JP2023098299A - 高周波電源装置 - Google Patents

高周波電源装置 Download PDF

Info

Publication number
JP2023098299A
JP2023098299A JP2021214971A JP2021214971A JP2023098299A JP 2023098299 A JP2023098299 A JP 2023098299A JP 2021214971 A JP2021214971 A JP 2021214971A JP 2021214971 A JP2021214971 A JP 2021214971A JP 2023098299 A JP2023098299 A JP 2023098299A
Authority
JP
Japan
Prior art keywords
power supply
frequency
matching
power
impedance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021214971A
Other languages
English (en)
Inventor
雄一 長谷川
Yuichi Hasegawa
雄也 上野
Takeya Ueno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihen Corp
Original Assignee
Daihen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihen Corp filed Critical Daihen Corp
Priority to JP2021214971A priority Critical patent/JP2023098299A/ja
Priority to US18/086,396 priority patent/US20230207270A1/en
Priority to KR1020220182108A priority patent/KR20230100650A/ko
Publication of JP2023098299A publication Critical patent/JP2023098299A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • H01J37/32183Matching circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32137Radio frequency generated discharge controlling of the discharge by modulation of energy
    • H01J37/32155Frequency modulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32137Radio frequency generated discharge controlling of the discharge by modulation of energy
    • H01J37/32155Frequency modulation
    • H01J37/32165Plural frequencies

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

【課題】整合動作と周波数変調制御とをそれぞれ適切に行う。【解決手段】本開示に係る高周波電源装置において、第1の電源は、第1の基本周波数を有する第1の高周波電圧を出力する。第2の電源は、第2の基本周波数を有する第2の高周波電圧を出力する。第2の基本周波数は、第1の基本周波数より低い。第1の整合部は、第1の電源と負荷との間に接続される。第1の整合部は、相互変調歪が発生している状態で第1の整合動作を行う。相互変調歪は、第1の高周波電力と第2の高周波電力とが同時に負荷に供給されることによって生じる。第1の整合動作は、第1の電源のインピーダンスと負荷のインピーダンスとを整合させる動作である。第1の電源は、第1の整合動作が完了した後に周波数変調制御を行う。周波数変調制御は、第1の高周波電圧を変調信号で周波数変調させ変調波として出力する制御である。変調信号は、第2の基本周波数と同じ周波数を有する。【選択図】図2

