JP2023090239A - Pressure dehydration device having concentration mechanism and pressure dehydration method - Google Patents

Pressure dehydration device having concentration mechanism and pressure dehydration method Download PDF

Info

Publication number
JP2023090239A
JP2023090239A JP2021205107A JP2021205107A JP2023090239A JP 2023090239 A JP2023090239 A JP 2023090239A JP 2021205107 A JP2021205107 A JP 2021205107A JP 2021205107 A JP2021205107 A JP 2021205107A JP 2023090239 A JP2023090239 A JP 2023090239A
Authority
JP
Japan
Prior art keywords
filter
concentration
liquid
thickening
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021205107A
Other languages
Japanese (ja)
Inventor
康昭 西原
Yasuaki Nishihara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishigaki Co Ltd
Original Assignee
Ishigaki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishigaki Co Ltd filed Critical Ishigaki Co Ltd
Priority to JP2021205107A priority Critical patent/JP2023090239A/en
Publication of JP2023090239A publication Critical patent/JP2023090239A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Sludge (AREA)
  • Filtration Of Liquid (AREA)

Abstract

To provide a pressure dehydration device having a concentration mechanism made by integrating a concentration mechanism on the front stage in a filter plate row forming a filtration chamber and a dehydration mechanism that is provided continuously to the concentration mechanism, and a pressure dehydration method.SOLUTION: A pressure dehydration device having a concentration mechanism comprises: a concentration mechanism 9 in which a filter material 22 is provided in a concentration filtration chamber 21 formed in a hollow shape on the front stage in a filter plate row forming a filtration chamber of the pressure dehydration device, and which supplies the liquid concentrate from a communication path 28 opening to one part of the concentration filtration chamber 21, performs solid-liquid separation by making the liquid content pass through the filter material 22 while making the liquid concentrate pass in parallel to the filter material 22, and discharges the concentrated sludge to the concentration filtration chamber 21 on the next stage from the communication path 28 opening at a symmetric position of the communication path 28; a dehydration mechanism 10 which is integrally provided continuously to the discharge side of the concentration mechanism 9 and performs solid-liquid separation by making the liquid content pass through the filter material 22 provided in a dehydration filtration chamber 23 between dehydration filter plates 12 capable of opening/closing the concentrated sludge via the communication path 28b; and a return pipe 16 which returns a portion of the concentrated sludge supplied to the dehydration mechanism 10 from the concentration mechanism 9 to a liquid concentrate storage tank 13. Consequently, a cake with a low moisture content can be obtained.SELECTED DRAWING: Figure 1

Description

本発明は、下水、し尿、集落排水、工場等の排水処理施設から発生する汚泥を濃縮する濃縮機構と、該濃縮機構で濃縮された汚泥を脱水する脱水機構と、を一体的に構成した濃縮機構を有する加圧脱水装置および加圧脱水方法に関する。 The present invention is a thickening system that integrates a thickening mechanism for thickening sludge generated from wastewater treatment facilities such as sewage, night soil, community wastewater, and factories, and a dewatering mechanism for dewatering the sludge thickened by the thickening mechanism. The present invention relates to a pressurized dewatering device having a mechanism and a pressurized dewatering method.

従来、多数並列したろ板間に形成するろ過室内に重力濃縮槽や機械濃縮機を用いて濃縮した汚泥を圧入し、その圧入圧力によって圧入ろ過を行う加圧脱水装置や、圧入圧力によって圧入ろ過を行った後、ダイアフラム室に圧搾流体を供給して圧搾脱水を行う加圧脱水装置が知られている。このような加圧脱水装置を用いて脱水を行う際には、並列するろ板を閉板し、ろ板列に形成される原液供給路に向かって濃縮汚泥を供給した後、隣接するろ板間のろ過室で脱水していた。このように、従来、使用されている加圧脱水装置は、濃縮後の汚泥を脱水するものであり、一般的に脱水機構のみ備えている。 Conventionally, pressure dehydration equipment that presses thickened sludge using a gravity thickening tank or a mechanical thickener into a filtration chamber formed between a large number of parallel filter plates, and performs pressurization filtration by the pressurization pressure, and pressurization filtration by the pressurization pressure. A pressurized dehydrator is known in which dehydration is performed by pressurizing and dehydrating by supplying a pressurized fluid to a diaphragm chamber after performing dehydration. When performing dehydration using such a pressurized dehydrator, after closing the parallel filter plates and supplying concentrated sludge toward the undiluted solution supply channel formed in the row of filter plates, the adjacent filter plates It was dehydrated in the filtration room between. Thus, conventionally used pressurized dehydrator dewaters thickened sludge, and generally includes only a dehydration mechanism.

