JP2023103994A - 試験測定システム及びニューラル・ネットワークの利用方法 - Google Patents

試験測定システム及びニューラル・ネットワークの利用方法 Download PDF

Info

Publication number
JP2023103994A
JP2023103994A JP2023004488A JP2023004488A JP2023103994A JP 2023103994 A JP2023103994 A JP 2023103994A JP 2023004488 A JP2023004488 A JP 2023004488A JP 2023004488 A JP2023004488 A JP 2023004488A JP 2023103994 A JP2023103994 A JP 2023103994A
Authority
JP
Japan
Prior art keywords
waveforms
noise
training
tdecq
neural network
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023004488A
Other languages
English (en)
Inventor
ウェンヂェン・サン
Wenzheng Sun
パヴェル・アール・ジヴニー
R Zivny Pavel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tektronix Inc
Original Assignee
Tektronix Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tektronix Inc filed Critical Tektronix Inc
Publication of JP2023103994A publication Critical patent/JP2023103994A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • G01R31/2601Apparatus or methods therefor
    • G01R31/2603Apparatus or methods therefor for curve tracing of semiconductor characteristics, e.g. on oscilloscope
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/084Backpropagation, e.g. using gradient descent

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computational Linguistics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Tests Of Electronic Circuits (AREA)

Abstract

【課題】トレーニング・データ・セットの作成を簡略化しつつ、TDECQ値を予想できるようにする。【解決手段】試験測定システム42は、複数の被試験デバイス又は波形シミュレータから信号波形を受けて、トレーニング波形のセットを収集し、ノイズのないトレーニング波形のセットへと処理し、これをトレーニング・データ・セットとして利用してTDECQ値を予想するように機械学習システム52をトレーニングする。別途、トレーニング波形のセットから除去されたノイズに基づくノイズ補整係数を生成する。ランタイム時は、被試験デバイスからの波形に基づいて予想TDECQ値を生成し、これにノイズ補整係数によってノイズの影響を補って、最終的なTDECQ値を生成する。【選択図】図3

