JP2023105477A - 冷媒量検知を行う熱源ユニット及び冷凍装置 - Google Patents

冷媒量検知を行う熱源ユニット及び冷凍装置 Download PDF

Info

Publication number
JP2023105477A
JP2023105477A JP2022006330A JP2022006330A JP2023105477A JP 2023105477 A JP2023105477 A JP 2023105477A JP 2022006330 A JP2022006330 A JP 2022006330A JP 2022006330 A JP2022006330 A JP 2022006330A JP 2023105477 A JP2023105477 A JP 2023105477A
Authority
JP
Japan
Prior art keywords
refrigerant
heat source
valve
passage
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022006330A
Other languages
English (en)
Inventor
東 近藤
Azuma Kondo
宏一 北
Koichi Kita
覚 阪江
Satoru Sakae
祥佳瑞 上原
Yoshikazu Uehara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2022006330A priority Critical patent/JP2023105477A/ja
Publication of JP2023105477A publication Critical patent/JP2023105477A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

【課題】過冷却熱交換器を備える冷凍装置において、冷媒量の多寡が反映された状態量を取得する。【解決手段】熱源ユニット10は、圧縮機11と、熱源熱交換器13と、凝縮冷媒流路71と、熱源膨張弁15と、過冷却熱交換器16と、過冷却制限機構40と、制御部19と、を備える。圧縮機11は、低圧冷媒R1を圧縮することによって高圧冷媒R2を生成する。熱源熱交換器13は、高圧冷媒R2を凝縮する。凝縮冷媒流路71は、熱源熱交換器が排出する凝縮冷媒R3を案内する。過冷却熱交換器16は、凝縮冷媒R3を冷却する。過冷却制限機構40は、過冷却熱交換器16による凝縮冷媒R3の冷却を制限する。制御部19は、過冷却制限機構40の制御と、凝縮冷媒R3の過冷却度SCに応じた冷媒量Aの判定を行う。制御部19は、通常運転において過冷却制限機構40による冷却の制限を停止し、冷媒量判定運転において過冷却制限機構40による冷却の制限を実行する。【選択図】図1

