JP2023092895A - 制御装置 - Google Patents

制御装置 Download PDF

Info

Publication number
JP2023092895A
JP2023092895A JP2021208190A JP2021208190A JP2023092895A JP 2023092895 A JP2023092895 A JP 2023092895A JP 2021208190 A JP2021208190 A JP 2021208190A JP 2021208190 A JP2021208190 A JP 2021208190A JP 2023092895 A JP2023092895 A JP 2023092895A
Authority
JP
Japan
Prior art keywords
plan
vehicle
speed
trajectory
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021208190A
Other languages
English (en)
Other versions
JP2023092895A5 (ja
Inventor
章 伊藤
Akira Ito
和也 花本
Kazuya Hanamoto
茂徳 市瀬
Shigenori Ichise
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
J Quad Dynamics Inc
Original Assignee
Denso Corp
J Quad Dynamics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, J Quad Dynamics Inc filed Critical Denso Corp
Priority to JP2021208190A priority Critical patent/JP2023092895A/ja
Priority to PCT/JP2022/037959 priority patent/WO2023119799A1/ja
Publication of JP2023092895A publication Critical patent/JP2023092895A/ja
Publication of JP2023092895A5 publication Critical patent/JP2023092895A5/ja
Priority to US18/750,202 priority patent/US20240336280A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/001Planning or execution of driving tasks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/10Path keeping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions
    • B60W40/072Curvature of the road
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2530/00Input parameters relating to vehicle conditions or values, not covered by groups B60W2510/00 or B60W2520/00
    • B60W2530/10Weight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/30Road curve radius
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/10Longitudinal speed

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

Figure 2023092895000001
【課題】軌道計画及び速度計画の作成に必要な演算負荷を低減することのできる制御装置、を提供する。
【解決手段】制御装置10は、所定の経路に沿って車両MVを走行させる際の、各地点における車両MVの横位置を示す計画、である軌道計画を作成する第1計画作成部13と、上記経路に沿って車両MVを走行させる際の、各地点における車両MVの走行速度を示す計画、である速度計画を作成する第2計画作成部14と、軌道計画及び速度計画の両方に従って車両MVを走行させる、制駆動力制御部15及び操舵制御部16と、を備える。第2計画作成部14は、第1計画作成部13が軌道計画を作成した後に、当該軌道計画に従って車両MVを走行させるための計画として速度計画を作成する。
【選択図】図1