Description

この開示は、試験測定システムに関し、特に、試験測定アプリケーションにおいて機械学習モデルをトレーニング及び利用するための技術に関する。
最近、機械学習(machine learning:ML)アルゴリズム又はモデル(場合によってはニューラル・ネットワーク)が、試験測定アプリケーションで使用するために開発されてきており、本願では、これをMLアルゴリズムとも呼ぶ。これには、高速通信ネットワークのコンポーネントの性能測定、例えば、TDECQ(Transmitter Dispersion Eye Closure Quaternary)測定が含まれる。一部の試験測定システムでは、これらのMLアルゴリズムは、オシロスコープなどの試験測定装置に実装されることがある。
機械学習アルゴリズムは、適切に動作する予測ネットワークを開発するために、大規模なトレーニング・データ・セットを必要とする。実際には、トレーニング・データ・セットの生成と選択は、機械学習(ML)アルゴリズム自体と同じくらい重要である。
図1は、TDECQ測定のための機械学習(ML)アルゴリズムを開発するためのワークフローの現在の例を示す。このワークフローでは、被試験デバイス(DUT)又は試験用の信号発生装置を使用して、トレーニング波形10を生成する。オシロスコープは、これら波形のセットを波形データとして取り込む。波形は、意図的には変更されておらず、波形の取り込み(アクイジション)に使用されるオシロスコープのノイズだけでなく、波形自身のノイズも含まれている。このセットは、MLアルゴリズム(この場合は、ニューラル・ネットワーク)のトレーニングに使用される。ニューラル・ネットワーク12をトレーニングするために必要な期待される応答(TDECQ値)は、同じ波形に対して動作する従来の測定アルゴリズムを用いて測定することによって提供される。
これにより、工程12において、本番用のニューラル・ネットワークになる。動作時には、トレーニング波形の代わりに、DUTからの実際の測定対象波形が本番用ニューラル・ネットワーク12に供給され、工程14において、TDECQ値の予測が行われる。
特表2022-549158号公報
「過剰適合」の記事、Wikipedia(日本語版)、[online]、[2023年1月13日検索]、インターネット<http://ja.wikipedia.org/wiki/過剰適合> 「汎化」の解説、IT用語辞典e-Words、[online]、[2023年1月13日検索]、インターネット<https://e-words.jp/w/汎化.html>
上述の方法にはいくつかの欠点がある。まず、大規模なデータ・セットを実際に動作している複数のDUT(又は試験用の信号発生装置)から取得し、これらDUTの応答の測定に使用される複数の試験測定装置で取得する必要があるため、トレーニング・データ・セットの生成にコストがかかる。MLトレーニングでは、何千もの波形を処理する必要があるため、これは困難で時間のかかるプロセスである。
更に、網羅的にするために、トレーニング・データ・セットには、オシロスコープの信号対ノイズ比(SNR)、DUTのSNR、DUT出力レベル(振幅)の変化など、MLアルゴリズムの予測に影響を与える他のパラメータの値を、ある広い範囲に渡って次々に変化させる(sweep:掃引する)ときに生じる波形も含める必要がある。これには、様々な複数の試験測定装置のノイズと、様々な複数のDUTノイズを考慮するために、複数のDUTを動作させて、複数の試験測定装置(複数のオシロスコープなど)によってDUTを測定することになろう。
トレーニング・データ・セットの生成中に、これら及びその他の追加のパラメータを掃引すると、トレーニング・データのサイズは大幅に増加する。例えば、3つの値を取り得る1つのパラメータを掃引すると、トレーニング・データ・セット中の波形の数が3倍に増加する。これにより、トレーニングが遅くなり、開発時間が長くなる。
また、トレーニング・データ・セットに、様々なノイズ・レベルを考慮する複数の試験測定装置からのデータが含まれている場合でも、トレーニング中にさらされたノイズ・レベルに対するニューラル・ネットワークの過剰適合(overfitting)につながる可能性がある。過剰適合は、MLアルゴリズムがトレーニングデータを「過剰に上手に」学習しすぎて、他の未知のデータに対して適合できない場合、即ち、他の未知のデータに対して汎化できない場合に発生し、その結果、本番環境での汎化が不十分になる。ノイズは、主要な信号の特徴よりもランダム性が高く、多くの場合、周波数が高いため、トレーニング波形にノイズを含めると、MLアルゴリズムがノイズの特性にラッチ(latch)し、トレーニング・データ・セットに過剰適合するリスクが高くなることがある。
開示された装置及び方法の実施形態は、従来技術における欠点に対処する。
本願の実施形態は、オシロスコープの信号対ノイズ比(SNR)の変化、DUTレベル及びDUTのSNRレベルの変化など、機械学習(ML)アルゴリズムの予測に影響を与えるであろう他のパラメータを掃引するときに生じる波形を含める必要があるなど、上述した問題を克服する。実施形態は、トレーニング波形からノイズ成分を分離し、ノイズのないデータでMLアルゴリズムをトレーニングする。次いで、実施形態は、動作環境におけるノイズの影響を補って整える(補整する又は補償する)。これにより、大量のトレーニング・データ・セットを作成する必要がなくなり、時間とコストを削減できる。また、本願の実施形態は、よりよく汎化され、過剰適合(オーバーフィッティング)の問題を回避できる。