Description

本開示は、冷媒量検知を行う熱源ユニット及び冷凍装置に関する。
特許文献1(特開2010-223542号公報)に開示される冷凍装置は、冷媒回路を循環する冷媒の量を算出する。冷凍装置の構成要素である熱源ユニットには、過冷却熱交換器が搭載されている。
冷媒量の算出処理は、概して、冷媒回路のある箇所において取得された冷媒の状態量に基づいて行われる。
しかし、過冷却熱交換器が状態量の取得を困難にする場合がある。例えば、凝縮器によって凝縮された後で過冷却熱交換器によって冷却された冷媒の液密度は、冷媒回路の冷媒量の変動によって影響を受けにくい。したがって、冷媒の状態量を取得がそのような箇所で取得される場合、状態量の有意な変化が得られにくい。
よって、過冷却熱交換器を備える冷凍装置において、冷媒量の多寡が反映された状態量を取得することが重要である。
第1観点に係る熱源ユニットは、圧縮機と、熱源熱交換器と、凝縮冷媒流路と、熱源膨張弁と、過冷却熱交換器と、過冷却制限機構と、制御部と、を備える。圧縮機は、低圧冷媒を圧縮することによって高圧冷媒を生成する。熱源熱交換器は、高圧冷媒を凝縮する。凝縮冷媒流路は、熱源熱交換器が排出する凝縮冷媒を案内する。過冷却熱交換器は、凝縮冷媒を冷却する。過冷却制限機構は、過冷却熱交換器による凝縮冷媒の冷却を制限する。制御部は、過冷却制限機構の制御を行う。制御部は、凝縮冷媒の過冷却度に応じて冷媒量の判定を行う。制御部は、通常運転において過冷却制限機構による冷却の制限を停止する。制御部は、冷媒量判定運転において過冷却制限機構による冷却の制限を実行する。
この構成によれば、冷媒量判定運転において、過冷却熱交換器において凝縮冷媒の冷却が制限される。このため、過冷却熱交換器の冷却による液密度変化の冷媒量判定運転への影響が小さくなる。
第2観点の熱源ユニットは、第1観点の熱源ユニットにおいて、過冷却熱交換器が、第1パッセージと、第2パッセージとを有する。第1パッセージは、凝縮冷媒を通過させる。第2パッセージは、凝縮冷媒を冷却する冷却ガスを通過させる。前記過冷却制限機構は、第1流路と、第1弁と、第2流路と、インジェクション流路と、を有する。第1流路は、第1パッセージ及び第2パッセージの少なくとも1つを迂回する。第1弁は、第1流路に設けられる。第2流路は、冷却ガスを第2パッセージへ案内する。インジェクション流路は、過冷却熱交換器が生成する中間圧冷媒を圧縮機へ案内する。
この構成によれば、適量の中間圧冷媒を圧縮機へ供給する冷媒インジェクションが行われる。したがって、圧縮機の性能を維持することができる。
第3観点の熱源ユニットは、第2観点の熱源ユニットにおいて、第1流路が、凝縮冷媒を過冷却熱交換器に通過させることなくインジェクション流路へ案内する。制御部は、通常運転において第1弁を閉め、冷媒量判定運転において第1弁を開ける。
この構成によれば、冷媒量判定運転において、インジェクション冷媒は、過冷却熱交換器を通過しなかった凝縮冷媒である。したがって、インジェクション冷媒の状態に関連するパラメータをモニタすることによって、冷媒量の判定が正確に行われる。
第4観点の熱源ユニットは、第2観点の熱源ユニットにおいて、第1流路が、凝縮冷媒を第1パッセージに通過させることなく第2流路へ案内する。制御部は、通常運転において第1弁を閉め、冷媒量判定運転において第1弁を開ける。
この構成によれば、冷媒量判定運転において、インジェクション冷媒は、第1パッセージを通過しなかった凝縮冷媒である。したがって、インジェクション冷媒の状態に関連するパラメータをモニタすることによって、冷媒量の判定が正確に行われる。
第5観点の熱源ユニットは、第2観点の熱源ユニットにおいて、第1流路が、冷却ガスを第2パッセージに通過させることなくインジェクション流路へ案内する。制御部は、通常運転において第1弁を閉め、冷媒量判定運転において第1弁を開ける。
この構成によれば、冷媒量判定運転において、インジェクション冷媒は、第2パッセージを通過しなかった凝縮冷媒である。したがって、インジェクション冷媒の状態に関連するパラメータをモニタすることによって、冷媒量の判定が正確に行われる。
第6観点の熱源ユニットは、第2観点から第5観点のいずれか1つの熱源ユニットにおいて、過冷却制限機構が、第2弁をさらに有する。第2弁は、第2流路に設けられる。第2弁は、凝縮冷媒の一部を減圧することによって冷却ガスを生成する。
この構成によれば、冷却ガスは第2弁が凝縮冷媒を減圧することによって生成される。したがって、冷却ガスを用いることによって凝縮冷媒に過冷却度を与えることができ、かつ、冷却ガスをインジェクション冷媒として用いることができる。
第7観点の熱源ユニットは、第6観点の熱源ユニットにおいて、第2流路が、第1パッセージの出口と第2パッセージの入口を結ぶ。制御部は、通常運転において第2弁を開け、冷媒量判定運転において第2弁を閉める。
この構成によれば、冷却ガスは過冷却熱交換器の第1パッセージを通過した後の凝縮冷媒から生成される。
第8観点の熱源ユニットは、第6観点の熱源ユニットにおいて、第2流路が、第1パッセージの入口と前記第2パッセージの入口を結ぶ。制御部は、通常運転において第2弁を開け、冷媒量判定運転において第2弁を閉める。
この構成によれば、冷却ガスは過冷却熱交換器を通過していない凝縮冷媒から生成される。
第9観点の熱源ユニットは、第2観点から第8観点のいずれか1つの熱源ユニットにおいて、第1弁が、調節可能な第1開度を有する。冷媒量判定運転において、制御部は、第1開度を調節するとともに第1開度に基づいて過冷却度又は冷媒量を判定する。
この構成によれば、インジェクション制御に用いられる第1弁の開度に基づいて過冷却度又は冷媒量が判定される。したがって、制御部は冷媒量の判定のために過度の処理負担を強いられない。
第10観点の熱源ユニットは、第6観点の熱源ユニットにおいて、第1弁が、調節可能な第1開度を有する。第2弁は、調整可能な第2開度を有する。制御部は、通常運転において第2開度を所定の制御パラメータに基づいて制御する。制御部は、冷媒量判定運転において第1開度を制御パラメータに基づいて制御する。
この構成によれば、第1開度及び第2開度は共通の制御パラメータによって制御される。
第11観点の熱源ユニットは、第10観点の熱源ユニットにおいて、制御部が、制御パラメータを一定に保つように、第1開度又は第2開度を制御する。
この構成によれば、第1開度及び第2開度の調節によって、制御パラメータが一定に保たれる。
第12観点の熱源ユニットは、第10観点又は第11観点の熱源ユニットにおいて、圧縮機が、低圧冷媒を吸入する吸入口、高圧冷媒を吐出する吐出口、及び、圧縮室を有する。制御パラメータは、中間圧冷媒の圧力、又は、高圧冷媒の温度である。
この構成によれば、圧縮機に吸入される中間圧冷媒、又は、圧縮機が吐出する高圧冷媒の状態に基づいて冷媒回路の制御が行われる。したがって、冷媒回路の性能を維持できる。
第13観点の熱源ユニットは、第12観点の熱源ユニットにおいて、インジェクション流路が、圧縮室と接続されている。