Description

本開示は移動体の制御装置に関する。
車両の運転操作の一部又は全部を自動化する技術の開発が進められている。このような技術には、先進運転支援システム(Advanced Driver Assistance Systems:ADAS)と称されるものや、自動運転(Autonomous Driving:AD)と称されるものが含まれる。例えば下記特許文献1には、乗員の嗜好速度に応じた適切な目標速度を設定し、実際の速度が目標速度となるよう、エンジンの駆動力等を自動的に調整する技術についての記載がある。
この分野における技術の進歩は目覚ましく、国内のみならず世界中において開発競争が激化している。また、近年ではインフラも整備されてきており、高度道路交通システムから制御に必要な情報を得ることや、地形情報を含む詳細な地図データを利用することも可能となってきた。更には、アクチュエータ制御や電動ブレーキ等の個々の技術開発も進んだことで、車両の運動に関するきめ細かな制御を行うことも可能となってきた。
制御に用いることのできる情報が詳細且つ多様となり、ハードウェア技術の進歩で制御自由度も向上したことで、今後はより高度な制御が可能となっていくものと考えられる。例えば、車両の走行性能、乗り心地、及びエネルギー効率等を、更に向上させるような制御の実現が期待される。
特許第4513247号公報
本発明者らは、車両の走行速度の自動調整を最適化することに加え、車両が走行する軌道の自動調整をも最適化することで、車両の走行に必要なエネルギーを低減することについて検討を進めている。尚、ここでいう「軌道」とは、車両が特定の走路を走行する際において、当該走路のうち幅方向におけるどの部分を車両が走行するのか、を示す軌道のことである。従って、「軌道の自動調整」とは、走行中における車両の「横位置」を自動調整することを意味する。
このような制御を可能とするための方法としては、将来の所定期間において車両の走行速度をどのように変化させて行くべきか、を示す速度計画と、当該所定期間においてどのような軌道に沿って車両を走行させるべきか、を示す軌道計画と、の両方を作成し、速度計画及び軌道計画の両方に従って車両を走行させることが考えられる。消費されるエネルギーが可能な限り低くなるよう、速度計画及び軌道計画の両方を最適化して作成することができれば、車両のエネルギー効率を高めることができる。
例えば上記の速度計画を作成するためには、車両のダイナミクスのみならず、エンジンやモータ等のパワトレイン効率特性や、走路の勾配や曲率のような外界情報等、複数の要因を考慮しながら、最適化問題として定式化しこれを解く必要がある。しかしながら、制御のために利用可能な情報が多くなるほど、当該情報を用いた制御を実現するための演算負荷は当然に大きくなる。このため、速度計画のみを作成する場合であっても、多大な演算リソースを要することとなり、車両に搭載可能な制御装置では実現が難しくなる可能性がある。当然ながら、速度計画のみならず軌道計画についても最適化しようとする場合には、求められる演算リソースは更に膨大なものとなってしまう。
本開示は、軌道計画及び速度計画の作成に必要な演算負荷を低減することのできる制御装置、を提供することを目的とする。
本開示に係る制御装置は、移動体(MV)の制御装置(10)であって、所定の経路に沿って移動体を走行させる際の、各地点における移動体の横位置を示す計画、である軌道計画を作成する第1計画作成部(13)と、経路に沿って移動体を走行させる際の、各地点における移動体の走行速度を示す計画、である速度計画を作成する第2計画作成部(14)と、軌道計画及び速度計画の両方に従って移動体を走行させる走行制御部(15,16)と、を備える。第2計画作成部は、第1計画作成部が軌道計画を作成した後に、軌道計画に従って移動体を走行させるための計画として速度計画を作成する。
このような構成の制御装置は、初めに軌道計画を作成し、その後、当該軌道計画に従って移動体を走行させるための計画として、速度計画を作成する。つまり、複合的な最適化問題を解くことで軌道計画と速度計画の両方を同時に作成するのではなく、速度計画とは独立した形で、軌道計画のみを先ず作成する。これにより、軌道計画の作成に必要な演算負荷を低減することができる。また、速度計画については、既存の軌道計画に従った走行を前提として作成するので、速度計画の作成に必要な演算負荷をも低減することができる。
尚、複合的な演算により、軌道計画と速度計画の両方を同時に作成する場合に比べると、エネルギー効率向上の効果は小さくなる。しかしながら、必要な演算負荷を著しく低減することができるので、例えば、制御装置の全体を車載ECUとして構成することが可能となる等、大きな利点を得ることができる。
本開示によれば、軌道計画及び速度計画の作成に必要な演算負荷を低減することのできる制御装置、が提供される。
図1は、本実施形態に係る制御装置の構成を模式的に示すブロック図である。 図2は、制御装置によって実行される処理の流れを示すフローチャートである。 図3は、軌道計画の一例について説明するための図である。
以下、添付図面を参照しながら本実施形態について説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては可能な限り同一の符号を付して、重複する説明は省略する。
本実施形態に係る制御装置10は、車両MVの動作を制御するための装置として構成されている。図1には、制御対象である車両MVが模式的なブロックとして描かれている。車両MVは例えば電動車両であって、走行に必要な駆動力を発生させる装置として不図示の回転電機を備えている。このような態様に換えて、車両MVは、内燃機関の駆動力によって走行する車両であってもよい。また、車両MVは、内燃機関及び回転電機のそれぞれの駆動力によって走行し得るハイブリッド車両であってもよい。
本実施形態の車両MVは、運転操作の全てを自動的に行う、所謂「自動運転車両」として構成されている。このような態様に換えて、駆動操作(アクセル操作)、制動操作(ブレーキ操作)、及び操舵(ハンドル操作)のうちの一部のみを自動的に行うような車両であってもよい。いずれの場合も、自動的な運転操作は、制御装置10が行う制御によって実現される。また、制御装置10が、乗員の代わりに自動的な操作を行うのではなく、例えば目標速度や目標軌道等を乗員に指示することで、適切な運転操作を行わせるような態様であってもよい。