図1は、TDECQ測定のための機械学習(ML)モデルを開発するための現在のワークフローの例及びそのようにトレーニングされたネットワークの動作を示す。 図2は、ニューラル・ネットワーク・トレーニングのためのワークフローの一実施形態を示す。 図3は、測定値を予測するためのMLシステムを含む試験測定システムの実施形態を示す。
図2は、MLアルゴリズムのトレーニング及び動作のための改良されたワークフローを示す。最初に、トレーニングの場合を説明する。オシロスコープなどの試験測定装置は、工程20において、元の波形のデータ・セットを取り込む(アクイジション)。これらは、1つ以上のDUT又は波形シミュレータから取得できる。次に、このプロセスでは、取り込まれた波形データからノイズを除去して、工程22において、ノイズのないトレーニング波形のデータ・セットを生成する。
ノイズの除去には、様々な形態がある。一実施形態では、オリジナル波形データの個数が、トレーニングに必要な波形の個数を超えてもよい。例えば、このプロセスは、オリジナル波形データの中から、ある所定数の波形データを選択し、これらを1つの波形データに平均化することで、波形データの個数を、オリジナル波形データの個数を平均化に使用する波形データの上記所定数で割った個数に減少させても良い。平均化に使用される上記所定数を調整することで、基本的にノイズのない波形を提供できる。処理する波形の総数は、これまでの手法よりも多くなるが、平均化処理は、トレーニングよりも、はるかにコストがかからないため、これは依然として有益である。
他の手法としては、近隣の波形データを利用した平均化手法もあり、これは、各波形データが、この波形データより時間的に前の最も近隣のX個の波形データと、この波形データより時間的に後に続く最も近隣のX個の波形データとで平均化されるもので、これによれば、波形データの総数は減少せず、それでいて、この平均化処理の後に得られる各波形データは、平均化された波形データとなる。個数の値Xは、許容できるレベルでノイズのない波形データの作成に必要な値と、処理時間とを考慮して、任意に設定しても良い。
また、波形データは、DUTなどからの実際のアナログの波形信号をオシロスコープなどのようなアナログ・デジタル・コンバータを利用した技術で取り込む(アクイジション)のではなく、シミュレーションで作成することもでき、この場合、ノイズのない波形データを簡単に提供できる。
MLネットワークのトレーニングには、ノイズを無視するようにMLをトレーニングする工程を含めても良い。トレーニング波形の一部又は全てを2回利用しても良く、この場合、1回目はノイズなしのトレーニング波形を利用し、2回目は、ノイズ(場合によっては、更に、様々な振幅のノイズ)によって意図的に汚染されたトレーニング波形を利用しても良い。MLネットワークは、ノイズを無視するようにトレーニングされる。
通常、ある形式のオシロスコープでは、DUTからのアナログ波形信号を取り込んで、デジタル形式の波形データを収集する。例えば、リアルタイム(RT)オシロスコープは、簡単に大量のデータを収集できる。複数の隣接する波形パターンの高速な取り込み(アクイジション)を実行できる。オシロスコープは、これらの波形パターンを平均化して、ノイズのないトレーニング波形のもっと小さなデータ・セットを生成できる。また、オシロスコープは、元の波形のノイズ分布を測定して、ノイズ補償/表現モジュール26のノイズ補償量を求め、ノイズ補整係数28を生成する。後述するように、ノイズ補整係数28は、ノイズのないトレーニング波形のセットでトレーニングされたMLネットワークが予想する予想TDECQ値に対して、波形から除去されたノイズに基づくノイズの影響を補って、最終的なTDECQ値を得るために利用される。
リアルタイム(RT)オシロスコープの代わりにサンプリング・オシロスコープを使用すると、その動作は相対的に遅いため、波形の一部分のデータのみが収集されることになるかもしれない(targeted acquisition:ターゲット・アクイジション:目標とした部分のみの取り込み)。従って、そのような実施形態の1つとしては、8つの異なる場所、4つの異なるレベル、4つの異なるエッジを選択し、これらの場所で複数の部分波形(サブ波形)を取り込んでオリジナルの部分波形のデータ・セットを作成し、次いで、これら部分波形のデータ・セットを上述のように平均化しても良い。このようなターゲット・アクイジションの概念は、サンプリング・オシロスコープによるジッタ解析に使用されている従来技術である。
図2の下部のトレーニング・パス31では、ノイズのない波形22を使用してMLニューラル・ネットワークをトレーニングする。このプロセスには、典型的には、既知のデータ及び既知の「答え」に基づいてニューラル・ネットワークをトレーニングする処理と、次いで、当技術分野で一般的に行われているように、ニューラル・ネットワークにとって未知のデータ・セットの一部を使用して、ニューラル・ネットワークを検証する処理とが含まれることになろう。この点に関しては、ニューラル・ネットワークは、トレーニングされているので、工程24において、本番(実際に試験測定システムが稼働している)の環境で取り込まれた波形が提供されれば、TDECQ値を予測するために使用できる。