Description

本開示は、高周波電源装置に関する。
プラズマ処理装置に用いられる高周波電源装置は、2台の高周波電源(第1の電源と第2の電源)を有しており、それぞれの電源から負荷に向けて基本周波数(基本波の周波数)が異なる高周波電圧を出力している。例えば、第1の電源は、プラズマの生成に適した第1の基本周波数F1を有する第1の高周波電圧を出力することにより第1の高周波電力を負荷に供給する。第2の電源は、イオンの加速に適した第2の基本周波数F2(第1の基本周波数F1>第2の基本周波数F2)を有する第2の高周波電圧を出力することにより第2の高周波電力を負荷に供給する。(特許文献1~3参照)。
特表2018-536295号公報 特開2017-188434号公報 米国特許第10304669号明細書
このような場合、相互変調歪(IMD:InterModulation Distortion)が発生し、第1の電源側において、反射波電力が第2の基本周波数F2の周期に応じて変動する現象が発生する。この相互変調歪に起因する反射波電力を低減させるために、第1の電源に対して周波数変調制御を行う技術が知られている。この際、高周波電源装置において、第1の電源のインピーダンスと負荷のインピーダンスとを整合させる整合動作と周波数変調制御とが同時に行われると、整合動作と周波数変調制御とが互いに干渉し適切に行われない可能性がある。
本開示は、整合動作と周波数変調制御とをそれぞれ適切に行うことができる高周波電源装置を提供する。
本開示に係る高周波電源装置は、第1の電源と第2の電源と第1の整合部と第2の整合部とを有する。第1の電源は、第1の高周波電圧を出力することにより第1の高周波電力を負荷に供給する。第1の高周波電圧は、第1の基本周波数を有する。第2の電源は、第2の高周波電圧を出力することにより第2の高周波電力を前記負荷に供給する。第2の高周波電圧は、第2の基本周波数を有する。第2の基本周波数は、第1の基本周波数より低い。第1の整合部は、第1の電源と負荷との間に接続される。第2の整合部は、第2の電源と負荷との間に接続される。第1の整合部は、相互変調歪が発生している状態で第1の整合動作を行う。相互変調歪は、第1の高周波電力と第2の高周波電力とが同時に負荷に供給されることによって生じる。第1の整合動作は、第1の電源のインピーダンスと負荷のインピーダンスとを整合させる動作である。第1の電源は、第1の整合動作が完了した後に周波数変調制御を行う。周波数変調制御は、第1の高周波電圧を変調信号で周波数変調させ変調波として出力する制御である。変調信号は、第2の基本周波数と同じ周波数を有する。
本開示に係る高周波電源装置によれば、整合動作と周波数変調制御とをそれぞれ適切に行うことができる。
実施形態に係る高周波電源装置の構成を示すブロック図。 実施形態に係る高周波電源装置の概略動作を示すシーケンス図。 実施形態に係る高周波電源装置の詳細動作を示すシーケンス図。
以下、図面を参照しながら、本開示に係る高周波電源装置の実施形態について説明する。
(実施形態)
実施形態にかかる高周波電源装置は、RF帯(RF:Radio Frequency)の周波数の高周波電圧を出力することにより高周波電力を負荷(例えばプラズマ処理装置)に供給する装置である。このような高周波電源装置は、2台の高周波電源(第1の電源と第2の電源)を有しており、それぞれの電源から負荷に向けて基本周波数(基本波の周波数)(出力周波数ともいう)が異なる高周波電圧を出力している。例えば、第1の電源は、プラズマの生成に適した第1の基本周波数F1を有する第1の高周波電圧を出力することにより第1の高周波電力を負荷に供給する。第2の電源は、イオンの加速に適した第2の基本周波数F2(第1の基本周波数F1>第2の基本周波数F2)を有する第2の高周波電圧を出力することにより第2の高周波電力を負荷に供給する。
このように複数の電源から高低差のある複数の高周波電力を負荷に供給すると、相互変調歪の影響で、第1の電源側において、反射波電力が第2の電源側の基本周期(基本波の周期)に応じて変動する現象が発生し、高い反射電力が発生する可能性がある。反射電力を低減させるため、第1の電源で第1の高周波電圧に周波数変調制御を行うことがあるとともに、第1の電源と負荷との間の重畳整合器でインピーダンスの整合動作を行うことがある。周波数変調制御とインピーダンスの整合動作とが同時に行われると、各々の動作が干渉し合い適切に行えない可能性がある。そこで、本実施形態では、以下のようにして整合動作と周波数変調制御とを協調させ、反射波電力を効果的に低減させる。
なお、第1の電源から出力されて負荷に向かう高周波電圧を第1の進行波電圧、負荷側から反射されて第1の電源に戻ってくる高周波電圧を第1の反射波電圧という。第2の電源から出力されて負荷に向かう高周波電圧を第2の進行波電圧、負荷側から反射されて第2の電源に戻ってくる高周波電圧を第2の反射波電圧という。
図1は、高周波電源装置1の構成を示す図である。高周波電源装置1は、プラズマ処理装置PAに適用される。プラズマ処理装置PAは、例えば平行平板型であり、チャンバーCH内で下部電極EL1及び上部電極EL2が互いに対向する。下部電極EL1上には、処理対象となる基板SBが載置され得る。高周波電源装置1は、下部電極EL1に電気的に接続される。上部電極EL2は、グランド電位に電気的に接続される。チャンバーCHは、給気管を介してガス供給装置(図示せず)に接続され、排気管を介して真空装置(図示せず)に接続される。
高周波電源装置1は、HF電源(第1の電源)10、LF電源(第2の電源)20及び重畳整合器30を有する。HF電源10は、第1の基本周波数F1を有する第1の高周波電圧(第1の進行波電圧)を出力することにより第1の高周波電力(第1の進行波電力)を負荷に供給する。第1の高周波電圧は、主として、プラズマの生成に適した比較的高い第1の基本周波数F1を有する。第1の基本周波数F1は、例えば、40.68MHzである。HF電源10は、ソース電源とも呼ばれる。なお、基本周波数F1は、40.68MHzに限定されるものではなく、例えば13.56MHz、27.12MHz等の工業用のRF帯(Radio Frequency)の周波数であってもよい。