制御装置10は、CPU、ROM、RAM等を有するコンピュータシステムとして構成されており、その全体が、制御対象である車両MVに搭載されている。つまり、制御装置10は、所謂車載ECUとして構成されている。本実施形態の制御装置10は単一の装置として構成されているが、互いに双方向の通信を行う複数の装置として構成されていてもよい。また、以下に説明する制御装置10の機能の一部又は全部が、車両MVとは異なる位置に配置されたサーバーにより実現されている態様であってもよい。
図1には、制御装置10の構成が、ブロック図として模式的に描かれている。制御装置10は、その機能を表すブロック要素として、記憶部11と、経路設定部12と、第1計画作成部13と、第2計画作成部14と、制駆動力制御部15と、操舵制御部16と、を備えている。
記憶部11は、制御装置10に設けられた不揮発性の記憶装置であって、例えばSSDやHDD等である。記憶部11には、制御装置10が行う処理に必要な各種の情報が記憶されている。当該情報には、車両MVが走行し得る走路の各地点における地形、具体的には、各地点における勾配、曲率、レーン数、各レーンの幅、等が含まれる。記憶部11に記憶されている情報が、時間の経過や車両MVの走行位置等に応じて都度更新されることとしてもよい。
経路設定部12は、車両MVが目的地に到達するために走行すべき経路、を設定する処理を行う部分である。車両MVの車室(不図示)には、乗員が操作を行う部分である操作部20が、例えばタッチパネルとして設けられている。乗員が操作部20を操作し、所望の目的地を設定すると、経路設定部12は、現在地から目的地までの適切な経路を設定する。経路設定部12による経路の設定は、走行に必要なエネルギーが可能な限り小さくなるように行われることが好ましい。例えば、可能な限り平坦な経路や、道のりが最も短い経路が設定されることが好ましい。尚、経路設定部12や操作部20は、車両MVに搭載されたナビゲーションシステムの一部であってもよい。
第1計画作成部13は、軌道計画を作成する処理を行う部分である。「軌道計画」とは、経路設定部12が設定した経路に沿って車両MVを走行させる際の、各地点における車両MVの横位置を示す計画、のことである。軌道計画は、経路に沿って車両MVが所定距離進むごとの、各地点における横位置として作成される。「横位置」としては、例えば、左右方向に沿った走路の中心位置から、同方向に沿った車両の中心位置までの距離が用いられる。
第1計画作成部13は、経路設定部12によって設定された経路、記憶部11に記憶されている曲率等の地形情報、及び、車両MVの走行位置に基づいて、軌道計画を作成する。車両MVの走行位置は、例えば、車両MVに搭載されたGPSセンサからの信号等に基づいて取得することができる。第1計画作成部13は、走行に必要なエネルギーが小さくなるように軌道計画を作成する。軌道計画の具体的な作成方法については後に説明する。
第2計画作成部14は、速度計画を作成する処理を行う部分である。「速度計画」とは、経路設定部12が設定した経路に沿って車両MVを走行させる際の、各地点における車両MVの走行速度を示す計画、のことである。速度計画は、所定時間が経過するごとの、各時刻における走行速度として作成される。先に述べた軌道計画と同様に、速度計画が、経路に沿って車両MVが所定距離進むごとの、各地点における走行速度として作成されることとしてもよい。
車両MVの乗員は、操作部20を操作することにより、所望の設定速度を入力することができる。第2計画作成部14は、車両MVが設定速度又はそれに近い走行速度で走行するように、速度計画を作成する。
第2計画作成部14は、上記の設定速度に加えて、記憶部11に記憶されている勾配や曲率等の地形情報、第1計画作成部によって作成された軌道計画、車両MVの現在の走行位置や走行速度等に基づいて、速度計画を作成する。車両MVの現在の走行位置は、例えば、車両MVに搭載された速度センサからの信号等に基づいて取得することができる。第2計画作成部14は、車両MVが設定速度に近い速度で走行し、且つ、走行に必要なエネルギーが小さくなるように、速度計画を作成する。速度計画の具体的な作成方法については後に説明する。
制駆動力制御部15は、速度計画に従って車両MVを走行させる処理を行う部分である。制駆動力制御部15は、現在以降の各時刻における車両MVの走行速度が、速度計画に示される走行速度に一致するように、車両MVの制動力や駆動力(以下、これらを総じて「制駆動力」とも称する)を調整する。具体的には、制駆動力制御部15は、速度計画に示される走行速度と、実際の走行速度との偏差が小さくなるよう、フィードバック制御を行うことにより制駆動力を調整しながら、車両MVを走行させる。
制駆動力制御部15は、速度計画、現在の走行速度、及び現在の車両状態に基づいて、上記のフィードバック制御を行う。「車両状態」とは、例えば車両MVが備える回転電機の回転数、トルク、車両MVの重心位置等であって、制御における状態変数として用いられる各種パラメータのことである。制駆動力制御部15は、車両MVの各部に設定された信号や、当該信号から推定して得られる情報等に基づいて、車両状態を取得する。制駆動力制御部15は、フィードバック制御の結果として算出される制駆動力指示値を、車両MVに搭載された各種機器へと出力する。当該機器には、例えば、回転電機に供給される電流を調整するインバータや、電動ブレーキ装置等が含まれる。制駆動力制御部15が行うフィードバック制御としては、例えば公知となっている種々の方法を採用することができるため、詳細な説明については省略する。
操舵制御部16は、軌道計画に従って車両MVを走行させる処理を行う部分である。操舵制御部16は、経路に沿って走行する車両MVの各地点における横位置が、軌道計画に示される横位置に一致するように、車両MVの操舵を行う。
操舵制御部16は、速度計画及び軌道計画に基づいて必要な操舵量を算出し、当該操舵量に対応したヨーレート指示値を算出する。操舵制御部16は、車両MVに搭載された電動操舵装置へとヨーレート指示値を出力することで、軌道計画に沿った走行を実現させる。速度計画及び軌道計画に応じて、操舵量やヨーレート指示値を算出するための具体的な方法としては、例えば公知となっている種々の方法を採用することができるため、詳細な説明については省略する。尚、操舵制御部16から車両MVに向けて出力される信号は、本実施形態のようにヨーレート指示値であってもよいが、操舵量を直接示す指示値であってもよい。
制駆動力制御部15及び操舵制御部16の全体は、軌道計画及び速度計画の両方に従って車両MVを走行させる部分、ということができる。これらは、本実施形態における「走行制御部」に該当する。