この構成によれば、インジェクション流路の冷媒を圧縮室へ供給する中間圧インジェクションが行われる。
第14観点の熱源ユニットは、第12観点の熱源ユニットにおいて、インジェクション流路が、吸入口と接続されている。
この構成によれば、インジェクション流路の冷媒を吸入口へ供給する吸入インジェクションが行われる。
第15観点の冷凍装置は、熱源ユニットと、利用ユニットと、連絡配管と、を備える。熱源ユニットは、第1観点から第14観点のいずれか1つのものである。利用ユニットは、利用熱交換器を有する。連絡配管は、熱源ユニット及び利用ユニットを接続する。
この構成によれば、冷凍装置の冷媒量判定運転において圧縮機へ供給される凝縮冷媒は、過冷却熱交換器の第1パッセージ及び第2パッセージの少なくとも一方を通過しない。したがって、冷凍装置において冷媒量の判定が正確に行われる。
第1実施形態の基本形に係る冷凍装置100の構成を示す模式図である。 冷媒量判定運転における冷媒量Aの判定の制御手順である。 第1実施形態の第1変形例1Aに係る冷凍装置100の構成を示す模式図である。 第1実施形態の第2変形例1Bに係る冷凍装置100の構成を示す模式図である。 第2実施形態の基本形に係る冷凍装置100の構成を示す模式図である。 第2実施形態の第1変形例2Aに係る冷凍装置100の構成を示す模式図である。 第2実施形態の第2変形例2Bに係る冷凍装置100の構成を示す模式図である。 第3実施形態の基本形に係る冷凍装置100の構成を示す模式図である。
<第1実施形態>
(1)全体構成
図1は、第1実施形態の基本形に係る冷凍装置100を示す。冷凍装置100は、熱源から冷熱(cold)又は温熱(heat)を取得して、その冷熱又は温熱をユーザに提供するためのものである。冷凍装置100の具体的態様は、例えば、空気調和装置、冷蔵庫、冷凍庫、給湯機、床暖房装置、洗濯乾燥機である。
冷凍装置100は、冷媒を循環する冷媒回路RCを有する。冷媒回路RCは、例えば1台の熱源ユニット10、1台の利用ユニット20、及び連絡配管30によって構成されている。1台の冷凍装置100に含まれる熱源ユニット10及び利用ユニット20の数は複数であってもよい。
冷凍装置100は、通常運転、及び、冷媒量判定運転を実行することができる。通常運転は、ユーザに冷熱又は温熱を提供することを目的とする運転である。通常運転は、ユーザに冷熱を提供する冷熱提供運転、及び、ユーザに温熱を提供する温熱提供運転を含む。冷媒量判定運転は、冷凍装置100の冷媒回路RCを循環する冷媒の量である冷媒量Aを判定することを目的とする運転である。
(2)詳細構成
(2-1)熱源ユニット10
熱源ユニット10は、室外空気等の熱源から冷熱又は温熱を取得するためのものである。熱源ユニット10は、圧縮機11、四路切換弁12、熱源熱交換器13、レシーバ14、熱源膨張弁15、過冷却熱交換器16、液閉鎖弁17、ガス閉鎖弁18、制御部19を有する。熱源ユニット10は、さらに、過冷却制限機構40、凝縮冷媒流路71、センサ群80、逆止弁91~94、及び、電動弁95を有する。
(2-1-1)圧縮機11
圧縮機11は、ガス状の低圧冷媒R1を圧縮することによってガス状の高圧冷媒R2を生成する。圧縮機11は、吸入口11a、吐出口11b、圧縮室11c、及び、インジェクション導入口11dを有する。吸入口11aは、低圧冷媒R1を吸入するためのものである。吐出口11bは、高圧冷媒R2を吐出するためのものである。圧縮室11cは、可変の容積を有し、低圧冷媒R1を圧縮することによって高圧冷媒R2を生成する。インジェクション導入口11dは、圧縮室11cに連通しており、中間圧冷媒R5を吸入するために用いられる。
(2-1-2)四路切換弁12
冷凍装置100が冷熱提供運転を実行するとき、四路切換弁12は、図1の実線で示した接続を確立する。一方、冷凍装置100が温熱提供運転を実行するとき、四路切換弁12は、図1の破線で示した接続を確立する。
(2-1-3)熱源熱交換器13
冷凍装置100が冷熱提供運転を実行するとき、熱源熱交換器13は、凝縮器又は放熱器として機能する。このとき、熱源熱交換器13は、ガス状の高圧冷媒R2を凝縮することによって、液状の凝縮冷媒R3を生成する。
一方、冷凍装置100が温熱提供運転を実行するとき、熱源熱交換器13は、蒸発器又は吸熱器として機能する。
(2-1-4)レシーバ14、凝縮冷媒流路71
レシーバ14は、冷媒回路RCを循環する冷媒の一部を貯留する。これにより、レシーバ14は、冷凍装置100の状態の変化によって生じる必要な冷媒量Aの変化分を吸収する。
レシーバ14は、熱源熱交換器13の液側接続口と、凝縮冷媒流路71との間に設置される。凝縮冷媒流路71は、冷熱提供運転の際に、液状の凝縮冷媒R3をレシーバ14から過冷却制限機構40へ案内する。
(2-1-5)熱源膨張弁15
熱源膨張弁15は、冷媒を減圧する。さらに、熱源膨張弁15は、単位時間あたりに移動する冷媒の量を調節する。これらの目的のために、熱源膨張弁15は、調節可能な開度を有している。
(2-1-6)過冷却熱交換器16
過冷却熱交換器16は、冷熱提供運転において、凝縮冷媒R3を冷却することによって、凝縮冷媒R3に過冷却度SCを与える。過冷却熱交換器16は、第1パッセージ61、及び、第2パッセージ62を有する。第1パッセージ61は、入口16aと出口16bを有する。第2パッセージ62は、入口16cと出口16dを有する。第1パッセージ61及び第2パッセージ62を流れる冷媒は、互いに熱交換を行うことができる。
第1パッセージ61は、凝縮冷媒R3を通過させるためのものである。第2パッセージ62は、冷却ガスR4を通過させるためのものである。冷却ガスR4は、第1パッセージ61を通過する凝縮冷媒R3を冷却するために用いられる。冷却ガスR4は、第2パッセージ62を通過した後、中間圧冷媒R5として圧縮機11へ供給される。
(2-1-7)液閉鎖弁17、ガス閉鎖弁18
液閉鎖弁17及びガス閉鎖弁18は、冷凍装置100の設置の際などに冷媒回路RCを遮断する。
(2-1-8)センサ群80
センサ群80は、冷媒の状態を取得する。センサ群80は、低圧冷媒センサ81、高圧冷媒センサ82、中間圧冷媒センサ85を含む。低圧冷媒センサ81は、低圧冷媒R1の圧力又は温度を取得する。高圧冷媒センサ82は、高圧冷媒R2の圧力又は温度を取得する。中間圧冷媒センサ85は、中間圧冷媒R5の圧力又は温度を取得する。
(2-1-9)過冷却制限機構40
過冷却制限機構40は、過冷却熱交換器16による凝縮冷媒R3の冷却を制限するためのものである。