LF電源20は、第1の基本周波数F1より低い第2の基本周波数F2を有する第2の高周波電圧(第2の進行波電圧)を出力することにより第2の高周波電力(第2の進行波電力)を負荷に供給する。第2の高周波電圧は、イオンの加速に適した比較的低い第2の基本周波数F2を有する。第2の基本周波数F2は、例えば400kHzである。LF電源20は、バイアス電源とも呼ばれる。なお、第2の基本周波数F2は、400kHzに限定されるものではなく、他の周波数であってもよい。
重畳整合器30は、HF電源10及びLF電源20にそれぞれ電気的に接続される。重畳整合器30は、HF電源10及びLF電源20と下部電極EL1との間に電気的に接続される。重畳整合器30は、HF電源10側のインピーダンスと下部電極EL1側のインピーダンスとを整合させるHF整合動作を行うとともに、LF電源20側のインピーダンスと下部電極EL1側のインピーダンスとを整合させるLF整合動作を行う。重畳整合器30は、HF整合動作及びLF整合動作が行われた状態で、第1の高周波電力をHF電源10から受け、第2の高周波電力をLF電源20から受け、第1の高周波電力及び第2の高周波電力を重畳させて下部電極EL1に供給する。
なお、高周波電源装置1及びプラズマ処理装置PAは、図1の構成に限定されない。例えば、HF電源10から出力される第1の高周波電力が重畳整合器30を介して上部電極EL2に供給され、LF電源20から出力される第2の高周波電力が重畳整合器30を介して下部電極EL1に供給されるような構成等、様々な構成がある。このような他の構成にも高周波電源装置1を用いることが可能である。
重畳整合器30は、HF整合部(第1の整合部)31、LF整合部(第2の整合部)32及び出力センサ33を有する。HF整合部31は、HF電源10と下部電極EL1との間に電気的に接続される。LF整合部32は、LF電源20と下部電極EL1との間に電気的に接続される。HF整合部31は、HF整合動作を行い、LF整合部32は、LF整合動作を行う。
出力センサ33は、重畳整合器30の出力端における第3の進行波電圧を検出し、検出信号として進行波電圧検出信号SG3fを出力するとともに、重畳整合器30の出力端における第3の反射波電圧を検出し、検出信号として反射波電圧検出信号SG3fを出力する。進行波電圧検出信号SG3fおよび反射波電圧検出信号SG3fは、例えば、図示しない外部装置に出力される。
HF整合部31は、HF整合動作を行う際に、HF整合部31において検出した情報に基づいて反射係数Γの大きさ又は反射電力の大きさを演算する機能を有している。
HF整合部31は、センサ311、インピーダンス演算部312、整合演算部313、及びHF整合ネットワーク314、通信部315を有する。
センサ311は、HF電源10から出力される第1の進行波電圧を検出し、検出信号として進行波電圧検出信号SG1fを出力するとともに、HF整合ネットワーク314側から反射される第1の反射波電圧を検出し、検出信号として反射波電圧検出信号SG1rを出力する。進行波電圧検出信号SG1fおよび反射波電圧検出信号SG1rは、インピーダンス演算部312に供給される。
インピーダンス演算部312は、進行波電圧検出信号SG1f及び反射波電圧検出信号SG1rに基づいて、HF電源10側のインピーダンスを求める。インピーダンス演算部312は、第1の進行波電圧に対する第1の反射波電圧の割合である反射係数Γを求める。インピーダンス演算部312は、反射係数Γを整合演算部313に供給する。
整合演算部313は、反射係数Γを受けると、反射係数Γが小さくなるようなインピーダンス変更量を求める。整合演算部313は、インピーダンス変更量に応じてHF整合ネットワーク314を制御し、HF整合ネットワーク314のインピーダンス値を変更する。なお、インピーダンス演算部312は反射係数Γに代えて反射電力を求めてもよく、整合演算部313は反射係数Γに代えて反射電力が小さくなるようなインピーダンス変更量を求めてもよい。
これにより、HF整合部31は、演算した反射係数Γの大きさ又は反射波電力の大きさが予め定めた閾値以下になったときに、HF整合動作が完了したと見なすことができる。これにより、HF整合動作の完了時期を明確化できる。これに応じて、通信部315は、HF整合動作が完了した旨の完了通知をHF電源10に送信できる。
LF整合部32は、LF整合動作を行う際に、LF整合部32において検出した情報に基づいて反射係数Γの大きさ又は反射電力の大きさを演算する機能を有している。
LF整合部32は、センサ321、インピーダンス演算部322、整合演算部323、及びLF整合ネットワーク324、通信部325を有する。
センサ321は、LF電源20から出力される第2の進行波電圧を検出し、検出信号として進行波電圧検出信号SG2fを出力するとともに、HF整合ネットワーク314側から反射される第1の反射波電圧を検出し、検出信号として反射波電圧検出信号SG2rを出力する。進行波電圧検出信号SG2fおよび反射波電圧検出信号SG2rは、インピーダンス演算部322に供給される。
インピーダンス演算部322は、進行波電圧検出信号SG2f及び反射波電圧検出信号SG2rに基づいて、LF電源20側のインピーダンスを求める。インピーダンス演算部322は、第2の進行波電圧に対する第2の反射波電圧の割合である反射係数Γを求める。インピーダンス演算部312は、反射係数Γを整合演算部313に供給する。
整合演算部323は、反射係数Γを受けると、反射係数Γが小さくなるようなインピーダンス変更量を求める。整合演算部323は、インピーダンス変更量に応じてLF整合ネットワーク324を制御し、LF整合ネットワーク324のインピーダンス値を変更する。なお、インピーダンス演算部322は反射係数Γに代えて反射電力を求めてもよく、整合演算部323は反射係数Γに代えて反射電力が小さくなるようなインピーダンス変更量を求めてもよい。
これにより、LF整合部32は、演算した反射係数Γの大きさ又は反射波電力の大きさが予め定めた閾値以下になったときに、LF整合動作が完了したと見なすことができる。これにより、LF整合動作の完了時期を明確化できる。これに応じて、通信部325は、LF整合動作が完了した旨の完了通知をHF電源10に送信できる。