尚、制御装置10が、乗員の代わりに自動的な操作を行うのではなく、例えば目標速度や目標軌道等を乗員に指示するような場合であっても、走行制御部は、軌道計画及び速度計画の両方に(結果的に)従って車両MVを走行させることに変わりはない。
制御装置10により実行される処理の概要について、図2を参照しながら説明する。図2のフローチャートは、第1計画作成部13による軌道計画の作成、及び、第2計画作成部14による速度計画の作成、が行われる順序を表している。同図に示されるように、最初のステップS01において軌道計画の作成が行われ、続くステップS02において速度計画の作成が行われる。
このように、本実施形態に係る制御装置10は、1つの最適化問題を解いた結果として軌道計画及び速度計画の両方を同時に作成するのではなく、先に軌道計画のみを作成し、その後、既存の軌道計画を前提として速度計画を作成するように構成されている。このような順序で各計画を作成することの利点については後に説明する。
第1計画作成部13による軌道計画の作成方法について説明する。図3には、作成された軌道計画の一例が示されている。同図に示される線LLは、車両MVが走行する走路(具体的にはレーン)のうち左端の境界を示す線である。線RLは、車両MVが走行する走路のうち右端の境界を示す線である。図3には、算出された軌道計画に示される軌道、すなわち、車両MVの中心位置が通るべき軌道が、矢印TRで示されている。
図3の例において、車両MVが走行する走路は、最初は右方向に曲がるカーブ路CV1となっており、その先においては左方向に曲がるカーブ路CV2となっている。図3に示されるように、軌道計画(矢印TR)に沿って走行する車両MVは、走路の中央よりも左側(つまりアウト側)から右側へと横位置を変化させながら、最初のカーブ路CV1へと進入する。カーブ路CV1においては、車両MVは、走路の中央よりも右側(つまりイン側)を走行しながら、走路に沿って右方向に曲がる。その後、車両MVは、走路の中央よりも右側から再び左側(つまりアウト側)へと横位置を変化させながらカーブ路CV1を抜け、次のカーブ路CV2に向かう。
続いて、車両MVは、走路の中央よりも右側(つまりアウト側)から左側へと横位置を変化させながら、カーブ路CV2へと進入する。カーブ路CV2においては、車両MVは、走路の中央よりも左側(つまりイン側)を走行しながら、走路に沿って左方向に曲がる。その後、車両MVは、走路の中央よりも左側から再び右側(つまりアウト側)へと横位置を変化させながらカーブ路CV2を抜ける。
この例の矢印TRのように、第1計画作成部13は、所謂「アウト・イン・アウト」の軌道に沿って、経路上にあるそれぞれのカーブ路を車両MVが走行するように、軌道計画を作成する。矢印TRのような軌道は、走路を外れないように車両MVを走行させる軌道であり、且つ、各点における曲率が最小となるような軌道、ということもできる。
車両MVが経路を通る際の任意の軌道を、例えば所定距離ごとの複数の区間に分けると、それぞれの区間における軌道の曲率を定義することができる。このように算出された複数の曲率の二乗和を評価関数とし、当該評価関数が最小となるような軌道を選択すれば、矢印TRで示される例のように、曲率が最小となるような軌道を得ることができる。本実施形態の第1計画作成部13は、例えばこのような方法で、車両MVがアウト・イン・アウトの軌道に沿って各カーブ路を走行するように軌道計画を作成する。
このようなアウト・イン・アウトの軌道に沿って車両MVを走行させると、操舵量が比較的小さくなるため、操舵に必要なエネルギーが抑制される。また、車両MVの走行距離が短くなることや、横加速度の低減に伴って減速幅が小さくなること等により、走行に必要なエネルギーは更に抑制される。本発明者らが行ったシミュレーションによれば、レーン中央の軌道に沿って車両MVを走行させた場合に比べて、アウト・イン・アウトの軌道に沿って車両MVを走行させた場合の消費エネルギーは、著しく減少することが確認された。
このように、第1計画作成部13による軌道計画の作成は、現在位置以降で車両MVが走行する経路や、当該経路に含まれる走路の地形情報(例えば幅や曲率)のみに基づいて行われる。換言すれば、軌道計画の作成は、車両MVをどのような速度で走行させるか(つまり速度計画)や、重量等の車両諸元を一切用いることなく行われる。従って、軌道計画の作成に必要な演算負荷は比較的小さくなっている。
本実施形態の第1計画作成部13は、車両MVの現在位置から、経路に沿って所定距離だけ先となる位置までの範囲について、軌道計画を作成する。車両MVの走行中において、第1計画作成部13は、所定の周期が経過する毎に、上記のような軌道計画を定期的に作成し更新する。作成された軌道計画は、第1計画作成部13から第2計画作成部14へと入力され、速度計画の作成に用いられる。
尚、車両MVの目的地や全体の経路が予め決まっている場合には、車両MVが走行を開始する前の時点で、全体の経路に沿った軌道計画を一度に作成しておき、上記のような更新を行わないこととしてもよい。例えば、車両MVが商用車や路線バスである場合には、このような軌道計画の一括生成が可能である。また、車両MVが一般家庭用の車両であったとしても、車両MVの目標値や経路が例えば前日に入力された場合等は、上記のような軌道計画の一括生成が可能である。
第2計画作成部14による速度計画の作成方法について説明する。先に述べたように、速度計画は、経路設定部12が設定した経路に沿って車両MVを走行させる際の、各地点における車両MVの走行速度を示す計画、として作成される。
以下では、車両MVがこれから通る経路を一定のサンプリング距離ごとに区分した場合の区分数を「S」と表現することとし、0からSまでのいずれかの整数値をとるインデックスを「k」と表現することとする。更に、現在地からサンプリング距離×kだけ先にある地点における、車両MVの目標速度を「v(k)」と表記すれば、速度計画は、全てのkの値についてのv(k)の集合として表すことができる。尚、速度計画に含まれるv(0)は、車両MVの現在の走行速度のことであるから、その値は既知である。
第2計画作成部14は、以下の式(1)で示される評価関数の値が最小となるように、v(k)の個々の値を設定し、これにより速度計画を作成する。
Figure 2023092895000002
式(1)に含まれる「w」及び「w」は、重み付けのための係数である。「F(k)」は、kの値に対応した各地点における制駆動力を表している。「vtgt」は、使用者が操作部20を操作することにより予め設定した設定速度を表している。