トレーニング済みニューラル・ネットワークが利用可能になれば、動作モードに入ることができる。一実施形態では、オシロスコープは、工程20で波形を取り込むことなるが、今回は、ランタイム環境(つまり、実際の本番の環境)である。この波形は、DUT及びオシロスコープの両方のノイズを含む。ニューラル・ネットワークは、工程24において、取り込まれた本番環境の波形に対して動作し、工程30において、TDECQ予測値を生成する。予測は、ノイズ無しトレーニングに基づいているため、波形に含まれる2つのノイズ(DUTとオシロスコープ)を完全には考慮していない。ノイズ表現モジュール26は、例えば、オシロスコープで取り込まれた波形のノイズ分布を測定することによって、ノイズ補整係数28を算出する。
通常、ML予測には、統計の信頼度の値に似た精度指標がある。予測されたTDECQ値にも、この精度指標があるが、この予測されたTDECQ値は、オリジナル波形からノイズを除去したノイズのない波形を使ったトレーニングに基づいている一方、動作中は、波形にノイズが多いため、その精度指標の値は、上記の実施形態では、それなりに低下する。これは、工程32の最終的なTDECQ値の一部を構成するTDECQ値の精度指標値を下げるように作用する。
別の実施形態では、動作モードにおいて、オシロスコープが多数の波形データを取り込み、これら波形データは、ノイズ表現モジュール26及びトレーニング済みMLネットワーク24の両方で使用される。トレーニング済みMLネットワーク24は、この実施形態では、ノイズ除去波形を使用する。ノイズ除去プロセスは、MLトレーニングにおいて上述のとおりであるが、トレーニング波形ではなく、動作波形に対して実行される。ML予測は、ノイズを考慮していないので、プロセスは、次いで、動作波形からノイズ表現モジュール26が求めた補整係数28によって、ノイズによる不利益(ノイズ・ペナルティ)の影響の全てを補う(補償する)。この実施形態では、このノイズ補償(ノイズの影響を加える処理)が、ノイズによる不利益(ペナルティ)の影響を最終的なTDECQの結果に加える唯一の手段であるという点が、前の実施形態との大きな違いである。これにより、より複雑になるかもしれないが、より正確な実施形態が得られる。
機械学習(ML)を使用すると、FFEタップ値などの中間値を見つける中間工程なしで、TDECQの結果を見つけることができる。このとき、多くの場合、FFEタップ値又は同様の中間工程の値を知ることが重要であるため、この特徴は、欠点ともなり得る。しかし、FFEタップ値さえわかっていれば、残りの計算は、単純なクローズド・フォーム計算であり、低コストの計算作業であるため、このプロセスの欠点とはならないであろう。このため、MLでFFEタップ値を見つけ、これらFFEタップ値からのTDECQの計算に、FFEタップ値を利用できるようにするプロセスが重要となる。
TDECQを計算する1つのアプローチは、正しいTDECQ値につながるFFEタップ値を見つけることに焦点を当てたもので、これは、規格(IEEE802.bs)に定められている標準的な(非ML)処理にあるようにSER(シンボル・エラー・レート)を利用してTDECQ値を計算する。第1実施形態では、ニューラル・ネットワークを使用して、TDECQ値を直接予測するが、別の実施形態として、ニューラル・ネットワークを使用して、TDECQ値の代替値として、FFE(Feed forward Equalizer:フィード・フォワード・イコライザ)のタップ値を予測するのもある。FFEタップ値は、ノイズの多い波形とノイズのない波形とで同じである必要があるため、代替の方法として、FFEタップ値を求めるようにニューラル・ネットワークをトレーニングし、次いで、FFEタップ値からTDECQ値を取得するものがある。これは、間接的な方法を示しているが、本願の説明では、これもやはりTDECQ値を予測する処理と呼び、TDECQ値に加えて他の有用な中間パラメータを見つける方法である。
更に別の変形例としては、ノイズ特性評価があり、補整係数28を生じるノイズ表現モジュール26に関する波形のノイズと、工程30から得られるTDECQ予測値に関する波形のノイズとの両方のために、DUTからの波形を分析しても良い。次に、システムは、トレーニング済みMLネットワークからのTDECQ値とノイズ補整係数とを使用して最終的なTDECQに到達する。
実施形態のワークフローは、上述したオシロスコープなどの1つの試験測定装置内で生じても良いし、試験測定装置とMLアルゴリズムが存在する別個のコンピューティング・デバイスとの組み合わせで生じても良い。図3に示されるように、試験測定装置42は、相互接続又はプローブ41を介してDUT40に接続されても良い。ポート44は、波形を取り込んでデジタル化するために必要な様々な構成要素を含む。これらには、クロック・リカバリ、アナログ・デジタル・コンバータ(ADC)などが含まれるが、これらに限定されない。1つ以上のプロセッサ48は、上述した動作を実行し、典型的には、1つ以上のプロセッサに様々な動作を実行させるコード(プログラム)を実行する。