HF電源10は、第1の高周波電圧を第2の基本周波数と同じ周波数を有する変調信号で周波数変調させ変調波として出力する周波数変調制御を行う。HF電源10は、HF電源10において検出した情報に基づいて反射係数Γの大きさ又は反射波電力の大きさを演算する機能を有している。
HF電源10は、周波数変調制御ブロック11、コントローラ12、直接デジタル合波器(DDS)13、増幅部14、センサ15、広帯域検出部16、平均化部17、電力設定部18、減算器19、通信部21を有する。周波数変調制御ブロック11は、変調基本波を生成する。変調基本波は、周波数F2を有し、基準振幅を有する。周波数変調制御ブロック11は、LF電源20に対応したタイミングを有するトリガー信号を基準にして、変調基本波に変調を開始すべき開始位相と変調の度合いを示す周波数偏移量とを設定し変調信号を生成する。変調信号は、開始位相及び周波数偏移量を含む。周波数変調制御ブロック11は、変調信号を周波数変調設定として直接デジタル合波器13に供給する。直接デジタル合波器13は、周波数変調設定(すなわち、変調信号)と振幅設定とを用いて、周波数が第2の基本周波数F2と同じ変調波を生成して増幅部14に供給する。増幅部14は、変調波を増幅してセンサ15に供給する。
センサ15は、増幅部14から出力された変調波(進行波)を重畳整合器30に供給する。また、増幅部14からの第1の進行波電圧を検出し、検出信号として進行波電圧検出信号Vf1を出力すると共に、重畳整合器30を介してプラズマ処理装置PA側から反射された第1の反射波電圧を検出し、検出信号として反射波電圧検出信号Vr1を出力する。センサ15は、検出した進行波電圧検出信号Vf1と反射波電圧検出信号Vr1とを広帯域検出部16に供給する。
広帯域検出部16は、所望の周波数成分を通過させるフィルタであり、例えばスーパーヘテロダイン方式で演算し、フィルタリング処理を行うことで、進行波電圧検出信号Vf1の所望成分である進行波電圧検出信号Vf2と反射波電圧検出信号Vr1の所望成分である反射波電圧検出信号Vr2とをそれぞれ通過させ平均化部17に供給する。
平均化部17は、進行波電圧検出信号Vf2に基づいて進行波電力Pfを算出するとともに、反射波電圧検出信号Vr2に基づいて反射波電力Prを算出する。例えば、Vf2^2/R(R:抵抗値に相当するゲイン)によって進行波電力Pfを算出することができる。反射波電力Prも同様にして算出することができる。なお、上記計算式では、Vf2は進行波電圧検出信号Vf2の大きさを表している。もちろん、実際の電力値に換算するためのゲインが乗算される。
また、平均化部17は、算出した進行波電力Pfと反射波電力Prとをそれぞれ所定期間において蓄積する。更に、平均化部17は、進行波電力Pfと反射波電力Prとをそれぞれ所定期間について平均化する。平均化部17は、進行波電力Pfの平均電力を減算器19に供給する。また、平均化部17は、進行波電力Pfの平均電力および反射波電力Prの平均電力を周波数変調制御ブロック11に供給する。なお、上記では、電圧に基づいて電力を算出した後に、平均化を行う例を示したが、電圧の平均化を行った後に、電力を算出してもよい。
電力設定部18は、目標電力が予め設定される。電力設定部18は、目標電力を減算器19に供給する。減算器19は、目標電力から進行波電力Pfの平均電力を減算し、減算結果を誤差ΔPとしてコントローラ12にフィードバックする。コントローラ12は、誤差ΔPに応じて、変調波の振幅を制御する。すなわち、コントローラ12は、誤差ΔPに応じて(例えば、誤差ΔPが小さくなるような)変調波の振幅を求め、求められた振幅に応じた振幅設定を直接デジタル合波器13に供給する。
例えば、目標電力が1,000[W]であり、進行波電力Pfの平均電力が950[W]であれば、目標電力に対して50[W]不足しているので、振幅設定コントローラ24は、負荷に供給する進行波電力Pfを大きくするように変調波の振幅を制御する。この変調波の振幅の制御には、例えば、PI制御やPID制御等の公知の手法を用いることができる。
これにより、周波数変調制御ブロック11は、反射波電力Prの平均電力が最小になるように、変調信号の開始位相と変調波の周波数偏移量とをそれぞれ予め定めた調整範囲内で調整する。周波数変調制御ブロック11は、反射波電力Prの平均電力が所定の閾値以下になったら、反射波電力Prの平均電力が最小となったと見なすことができる。周波数変調制御ブロック11は、反射波電力Prの平均電力が最小となったと見なしたときに、周波数変調制御が完了したと見なすことができる。これにより、周波数変調制御の完了時期を明確化できる。これに応じて、通信部21は、周波数変調制御が完了した旨の完了通知をHF整合部31へ送信できる。
次に、高周波電源装置1の概略動作について図2を用いて説明する。図2は、高周波電源装置1の概略動作を示すシーケンス図である。図2では、高周波電源装置1の動作状態と重畳整合器30及びHF電源10の動作との対応が時系列的に示される。
ST1では、HF電源10及びLF電源20がともに停止しており、HF電源10による電力印加とLF電源20による電力印加とはともに行われていない。重畳整合器30は、初期値にて待機し(SQ1)、HF電源10は、初期値にて待機する(SQ7)。
ST2では、HF電源10が第1の高周波電圧を生成して重畳整合器30へ出力し始め(SQ8)、HF電源10による電力印加は行われる。これに応じて、重畳整合器30は、HF電源10側の整合動作の準備を行う(SQ2)。このとき、LF電源20は停止している。
ST3では、HF電源10による電力印加とLF電源20による電力印加とがともに行われ、HF電源10側でIMD(相互変調歪)が発生している。これに応じて、重畳整合器30は、IMD状態を検出するとともに、HF電源10側の整合動作(第1の整合動作)とLF電源20側の整合動作(第3の整合動作)とを開始する(SQ3)。重畳整合器30は、HF電源10側及びLF電源20側それぞれで、進行波の波形と反射波の波形とを検出し、検出結果に応じてインピーダンスを演算し、それに応じて、反射係数Γを求めながら可変インピーダンス素子を動作させ始める。