過冷却制限機構40は、第1流路51、第2流路52、第3流路53、インジェクション流路54、第1弁41、第2弁42を有する。
第1流路51は、第1パッセージ61及び第2パッセージ62の両方を迂回する冷媒流路である。第1流路51は、凝縮冷媒R3を過冷却熱交換器16に通過させることなくインジェクション流路54へ案内する。凝縮冷媒R3が第1流路51を通過することによって、凝縮冷媒R3の冷却が制限される。
第2流路52は、冷却ガスR4を第2パッセージ62へ案内する冷媒流路である。第2流路52は、前記第1パッセージ61の出口16bと前記第2パッセージ62の入口16cを結ぶ。
第3流路53は、前記第2パッセージ62の出口16dと中間圧冷媒導入点79とを結ぶ。
インジェクション流路54は、過冷却熱交換器16が生成する中間圧冷媒R5を圧縮機11へ案内する。インジェクション流路54の起点は中間圧冷媒導入点79である。インジェクション流路54は、インジェクション導入口11dを介して圧縮室11cと接続されている。
第1弁41は、調節可能な第1開度αを有する。第1弁41は、第1流路51に設けられる。第1弁41は、過冷却熱交換器16を迂回する凝縮冷媒R3の量を調節する。過冷却熱交換器16を迂回した凝縮冷媒R3は、中間圧冷媒R5として圧縮機11へ供給される。
第2弁42は、調節可能な第2開度βを有する。第2弁42は、第2流路52に設けられる。第2弁42は、凝縮冷媒R3の一部を減圧することによって冷却ガスR4を生成する。
(2-1-10)逆止弁91~94、電動弁95
逆止弁91~94は、冷媒を一方向にのみ通過させる。電動弁95は、冷媒の流量を適宜調節する。
(2-1-11)制御部19
制御部19は、冷凍装置100に搭載されている各種センサからデータを取得するとともに、各種アクチュエータを制御する。さらに、制御部19は、各種演算を実行する。
制御部19は、過冷却制限機構40の制御を行う。例えば、制御部19は、通常運転において過冷却制限機構40による冷却の制限を停止する。さらに、制御部19は、冷媒量判定運転において過冷却制限機構40による冷却の制限を実行する。
通常運転の冷熱提供運転において、制御部19は、第1弁41を閉め、かつ、第2弁42を開ける。そして、制御部19は、センサ群80によって取得された制御パラメータに基づいて第2開度βを制御する。制御パラメータは、例えば、中間圧冷媒R5の圧力である。あるいは、これに代えて、制御パラメータは、高圧冷媒R2の温度であってもよい。制御部19は、例えば制御パラメータを一定に保つように、第2開度βを制御する。
冷媒量判定運転において、制御部19は、第1弁41を開け、かつ、第2弁42を閉める。そして、制御部19は、第1開度αを制御パラメータに基づいて制御する。例えば、制御部19は、制御パラメータを一定に保つように、第1開度αを制御する。さらに、制御部19は、第1開度αに基づいて凝縮冷媒R3の過冷却度SCを判定する。加えて、制御部19は、凝縮冷媒R3の過冷却度SCに基づいて、冷凍装置100の冷媒量Aを判定する。
(2-2)利用ユニット20
利用ユニット20は、冷熱又は温熱をユーザに提供するためのものである。利用ユニット20は、利用熱交換器21を有する。
冷凍装置100が冷熱提供運転を実行するとき、利用熱交換器21は、蒸発器又は吸熱器として機能する。冷凍装置100が温熱提供運転を実行するとき、利用熱交換器21は、凝縮器又は放熱器として機能する。
(2-3)連絡配管30
連絡配管30は、熱源ユニット10と利用ユニット20とを接続する。連絡配管30は、液連絡配管31、及び、ガス連絡配管32を有する。液連絡配管31は、液閉鎖弁17と利用熱交換器21とを接続する。ガス連絡配管32は、ガス閉鎖弁18と利用熱交換器21とを接続する。
(3)全体動作
以下に、様々な運転における冷凍装置100の動作を説明する。
(3-1)通常運転
通常運転は、ユーザに冷熱又は温熱を提供することを目的とする運転である。前述した通り、通常運転は、冷熱提供運転、及び、温熱提供運転を含む。
(3-1-1)冷熱提供運転
冷熱提供運転において、冷凍装置100は、ユーザに冷熱を提供する。
四路切換弁12は、図1の実線で示した接続を確立する。圧縮機11は、吸入口11aから吸入されたガス状の低圧冷媒R1を圧縮することによって、ガス状の高圧冷媒R2を生成する。圧縮機11は、高圧冷媒R2を吐出口11bから吐出する。その後、高圧冷媒R2は、四路切換弁12を経由して、熱源熱交換器13に到達する。熱源熱交換器13は、ガス状の高圧冷媒R2を凝縮することによって、液状の凝縮冷媒R3を生成する。凝縮冷媒R3は、逆止弁91及びレシーバ14を順に通過した後、凝縮冷媒流路71を通過し、分岐点72において過冷却制限機構40に到達する。
過冷却制限機構40では、第1弁41は閉じられており、かつ、第2弁42は第2開度βを有する状態で開かれている。凝縮冷媒R3は、入口16aにおいて過冷却熱交換器16の中に入り、第1パッセージ61を通過することによって冷却され、その後、出口16bにおいて過冷却熱交換器16の外へ出て、第2流路52へ到達する。
分岐点73に到達した凝縮冷媒R3の一部は、第2弁42へ移動する。第2弁42は、凝縮冷媒R3を減圧することによって、冷却ガスR4を生成する。冷却ガスR4は、入口16cにおいて過冷却熱交換器16の中に入り、第2パッセージ62を通過し、その後、出口16dにおいて過冷却熱交換器16の外へ出て、第3流路53を通過し、その後、中間圧冷媒R5として中間圧冷媒導入点79へ到達する。
中間圧冷媒R5は、その後、インジェクション流路54を通過する。次いで、中間圧冷媒R5は、インジェクション導入口11dを介して圧縮室11cへ注入される。
分岐点73に到達した凝縮冷媒R3の残りは、熱源膨張弁15へ到達する。熱源膨張弁15は、凝縮冷媒R3を減圧することによって気液二相冷媒を生成する。気液二相冷媒は、逆止弁94、液閉鎖弁17、及び液連絡配管31を経由して、利用熱交換器21へ到達する。利用熱交換器21は、気液二相冷媒を蒸発させて、ガス状の低圧冷媒R1を生成する。
低圧冷媒R1は、ガス連絡配管32、及びガス閉鎖弁18、及び四路切換弁12を順に経由して、吸入口11aにおいて圧縮機11に吸入される。
制御部19は、センサ群80によって取得された制御パラメータに基づいて、例えば高圧冷媒R2の温度を一定に保つような態様で、第2弁42の第2開度βを制御する。
(3-1-2)温熱提供運転
冷熱提供運転において、冷凍装置100は、ユーザに温熱を提供する。
