよく、電気的装置を設置できる空間を内部に有していればよい。
装置部10は、舗装構造物1上を通行する人や車等の交通荷重に耐える強度を有するようにすることができる。箱状の装置部10の強度を向上させて、積層部80と共に路面層3を支持するようにしてもよい。これにより、舗装構造物1は、装置部10を設置する場所の自由度を高めることができ、例えば路盤層2に埋設管が併設される等、路盤層2の空間に余裕がない場合であっても、装置部10を設置する空間の確保を容易にすることができる。
The thermoelectric conversion cells 21 and 21S may be installed such that the electrodes 22A and 22B are separated in the depth direction of the pavement structure 1 . Thereby, the temperature difference in the depth direction of the pavement structure 1 can be efficiently transmitted to the electrodes of the thermoelectric conversion cells 21 and 21S. Furthermore, it is also preferable to arrange materials with high thermal conductivity above and below the thermoelectric conversion cells 21 and 21S. Thereby, the temperature difference can be concentrated at the positions of the thermoelectric conversion cells 21 and 21S.
The thermoelectric conversion cell unit 20 may be installed by providing a region where the temperature difference manifesting plate 65 is not arranged on the road surface layer 3 . Since the thermoelectric conversion cells 21 and 21S are devices with low thermal conductivity, the temperature difference occurring at the position of the road surface layer 3 can be utilized. Further, the strength of the housing 26 can be increased as necessary, and even when installed on the road surface layer 3, sufficient durability against traffic loads and the like can be achieved.
The device section 10 may have various columnar or spherical shapes as long as it has a space inside for installing the electrical device.
The device section 10 can have a strength that can withstand the traffic load of people, vehicles, and the like that pass on the pavement structure 1 . The strength of the box-shaped device portion 10 may be increased to support the road surface layer 3 together with the laminated portion 80 . As a result, the pavement structure 1 can increase the degree of freedom in the installation location of the device unit 10. For example, even when there is no space in the roadbed layer 2, such as when a buried pipe is installed side by side in the roadbed layer 2, Even so, it is possible to easily secure a space for installing the device section 10 .

1 舗装構造物
2 路盤層
3 路面層
4 基盤層
10 装置部
20 熱電変換セル部
21 熱電変換セル
22 電極
231 膜
232 膜
25 電解質溶液
26 筐体
30 三次電池部
31 三次電池セル
32 電極
35 電解質溶液
40 蓄電部
50 制御部
60 光電変換部
65 温度差発現板
70 熱伝導部材
71 基端部(熱伝導部材)
72 先端部(熱伝導部材)
80 積層部
100 地盤
200 地面
1 pavement structure 2 roadbed layer 3 road surface layer 4 base layer 10 device section 20 thermoelectric conversion cell section 21 thermoelectric conversion cell 22 electrode 231 membrane 232 membrane 25 electrolyte solution 26 housing 30 tertiary battery section 31 tertiary battery cell 32 electrode 35 electrolyte solution 40 power storage unit 50 control unit 60 photoelectric conversion unit 65 temperature difference expression plate 70 heat conduction member 71 base end (heat conduction member)
72 tip (heat conducting member)
80 laminated part 100 ground 200 ground

Claims (8)

路盤層及び前記路盤層に支持される路面層が設置される舗装構造物であって、
前記路盤層は、
空隙を有する単位構造体を重ね合わせて形成される積層部と、
箱状の装置部と、を備え、
前記装置部は、電極の温度変化によって発電する三次電池部及び電極間の温度差によって発電する熱電変換セル部の少なくとも何れかを有する舗装構造物。
A pavement structure in which a roadbed layer and a road surface layer supported by the roadbed layer are installed,
The roadbed layer is
a laminate portion formed by stacking unit structures having voids;
a box-shaped device section,
The apparatus section is a pavement structure having at least one of a tertiary battery section that generates power according to a temperature change of the electrodes and a thermoelectric conversion cell section that generates power according to a temperature difference between the electrodes.
前記装置部は、前記三次電池部を有し、
一つの先端部及び一つの基端部を有し、前記先端部及び前記基端部の間で熱の伝導路となる熱伝導部材を複数備え、
前記三次電池部に備わる電極に前記熱伝導部材の基端部を接続し、
前記三次電池部の電極に接続されている前記基端部に対応する前記先端部は、前記路面層に配置されている請求項1に記載の舗装構造物。
The device section has the tertiary battery section,
A plurality of heat-conducting members having one distal end and one proximal end and serving as heat conduction paths between the distal end and the proximal end,
connecting the base end portion of the thermally conductive member to the electrode provided in the tertiary battery portion;
2. The pavement structure according to claim 1, wherein the tip portion corresponding to the base end portion connected to the electrode of the tertiary battery portion is arranged on the road surface layer.
前記装置部は、前記熱電変換セル部を有し、
一つの先端部及び一つの基端部を有し、前記先端部及び前記基端部の間で熱の伝導路となる熱伝導部材を複数備え、
前記熱電変換セル部に備わる電極に前記熱伝導部材の基端部を接続し、
一つの前記熱電変換セル部の異なる電極に接続されているそれぞれの前記基端部に対応する前記先端部は、前記路面層における異なる深さに配置されている請求項1又は請求項2に記載の舗装構造物。
The device section has the thermoelectric conversion cell section,
A plurality of heat-conducting members having one distal end and one proximal end and serving as heat conduction paths between the distal end and the proximal end,
connecting the base end portion of the thermally conductive member to the electrode provided in the thermoelectric conversion cell portion;
3. The tip portions corresponding to the respective base end portions connected to different electrodes of one of the thermoelectric conversion cell units are arranged at different depths in the road layer according to claim 1 or claim 2. paving structures.
前記路面層は、光によって発電する光電変換部を有する請求項1乃至請求項3の何れか一項に記載の舗装構造物。 The pavement structure according to any one of claims 1 to 3, wherein the road surface layer has a photoelectric conversion unit that generates power by light. 前記路面層は、板状の強化プラスチックである請求項4に記載の舗装構造物。 5. The pavement structure according to claim 4, wherein the road surface layer is a plate-like reinforced plastic. 前記装置部は、発電した電気を蓄える蓄電部を有する請求項1乃至請求項5の何れか一項に記載の舗装構造物。 The pavement structure according to any one of claims 1 to 5, wherein the device section has an electricity storage section that stores generated electricity. 前記装置部は、前記蓄電部の充放電を制御すると共に、電力を調整して供給する制御部を有する請求項6に記載の舗装構造物。 7. The pavement structure according to claim 6, wherein the device section controls charging and discharging of the power storage section and has a control section that adjusts and supplies electric power. 前記路面層の上表面は、骨材及び前記骨材を保持する結合材で被覆されている請求項1乃至請求項7の何れか一項に記載の舗装構造物。 8. The pavement structure according to any one of claims 1 to 7, wherein the upper surface of the road surface layer is coated with aggregate and a binder that holds the aggregate.
JP2022009534A 2022-01-25 2022-01-25 pavement structure Pending JP2023108416A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022009534A JP2023108416A (en) 2022-01-25 2022-01-25 pavement structure
PCT/JP2023/001375 WO2023145579A1 (en) 2022-01-25 2023-01-18 Pavement structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022009534A JP2023108416A (en) 2022-01-25 2022-01-25 pavement structure