これに対し、特許文献1には、原液を所定濃度まで濃縮する濃縮部と、該濃縮部で濃縮された原液を濾過する濾過部と、を形成した濾板を複数配置した濾過濃縮装置が開示されており、並列する各濾板に濃縮部及び濾過部を形成した濃縮機構一体型の加圧脱水装置は公知である。 On the other hand, Patent Document 1 discloses a filtration and concentration device in which a plurality of filter plates are arranged, each of which includes a concentration section for concentrating the stock solution to a predetermined concentration and a filtration section for filtering the stock solution concentrated by the concentration section. A pressurized dehydrator integrated with a concentrating mechanism is known in which a concentrating section and a filtering section are formed in parallel filter plates.

また、特許文献2に内周壁の対称位置に一対の流路形成リブを備えた濾枠と、濾板を交互に複数配置し、原液を上下互い違いに流動させながら濃縮する連続濾過濃縮装置が開示されており、原液を上下互い違いに圧入供給させる濃縮機構は公知である。 In addition, Patent Document 2 discloses a continuous filtration and concentration device in which a plurality of filter frames each having a pair of flow path forming ribs at symmetrical positions on the inner peripheral wall and a plurality of filter plates are alternately arranged, and the undiluted solution is concentrated while being alternately flowed vertically. A concentrating mechanism in which the stock solution is pressurized and supplied in a staggered manner is known.

特公平06-096158号公報Japanese Patent Publication No. 06-096158 実公昭48-005328号公報Japanese Utility Model Publication No. 48-005328

従来の加圧脱水装置は、脱水機構のみを有しており、汚泥を脱水する際には脱水前
に加圧脱水装置とは別個に設けられた重力濃縮槽を用いて濃縮を行っているケースが多い。しかし、重力濃縮を行う場合、汚泥粒子の微粒化による沈降性の低下や有機物の増加等によって濃縮性が悪化し、重力濃縮槽のみの運用では、脱水性能を高めることができない、あるいは、脱水性能の変動が大きくなるという問題点があった。そのうえ、粒子を沈降させるための滞留時間を確保するために槽の容積を大きくする必要があり、装置の大型化に伴い、広い設置スペースを確保しなければならなかった。重力濃縮後の汚泥濃度を高めるために、重力濃縮後にろ布濃縮等による機械濃縮を行う方法もあるが、機械の設置にあたって、初期費用及びランニングコストの発生、設置面積の増大といった問題を有していた。
A conventional pressurized dehydrator has only a dewatering mechanism, and when dehydrating sludge, a gravity thickening tank installed separately from the pressurized dewatering device is used to thicken the sludge before dehydration. There are many. However, when performing gravity concentration, the concentration deteriorates due to the decrease in sedimentation due to the atomization of sludge particles and the increase in organic matter. There was a problem that the fluctuation of In addition, it was necessary to increase the volume of the tank in order to secure the residence time for allowing the particles to settle, and as the size of the apparatus increased, a large installation space had to be secured. In order to increase the concentration of sludge after gravity concentration, there is a method of mechanical concentration such as filter cloth concentration after gravity concentration. was

特許文献1には、濃縮部と濾過部を有する濾板を複数配置し、濃縮機構と脱水機構を一体化した濾過濃縮装置が開示されているが、既存の濾板と異なり濾板上部に濃縮部を形成する必要があり、濾板構造が複雑であるため製作に手間を要する。また、原液は、濾板の濃縮部で濃縮された後、原液回収ラインを通って原液回収タンクに回収され、濃縮原液供給ポンプにて濃縮原液供給ラインより濾過部へ供給され濾過される。このように、濃縮部と脱水部を並列配置してあるため、濃縮部で生成した濃縮汚泥量が少ない場合、脱水部に連続供給できなかった。これにより、濃縮部と脱水部の汚泥の供給の連続性を保つことができず、脱水効率が悪かった。加えて、濃縮汚泥を貯留するタンク、配管、ポンプ等を別途設ける必要があり、設備費用や設置スペースが増加するといった課題もあった。 Patent Document 1 discloses a filtration and concentration device in which a plurality of filter plates having a concentration section and a filtration section are arranged, and a concentration mechanism and a dehydration mechanism are integrated. Since it is necessary to form a part and the filter plate structure is complicated, it takes time and effort to manufacture. After being concentrated in the concentrating portion of the filter plate, the undiluted solution is recovered in the undiluted solution recovery tank through the undiluted solution recovery line, and is supplied to the filtration portion through the concentrated undiluted solution supply line by the concentrated undiluted solution supply pump and filtered. Thus, since the thickening section and the dehydrating section are arranged in parallel, when the amount of thickened sludge produced in the thickening section is small, it cannot be continuously supplied to the dehydrating section. As a result, the continuity of sludge supply between the concentration section and the dewatering section could not be maintained, resulting in poor dewatering efficiency. In addition, it is necessary to separately install a tank, pipes, pumps, etc. for storing thickened sludge, and there is also a problem that the equipment cost and installation space increase.

