JP2013008780A - Asphalt heat utilizing thermoelectric generator - Google Patents

Asphalt heat utilizing thermoelectric generator Download PDF

Info

Publication number
JP2013008780A
JP2013008780A JP2011139308A JP2011139308A JP2013008780A JP 2013008780 A JP2013008780 A JP 2013008780A JP 2011139308 A JP2011139308 A JP 2011139308A JP 2011139308 A JP2011139308 A JP 2011139308A JP 2013008780 A JP2013008780 A JP 2013008780A
Authority
JP
Japan
Prior art keywords
polar plate
type semiconductor
temperature
heat source
thermoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011139308A
Other languages
Japanese (ja)
Inventor
Shunsuke Yoshida
俊介 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2011139308A priority Critical patent/JP2013008780A/en
Publication of JP2013008780A publication Critical patent/JP2013008780A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Road Paving Structures (AREA)
  • Hybrid Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a power generator by thermoelectric generation corresponding to a peak of power demand by utilizing overheat of asphalt such as a road and can be sited at a place near a demand place.SOLUTION: A polar plate A is installed just under an asphalt road surface which becomes a high temperature heat source, the polar plate A being in contact with the asphalt road surface. After that, a polar plate B and a polar plate C are installed so as to contact with water supply and sewerage pipes, a water storage groove, etc. which become low temperature heat sources. The polar plate B and the polar plate C do not come in contact with each other. The polar plate A and the polar plate B are connected with each other in a vertical direction with a p type semiconductor therebetween. The polar plate A and the polar plate C are connected with each other in a vertical direction with a n type semiconductor therebetween. The polar plates B, C are mutually connected by a conducting wire to configure a closed circuit. When heat is inputted to an asphalt road surface such as a road which is the high temperature heat source, a temperature difference is generated between the asphalt road surface and the water supply and sewerage pipes, etc. which are the low temperature heat sources. Consequently, a direct current is generated along a direction of the order of the p type semiconductor, the polar plate B, the conducting wire, the polar plate C, the n type semiconductor, the polar plate A, and the p type semiconductor.

Description

この発明は、光の照射等で発熱した道路等の地表のアスファルト面を高温熱源、地中の上下水道管、貯水溝等を低温熱源として、温度差を利用した熱電効果により
発電する熱電発電装置に関するものである。
The present invention relates to a thermoelectric power generator that generates electricity by a thermoelectric effect utilizing a temperature difference, using a surface asphalt surface of a road or the like that generates heat by light irradiation as a high-temperature heat source, an underground water and sewage pipe, a water storage groove, etc. as a low-temperature heat source. It is about.

従来、熱電発電の技術として、下記の特許文献などが紹介されてきた。また、自然界の温度差を利用する発電方法として、主に次の2通りの発電方法が用いられて
きた。
(1)地熱発電
(2)海洋温度差発電
Conventionally, the following patent documents have been introduced as thermoelectric power generation technologies. In addition, the following two power generation methods have been mainly used as a power generation method using a temperature difference in nature.
(1) Geothermal power generation (2) Ocean temperature difference power generation

特許公開2010−207077号Patent Publication 2010-207077

図解 エネルギー工学 平田哲夫、田中誠、熊野寛之、羽田喜昭 共著 森北出版株式会社Illustrated Energy Engineering Tetsuo Hirata, Makoto Tanaka, Hiroyuki Kumano, Yoshiaki Haneda Morikita Publishing Co., Ltd. 熱電変換材料 (社)日本セラミックス協会・日本熱電学会[編] 日刊工業新聞社Thermoelectric conversion material The Ceramic Society of Japan / Thermoelectric Society of Japan [Edit] Nikkan Kogyo Shimbun