四路切換弁12は、図1の破線で示した接続を確立する。圧縮機11は、吸入口11aから吸入されたガス状の低圧冷媒R1を圧縮することによって、ガス状の高圧冷媒R2を生成する。圧縮機11は、高圧冷媒R2を吐出口11bから吐出する。その後、高圧冷媒R2は、四路切換弁12、ガス閉鎖弁18、及びガス連絡配管32を順に経由して、利用熱交換器21に到達する。
利用熱交換器21は、ガス状の高圧冷媒R2を凝縮することによって、液状の凝縮冷媒を生成する。凝縮冷媒は、液連絡配管31、液閉鎖弁17、逆止弁93、及びレシーバ14を順に通過した後、冷熱提供運転の場合と同様の処置を経て、インジェクション導入口11dを介して圧縮室11cへ注入される。
液状の凝縮冷媒の残りは、膨張弁15で減圧されることにより、気液二相冷媒になる。気液二相冷媒は、電動弁95を通過した後、熱源熱交換器13へ入る。
熱源熱交換器13は、気液二相冷媒を蒸発させて、ガス状の低圧冷媒R1を生成する。低圧冷媒R1は、四路切換弁12を経由して、吸入口11aにおいて圧縮機11に吸入される。
(3-2)冷媒量判定運転
冷媒量判定運転において、冷凍装置100の冷媒回路RCを循環する冷媒量Aが判定される。
四路切換弁12は、冷熱提供運転と同様に、図1の実線で示した接続を確立する。圧縮機11は、吸入口11aから吸入されたガス状の低圧冷媒R1を圧縮することによって、ガス状の高圧冷媒R2を生成する。圧縮機11は、高圧冷媒R2を吐出口11bから吐出する。その後、高圧冷媒R2は、四路切換弁12を経由して、熱源熱交換器13に到達する。熱源熱交換器13は、ガス状の高圧冷媒R2を凝縮することによって、液状の凝縮冷媒R3を生成する。凝縮冷媒R3はレシーバ14を通過した後、凝縮冷媒流路71を通過し、分岐点72において過冷却制限機構40に到達する。
過冷却制限機構40では、第1弁41は第1開度αを有する状態で開けられており、かつ、第2弁42は閉じられている。
分岐点72に到達した凝縮冷媒R3の一部は、第1弁41を通過することによって減圧された後、中間圧冷媒R5として中間圧冷媒導入点79へ到達する。中間圧冷媒R5は、その後、インジェクション流路54を通過する。次いで、中間圧冷媒R5は、インジェクション導入口11dを介して圧縮室11cへ注入される。
分岐点72に到達した凝縮冷媒R3の残りは、過冷却熱交換器16の第1パッセージ61を通過した後、熱源膨張弁15へ到達する。熱源膨張弁15は、凝縮冷媒R3を減圧することによって気液二相冷媒を生成する。
気液二相冷媒は、液閉鎖弁17、及び液連絡配管31を経由して、利用熱交換器21へ到達する。利用熱交換器21は、気液二相冷媒を蒸発させて、ガス状の低圧冷媒R1を生成する。
低圧冷媒R1は、ガス連絡配管32、及びガス閉鎖弁18、及び四路切換弁12を順に経由して、吸入口11aにおいて圧縮機11に吸入される。
制御部19は、センサ群80によって取得された制御パラメータに基づいて、例えば高圧冷媒R2の温度を一定に保つような態様で、第1弁41の第1開度αを制御する。さらに、制御部19は、第1開度αに基づいて凝縮冷媒R3の過冷却度SCを判定する。さらに、制御部19は、凝縮冷媒R3の過冷却度SCに基づいて、冷凍装置100の冷媒量Aを判定する。
(4)冷媒量Aの判定
凝縮冷媒R3の過冷却度SCに基づいて、冷凍装置100の冷媒量Aを判定する計算手順としては、公知の技術を使用することができる。例えば、過冷却度SCとして制御対象弁の開度情報を使用することができる。
図2は冷媒量判定運転における冷媒量Aの判定の制御手順である。
ステップS100において、制御を開始する。
ステップS102において、制御パラメータを目標値に近づけるように過冷却制限機構40の制御対象弁が制御されるに際し、制御パラメータとして高圧冷媒R2の温度(すなわち、吐出温度Td)及び中間圧冷媒R5の圧力(中間圧力MP)のいずれか一方が設定される。ここでいう制御対象弁は、第1弁41又は第2弁42である。
ステップS104において、制御対象弁として第2弁42が設定される。
ステップS106において、冷媒量の検知の開始条件が満たされたか否かが判断される。開始条件が満たされている場合(S106:Yes)、処理はステップS108へ進む。開始条件が満たされていない場合(S106:No)、処理はステップS120へ進む。
ステップS108において、制御対象弁の開度Av(ここでは第2弁42の開度)が開度情報Asとして記憶される。
ステップS110において、制御対象弁として第1弁41が設定される。
ステップS112において、ステップS110の制御対象弁の切り替え時から所定時間が経過したか否かが判断される。所定時間が経過している場合(S112:Yes)、処理はステップS114へ進む。所定時間が経過していない場合(S112:No)、処理はステップS120へ進む。
ステップS114において、制御対象弁の開度Av(ここでは第1弁41の開度)が、記憶され開度情報Asよりも小さいか否かが判断される。制御対象弁の開度Avが開度情報Asよりも小さい場合(S114:Yes)、処理はステップS116に進む。制御対象弁の開度Avが開度情報Asよりも大きい又は同じである場合(S114:No)、処理はステップS118に進む。
ステップS116において、冷媒量Aは正常であると判定される。
ステップS118において、冷媒量Aは異常であると判定される。
ステップS120において、制御が終了する。
(5)特徴
(5-1)
冷媒量判定運転において圧縮機11へ供給される中間圧冷媒R5は、過冷却熱交換器16によって冷却されない。過冷却熱交換器16によって冷却される冷媒の液密度が冷媒量Aの多寡によって大きく変化しないのに対し、本実施形態に係る冷凍装置100においては、冷媒回路RCを循環する冷媒量Aが少ない場合と多い場合では圧縮機11へ供給される中間圧冷媒R5の液密度が大きく変化する。したがって、冷媒量Aの判定が正確に行われる。
(5-2)
適量の中間圧冷媒R5を圧縮機11へ供給する冷媒インジェクションが行われる。したがって、圧縮機11の性能を維持することができる。
(5-3)
冷媒量判定運転において、圧縮機11へ供給される中間圧冷媒R5は、過冷却熱交換器16を通過しなかった凝縮冷媒R3である。したがって、インジェクション冷媒の状態に関連するパラメータをモニタすることによって、冷媒量Aの判定が正確に行われる。
(5-4)
冷却ガスR4は、第2弁42が凝縮冷媒R3を減圧することによって生成される。したがって、冷却ガスR4を用いることによって凝縮冷媒R3に過冷却度SCを与えることができ、かつ、冷却ガスR4を冷媒インジェクションのために中間圧冷媒R5として用いることができる。
(5-5)