特許文献2に開示された連続濾過濃縮装置は、一般的な加圧脱水装置の構造を有した濃縮機構にて原液の濃縮を行うものであるが、1つの加圧脱水装置にて濃縮と脱水の両方を行うことができるものではない。したがって、濃縮後の汚泥を脱水するためには、別途、加圧脱水装置を設ける必要があり、設備全体が大きくなる問題があった。 The continuous filtration and concentration device disclosed in Patent Document 2 concentrates the stock solution with a concentration mechanism having the structure of a general pressurized dehydrator, but concentration and dehydration are performed by one pressurized dehydrator. It is not possible to do both. Therefore, in order to dewater the thickened sludge, it is necessary to provide a separate pressurized dehydrator, which causes the problem of increasing the size of the entire facility.

本発明は、上記問題に鑑みてなされたものであり、脱水機構と一体的に設けた濃縮機構で原液を濃縮した後、濃縮汚泥を脱水機構にて脱水することで、濃縮機構による汚泥濃縮と脱水機構による加圧脱水との連続性を高め、高い脱水効率を実現するとともに、設備全体をコンパクト化できる濃縮機構を有する加圧脱水装置および加圧脱水方法を提供する。 The present invention has been made in view of the above problems, and after concentrating the stock solution with a thickening mechanism provided integrally with the dehydrating mechanism, the thickened sludge is dehydrated with the dehydrating mechanism, thereby thickening the sludge by the thickening mechanism. A pressurized dehydrator and a pressurized dehydration method are provided that improve continuity with pressurized dewatering by a dehydration mechanism, realize high dehydration efficiency, and have a concentration mechanism that can make the entire facility compact.

多数のろ板を並列して形成した複数のろ過室の一方から原液を供給し、ろ過室に設けたろ材にて固液分離を行う加圧脱水装置において、ろ過室を形成するろ板列の前段に、中空状に形成した濃縮ろ過室にろ材を設け、濃縮ろ過室の一方に開口する連通路から原液を供給し、ろ材に対して平行に原液を通水させつつろ材にて液分を透過して固液分離し、連通路の対称位置に開口する連通路から次段の濃縮ろ過室に濃縮汚泥を排出する濃縮機構と、濃縮機構の吐出側に一体的に連設し、連通路を介して濃縮汚泥を開閉自在な脱水ろ板間の脱水ろ過室に設けたろ材にて液分を透過して固液分離する脱水機構と、濃縮機構から脱水機構に供給される濃縮汚泥の一部を原液貯留槽に返送する返送管と、を備えることで、コンパクトな装置で汚泥濃縮及び加圧脱水を連続的に行うことができるうえ、流動性を持った濃縮液が濃縮ろ過室内を流動することでろ材表面にSS(懸濁物質)が固着しないため、ろ材の目詰まりを防止することもできる。 A pressurized dehydrator in which a stock solution is supplied from one of a plurality of filtration chambers formed by a large number of filter plates arranged in parallel and solid-liquid separation is performed by the filter media provided in the filtration chambers. In the preceding stage, a filter medium is provided in a hollow concentrated filtration chamber, and the undiluted solution is supplied from a communication passage opened to one side of the concentrated filtration chamber, and the liquid content is passed through the filter medium while allowing the undiluted solution to flow parallel to the filter medium. A thickening mechanism that permeates and separates solid and liquid and discharges thickened sludge from a communicating passage that opens at a symmetrical position of the communicating passage to the next concentrated filtration chamber, and a communicating passage that is integrally connected to the discharge side of the thickening mechanism A dehydration mechanism that permeates liquid content through a filter medium provided in a dehydration filtration chamber between dehydration filter plates that can freely open and close thickened sludge through the By providing a return pipe for returning the part to the undiluted solution storage tank, it is possible to continuously perform sludge thickening and pressure dehydration with a compact device, and the concentrated liquid with fluidity flows in the thickening filtration chamber. As a result, SS (suspended solids) do not adhere to the surface of the filter medium, and clogging of the filter medium can also be prevented.