熱電発電においては、高温熱源だけでなく、高温熱源と低温熱源をセットにして発電機構に取り込むことが重要なポイントであるが、従来紹介されてきた熱電発電の技術では、自然界に発生する温度差を有効に活用しきれていなかった。
(1)の地熱発電においては、地下のマグマ溜まりの熱で加熱された高温の蒸気や熱水を利用するため、数百から数千メートルのボーリングが必要である。
(2)の海洋温度差発電においては、表層温水と深層冷水の温度差を大きく取ることが必要であるため、深層冷水を汲み出すためのポンプが、数百から一千m程度必要である。
いずれも電力需要地と遠く離れた場所に立地可能地域が限られ、大規模な機構が必要なものである。また、夏季の高温時には、冷房等の使用により、電力需要にピークが発生するが、このピークに合わせた発電方式は、従来あまり取り入れられてこなかった。本発明は以上の問題点を解決するためになされたものである。
In thermoelectric power generation, it is important to incorporate not only high-temperature heat sources but also high-temperature and low-temperature heat sources into the power generation mechanism. However, with the previously introduced thermoelectric power generation technology, the temperature difference that occurs in the natural world Was not fully utilized.
In the geothermal power generation of (1), boring of several hundred to several thousand meters is required in order to use high-temperature steam or hot water heated by the heat of the underground magma chamber.
In the ocean temperature difference power generation of (2), it is necessary to take a large temperature difference between the surface layer hot water and the deep layer cold water, and therefore, a pump for pumping out the deep layer cold water needs several hundred to about 1,000 m.
In both cases, the area that can be located far away from the power demand area is limited, and a large-scale mechanism is required. Moreover, at the time of high temperatures in summer, the peak of power demand occurs due to the use of cooling or the like, but a power generation method that matches this peak has not been so far adopted. The present invention has been made to solve the above problems.

複数の極板に半導体を挟んで閉回路を構成し、上記極板間に温度差を与えると、ゼーベック効果により、上記温度差に比例した起電力が発生する。これを利用するために、上下水道管、貯水溝等が埋設された道路等のアスファルト路面において、まず、太陽光の照射等で発熱したときに高温熱源となるアスファルト路面のすぐ下に、これと接する高温接合部となる極板Aを設置する。次に、低温熱源となる上下水道管、貯水溝等に接する形で、低温接合部となる極板B、極板Cを設置する。極板Bと極板Cは互いに接しないものとする。極板Aと極板Bの間を鉛直方向にp型半導体で接続し、極板Aと極板Cの間を鉛直方向にn型半導体で接続する。極板B、C間を導線で繋ぎ、閉回路を構成する。高温熱源である道路等のアスファルト路面に熱入力があると、地中で温度が安定している低温熱源となる上下水道管、貯水溝等との間に温度差が生じる。これに伴い、p型半導体−>極板B−>導線−>極板C−>n型半導体−>極板A−>p型半導体の向きに直流電流が発生する熱電発電装置である。上記導線間に適当な電気機器を接続することで、電力を利用できる。 When a closed circuit is formed by sandwiching a semiconductor between a plurality of electrode plates and a temperature difference is given between the electrode plates, an electromotive force proportional to the temperature difference is generated due to the Seebeck effect. In order to use this, on asphalt road surfaces such as roads where water and sewage pipes, reservoirs, etc. are buried, first, just below the asphalt road surface that becomes a high-temperature heat source when heat is generated by sunlight irradiation, etc. An electrode plate A is installed as a high-temperature joint to be in contact. Next, an electrode plate B and an electrode plate C that are low-temperature joint portions are installed in contact with a water and sewage pipe, a water storage groove, and the like that are low-temperature heat sources. The electrode plate B and the electrode plate C are not in contact with each other. The electrode plate A and the electrode plate B are connected in the vertical direction by a p-type semiconductor, and the electrode plate A and the electrode plate C are connected in the vertical direction by an n-type semiconductor. The electrode plates B and C are connected by a conductive wire to form a closed circuit. When there is heat input on an asphalt road surface such as a road that is a high-temperature heat source, a temperature difference occurs between the water and sewage pipes, the water ditch, and the like that are low-temperature heat sources whose temperature is stable in the ground. Along with this, the thermoelectric generator generates a direct current in the direction of p-type semiconductor-> electrode B-> conductor-> electrode C-> n-type semiconductor-> electrode A-> p-type semiconductor. Electric power can be used by connecting an appropriate electrical device between the conductors.