ST4では、HF電源10による電力印加とLF電源20による電力印加とがともに行われ、HF電源10側でIMD(相互変調歪)が発生しているが、重畳整合器30による整合動作が行われる。このとき、HF電源10による周波数変調制御が行われていないので、整合動作と周波数変調制御とが互いに干渉することなく、重畳整合器30による整合動作を行うことができる。そして、HF電源10側の整合動作とLF電源20側の整合動作とが実行中(SQ4)の状態を経て、重畳整合器30は、HF電源10側及びLF電源20側それぞれについて、反射電力(又は反射係数Γ)が閾値以下になったら、整合動作が完了したとみなす(SQ5)。このとき、HF電源10側の整合動作に使用される可変インピーダンス素子の動作が停止している(SQ6)。これに応じて、重畳整合器30は、HF電源10側の整合動作が完了した旨の完了通知をHF電源10へ送信する。HF電源10は、完了通知を受信したことに応じて、HF電源10側の整合後の動作が停止したことが確認されたと認識する(SQ9)。
ST5では、HF電源10による電力印加とLF電源20による電力印加とがともに行われ、HF電源10側でIMD(相互変調歪)が発生しており、HF電源10による周波数変調制御が行われる。HF電源10は、周波数変調制御を開始すると(SQ10)、反射電力を取得し、反射電力が最小になる条件を探索しながら周波数変調制御を行う(SQ11)。このとき、ST4の整合動作によって、ある程度反射電力が抑制された状態になっている。また、ST4の終了時に重畳整合器30における整合動作が完了しているので、整合動作と周波数変調制御とが互いに干渉することがない。そのため、周波数変調制御を効率的に行うことができる。
HF電源10は、反射電力(又は反射係数Γ)が閾値以下になったら、周波数変調制御が完了したと見なす(SQ12)。これに応じて、HF電源10は、周波数変調制御が完了した旨の完了通知を重畳整合器30へ送信する。重畳整合器30は、完了通知を受信したことに応じて、周波数変調制御が完了したことが確認されたと認識する(SQ13)。
ST6では、HF電源10による電力印加とLF電源20による電力印加とがともに行われ、HF電源10側でIMD(相互変調歪)が抑制されており、重畳整合器30による整合動作が行われる。周波数変調制御により整合状態が変化し得るので、重畳整合器30は、再び整合動作を行う。このとき、周波数変調制御によりIMDによる反射波電力が低減されるので、整合動作により、インピーダンス不整合による反射波電力を効率的に低減できる。重畳整合器30は、HF電源10側のインピーダンスを演算し(SQ14)、それに応じてHF電源10側の整合動作(第2の整合動作)を開始し(SQ15)、反射電力(又は反射係数Γ)が閾値以下になったら整合動作が完了したとみなす(SQ16)。
次に、高周波電源装置1の詳細動作について図3を用いて説明する。図3は、高周波電源装置1の詳細動作を示すシーケンス図である。図3では、LF電源20、LF整合部32、HF整合部31、HF電源10の動作がそれぞれ時系列的に示される。
高周波電源装置1の起動前において、LF電源20、LF整合部32、HF整合部31、HF電源10は、それぞれ、初期値にて待機している(S1,S4,S11,S8)。
高周波電源装置1の起動指令に応じて、LF電源20は、第2の進行波電圧を発生してLF整合部32へ出力し始める(S2)。これ以降、LF電源20は、継続的に、第2の進行波電圧を発生してLF整合部32へ出力する(S3)。
LF整合部32は、LF電源20から出力される進行波電圧検出信号SG2fを検出し始めると、LF整合動作(第3の整合動作)を開始する(S5)。LF整合部32は、第2の進行波電圧の波形信号と第2の反射波電圧の波形信号とを検出し、第2の進行波電圧の波形信号と第2の反射波電圧の波形信号とに応じてLF電源20側のインピーダンスを演算する。LF整合部32は、LF電源20側のインピーダンスに応じて、反射電力(又は反射係数Γ)を求める。LF整合部32は、反射電力(又は反射係数Γ)が小さくなるようなインピーダンス変更量を求め、そのインピーダンス変更量で可変インピーダンス素子を動作させる。これにより、LF整合部32は、LF整合動作を行う(S6)。LF整合部32は、LF整合動作を行いながら、反射電力(又は反射係数Γ)と予め定めた閾値とを比較する。LF整合部32は、反射電力(又は反射係数Γ)の大きさが予め定めた閾値以下になったときに、LF整合動作が完了したと見なす(S7)。これに応じて、LF整合部32は、LF整合動作が完了した旨の完了通知をHF電源10へ送信する。
一方、高周波電源装置1では、S2~S7の動作と並行して、S9,S10,S12~S22の動作が行われる。
高周波電源装置1の起動指令に応じて、HF電源10は、第1の進行波電圧を発生してHF整合部31へ出力し始める(S9)。これ以降、LF電源20は、継続的に、第1の進行波電圧を発生してHF整合部31へ出力する(S10)。
HF整合部31は、HF電源10から出力される進行波電圧検出信号SG1fを検出し始めると、HF整合動作(第1の整合動作)を開始する(S12)。HF整合部31は、第1の進行波電圧の波形信号と第1の反射波電圧の波形信号とを検出し、第1の進行波電圧の波形信号と第1の反射波電圧の波形信号とに応じてHF電源10側のインピーダンスを演算する。HF整合部31は、HF電源10側のインピーダンスに応じて、反射電力(又は反射係数Γ)を求める。HF整合部31は、反射電力(又は反射係数Γ)が小さくなるようなインピーダンス変更量を求め、そのインピーダンス変更量で可変インピーダンス素子を動作させる。これにより、HF整合部31は、HF整合動作を行う(S13)。HF整合部31は、HF整合動作を行いながら、反射電力(又は反射係数Γ)と予め定めた閾値とを比較する。HF整合部31は、反射電力(又は反射係数Γ)の大きさが予め定めた閾値以下になったときに、HF整合動作が完了したと見なす(S14)。これに応じて、HF整合部31は、HF整合動作が完了した旨の完了通知をHF電源10へ送信する。