冷却ガスR4は過冷却熱交換器16の第1パッセージ61を通過した後の凝縮冷媒R3から生成される。
(5-6)
インジェクション制御に用いられる第1弁41の第1開度αに基づいて、過冷却度SC及び冷媒量Aが判定される。したがって、制御部19は冷媒量Aの判定のために過度の処理負担を強いられない。
(5-7)
第1開度α及び第2開度βは共通の制御パラメータによって制御される。制御においては、例えば第1開度α及び第2開度βの調節によって、制御パラメータが一定に保たれる。
(5-8)
圧縮機11に吸入される中間圧冷媒R5、又は、圧縮機11が吐出する高圧冷媒R2の状態に基づいて冷媒回路RCの制御が行われる。したがって、冷媒回路RCの性能を維持できる
(5-9)
インジェクション流路54の冷媒を圧縮室11cへ供給する中間圧インジェクションが行われる。
(6)変形例
(6-1)第1変形例1A
図3に示す第1実施形態の第1変形例1Aに係る冷凍装置100は、過冷却制限機構40の第1流路51の構成が前述の第1実施形態とは異なっている。
過冷却制限機構40は、第1弁41、及び第2弁42に加えて、第3弁43を有している。第3弁43は、分岐点72と第1パッセージ61の入口16aの間に配置されている。さらに、第1流路51は、第1パッセージ61を迂回している。
通常運転の冷熱提供運転において、制御部19は、第1実施形態と同様に第1弁41を閉め、かつ、第2弁42を開ける。加えて、制御部19は、第3弁43の第3開度γを適切に調節することにより、過冷却熱交換器16が凝縮冷媒R3に過冷却度SCを与えることを可能にする。
冷媒量判定運転において、制御部19は、第1実施形態とは異なり、第1弁41と第2弁42の両方を開けるとともに、第3弁43を閉じる。そして、制御部19は、第1開度α及び第2開度βを制御パラメータに基づいて制御する。さらに。制御部19は、第1開度αに基づいて凝縮冷媒R3の過冷却度SCを判定する。さらに、制御部19は、凝縮冷媒R3の過冷却度SCに基づいて、冷凍装置100の冷媒量Aを判定する。
この構成によれば、冷媒量判定運転において、圧縮機11に吸入される中間圧冷媒R5は、第1パッセージ61を通過しなかった凝縮冷媒R3である。したがって、中間圧冷媒R5の状態に関連するパラメータをモニタすることによって、冷媒量Aの判定が正確に行われる。
(6-2)第2変形例1B
図4に示す第1実施形態の第2変形例1Bに係る冷凍装置100は、過冷却制限機構40の構成が前述の第1実施形態とは異なっている。
過冷却制限機構40は、第1弁41、及び第2弁42に加えて、第3弁43を有している。第3弁43は、凝縮冷媒流路71に配置されている。さらに、第1流路51は、第2パッセージ62を迂回するように、第2流路52から第3流路53へ延びている。
通常運転の冷熱提供運転において、制御部19は、第1実施形態と同様に第1弁41を閉め、かつ、第2弁42を開ける。加えて、制御部19は、第3弁43を開けることにより、過冷却熱交換器16が凝縮冷媒R3に過冷却度SCを与えることを可能にする。
冷媒量判定運転において、制御部19は、第1実施形態とは異なり、第1弁41、第2弁42、第3弁43のすべてを開ける。そして、制御部19は、第1開度α及び第2開度βを制御パラメータに基づいて制御する。さらに。制御部19は、第1開度αに基づいて凝縮冷媒R3の過冷却度SCを判定する。さらに、制御部19は、凝縮冷媒R3の過冷却度SCに基づいて、冷凍装置100の冷媒量Aを判定する。
この構成によれば、冷媒量判定運転において、圧縮機11に吸入される中間圧冷媒R5は、第2パッセージ62を通過しなかった冷却ガスR4である。したがって、中間圧冷媒R5の状態に関連するパラメータをモニタすることによって、冷媒量Aの判定が正確に行われる。
<第2実施形態>
(1)構成
図5は、第2実施形態の基本形に係る冷凍装置100を示す。第2実施形態に係る冷凍装置100は、過冷却制限機構40の第2流路52の構成が前述の第1実施形態とは異なっている。
第2流路52は、第1パッセージ61の出口16bから延びるのではなく、第1パッセージ61の入口16aにある分岐点73から延びている。
(2)特徴
冷却ガスR4は過冷却熱交換器16を通過していない凝縮冷媒R3から生成される。
(3)変形例
第1実施形態の第1変形例1A又は第2変形例1Bを、第2実施形態に係る冷凍装置100に適用してもよい。
(3-1)第1変形例2A
図6は、第2実施形態の第1変形例2Aに係る冷凍装置100を示す。この構成は、第1実施形態の第1変形例1Aを、第2実施形態の基本形に適用したものである。
(3-2)第2変形例2B
図7は、第2実施形態の第2変形例2Bに係る冷凍装置100を示す。この構成は、第1実施形態の第2変形例1Bを、第2実施形態の基本形に適用したものである。
<第3実施形態>
(1)構成
図8は、第3実施形態の基本形に係る冷凍装置100を示す。第2実施形態に係る冷凍装置100は、過冷却制限機構40のインジェクション流路54の構成が前述の第1実施形態とは異なっている。
インジェクション流路54は、圧縮機11の吸入口11aに接続されている。インジェクション流路54は、圧縮室11cとは直接的に接続されていない。
(2)特徴
この構成によれば、インジェクション流路54の冷媒を吸入口11aへ供給する吸入インジェクションが行われる。
(3)変形例
第1実施形態の第1変形例1A又は第2変形例1Bを、第3実施形態に係る冷凍装置100に適用してもよい。
<むすび>
以上、本開示の実施形態を説明したが、特許請求の範囲に記載された本開示の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。
10 :熱源ユニット
11 :圧縮機
11a :吸入口
11b :吐出口
11c :圧縮室
11d :インジェクション導入口
13 :熱源熱交換器
15 :熱源膨張弁
16 :過冷却熱交換器
16a :入口
16b :出口
16c :入口
16d :出口
19 :制御部
20 :利用ユニット
21 :利用熱交換器
30 :連絡配管
40 :過冷却制限機構
41 :第1弁
42 :第2弁
43 :第3弁
51 :第1流路
52 :第2流路
53 :第3流路
54 :インジェクション流路
61 :第1パッセージ
62 :第2パッセージ
71 :凝縮冷媒流路
79 :中間圧冷媒導入点
80 :センサ群
100 :冷凍装置
A :冷媒量
R1 :低圧冷媒
R2 :高圧冷媒
R3 :凝縮冷媒
R4 :冷却ガス
R5 :中間圧冷媒
SC :過冷却度
α :第1開度
β :第2開度
γ :第3開度
特開2010-223542号公報