上記熱電発電装置を安定的かつ起電力を増大させて使用するために、以下箇条書きで挙げる方法を用いる。
(1) 上記熱電発電装置表面を絶縁体で覆うことにより、装置全体を外部から電気的に独立させる。
(2) 上記熱電発電装置において、極板Aと極板B、C間に断熱材を埋設することで断熱層を形成し、上記p型半導体と、n型半導体は、上記断熱層の中を、これ
を排して鉛直方向に、それぞれ極板A−B間、A−C間を接続する。これにより、高温接合部である極板Aと低温接合部である極板B、C間の温度差が大きくなりやすくすることで、起電力を増大させる。
(3) 上記熱電発電装置を直列に接続することにより、起電力を増大させる。
In order to use the thermoelectric generator stably and with an increased electromotive force, the following methods are used.
(1) By covering the surface of the thermoelectric generator with an insulator, the entire apparatus is electrically independent from the outside.
(2) In the thermoelectric generator, a heat insulating layer is formed by embedding a heat insulating material between the electrode plate A and the electrode plates B and C, and the p-type semiconductor and the n-type semiconductor are disposed in the heat insulating layer. This is removed and the plates A and B and A and C are connected in the vertical direction. This increases the electromotive force by making the temperature difference between the electrode plate A, which is a high-temperature bonding part, and the electrode plates B, C, which are low-temperature bonding parts, easy to increase.
(3) The electromotive force is increased by connecting the thermoelectric generators in series.

従来、ヒートアイランド現象の原因と見られてきたアスファルト路面を過熱させる熱エネルギーを発電に利用でき、外気温と相関関係にある路面温度が高ければ高いほど発電量が増大するため、冷房用電源としての適性がある。また、舗装道路の下ならどこでも設置できるので、電力需要地であるビル、住宅のすぐそばに設置可能であり、送電ロスが非常に少ない。さらに、プロペラ、タービン等を使用しないため、静音であり、メンテナンスも楽であるため、ランニングコストも安く済む。 Conventionally, the heat energy that overheats the asphalt road surface, which has been seen as the cause of the heat island phenomenon, can be used for power generation, and the higher the road surface temperature correlated with the outside air temperature, the higher the power generation amount. There is aptitude. In addition, since it can be installed anywhere under a paved road, it can be installed in the immediate vicinity of buildings and houses that are places where electricity is demanded, and there is very little transmission loss. Furthermore, since no propeller, turbine, or the like is used, the noise is low and maintenance is easy, so the running cost is low.

本発明の実施例1における模式図Schematic diagram in Example 1 of the present invention 本発明の実施例2における、極板Aと極板B、C間の断面図Sectional drawing between electrode plate A and electrode plates B and C in Example 2 of the present invention 本発明の実施例3において、3個直列接続した場合の模式図In Example 3 of this invention, the schematic diagram at the time of connecting three in series 本発明の実施例4における模式図Schematic diagram in Example 4 of the present invention

以下本発明の実施の形態について説明する。
まず、高温熱源となる道路等のアスファルト路面(1)のすぐ下に、これと接する高温接合部となる極板A(2)を設置する。次に、低温熱源となる上下水道管、貯水溝等(3)と接する形で、低温接合部となる極板B(4)、極板C(5)を設置する。極板B(4)と極板C(5)は、互いに接しないものとする。極板A(2)と極板B(4)の間を鉛直方向にp型半導体(6)で接続し、極板A(2)と極板C(5)の間を鉛直方向にn型半導体(7)で接続する。極板B(4)、C(5)を導線(8)で繋ぎ、閉回路を構成する。また、導線(8)間の電気抵抗を負荷(9)として表す。また、この熱電発電装置全体を外部から電気的に独立させるために、装置表面を絶縁体で覆う。なお、極板A(2)、B(4)、C(5)とp型半導体(6)、n型半導体(7)の材質、形状、大きさは状況に応じて、実施者の任意によるものとする。
Embodiments of the present invention will be described below.
First, an electrode plate A (2) serving as a high-temperature joint in contact with the asphalt road surface (1) such as a road serving as a high-temperature heat source is installed. Next, an electrode plate B (4) and an electrode plate C (5) to be a low-temperature joint are installed in contact with the water and sewage pipe, the water storage groove, etc. (3) to be a low-temperature heat source. The electrode plate B (4) and the electrode plate C (5) are not in contact with each other. Between the electrode plate A (2) and the electrode plate B (4) is connected in the vertical direction by a p-type semiconductor (6), and between the electrode plate A (2) and the electrode plate C (5) is n-type in the vertical direction. Connect with semiconductor (7). The electrode plates B (4) and C (5) are connected by the conducting wire (8) to form a closed circuit. Moreover, the electrical resistance between conducting wires (8) is represented as a load (9). In addition, in order to make the entire thermoelectric generator electrically independent from the outside, the surface of the apparatus is covered with an insulator. The materials, shapes, and sizes of the electrode plates A (2), B (4), C (5), the p-type semiconductor (6), and the n-type semiconductor (7) are determined by the practitioner depending on the situation. Shall.