HF電源10は、完了通知をHF整合部31から受信すると、HF整合部31の完了通知に応じてHF整合動作が完了したことを確認する。HF電源10は、完了通知をLF整合部32から受信すると、LF整合部32の完了通知に応じてLF整合動作が完了したことを確認する(S15)。HF電源10は、HF整合動作及びLF整合動作が完了したことに応じて、周波数変調制御を開始する(S16)。HF電源10は、第1の高周波電圧を第2の基本周波数と同じ周波数を有する変調信号で周波数変調させ変調波として出力する周波数変調制御を行う。HF電源10は、周波数変調制御の際に、反射電力を取得し、反射電力が最小になる条件、すなわち変調信号の開始位相と変調波の周波数偏移量との組み合わせを探索する。HF電源10は、変調信号の開始位相と変調波の周波数偏移量とをそれぞれ予め定めた調整範囲内で調整しながら周波数変調制御を行い、第1の進行波電圧の波形及び第1の反射波電圧Prの波形をそれぞれ検出して反射電力(又は反射係数Γ)を求める。これにより、HF電源10は、反射電力(又は反射係数Γ)が最小となる条件を検索しながら、周波数変調制御(S17)を行う。このとき、S12~S13の整合動作である程度HF側の反射電力が抑制されているので、周波数変調制御を効率的に行うことができる。HF電源10は、反射電力(又は反射係数Γ)を閾値と比較し、反射電力(又は反射係数Γ)が閾値以下になった際に反射電力が最小となったと見なすことができる。HF電源10は、反射電力が最小となったと見なすと、周波数変調制御が完了したと見なす(S18)。これに応じて、HF電源10は、周波数変調制御が完了した旨の完了通知をHF整合部31へ送信する。
HF整合部31は、完了通知を受信すると、完了通知に応じて周波数変調制御が完了したことを確認する(S19)。HF整合部31は、周波数変調制御が完了したことに応じて、HF整合動作(第2の整合動作)を再び開始する(S20)。このとき、周波数変調制御でIMDによる反射波電力が低減されるので、HF整合動作により、インピーダンス不整合による反射波電力を効率的に低減できる。HF整合部31は、第1の進行波電圧の波形信号と第1の反射波電圧の波形信号とを検出し、第1の進行波電圧の波形信号と第1の反射波電圧の波形信号とに応じてHF電源10側のインピーダンスを演算する。HF整合部31は、HF電源10側のインピーダンスに応じて、反射電力(又は反射係数Γ)を求める。HF整合部31は、反射電力(又は反射係数Γ)が小さくなるようなインピーダンス変更量を求め、そのインピーダンス変更量で可変インピーダンス素子を動作させる。これにより、HF整合部31は、HF整合動作を行う(S21)。HF整合部31は、HF整合動作を行いながら、反射電力(又は反射係数Γ)と予め定めた閾値とを比較する。HF整合部31は、反射電力(又は反射係数Γ)の大きさが予め定めた閾値以下になったときに、HF整合動作が完了したと見なす(S22)。重畳整合器30は、HF整合動作及びLF整合動作が行われた状態で、第1の進行波電圧をHF電源10からHF整合部31で受け、第2の進行波電圧をLF電源20からLF整合部32で受ける。重畳整合器30は、HF整合部31の第1の進行波電圧(第1の高周波電力)とLF整合部32の第2の進行波電圧(第2の高周波電力)を重畳させて下部電極EL1に供給する(S23)。
以上のように、本実施形態では、高周波電源装置1において、HF電源10は、HF整合部31によるHF整合動作が完了した後に、周波数変調制御を行う。これにより、HF整合動作と周波数変調制御とをそれぞれ適切に行うことができ、相互変調歪の影響で発生するHF電源10側の反射波電力を効率よく低減させることができる。
また、本実施形態では、高周波電源装置1において、HF整合部31は、HF電源10による周波数変調制御が完了した後に、HF整合動作を再び行う。例えば、周波数変調制御を行うことによって、HF整合部31におけるHF整合動作の最適値(最適な整合回路の状態)が異なる場合がある。そのため、HF整合動作を再び行うことにより、相互変調歪の影響で発生する反射波電力を更に低減させることができる。
また、本実施形態では、高周波電源装置1において、HF電源10は、HF整合部31によるHF整合動作の完了に加えてLF整合部32によるLF整合動作の完了した後に、周波数変調制御を行う。これにより、HF整合動作とLF整合動作と周波数変調制御とをそれぞれ適切に行うことができ、相互変調歪の影響で発生するHF電源10側の反射波電力とLF電源20側の反射波電力とをそれぞれ効率よく低減させることができる。
また、本実施形態では、高周波電源装置1において、HF整合部31は、HF整合動作を行いながら反射電力(又は反射係数Γ)を取得し、反射電力(又は反射係数Γ)の大きさが予め定めた閾値以下になったときにHF整合動作が完了したとみなす。LF整合部32は、LF整合動作を行いながら反射電力(又は反射係数Γ)を取得し、反射電力(又は反射係数Γ)の大きさが予め定めた閾値以下になったときにLF整合動作が完了したとみなす。これにより、HF整合動作の完了時期とLF整合動作の完了時期とがそれぞれ明確になり、妥当な範囲(閾値は実験等によって適切な値を設定すればよい)で整合動作を行うことができる。すなわち、反射電力が0になることを目標としていると、反射電力が小さくなった段階でも制御が繰り返し行われ、制御が不安定になる場合があるが、上記のようにすれば不安定さが低減される。また、早期に制御を完了させることができる。
また、本実施形態では、高周波電源装置1において、HF電源10は、周波数変調制御の際に、変調信号の開始位相と前記変調波の周波数偏移量とをそれぞれ予め定めた調整範囲内で調整して周波数変調制御を行いながら反射電力(又は反射係数Γ)を取得し、反射電力(又は反射係数Γ)の大きさが最小になったと見なしたときに、周波数変調制御が完了したと見なす。これにより、周波数変調制御の完了時期が明確になり、妥当な範囲(閾値は実験等によって適切な値を設定すればよい)で周波数変調制御を行うことができる。すなわち、反射波電力が0になることを目標としていると、反射波電力が小さくなった段階でも制御が繰り返し行われ、制御が不安定になる場合があるが、上記のようにすれば不安定さが低減される。また、早期に制御を完了させることができる。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これらの実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これらの実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
1 高周波電源装置
10 HF電源
20 LF電源
30 重畳整合器
31 HF整合部
32 LF整合部