Publications (1)

Publication Number Publication Date
JP2023108416A true JP2023108416A (en) 2023-08-04

Family

ID=87471752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022009534A Pending JP2023108416A (en) 2022-01-25 2022-01-25 pavement structure

Country Status (2)

Country Link
JP (1) JP2023108416A (en)
WO (1) WO2023145579A1 (en)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003021424A (en) * 2001-07-05 2003-01-24 Inax Corp Building material
JP3653548B2 (en) * 2002-07-05 2005-05-25 独立行政法人土木研究所 Thermoelectric snow melting system
JP4266809B2 (en) * 2003-12-26 2009-05-20 株式会社シーマコンサルタント Underground water storage structure
JP4220420B2 (en) * 2004-03-18 2009-02-04 株式会社東芝 Hybrid paved road
JP2008301630A (en) * 2007-05-31 2008-12-11 Junichi Nishimura Generation accumulation system using temperature difference between solar-heated portion and underground portion radiating heat
JP5269662B2 (en) * 2009-03-19 2013-08-21 株式会社東芝 Road thermoelectric power generation unit and system
JP2013008780A (en) * 2011-06-23 2013-01-10 Shunsuke Yoshida Asphalt heat utilizing thermoelectric generator
JP2012055159A (en) * 2011-09-14 2012-03-15 Masayuki Kawada Thermoelectric effect road
JP2016135964A (en) * 2015-01-23 2016-07-28 大阪瓦斯株式会社 Asphalt pavement surface processing method
JP6814445B2 (en) * 2018-08-31 2021-01-20 Mirai−Labo株式会社 Photovoltaic panels, pavement structures and wall structures
WO2020121799A1 (en) * 2018-12-14 2020-06-18 国立大学法人筑波大学 Thermal battery

Also Published As

Publication number Publication date
WO2023145579A1 (en) 2023-08-03

Similar Documents

Publication Publication Date Title
US8080901B2 (en) Multi-source integrated electricity generation from novel smart roads and pavements
US11971153B2 (en) Battery storage vault and utility pole system
EP1626140A2 (en) Shelter structure for motor vehicles
US20110290305A1 (en) Cabled matrix for cantilevered photovoltaic solar panel arrays, apparatus and deployment systems
US9716463B2 (en) Piezoelectric energy harvester
JP2017502452A (en) Battery module, battery pack, and system including battery module
KR20100125282A (en) Energy harvesting
US20160099570A1 (en) Compact Omnidirectional Modular Power Harvesting System
EP2744098A2 (en) System for generating and distributing energy from piezoelectric materials
WO2009030236A2 (en) Layered structure for generating electrical energy
KR101045067B1 (en) Solar cell module structure
US20230300953A1 (en) Method for producing a paving slab
KR20200018146A (en) Device and method for generating electricity using thermoelectric element and phase change material
WO2023145579A1 (en) Pavement structure
WO2018158598A1 (en) System for distributing electric energy, especially green energy
EP4045716A1 (en) Paver with solar panel
KR20180003579U (en) Road surface power generation unit and system
JPH06141478A (en) Electric energy supply system
KR20170000112A (en) Parking control system using control machine with basing placement
JP6602445B2 (en) Snow melting roof structure and snow melting roof structure
Duarte et al. Waynergy vehicles: System prototype demonstration in an operational environment
JP3207592U (en) Snow melting roof structure and snow melting roof structure
JP6445498B2 (en) Snow melting roof structure and snow melting roof structure
Lee et al. Comparative study of solar panels for roadway operations
CN216216652U (en) Honeycomb type photovoltaic power generation energy storage device