[実施例1]
本発明は以上のような構成で、高温熱源となる、道路等のアスファルト路面(1)に熱入力があると、熱の伝わり方の違いにより、低温熱源となる上下水道管、貯水溝等(3)との間に温度差が生じる。これに伴い、p型半導体(6)−>極板B(4)−>導線(8)−>極板C(5)−>n型半導体(7)−>極板A(2)−>p型半導体(6)の向きに直流電流が発生する。導線(8)間に適当な電気機器を負荷(9)として接続することで、電力を利用できる。
[Example 1]
The present invention is configured as described above, and when there is heat input to an asphalt road surface (1) such as a road serving as a high-temperature heat source, due to a difference in the way heat is transmitted, a water and sewer pipe serving as a low-temperature heat source, a water ditch, etc. There is a temperature difference with 3). Accordingly, p-type semiconductor (6)-> electrode plate B (4)-> conductor (8)-> electrode plate C (5)-> n-type semiconductor (7)-> electrode plate A (2)-> A direct current is generated in the direction of the p-type semiconductor (6). Electric power can be used by connecting an appropriate electrical device between the conductors (8) as a load (9).

[実施例2]
極板A(2)と極板B(4)、C(5)の間に断熱材を埋設して断熱層(10)を形成する。p型半導体は、断熱層(10)の中を、これを排して鉛直方向に、極板A(2)と極板B(4)間を接続する。同様に、n型半導体は、断熱層(10)の中を、これを排して鉛直方向に、極板A(2)と極板C(5)間を接続する。これにより、上記高温熱源と低温熱源の間の温度差を拡大させ、発電効率を高めることができる。
[Example 2]
A heat insulating material is buried between the electrode plate A (2) and the electrode plates B (4) and C (5) to form a heat insulating layer (10). The p-type semiconductor connects the electrode plate A (2) and the electrode plate B (4) in the vertical direction by eliminating the heat insulating layer (10). Similarly, the n-type semiconductor connects the electrode plate A (2) and the electrode plate C (5) in the vertical direction by eliminating the heat insulating layer (10). Thereby, the temperature difference between the said high temperature heat source and a low temperature heat source can be expanded, and electric power generation efficiency can be improved.

[実施例3]
実施例1または2記載の熱電発電装置を直列につなぐことで、起電力を増大させる。
[Example 3]
The electromotive force is increased by connecting the thermoelectric generators described in Example 1 or 2 in series.

[実施例4]
実施例1では、アスファルト路面(1)が高温熱源となる場合について述べたが、夜間や寒冷地においては、アスファルト路面(1)を低温熱源、上下水道管等(7)を高温熱源として利用することもできる。その場合、前述の機構において、直流電流の向きが逆になる。
[Example 4]
In the first embodiment, the case where the asphalt road surface (1) is a high-temperature heat source has been described. However, at night or in a cold region, the asphalt road surface (1) is used as a low-temperature heat source, and the water and sewage pipe (7) is used as a high-temperature heat source. You can also. In that case, in the mechanism described above, the direction of the direct current is reversed.