Claims (15)

  1. 低圧冷媒(R1)を圧縮することによって高圧冷媒(R2)を生成する圧縮機(11)と、
    前記高圧冷媒を凝縮する熱源熱交換器(13)と、
    前記熱源熱交換器が排出する凝縮冷媒(R3)を案内する凝縮冷媒流路(71)と、
    熱源膨張弁(15)と、
    前記凝縮冷媒を冷却する過冷却熱交換器(16)と、
    前記過冷却熱交換器による前記凝縮冷媒の冷却を制限する過冷却制限機構(40)と、
    前記過冷却制限機構の制御を行うとともに前記凝縮冷媒の過冷却度(SC)に応じて冷媒量(A)の判定を行う制御部(19)であって、通常運転において前記過冷却制限機構による冷却の制限を停止し、冷媒量判定運転において前記過冷却制限機構による冷却の制限を実行する、制御部(19)と、
    を備える、熱源ユニット(10)。
  2. 前記過冷却熱交換器は、前記凝縮冷媒を通過させる第1パッセージ(61)と、前記凝縮冷媒を冷却する冷却ガス(R4)を通過させる第2パッセージ(62)、とを有し、
    前記過冷却制限機構は、
    前記第1パッセージ及び前記第2パッセージの少なくとも1つを迂回する第1流路(51)と、
    前記第1流路に設けられる第1弁(41)と、
    前記冷却ガスを前記第2パッセージへ案内する第2流路(52)と、
    前記過冷却熱交換器が生成する中間圧冷媒(R5)を前記圧縮機へ案内するインジェクション流路(54)と、
    を有する、
    請求項1に記載の熱源ユニット。
  3. 前記第1流路(51)は、前記凝縮冷媒(R3)を前記過冷却熱交換器に通過させることなく前記インジェクション流路(54)へ案内し、
    前記制御部は、前記通常運転において前記第1弁(41)を閉め、前記冷媒量判定運転において前記第1弁を開ける、
    請求項2に記載の熱源ユニット。
  4. 前記第1流路(51)は、前記凝縮冷媒(R3)を前記第1パッセージ(61)に通過させることなく前記第2流路(52)へ案内し、
    前記制御部は、前記通常運転において前記第1弁(41)を閉め、前記冷媒量判定運転において前記第1弁を開ける、
    請求項2に記載の熱源ユニット。
  5. 前記第1流路(51)は、前記冷却ガス(R4)を前記第2パッセージ(62)に通過させることなく前記インジェクション流路(54)へ案内し、
    前記制御部は、前記通常運転において前記第1弁(41)を閉め、前記冷媒量判定運転において前記第1弁を開ける、
    請求項2に記載の熱源ユニット。
  6. 前記過冷却制限機構は、
    前記第2流路に設けられるとともに前記凝縮冷媒の一部を減圧することによって前記冷却ガスを生成する第2弁(42)と、
    をさらに有する、
    請求項2から5のいずれか1項に記載の熱源ユニット。
  7. 前記第2流路(52)は、前記第1パッセージの出口(16b)と前記第2パッセージの入口(16c)を結び、
    前記制御部は、通常運転において前記第2弁(42)を開け、冷媒量判定運転において前記第2弁を閉める、
    請求項6に記載の熱源ユニット。
  8. 前記第2流路(52)は、前記第1パッセージの入口(16a)と前記第2パッセージの入口(16c)を結び、
    前記制御部は、通常運転において前記第2弁(42)を開け、冷媒量判定運転において前記第2弁を閉める、
    請求項6に記載の熱源ユニット。
  9. 前記第1弁は調節可能な第1開度(α)を有し、
    前記冷媒量判定運転において、前記制御部は、前記第1開度を調節するとともに前記第1開度に基づいて前記過冷却度又は前記冷媒量を判定する、
    請求項2から8のいずれか1項に記載の熱源ユニット。
  10. 前記第1弁は調節可能な第1開度(α)を有し、
    前記第2弁は調整可能な第2開度(β)を有し、
    前記制御部は、通常運転において前記第2開度を所定の制御パラメータに基づいて制御するとともに、冷媒量判定運転において前記第1開度を前記制御パラメータに基づいて制御する、
    請求項6に記載の熱源ユニット。
  11. 前記制御部は、前記制御パラメータを一定に保つように、前記第1開度又は前記第2開度を制御する、
    請求項10に記載の熱源ユニット。
  12. 前記圧縮機は、前記低圧冷媒を吸入する吸入口(11a)、前記高圧冷媒を吐出する吐出口(11b)、及び、圧縮室(11c)を有し、
    前記制御パラメータは前記中間圧冷媒(R5)の圧力、又は、前記高圧冷媒の温度である、
    請求項10又は請求項11に記載の熱源ユニット。
  13. 前記インジェクション流路(54)は、前記圧縮室と接続されている、
    請求項12に記載の熱源ユニット。
  14. 前記インジェクション流路(54)は、前記吸入口と接続されている、
    請求項12に記載の熱源ユニット。
  15. 請求項1から14のいずれか1項に記載の熱源ユニット(10)と、
    利用熱交換器(21)を有する利用ユニット(20)と、
    前記熱源ユニット及び前記利用ユニットを接続する連絡配管(30)と、
    を備える冷凍装置(100)。
JP2022006330A 2022-01-19 2022-01-19 冷媒量検知を行う熱源ユニット及び冷凍装置 Pending JP2023105477A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022006330A JP2023105477A (ja) 2022-01-19 2022-01-19 冷媒量検知を行う熱源ユニット及び冷凍装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022006330A JP2023105477A (ja) 2022-01-19 2022-01-19 冷媒量検知を行う熱源ユニット及び冷凍装置