勾配による自車重量を利用し、可能な限り制駆動力を生じさせないように車両MVを走行させた場合には、制駆動力であるF(k)の二乗和(式(1)の第1項)は小さくなり、走行のために要するエネルギーは小さくなる。一方、この場合には、車両MVの走行速度の変動が大きくなり、v(k+1)とvtgtとの偏差の二乗和(式(1)の第2項)は大きくなってしまう。このように、自車重量を利用することと、設定速度を維持することとは、互いにトレードオフの関係にある。式(1)の評価関数を最小化することは、設定速度の維持を基本としつつ、設定速度からの多少の速度変動を許容しながら、制駆動力で消費されるエネルギーが小さくなるように、速度計画を作成することであるといえる。
尚、式(1)の評価関数を最小とするような最小化問題を解くにあたっては、以下の式(2)で示される制約条件が設定される。
Figure 2023092895000003
式(2)のVmax(k)は、kの値に対応した各地点において許容される、走行速度の最大値を表している。それぞれのVmax(k)の値は、予め作成された軌道計画を用いて算出されるのであるが、その方法については後述する。第2計画作成部14は、式(1)の評価関数を最小とする最小化問題を、式(2)の制約条件の下で解くことにより、速度計画を作成する。
式(1)には、制駆動力を表すF(k)が含まれているので、上記の最小化問題をそのまま解くことは難しい。そこで、以下に述べるような変形を式(1)に施すこととする。
先ず、kの値に対応した各地点において、車両MVに加えられる自車重量の進行方向成分の力を「Fgrad(k)」とした場合、Fgrad(k)は以下の式(3)のように表現される。
Figure 2023092895000004
式(3)の「g」は重力加速度である。「θ(k)」は、kの値に対応した各地点における走路の勾配を表している。Fgrad(k)を用いると、車両MVの運動方程式は以下の式(4)のように表現される。
Figure 2023092895000005
式(4)の「F(t)」は、制駆動力を時間の関数として表したものである。「k」は、先に述べたkのうち、時刻tに対応した地点インデックスのことを表している。尚、F(t)やFgrad(k)としては、車両MVに加えられる力を、車両MVの重量で正規化したものが用いられている。このため、式(4)を用いるにあたっては、車両MVの特定の諸元を意識する必要がない。
尚、速度計画は、車両MVの走行速度が、設定速度の近傍で調整されることを前提として作成される。この場合、走行中の車両MVに働く空気抵抗の変動は概ね一定と見なすことができるので、式(4)においては空気抵抗の影響を無視している。
車両MVの初期速度を「v」とし、そこから時間tが経過した時点における車両MVの走行速度を「v(t)」とし、当該時点までの車両MVの走行距離を「s(t)」とした場合には、上記の式(4)より、v(t)とs(t)との関係は以下の式(5)のように表すことができる。
Figure 2023092895000006
車両MVの走行速度がv(k)からv(k+1)に変化するまでに、車両MVが走行する距離をΔsとすれば、式(5)より以下の式(6)を得ることができる。尚、Δsは、先に述べた「サンプリング距離」のことである。
Figure 2023092895000007
式(6)を変形することにより、以下の式(7)を得ることができる。
Figure 2023092895000008
式(7)を式(1)に代入すれば、以下の式(8)を得ることができる。
Figure 2023092895000009
式(8)は、式(1)の評価関数を、F(k)を含まない形に変形したものである。式(8)は、決定変数であるv(k)のみを未知の変数として含んだ形となっている。このため、式(8)の評価関数を最小化するような最小化問題を解くことが可能となり、速度計画としてv(k)を得ることができる。式(8)は、Δsを「サンプリング距離」とし、0~Sの範囲で示される距離の全体を「ホライズン距離」とした上で、両者を用いて記述されるMPC(Model Predictive Control)問題として速度計画問題を定式化したもの、ということができる。
ここで、式(8)の第2項は、走行速度と設定速度との偏差の大きさを示すものであればよい。このため、式(8)の第2項に換えて、以下の式(9)で示される項を用いてもよい。
Figure 2023092895000010
上記のように式(8)の評価関数を変形した場合には、最小化問題を、凸2次計画問題に帰着させることができるので、一般的なソルバーを用いて比較的容易に解くことが可能となる。
最小化問題を解くにあたり、式(2)の制約条件に含まれるVmax(k)の値としては、以下の式(10)が用いられる。
Figure 2023092895000011
式(10)の右辺にある「g」は重力加速度である。「Glm」は、カーブ路を走行中において車両MVが受ける横加速度についての、許容される上限値であって、重力加速度を単位とした所定の数値(固定値)として設定される。「κ(k)」は、kの値に対応した各地点において、車両MVが走行する軌道の曲率を表している。各地点におけるκ(k)の値は、予め作成された軌道計画に基づいて容易に算出することができる。
このように、軌道計画に基づき作成されたVmax(k)を制約条件に組み込みながら、式(8)を最小化する最小化問題を解くことで、各地点における目標速度としてv(k)を得ることができる。速度計画を構成する各地点のv(k)のことを、以下では改めて「vref(k)」と表記する。
尚、以上のように作成された速度計画は、サンプリング距離毎の各地点における目標速度vref(k)の集合となっている。ただし、制駆動力制御部15によって実行されるフィードバック制御に速度計画を用いるにあたっては、速度計画は、所定周期毎の時系列に沿った目標速度の集合として表現されていることが好ましい。つまり、vref(k)ではなくvref(t)の形として速度計画が表現されていることが好ましい。そこで、第2計画作成部14は、得られたvref(t)を以下で述べる方法により変換し、最終的な速度計画としてvref(t)を作成する。
車両MVの走行速度がvref(k)からvref(k+1)に変化するまでに、車両MVが走行する距離をΔsとすれば、車両MVがΔsを走行する期間における加速度は、近似的に以下の式(11)のように表すことができる。
Figure 2023092895000012