取り込まれた波形データは、メモリ46に記憶される。メモリ46は、試験測定装置に搭載されたメモリ、試験測定装置に接続されたコンピューティング・デバイス上のメモリ、クラウド・メモリなどから構成されても良い。このメモリ又は別のメモリは、上述したプロセッサによって実行されるコードを記憶することもできる。
ユーザは、ユーザ・インタフェース(U/I)50によって、試験測定装置42をインタラクティブに操作して、例えば、波形データの取り込みの開始、パラメータの設定、波形及び関連データの表示などを行うことができる。U/I50は、試験測定装置42又は接続されたコンピューティング・デバイスに存在しても良い。
同様に、機械学習アルゴリズム又は機械学習システム52は、試験測定装置42上に存在しても良いし、別のコンピューティング・デバイス上に存在しても良い。図3では、試験測定装置42とは別個の装置として示されているが、それは単に理解を助けるためのものであり、決して実施形態の範囲を限定することを意図するものではない。
本開示技術の態様は、特別に作成されたハードウェア、ファームウェア、デジタル・シグナル・プロセッサ又はプログラムされた命令に従って動作するプロセッサを含む特別にプログラムされた汎用コンピュータ上で動作できる。本願における「コントローラ」又は「プロセッサ」という用語は、マイクロプロセッサ、マイクロコンピュータ、ASIC及び専用ハードウェア・コントローラ等を意図する。本開示技術の態様は、1つ又は複数のコンピュータ(モニタリング・モジュールを含む)その他のデバイスによって実行される、1つ又は複数のプログラム・モジュールなどのコンピュータ利用可能なデータ及びコンピュータ実行可能な命令で実現できる。概して、プログラム・モジュールとしては、ルーチン、プログラム、オブジェクト、コンポーネント、データ構造などを含み、これらは、コンピュータその他のデバイス内のプロセッサによって実行されると、特定のタスクを実行するか、又は、特定の抽象データ形式を実現する。コンピュータ実行可能命令は、ハードディスク、光ディスク、リムーバブル記憶媒体、ソリッド・ステート・メモリ、RAMなどのコンピュータ可読記憶媒体に記憶しても良い。当業者には理解されるように、プログラム・モジュールの機能は、様々な実施例において必要に応じて組み合わせられるか又は分散されても良い。更に、こうした機能は、集積回路、フィールド・プログラマブル・ゲート・アレイ(FPGA)などのようなファームウェア又はハードウェア同等物において全体又は一部を具体化できる。特定のデータ構造を使用して、本開示技術の1つ以上の態様をより効果的に実施することができ、そのようなデータ構造は、本願に記載されたコンピュータ実行可能命令及びコンピュータ使用可能データの範囲内と考えられる。
開示された態様は、場合によっては、ハードウェア、ファームウェア、ソフトウェア又はこれらの任意の組み合わせで実現されても良い。開示された態様は、1つ以上のプロセッサによって読み取られ、実行され得る1つ又は複数のコンピュータ可読媒体によって運搬されるか又は記憶される命令として実現されても良い。そのような命令は、コンピュータ・プログラム・プロダクトと呼ぶことができる。本願で説明するコンピュータ可読媒体は、コンピューティング装置によってアクセス可能な任意の媒体を意味する。限定するものではないが、一例としては、コンピュータ可読媒体は、コンピュータ記憶媒体及び通信媒体を含んでいても良い。
コンピュータ記憶媒体とは、コンピュータ読み取り可能な情報を記憶するために使用することができる任意の媒体を意味する。限定するものではないが、例としては、コンピュータ記憶媒体としては、ランダム・アクセス・メモリ(RAM)、読み出し専用メモリ(ROM)、電気消去可能プログラマブル読み出し専用メモリ(EEPROM)、フラッシュメモリやその他のメモリ技術、コンパクト・ディスク読み出し専用メモリ(CD-ROM)、DVD(Digital Versatile Disc)やその他の光ディスク記憶装置、磁気カセット、磁気テープ、磁気ディスク記憶装置やその他の磁気記憶装置、及び任意の技術で実装された任意の他の揮発性又は不揮発性の取り外し可能又は取り外し不能の媒体を含んでいても良い。コンピュータ記憶媒体としては、信号そのもの及び信号伝送の一時的な形態は除外される。
通信媒体とは、コンピュータ可読情報の通信に利用できる任意の媒体を意味する。限定するものではないが、例としては、通信媒体には、電気、光、無線周波数(RF)、赤外線、音又はその他の形式の信号の通信に適した同軸ケーブル、光ファイバ・ケーブル、空気又は任意の他の媒体を含んでも良い。
加えて、本願の説明は、特定の特徴に言及している。本明細書における開示には、これらの特定の特徴の全ての可能な組み合わせが含まれると理解すべきである。ある特定の特徴が特定の態様又は実施例に関連して開示される場合、その特徴は、可能である限り、他の態様及び実施例との関連においても利用できる。
また、本願において、2つ以上の定義されたステップ又は工程を有する方法に言及する場合、これら定義されたステップ又は工程は、状況的にそれらの可能性を排除しない限り、任意の順序で又は同時に実行しても良い。