Publications (1)

Publication Number Publication Date
JP2023105477A true JP2023105477A (ja) 2023-07-31

Family

ID=87468886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022006330A Pending JP2023105477A (ja) 2022-01-19 2022-01-19 冷媒量検知を行う熱源ユニット及び冷凍装置

Country Status (1)

Country Link
JP (1) JP2023105477A (ja)

Similar Documents

Publication Publication Date Title
US8020393B2 (en) Heat pump type hot water supply outdoor apparatus
EP2325578B1 (en) Heat pump
US20110167851A1 (en) Refrigerant cycle device with ejector
US7721559B2 (en) Multi-type air conditioner and method for controlling the same
US20080229782A1 (en) Refrigerating Apparatus
WO2018110185A1 (ja) 冷媒回路システムおよび冷媒回路システムの制御方法
US10876777B2 (en) Air conditioning device using vapor injection cycle and method for controlling the device
JP6545252B2 (ja) 冷凍サイクル装置
US11725855B2 (en) Air conditioning apparatus
JPH04295566A (ja) エンジン駆動式空気調和機
JP2023105477A (ja) 冷媒量検知を行う熱源ユニット及び冷凍装置
JP3127818B2 (ja) 冷凍装置
CN112513542B (zh) 用于基于预估流量来控制蒸气压缩系统的方法
JP3303689B2 (ja) 二元冷凍装置
KR100853175B1 (ko) 차량용 냉난방 시스템
KR0177709B1 (ko) 냉장고의 냉각장치
JP7216258B1 (ja) 空気調和機
JP2004286253A (ja) 冷媒高圧回避方法およびそれを用いた空気調和システム
JP2013217602A (ja) 熱源機、冷凍空調装置、制御装置
KR100292496B1 (ko) 히트펌프에어컨의압축기액냉매유입방지방법및그장치
KR100917173B1 (ko) 차량용 냉난방 시스템
KR20090069915A (ko) 공기조화 시스템
KR100825714B1 (ko) 차량용 냉난방 시스템
CN116221846A (zh) 空调
JP2024066056A (ja) 冷凍装置