式(11)を用いれば、車両MVの走行速度がvref(k)からvref(k+1)に変化するまでの、各時刻におけるvref(t)は、以下の式(12)を用いて算出することができる。
Figure 2023092895000013
式(12)における「n」は、0から始まる整数であって、速度フィードバックの周期毎に1ずつカウントアップされる変数である。「Δt」は当該周期を表している。
尚、nのカウントアップに伴い、「vref(k+1)」の括弧内の時刻が以下の式(13)の範囲を超えた場合には、式(12)のkを1だけステップアップさせると同時にnを0にリセットし、再度nのカウントアップを行っていけばよい。
Figure 2023092895000014
以上のような方法による速度計画の作成は定期的に行われ、その度に、現在位置を始点とした速度計画となるように更新される。速度計画の更新は、車両MVが所定距離進むごとに行われてもよく、所定時間が経過する毎に行われてもよい。いずれの場合でも、第2計画作成部14が速度計画を更新する頻度は、第1計画作成部13が軌道計画を更新する頻度よりも高いことが好ましい。尚、上記における「第1計画作成部13が軌道計画を更新する頻度」には、軌道計画が最初に1度しか作成されない場合の「頻度」も含まれる。
以上に説明したように、本実施形態の制御装置10では、第1計画作成部13が軌道計画を作成した後に、当該軌道計画に従って車両MVを走行させるための計画として、第2計画作成部14が速度計画を作成する。つまり、制御装置10は、複合的な最適化問題を解くことで軌道計画と速度計画の両方を同時に作成するのではなく、速度計画とは独立した形で、軌道計画のみを先ず作成する。これにより、軌道計画の作成に必要な演算負荷を低減することができる。また、速度計画については、既存の軌道計画に従った走行を前提として作成するので、速度計画の作成に必要な演算負荷をも低減することができる。
尚、複合的な演算により、軌道計画と速度計画の両方を同時に作成する場合に比べると、エネルギー効率向上の効果は小さくなる。しかしながら、必要な演算負荷を著しく低減することができるので、例えば、制御装置10の全体を車載ECUとして構成することが可能となる等、大きな利点を得ることができる。
第2計画作成部14は、既存の軌道計画に従った走行を前提として、速度計画を作成する。具体的には、第2計画作成部14は、経路に沿った各地点において許容される最大速度Vmax(k)を、式(10)のように、軌道計画から得られるκ(k)を用いることにより算出する。第2計画作成部14は、このように得られたVmax(k)を制約条件としながら最適化問題を解くことで、経路に沿った各地点における車両MVの走行速度が最大速度Vmax(k)を超えないように、vref(k)又はvref(t)の形で速度計画を作成する。
速度計画を作成するにあたり、第2計画作成部14は、式(4)のように制駆動力を車両MVの重量で正規化した運動方程式を用いて、速度計画を作成する。このような方法をとることにより、速度計画を作成するにあたっては、先の軌道計画を作成する場合と同様に、車両MVの諸元を必要としない。尚、最終的な制駆動力の調整に当たっては、重量等の諸元を必要とするのであるが、このような諸元を必要とする処理は、本実施形態では制駆動力制御部15や操舵制御部16が担っている。
つまり、本実施形態では、車両MVの諸元を必要とする処理を制駆動力制御部15等が担うこととし、車両の諸元を必要としない抽象度の高い処理を、第1計画作成部13及び第2計画作成部14が担うよう、最適化問題として定式化すべき事項を局所化させている。換言すれば、車両MVの制御アルゴリズムのうち、人為的に記述することの難しい部分に絞って、最適化問題として定式化することとしている。このような局所化により、評価関数(式(8))や、制約条件(式(2))の簡素化が可能となり、演算負荷の低減及び求解時間の短縮が実現されている。
尚、本実施形態に係る制御装置10では、軌道計画の作成と速度計画の作成とを分離したことで、それぞれの作成に要する処理が簡素化され、その結果として、正規化した運動方程式(式(4))を用いた抽象度の高い定式化が可能となっている。つまり、上記のような最適化問題の局所化は、軌道計画の作成と速度計画の作成とを分離したことにより実現された、と見ることもできる。
以上に述べた軌道計画及び速度計画の作成方法は、求められる演算リソースを低減し、制御装置10の小型化、及び車両MVへの搭載性を向上させるものである。しかしながら、先に述べたように、制御装置10の一部または全部を、車両MVとは異なる位置に設置する態様としてもよく、そのような態様も本開示の範囲に含まれる。
制御装置10が制御対象とする移動体は、本実施形態のような車両MVであってもよく、車両MVとは別の種類の移動体であってもよい。
以上、具体例を参照しつつ本実施形態について説明した。しかし、本開示はこれらの具体例に限定されるものではない。これら具体例に、当業者が適宜設計変更を加えたものも、本開示の特徴を備えている限り、本開示の範囲に包含される。前述した各具体例が備える各要素およびその配置、条件、形状などは、例示したものに限定されるわけではなく適宜変更することができる。前述した各具体例が備える各要素は、技術的な矛盾が生じない限り、適宜組み合わせを変えることができる。
本開示に記載の制御装置及び制御方法は、コンピュータプログラムにより具体化された1つ又は複数の機能を実行するようにプログラムされたプロセッサ及びメモリを構成することによって提供された1つ又は複数の専用コンピュータにより、実現されてもよい。本開示に記載の制御装置及び制御方法は、1つ又は複数の専用ハードウェア論理回路を含むプロセッサを構成することによって提供された専用コンピュータにより、実現されてもよい。本開示に記載の制御装置及び制御方法は、1つ又は複数の機能を実行するようにプログラムされたプロセッサ及びメモリと1つ又は複数のハードウェア論理回路を含むプロセッサとの組み合わせにより構成された1つ又は複数の専用コンピュータにより、実現されてもよい。コンピュータプログラムは、コンピュータにより実行されるインストラクションとして、コンピュータ読み取り可能な非遷移有形記録媒体に記憶されていてもよい。専用ハードウェア論理回路及びハードウェア論理回路は、複数の論理回路を含むデジタル回路、又はアナログ回路により実現されてもよい。
MV:車両
10:制御装置
13:第1計画作成部
14:第2計画作成部
15:制駆動力制御部
16:操舵制御部