前記濃縮ろ過室は、隣接する一対の前記濃縮ろ板間に形成される中空部または、前記濃縮ろ板内に形成される中空部であることで、使用する濃縮ろ板は既存のろ板の開口形状等を変更するのみでよいため、ろ板の製作や設置に手間を要しない。 The concentration filter chamber is a hollow portion formed between a pair of adjacent concentration filter plates or a hollow portion formed within the concentration filter plate, so that the concentration filter plate to be used is an existing filter plate. Since it is only necessary to change the shape of the opening, it does not take time and effort to manufacture and install the filter plate.

前記濃縮ろ過室は、複数並列しそれぞれ交互に連続形成される前記連通路に連通することで、供給された原液を短時間で効率よく濃縮できるうえ、後段の脱水機構へ連続的に供給できる。 By connecting a plurality of the concentration filtration chambers in parallel with the communication passages that are alternately formed continuously, the supplied undiluted solution can be efficiently concentrated in a short period of time and can be continuously supplied to the subsequent dehydration mechanism.

前記濃縮ろ過室と連通する洗浄液供給管を設けることで、複数の濃縮ろ過室及び複数の脱水ろ過室内に洗浄液を供給可能となり、洗浄液にて各ろ過室内のろ材に付着したSSを除去し、ろ材の目詰まりを解消できる。 By providing a cleaning liquid supply pipe that communicates with the concentration filtration chamber, it is possible to supply the cleaning liquid to the plurality of concentration filtration chambers and the plurality of dehydration filtration chambers. clogging can be eliminated.

多数のろ板を並列して形成した複数のろ過室の一方から原液を供給し、ろ過室に設けたろ材にて固液分離を行う加圧脱水装置において、ろ過室を形成するろ板列の前段で、ろ材を設けた中空状の濃縮ろ過室の一方に開口する連通路から原液を供給し、ろ材に対して平行に原液を通水させつつろ材にて液分を透過して固液分離し、連通路の対称位置に開口する連通路から次段の濃縮ろ過室に濃縮汚泥を排出し、濃縮ろ過室に連設し、開閉自在な脱水ろ板列で形成される脱水ろ過室に濃縮汚泥を供給し、脱水ろ過室に設けたろ材にて液分を透過して固液分離し、脱水ケーキを生成するとともに、濃縮ろ過室から脱水ろ過室に供給される濃縮汚泥の一部を原液貯留槽に返送することで、濃縮機構にて生成された濃縮汚泥を脱水機構に連続供給できるため、短時間で低含水率の脱水ケーキを生成できる。 A pressurized dehydrator in which a stock solution is supplied from one of a plurality of filtration chambers formed by a large number of filter plates arranged in parallel and solid-liquid separation is performed by the filter media provided in the filtration chambers. In the previous stage, the undiluted solution is supplied from a communication passage that opens to one side of a hollow concentration filtration chamber provided with a filter medium, and while the undiluted solution is passed through the filter medium in parallel, the liquid is permeated through the filter medium to separate solids and liquids. Then, the thickened sludge is discharged to the thickening and filtering chamber of the next stage from the communicating passage that opens at the symmetrical position of the communicating passage, and is connected to the thickening and filtering chamber, and thickened in the dewatering and filtering chamber formed by the dewatering filter plate row that can be freely opened and closed. Sludge is supplied, liquid content permeates through the filter media provided in the dehydration filtration chamber, solid-liquid separation is performed, and dewatered cake is generated. By returning the sludge to the storage tank, the thickened sludge produced in the thickening mechanism can be continuously supplied to the dewatering mechanism, so that a dehydrated cake with a low moisture content can be produced in a short time.