Claims (5)

  1. 第1の基本周波数を有する第1の高周波電圧を出力することにより第1の高周波電力を負荷に供給する第1の電源と、
    前記第1の基本周波数より低い第2の基本周波数を有する第2の高周波電圧を出力することにより第2の高周波電力を前記負荷に供給する第2の電源と、
    前記第1の電源と前記負荷との間に接続された第1の整合部と、
    前記第2の電源と前記負荷との間に接続された第2の整合部と、
    を備え、
    前記第1の整合部は、前記第1の高周波電力と前記第2の高周波電力とが同時に前記負荷に供給されることによって生じる相互変調歪が発生している状態で、前記第1の電源のインピーダンスと前記負荷のインピーダンスとを整合させる第1の整合動作を行い、
    前記第1の電源は、前記第1の整合動作が完了した後に、前記第1の高周波電圧を前記第2の基本周波数と同じ周波数を有する変調信号で周波数変調させ変調波として出力する周波数変調制御を行う
    高周波電源装置。
  2. 前記第1の整合部は、前記周波数変調制御が完了した後に、前記第1の電源のインピーダンスと前記負荷のインピーダンスとを整合させる第2の整合動作を行う
    請求項1に記載の高周波電源装置。
  3. 前記第2の整合部は、前記第2の電源のインピーダンスと前記負荷のインピーダンスとを整合させる第3の整合動作を行い、
    前記第1の電源は、前記第1の整合動作及び前記第3の整合動作が完了した後に、前記周波数変調制御を行う
    請求項2に記載の高周波電源装置。
  4. 前記第2の整合部は、前記第2の電源のインピーダンスと前記負荷のインピーダンスとを整合させる第3の整合動作を行い、
    前記第1の整合部は、前記第1の整合部において検出した情報に基づいて反射係数の大きさ又は反射電力の大きさを演算する機能を有しており、前記演算した反射係数の大きさ又は反射波電力の大きさが予め定めた閾値以下になったときに、前記第1の整合動作が完了したと見なし、
    前記第2の整合部は、前記第2の整合部において検出した情報に基づいて反射係数の大きさ又は反射波電力の大きさを演算する機能を有しており、前記演算した反射係数の大きさ又は反射波電力の大きさが予め定めた閾値以下になったときに、前記第3の整合動作が完了したと見なす
    請求項1から3のいずれか1項に記載の高周波電源装置。
  5. 前記第1の電源は、前記第1の電源において検出した情報に基づいて反射係数の大きさ又は反射波電力の大きさを演算する機能を有しており、
    前記周波数変調制御は、前記変調信号の開始位相と前記変調波の周波数偏移量とをそれぞれ予め定めた調整範囲内で調整し、前記演算した反射係数の大きさ又は反射波電力の大きさが最小となったと見なしたときに、前記周波数変調制御が完了したと見なす
    請求項1から4のいずれか1項に記載の高周波電源装置。
JP2021214971A 2021-12-28 2021-12-28 高周波電源装置 Pending JP2023098299A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021214971A JP2023098299A (ja) 2021-12-28 2021-12-28 高周波電源装置
US18/086,396 US20230207270A1 (en) 2021-12-28 2022-12-21 High-frequency power supply device
KR1020220182108A KR20230100650A (ko) 2021-12-28 2022-12-22 고주파 전원 장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021214971A JP2023098299A (ja) 2021-12-28 2021-12-28 高周波電源装置