Claims (6)

  1. 移動体(MV)の制御装置(10)であって、
    所定の経路に沿って移動体を走行させる際の、各地点における移動体の横位置を示す計画、である軌道計画を作成する第1計画作成部(13)と、
    前記経路に沿って移動体を走行させる際の、各地点における移動体の走行速度を示す計画、である速度計画を作成する第2計画作成部(14)と、
    前記軌道計画及び前記速度計画の両方に従って移動体を走行させる走行制御部(15,16)と、を備え、
    前記第2計画作成部は、
    前記第1計画作成部が前記軌道計画を作成した後に、前記軌道計画に従って移動体を走行させるための計画として前記速度計画を作成する、制御装置。
  2. 前記第2計画作成部は、
    前記軌道計画を用いることにより、前記経路に沿った各地点において許容される最大速度を算出し、
    前記経路に沿った各地点における移動体の走行速度が当該最大速度を超えないよう、前記速度計画を作成する、請求項1に記載の制御装置。
  3. 前記走行制御部は、前記速度計画に示される走行速度と、実際の走行速度との偏差が小さくなるよう、フィードバック制御を行いながら移動体を走行させる、請求項1又は2に記載の制御装置。
  4. 前記第1計画作成部は、移動体がアウト・イン・アウトの軌道に沿ってカーブ路を走行するように前記軌道計画を作成する、請求項1乃至3のいずれか1項に記載の制御装置。
  5. 前記第2計画作成部が前記速度計画を更新する頻度は、前記第1計画作成部が前記軌道計画を更新する頻度よりも高い、請求項1乃至4のいずれか1項に記載の制御装置。
  6. 前記第2計画作成部は、制駆動力を移動体の重量で正規化した運動方程式を用いて、前記速度計画を作成する、請求項1乃至5のいずれか1項に記載の制御装置。
JP2021208190A 2021-12-22 2021-12-22 制御装置 Pending JP2023092895A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021208190A JP2023092895A (ja) 2021-12-22 2021-12-22 制御装置
PCT/JP2022/037959 WO2023119799A1 (ja) 2021-12-22 2022-10-12 制御装置
US18/750,202 US20240336280A1 (en) 2021-12-22 2024-06-21 Control apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021208190A JP2023092895A (ja) 2021-12-22 2021-12-22 制御装置