本発明は、常時安定的な電源にはなり得ないものの、実施例1において、快晴で、外気温が高いほど、アスファルト路面と、地中の、特に水と接する面との熱の伝わり方の違いにより、高温熱源と低温熱源の間の温度差が大きくなり、熱電発電による起電力が大きくなる。また、電力消費地のすぐ近くに設置可能なことも併せて考えると、既存の送電網に乗せるよりも、その場で発電と同時に利用する、すなわち、夏季の冷房用電源として、家庭、オフィス等の冷房器具を作動させるのに最適である。 Although the present invention cannot always be a stable power source, in Example 1, the clearer and the higher the outside air temperature, the more the heat is transmitted between the asphalt road surface and the ground, particularly the surface in contact with water. Due to the difference, the temperature difference between the high-temperature heat source and the low-temperature heat source increases, and the electromotive force generated by thermoelectric power generation increases. In addition, considering that it can be installed in the immediate vicinity of the power consumption area, it is used at the same time as power generation on the spot rather than being placed on the existing power grid, that is, as a cooling power source in summer, home, office, etc. It is most suitable for operating the cooling equipment.

1アスファルト路面
2極板A
3上下水道管、貯水溝等
4極板B
5極板C
6p型半導体
7n型半導体
8導線
9負荷
1 Asphalt road surface
Bipolar plate A
3 Water and sewage pipes, reservoirs, etc.
5-pole plate C
6p type semiconductor 7n type semiconductor 8 conductor 9 load

Claims (5)

上下水道管、貯水溝等が埋設されたアスファルト路面において、太陽光の照射等で発熱した、地表のアスファルト路面を高温熱源、地中の上下水道管、貯水溝等を
低温熱源とする、温度差を利用した、熱電発電装置。
Temperature difference between asphalt road surface where water and sewage pipes, reservoirs, etc. are buried, which generates heat due to sunlight irradiation, etc., with the surface asphalt road surface as a high-temperature heat source and underground water and sewage pipes and storage grooves as a low-temperature heat source A thermoelectric generator that uses
上記高温熱源に1つ、上記低温熱源に2つの極板を接触させ、それぞれ、高温接合部と低温接合部とし、上記高温接合部と低温接合部の極板間の1つをp型半導体で、上記極板間のもう1つをn型半導体で接続し、さらに、低温接合部の2つの極板間を導線で接続して閉回路を構成することで、熱電効果による発電を実現する、請求項1記載の熱電発電装置。 One electrode is contacted with the high temperature heat source and two electrode plates are contacted with the low temperature heat source to form a high temperature junction and a low temperature junction, respectively, and one between the electrode plates of the high temperature junction and the low temperature junction is a p-type semiconductor. By connecting the other electrode plate with an n-type semiconductor, and connecting the two electrode plates of the low-temperature junction with a conducting wire to form a closed circuit, power generation by the thermoelectric effect is realized. The thermoelectric generator according to claim 1. 上記熱電発電装置表面を絶縁体で覆うことにより、装置全体を外部から電気的に独立させた、請求項2記載の熱電発電装置。 The thermoelectric power generator according to claim 2, wherein the entire device is electrically independent from the outside by covering the surface of the thermoelectric generator with an insulator. 上記熱電発電装置において、上記高温接合部の極板と低温接合部の極板間に断熱材を埋設することで断熱層を形成し、上記p型半導体と、n型半導体は、上記断熱層の中を、これを排して鉛直方向に、上記高温接合部と低温接合部の極板間を接続する、請求項2または3記載の熱電発電装置。 In the thermoelectric generator, a heat insulating layer is formed by embedding a heat insulating material between the electrode plate of the high temperature bonding portion and the electrode plate of the low temperature bonding portion, and the p-type semiconductor and the n-type semiconductor are formed of the heat insulating layer. The thermoelectric generator according to claim 2 or 3, wherein the inside is removed and the electrodes of the high-temperature joint and the low-temperature joint are connected in the vertical direction. 請求項2または3または4記載の熱電発電装置を直列に接続することにより、起電力を増大させた熱電発電装置。 A thermoelectric power generation apparatus in which electromotive force is increased by connecting the thermoelectric power generation apparatuses according to claim 2, 3, or 4 in series.
JP2011139308A 2011-06-23 2011-06-23 Asphalt heat utilizing thermoelectric generator Withdrawn JP2013008780A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011139308A JP2013008780A (en) 2011-06-23 2011-06-23 Asphalt heat utilizing thermoelectric generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011139308A JP2013008780A (en) 2011-06-23 2011-06-23 Asphalt heat utilizing thermoelectric generator