実施例
以下では、本願で開示される技術の理解に有益な実施例が提示される。この技術の実施形態は、以下で記述する実施例の1つ以上及び任意の組み合わせを含んでいても良い。
実施例1は、試験測定システムであって、被試験デバイス(DUT)に接続可能な1つ以上の入力部と、1つ以上のプロセッサとを具え、該1つ以上のプロセッサは、1つ以上のDUT又はシミュレートされた波形から1つ以上の波形を取り込むことによってトレーニング波形のセットを収集する処理と、上記トレーニング波形のセットからノイズを除去してノイズのないトレーニング波形のセットを生成する処理と、上記ノイズのないトレーニング波形のセットをトレーニング・データ・セットとして使用して、DUTに関する測定値を予測するようにニューラル・ネットワークをトレーニングして、トレーニング済みニューラル・ネットワークを生成する処理とを上記1つ以上のプロセッサに行わせるプログラムを実行するよう構成される。
実施例2は、実施例1の試験測定システムであって、上記1つ以上のプロセッサに上記トレーニング波形のセットからノイズを除去する処理を行わせるプログラムは、所定数のオリジナル波形を取り込んで上記所定数のオリジナル波形を平均化して1つのノイズのない波形を生成する処理を上記ノイズのないトレーニング波形のセットが完成するまで繰り返す処理を上記1つ以上のプロセッサに行わせるプログラムを含む。
実施例3は、実施例1又は2のいずれかの試験測定システムであって、上記1つ以上のプロセッサは、上記トレーニング波形のセットから除去されたノイズに基づく補整係数を決定するプログラムを実行するように更に構成されている。
実施例4は、実施例1から3のいずれかの試験測定システムであって、上記測定値が、TDECQ(Transmitter Dispersion Eye Closure Quaternary)値である。
実施例5は、実施例4の試験測定システムであって、上記ノイズのないトレーニング波形のセットを使用してTDECQ値を予測するようにニューラル・ネットワークをトレーニングする処理を上記1つ以上のプロセッサに行わせるプログラムが、上記ノイズのないトレーニング波形のセットを使用してTDECQ値を求めるためのFFE(フィード・フォワード・イコライザ)タップ値を予測するようにニューラル・ネットワークをトレーニングする処理を上記1つ以上のプロセッサに行わせるプログラムを含む。
実施例6は、実施例1から5のいずれかの試験測定システムであって、上記1つ以上のプロセッサが、上記ノイズのない波形のセットの振幅を正規化する処理を上記1つ以上のプロセッサに行わせるプログラムを実行するように更に構成されている。
実施例7は、実施例4から6のいずれかの試験測定システムであって、上記1つ以上のプロセッサが、本番環境のDUTから1つ以上の波形を取り込む処理と、上記トレーニング済みニューラル・ネットワークを利用して上記1つ以上の波形に基づいて上記DUTの予測TDECQ値を生成する処理とを上記1つ以上のプロセッサに行わせるプログラムを実行するように更に構成されている。
実施例8は、実施例7の試験測定システムであって、上記1つ以上のプロセッサが、上記トレーニング波形のセットから除去されたノイズに基づくノイズ補整係数を求める処理と、上記予測TDECQ値の精度レベルに上記ノイズ補整係数を適用する処理とを上記1つ以上のプロセッサに行わせるプログラムを実行するように更に構成されている。
実施例9は、実施例7の試験測定システムであって、上記1つ以上のプロセッサが、動作状態の波形のセットを収集する処理と、上記動作状態の波形のセットから除去されたノイズに基づくノイズ補整係数を求める処理と、上記予測TDECQ値の精度レベルに上記ノイズ補整係数を適用する処理とを上記1つ以上のプロセッサに行わせるプログラムを実行するように更に構成されている。
実施例10は、実施例7の試験測定システムであって、上記トレーニング済みニューラル・ネットワークを利用する処理を上記1つ以上のプロセッサに行わせるプログラムが、FFE(フィード・フォワード・イコライザ)タップ値を予測する処理と、上記FFEタップ値から上記TDECQ値を求める処理とを上記1つ以上のプロセッサに行わせるプログラムを含む。
実施例11は、ニューラル・ネットワークをトレーニングする方法であって、1つ以上のDUTから1つ以上の波形を受けるか又は波形シミュレータから1つ以上の波形を受ける処理と、上記1つ以上の波形から収集されたトレーニング波形のセットからノイズを除去してノイズのないトレーニング波形のセットを生成する処理と、上記ノイズのないトレーニング波形のセットをトレーニング・データ・セットとして使用して、DUTの測定値を予測するようにニューラル・ネットワークをトレーニングしてトレーニング済みニューラル・ネットワークを生成する処理とを具える。
実施例12は、実施例11の方法であって、ノイズを除去する処理が、所定数のオリジナル波形を取り込んで上記所定数のオリジナル波形を平均化して1つのノイズのない波形を生成する処理を上記ノイズのないトレーニング波形のセットが完成するまで繰り返す処理を含む。
実施例13は、実施例11又は12のいずれかの方法であって、上記1つ以上のプロセッサは、上記レーニング波形のセットから除去されたノイズに基づいてノイズ補整係数を求めるように更に構成されている。
実施例14は、実施例11から13のいずれかの方法であって、上記測定値が、TDECQ(Transmitter Dispersion Eye Closure Quaternary)値である。
実施例15は、実施例14の方法であって、上記ノイズのないトレーニング波形のセットを使用して上記TDECQ値を予測するように上記ニューラル・ネットワークをトレーニングする処理が、上記ノイズのないトレーニング波形のセットを使用して上記TDECQ値を求めるためのFFE(フィード・フォワード・イコライザ)タップ値を予測するように上記ニューラル・ネットワークをトレーニングする処理を含む。
実施例16は、実施例14又は15の方法であって、更に、本番環境のDUTから1つ以上の波形を取り込む処理と、トレーニング済みニューラル・ネットワークを利用して、上記1つ以上の波形に基づいてDUTの予測TDECQ値を生成する処理とを含む。
実施例17は、実施例16の方法であって、上記トレーニング波形のセットから除去されたノイズに基づくノイズ補整係数を求める処理と、上記予測TDECQ値の精度レベルに上記ノイズ補整係数を適用して、最終的なTDECQ値を生成する処理とを更に具える。
実施例18は、実施例16の方法であって、動作状態の波形のセットを収集する処理と、上記動作状態の波形のセットから除去されたノイズに基づくノイズ補整係数を求める処理と、上記予測TDECQ値の精度レベルに上記ノイズ補整係数を適用して、最終的なTDECQ値を生成する処理とを更に具える。
実施例19は、実施例14又は15の方法であって、上記トレーニング済みニューラル・ネットワークを利用する処理が、FFE(フィード・フォワード・イコライザ)タップ値を予測する処理と、上記FFEタップ値からTDECQ値を求める処理とを含む。
明細書、要約書、特許請求の範囲及び図面に開示される全ての機能、並びに開示される任意の方法又はプロセスにおける全てのステップは、そのような機能やステップの少なくとも一部が相互に排他的な組み合わせである場合を除いて、任意の組み合わせで組み合わせることができる。明細書、要約書、特許請求の範囲及び図面に開示される機能の夫々は、特に明記されない限り、同じ、等価、又は類似の目的を果たす代替の機能によって置き換えることができる。
説明の都合上、本開示技術の具体的な態様を図示し、説明してきたが、本発明の要旨と範囲から離れることなく、種々の変更が可能なことが理解できよう。従って、本開示技術は、添付の請求項以外では、限定されるべきではない。
40 被試験デバイス(DUT)
41 プローブ
42 試験測定装置
44 ポート
46 メモリ
48 プロセッサ
50 ユーザ・インタフェース
52 機械学習システム