Publications (2)

Publication Number Publication Date
JP2023092895A true JP2023092895A (ja) 2023-07-04
JP2023092895A5 JP2023092895A5 (ja) 2024-06-04

Family

ID=86901904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021208190A Pending JP2023092895A (ja) 2021-12-22 2021-12-22 制御装置

Country Status (3)

Country Link
US (1) US20240336280A1 (ja)
JP (1) JP2023092895A (ja)
WO (1) WO2023119799A1 (ja)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009061878A (ja) * 2007-09-05 2009-03-26 Toyota Motor Corp 走行制御装置
US11169528B2 (en) * 2018-05-11 2021-11-09 Uatc, Llc Initial trajectory generator for motion planning system of autonomous vehicles
US20210035442A1 (en) * 2019-07-31 2021-02-04 Nissan North America, Inc. Autonomous Vehicles and a Mobility Manager as a Traffic Monitor
JP7386692B2 (ja) * 2019-12-19 2023-11-27 日産自動車株式会社 走行支援方法及び走行支援装置

Also Published As

Publication number Publication date
WO2023119799A1 (ja) 2023-06-29
US20240336280A1 (en) 2024-10-10

Similar Documents

Publication Publication Date Title
CN111867911B (zh) 车辆控制方法和设备
CN110356404B (zh) 一种具有自主换道功能并提高侧向安全性的智能驾驶系统
CN112389427B (zh) 车辆轨迹优化方法、装置、电子设备和存储介质
CN108475465B (zh) 用于移动、特别是控制或者调整车队的方法
KR101607248B1 (ko) 규칙 및/또는 비용에 기초하여 차량의 속도를 제어하기 위한 방법 및 모듈
US11442469B2 (en) Coordinated control of vehicle cohorts
CN102458943B (zh) 用于确定车辆控制系统的速率参考值的方法和模块
US20200117199A1 (en) Trajectory initialization
CN102947122A (zh) 用于控制车辆速度的方法和模块
CN114707364B (zh) 一种匝道车辆汇流仿真方法、装置、设备及可读存储介质
JP6929845B2 (ja) 車両における車速をアダプティブに閉ループ制御する方法及びこの方法を実行する速度閉ループ制御装置
CN114585548A (zh) 在使用关于第二交通工具的轨迹信息的情况下基于mpc确定第一交通工具的轨迹
CN110893850A (zh) 一种车辆纵向速度规划方法和纵向速度规划装置
Zhao et al. “InfoRich” eco-driving control strategy for connected and automated vehicles
BR102023005585A2 (pt) Método e sistema de controle de veículos
CN114728660A (zh) 考虑到驾驶员干预的用于机动车辆的自主行驶功能
WO2021210519A1 (ja) 車両運動制御装置及び車両運動制御方法
WO2023119799A1 (ja) 制御装置
CN116366685A (zh) 车辆的通信计算系统确定方法
CN114555406A (zh) 对机动车的动力总成的电机的基于模型的预测性调节
CN116118730A (zh) 一种预见性巡航系统的控制方法、装置、设备及介质
WO2022130842A1 (ja) 車両運動制御装置、および、車両運動制御方法
CN115257760A (zh) 一种车辆驾驶优化控制方法、装置、存储介质及电子设备
JP2020009093A (ja) 制御装置及び制御方法
CN113674529A (zh) 一种自主超车方法及系统

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240527

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240904