Publications (1)

Publication Number Publication Date
JP2013008780A true JP2013008780A (en) 2013-01-10

Family

ID=47675895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011139308A Withdrawn JP2013008780A (en) 2011-06-23 2011-06-23 Asphalt heat utilizing thermoelectric generator

Country Status (1)

Country Link
JP (1) JP2013008780A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105207527A (en) * 2015-10-12 2015-12-30 范洲卫 Thermoelectric power generation type electronic equipment power supply
JP2016014255A (en) * 2014-07-02 2016-01-28 株式会社明電舎 Monitoring and control system and manhole cover
CN105871304A (en) * 2016-01-02 2016-08-17 俞亮芽 Solar power generation device
WO2022210553A1 (en) * 2021-03-29 2022-10-06 株式会社AmaterZ Communication device, and power source device
WO2023145579A1 (en) * 2022-01-25 2023-08-03 国立大学法人 筑波大学 Pavement structure

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016014255A (en) * 2014-07-02 2016-01-28 株式会社明電舎 Monitoring and control system and manhole cover
CN105207527A (en) * 2015-10-12 2015-12-30 范洲卫 Thermoelectric power generation type electronic equipment power supply
CN105871304A (en) * 2016-01-02 2016-08-17 俞亮芽 Solar power generation device
CN105915154A (en) * 2016-01-02 2016-08-31 俞亮芽 Solar energy generation device
CN105915158A (en) * 2016-01-02 2016-08-31 俞亮芽 Solar energy generation device
WO2022210553A1 (en) * 2021-03-29 2022-10-06 株式会社AmaterZ Communication device, and power source device
WO2023145579A1 (en) * 2022-01-25 2023-08-03 国立大学法人 筑波大学 Pavement structure

Similar Documents

Publication Publication Date Title
JP2013008780A (en) Asphalt heat utilizing thermoelectric generator
EA201170019A1 (en) SYSTEM AND METHOD FOR SELECTING GEOTHERMAL HEAT FROM A DRILLED WELL FOR ELECTRIC POWER GENERATION
KR101083475B1 (en) Cooling system of electric generation module using solar energy
JP6152553B2 (en) Solar power generation system and solar power generation method
CN102739115A (en) Power generating system utilizing internal and external environmental temperature difference of building
CN106130406A (en) Stratum self low-temperature receiver type hot dry rock thermoelectric heat generation system and method
CN102355170A (en) Ground thermoelectric power generation device
KR20140043197A (en) Warm water apparatus for use of thermoelectric generator
CN103166519A (en) Hot water temperature differential power generation device
CN203377816U (en) Semiconductor thermoelectric generation apparatus for hot spring
CN202374199U (en) Device for generating power by utilizing temperature difference between high temperature water of solar water heater, tap water and constant temperature water of ground source heat pump
CN103166505A (en) Solar energy power generating device
RU2539875C2 (en) System of electric power supply to consumers in voltage networks using renewable and non-renewable energy sources and controlling electric energy generation
Sevela et al. Development and benefits of using PVT compared to PV
CN202424589U (en) Urban asphalt pavement temperature difference power generating system
WO2004054008A1 (en) Thermoelectric effect apparatus, energy direct conversion system, and energy conversion system
CN202513852U (en) Generation system using temperature difference between city asphalt pavement and underground water source pipeline
CN209375496U (en) A kind of in-situ heat volt power generator
KR20140123246A (en) Smart Energy Storage System of High-rise Buildings, Renewable Energy Used to Drive The Inverter Pump and How to Use
CN102545720A (en) Generation system using temperature difference between city asphalt pavement and underground water source pipeline
JP2018044439A (en) Method for suppressing opposition of geothermal generation, accelerating utilization of power geothermal energy and accelerating geothermal power generation
KR101894751B1 (en) Water heating system using natural energy
JPWO2006054567A1 (en) Thermal energy transfer circuit system, electrical energy conversion supply system using thermal energy resources, and chemical energy resource storage system using thermal energy resources
CN205754067U (en) A kind of temperature difference electricity generation device for heat distribution pipe network
CN109639181A (en) A kind of in-situ heat volt power generator

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140902