Publications (1)

Publication Number Publication Date
JP2023098299A true JP2023098299A (ja) 2023-07-10

Family

ID=86897171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021214971A Pending JP2023098299A (ja) 2021-12-28 2021-12-28 高周波電源装置

Country Status (3)

Country Link
US (1) US20230207270A1 (ja)
JP (1) JP2023098299A (ja)
KR (1) KR20230100650A (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023097863A (ja) * 2021-12-28 2023-07-10 株式会社ダイヘン 高周波電源システム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100304669B1 (ko) 1999-09-09 2001-11-07 윤종용 강유전체 전계 효과 트랜지스터 적외선 센서 및 그 제조 방법과 작동 방법
KR20170103661A (ko) 2016-03-04 2017-09-13 램 리써치 코포레이션 보다 저 주파수 rf 생성기의 기간 동안 보다 고 주파수 rf 생성기를 향하여 반사된 전력을 감소시키고 그리고 반사된 전력을 감소시키도록 관계를 사용하기 위한 시스템들 및 방법들

Also Published As

Publication number Publication date
US20230207270A1 (en) 2023-06-29
KR20230100650A (ko) 2023-07-05

Similar Documents

Publication Publication Date Title
US6920312B1 (en) RF generating system with fast loop control
US7615983B2 (en) High frequency power device for protecting an amplifying element therein
US10042407B2 (en) Power supply systems and methods for generating power
US8704607B2 (en) Pulse modulated RF power control method and pulse modulated RF power supply device
US8286581B2 (en) High frequency power source and its control method, and plasma processing apparatus
KR101224236B1 (ko) 고주파 전력 장치
KR102027628B1 (ko) 고주파수 전력을 생산하기 위한 방법 및 부하에 전력을 공급하기 위한 전력 컨버터를 갖는 전력 공급 시스템
JP2023098299A (ja) 高周波電源装置
JP4805170B2 (ja) 高周波電源装置
JP2010255061A (ja) スパッタリング装置及びスパッタリング処理方法
US20200118797A1 (en) Rf generating apparatus and plasma treatment apparatus
JP2023098298A (ja) 高周波電源装置
US10772184B2 (en) Ignition device
JPH08162291A (ja) プラズマ装置
JP4593948B2 (ja) 高周波電源装置
KR20240105249A (ko) 고주파 전원 장치
US20230207268A1 (en) High-frequency power supply device
JP2005116818A (ja) プラズマ発生装置
KR20180080632A (ko) 플라즈마 생성을 위한 전력 공급 장치
US20230094655A1 (en) Plasma processing apparatus and processing method
JP2024094788A (ja) 高周波電源装置
KR20240104018A (ko) 매치리스 플라즈마 소스 및 그 동작 방법
JP2024095373A (ja) 高周波電力供給システム
JP2024095371A (ja) 高周波電力供給システム
KR20230073918A (ko) 임피던스 주파수 테이블을 이용한 자동 주파수 조정 장치, 이를 포함하는 플라즈마 전력 장치 및 자동 주파수 조정 방법