Claims (17)

  1. 試験測定システムであって、
    被試験デバイス(DUT)に接続可能な1つ以上の入力部と、
    1つ以上のプロセッサと
    を具え、該1つ以上のプロセッサが、
    1つ以上のDUT又はシミュレートされた波形から1つ以上の波形を取り込むことによってトレーニング波形のセットを収集する処理と、
    上記トレーニング波形のセットからノイズを除去してノイズのないトレーニング波形のセットを生成する処理と、
    上記ノイズのないトレーニング波形のセットをトレーニング・データ・セットとして使用して、DUTに関する測定値を予測するようにニューラル・ネットワークをトレーニングして、トレーニング済みニューラル・ネットワークを生成する処理と
    を上記1つ以上のプロセッサに行わせるプログラムを実行するよう構成される試験測定システム。
  2. 上記1つ以上のプロセッサに上記トレーニング波形のセットからノイズを除去する処理を行わせるプログラムは、所定数のオリジナル波形を取り込んで上記所定数のオリジナル波形を平均化して1つのノイズのない波形を生成する処理を上記ノイズのないトレーニング波形のセットが完成するまで繰り返す処理を上記1つ以上のプロセッサに行わせるプログラムを含む請求項1の試験測定システム。
  3. 上記1つ以上のプロセッサは、上記トレーニング波形のセットから除去されたノイズに基づくノイズ補整係数を決定するプログラムを実行するように更に構成される請求項1の試験測定システム。
  4. 上記測定値が、TDECQ値である請求項1の試験測定システム。
  5. 上記ノイズのないトレーニング波形のセットを使用してTDECQ値を予測するようにニューラル・ネットワークをトレーニングする処理を上記1つ以上のプロセッサに行わせるプログラムが、上記ノイズのないトレーニング波形のセットを使用してTDECQ値を求めるためのFFEタップ値を予測するように上記ニューラル・ネットワークをトレーニングする処理を上記1つ以上のプロセッサに行わせるプログラムを含む請求項4の試験測定システム。
  6. 上記1つ以上のプロセッサが、本番環境のDUTから1つ以上の波形を取り込む処理と、上記トレーニング済みニューラル・ネットワークを利用して上記1つ以上の波形に基づいて上記DUTの予測TDECQ値を生成する処理とを上記1つ以上のプロセッサに行わせるプログラムを実行するように更に構成される請求項4の試験測定システム。
  7. 上記1つ以上のプロセッサが、上記トレーニング波形のセットから除去されたノイズに基づくノイズ補整係数を求める処理と、上記予測TDECQ値の精度レベルに上記ノイズ補整係数を適用する処理とを上記1つ以上のプロセッサに行わせるプログラムを実行するように更に構成される請求項6の試験測定システム。
  8. 上記1つ以上のプロセッサが、動作状態の波形のセットを収集する処理と、上記動作状態の波形のセットから除去されたノイズに基づくノイズ補整係数を求める処理と、上記予測TDECQ値の精度レベルに上記ノイズ補整係数を適用する処理とを上記1つ以上のプロセッサに行わせるプログラムを実行するように更に構成される請求項6の試験測定システム。
  9. 上記トレーニング済みニューラル・ネットワークを利用する処理を上記1つ以上のプロセッサに行わせるプログラムが、FFEタップ値を予測する処理と、上記FFEタップ値から上記TDECQ値を求める処理とを上記1つ以上のプロセッサに行わせるプログラムを含む請求項6の試験測定システム。
  10. ニューラル・ネットワークを利用する方法であって、
    1つ以上のDUTから1つ以上の波形を受けるか又は波形シミュレータから1つ以上の波形を受ける処理と、
    上記1つ以上の波形から収集されたトレーニング波形のセットからノイズを除去してノイズのないトレーニング波形のセットを生成する処理と、
    上記ノイズのないトレーニング波形のセットをトレーニング・データ・セットとして使用して、DUTの測定値を予測するようにニューラル・ネットワークをトレーニングしてトレーニング済みニューラル・ネットワークを生成する処理と
    を具えるニューラル・ネットワークの利用方法。
  11. 上記ノイズを除去する処理が、所定数のオリジナル波形を取り込んで上記所定数のオリジナル波形を平均化して1つのノイズのない波形を生成する処理を上記ノイズのないトレーニング波形のセットが完成するまで繰り返す処理を含む請求項10のニューラル・ネットワークの利用方法。
  12. 上記測定値が、TDECQ値である請求項10のニューラル・ネットワークの利用方法。
  13. 上記ノイズのないトレーニング波形のセットを使用して上記TDECQ値を予測するように上記ニューラル・ネットワークをトレーニングする処理が、上記ノイズのないトレーニング波形のセットを使用して上記TDECQ値を求めるためのFFEタップ値を予測するように上記ニューラル・ネットワークをトレーニングする処理を含む請求項12のニューラル・ネットワークの利用方法。
  14. 本番環境のDUTから1つ以上の波形を取り込む処理と、トレーニング済みニューラル・ネットワークを利用して、上記1つ以上の波形に基づいてDUTの予測TDECQ値を生成する処理とを含む請求項12のニューラル・ネットワークの利用方法。
  15. 上記トレーニング波形のセットから除去されたノイズに基づくノイズ補整係数を求める処理と、上記予測TDECQ値の精度レベルに上記ノイズ補整係数を適用して、最終的なTDECQ値を生成する処理とを更に具える請求項14のニューラル・ネットワークの利用方法。
  16. 動作状態の波形のセットを収集する処理と、上記動作状態の波形のセットから除去されたノイズに基づくノイズ補整係数を求める処理と、上記予測TDECQ値の精度レベルに上記ノイズ補整係数を適用して、最終的なTDECQ値を生成する処理とを更に具える請求項14のニューラル・ネットワークの利用方法。
  17. 上記トレーニング済みニューラル・ネットワークを利用する処理が、FFEタップ値を予測する処理と、上記FFEタップ値からTDECQ値を求める処理とを含む請求項14のニューラル・ネットワークの利用方法。
JP2023004488A 2022-01-14 2023-01-16 試験測定システム及びニューラル・ネットワークの利用方法 Pending JP2023103994A (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US202263299878P 2022-01-14 2022-01-14
US63/299,878 2022-01-14
US18/094,947 US20230228803A1 (en) 2022-01-14 2023-01-09 Machine learning model training using de-noised data and model prediction with noise correction
US18/094,947 2023-01-09

Publications (1)

Publication Number Publication Date
JP2023103994A true JP2023103994A (ja) 2023-07-27

Family

ID=86990533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023004488A Pending JP2023103994A (ja) 2022-01-14 2023-01-16 試験測定システム及びニューラル・ネットワークの利用方法

Country Status (4)

Country Link
US (1) US20230228803A1 (ja)
JP (1) JP2023103994A (ja)
DE (1) DE102023100643A1 (ja)
TW (1) TW202336451A (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220247648A1 (en) * 2021-02-03 2022-08-04 Tektronix, Inc. Eye classes separator with overlay, and composite, and dynamic eye-trigger for humans and machine learning
US11923895B2 (en) 2021-03-24 2024-03-05 Tektronix, Inc. Optical transmitter tuning using machine learning and reference parameters
US11940889B2 (en) * 2021-08-12 2024-03-26 Tektronix, Inc. Combined TDECQ measurement and transmitter tuning using machine learning

Also Published As

Publication number Publication date
TW202336451A (zh) 2023-09-16
DE102023100643A1 (de) 2023-07-20
US20230228803A1 (en) 2023-07-20

Similar Documents

Publication Publication Date Title
JP2023103994A (ja) 試験測定システム及びニューラル・ネットワークの利用方法
JP6738135B2 (ja) 電気ケーブルの故障検出をコンピュータで実行する方法
JP2004506204A (ja) 高速データストリームの捕捉および評価
US11907090B2 (en) Machine learning for taps to accelerate TDECQ and other measurements
JP2008545332A (ja) 通信デバイスの試験におけるジッタの補償及び生成
TWI687711B (zh) 震央距離推定裝置、震央距離推定方法及電腦可讀取之記錄媒體
CN113395189B (zh) 一种车载以太网sqi信号质量测试方法及系统
US6882947B2 (en) Discrete fourier transform (DFT) leakage removal
TW202315350A (zh) 使用機器學習的組合tdecq測量和發射機調諧
WO2020112930A1 (en) Categorization of acquired data based on explicit and implicit means
JP2022162977A (ja) 試験測定システム、光トランスミッタのチューニング方法及び光トランスミッタをチューニングするための機械学習システムのトレーニング方法
JP2003324489A (ja) ジッタ値を決定する方法及びそのプログラムとその装置
CN114218778A (zh) 一种用于声爆试验数据的分析方法及装置
US9673862B1 (en) System and method of analyzing crosstalk without measuring aggressor signal
CN116451738A (zh) 使用去噪声数据的机器学习模型训练和具有噪声校正的模型预测
KR20150015189A (ko) 고속 Fail Memory 데이터 취득 장치 및 그 방법
CN114124318A (zh) 一种加性噪声干扰下的眼图测算方法及其装置、存储介质
TW202142878A (zh) 用以基於一或多個近場測量結果獲得受測裝置性能度量之系統及方法
US11624781B2 (en) Noise-compensated jitter measurement instrument and methods
JP2023183409A (ja) 試験測定装置及び被試験デバイスの性能測定方法
TW202334851A (zh) 用於機器學習模型訓練與部署的系統及方法
JP2024054857A (ja) 試験測定装置及びノイズ測定値生成方法
CN117749261A (zh) 基于光收发一体组件的测试评估方法、装置及计算设备
TW202413957A (zh) 分離雜訊以增加測試及測量系統中的機器學習預測準確度
CN115790890A (zh) 一种布里渊光时域分析系统的信号处理方法及其终端