本発明に係る濃縮機構を有する加圧脱水装置および加圧脱水方法は、複数のろ板列の前段に濃縮機構を設けるとともに、濃縮機構と一体的に脱水機構を連設させたことで、汚泥濃縮と加圧脱水の連続性を高めることができる。濃縮機構及び脱水機構が連通路にて連設していることで、濃縮機構と脱水機構の間に一時的に濃縮汚泥を貯留するための濃縮槽を設ける必要がない。これに伴い、濃縮汚泥を濃縮槽に貯留せず、すぐに脱水機構へ供給できるため、汚泥の連続処理が可能となり、雑時間の省略による脱水性能の向上が望める。濃縮槽を不要としたことで、周辺に設ける配管、ポンプ等も不要になるため、設備の設置にかかるイニシャルコスト、ランニングコスト及び設置スペースを削減できる。また、濃縮機構及び脱水機の基本構造は、既存の加圧脱水装置と同様であるため、既存の加圧脱水装置の運転方法にて操作できる。従来のように加圧脱水装置の前段に別途、濃縮機を設けて操作する必要もないため、運転者の操作の手間を省くこともできる。そのうえ、濃縮機構及び脱水機構は、一体的でありながら、それぞれ独立した構成となっているため、供給される汚泥性状に応じて各ろ板に適切なろ材を選定することで、脱水性能を向上させることも可能である。 In the pressurized dehydrator and the pressurized dewatering method having a thickening mechanism according to the present invention, the thickening mechanism is provided in the front stage of a plurality of filter plate rows, and the dehydrating mechanism is integrally connected with the thickening mechanism, so that sludge It is possible to increase the continuity of concentration and pressurized dehydration. Since the thickening mechanism and the dewatering mechanism are connected to each other through the communication passage, there is no need to provide a thickening tank for temporarily storing the thickened sludge between the thickening mechanism and the dehydrating mechanism. As a result, the thickened sludge can be immediately supplied to the dewatering mechanism without being stored in the thickening tank, so that the sludge can be continuously treated, and the improvement of the dehydration performance can be expected due to the reduction of miscellaneous time. Eliminating the thickening tank eliminates the need for peripheral piping and pumps, thereby reducing initial costs, running costs, and installation space required for equipment installation. Moreover, since the basic structure of the concentrating mechanism and the dehydrator is the same as that of the existing pressurized dehydrator, it can be operated by the operating method of the existing pressurized dehydrator. Since there is no need to separately install and operate a concentrator in the front stage of the pressurized dehydrator as in the conventional case, the operator's operation can be saved. In addition, the thickening mechanism and the dehydration mechanism are integrated, but each has an independent structure, so the dewatering performance is improved by selecting the appropriate filter media for each filter plate according to the properties of the sludge to be supplied. It is also possible to let

本発明の実施形態に係る加圧脱水装置の概略構成図である。1 is a schematic configuration diagram of a pressurized dehydrator according to an embodiment of the present invention; FIG. 同じく、加圧脱水装置の濃縮機構の概略側断面図である。Similarly, it is a schematic sectional side view of the concentrating mechanism of the pressurized dehydrator. 同じく、濃縮機構を構成する濃縮ろ板の概略平面図である。Similarly, it is a schematic plan view of a concentrating filter plate that constitutes the concentrating mechanism. 本発明の他の実施形態に係る濃縮機構の概略側断面図である。FIG. 4 is a schematic cross-sectional side view of a concentration mechanism according to another embodiment of the invention; 本発明の実施形態に係る加圧脱水装置の脱水機構の概略側断面図である。1 is a schematic cross-sectional side view of a dehydration mechanism of a pressurized dehydrator according to an embodiment of the present invention; FIG. 本発明の他の実施形態に係る濃縮機構の概略側断面図である。FIG. 4 is a schematic cross-sectional side view of a concentration mechanism according to another embodiment of the invention; 同じく、濃縮ろ板の概略平面図である。Similarly, it is a schematic plan view of a concentration filter plate.

図1は、本発明の実施形態に係る加圧脱水装置の概略構成図である。
加圧脱水装置1は、フロントフレーム2とリアフレーム3に一対のガイドレール4,4を橋架し、多数のろ板を並列している。ろ板列の後端部にムーバブルヘッド5を配設してリアフレーム3に支架した締付シリンダー7に連結し、各ろ板をガイドレール4,4に沿って開閉できるようにしてある。フロントフレーム2には閉板したろ板間に形成されるろ過室内に原液を供給する原液供給管8及び固液分離後のろ液や洗浄後の洗浄排水を排出する排出管19を配設している。
FIG. 1 is a schematic configuration diagram of a pressurized dehydrator according to an embodiment of the present invention.
A pressurized dehydrator 1 has a pair of guide rails 4, 4 bridged between a front frame 2 and a rear frame 3, and has a large number of filter plates arranged in parallel. A movable head 5 is provided at the rear end of the row of filter plates and connected to a tightening cylinder 7 supported on the rear frame 3 so that each filter plate can be opened and closed along guide rails 4,4. The front frame 2 is provided with a stock solution supply pipe 8 for supplying the stock solution into the filtration chamber formed between the closed filter plates, and a discharge pipe 19 for discharging the filtrate after solid-liquid separation and the washing wastewater after washing. ing.

原液供給管8は、一端を原液貯留槽13に接続し、原液供給ポンプ14を介して他端をフロントフレーム2に接続している。ムーバブルヘッド5には、返送管16を接続してあり、加圧脱水装置1より排出された汚泥の一部を循環汚泥として原液貯留槽13に返送する。 The undiluted solution supply pipe 8 has one end connected to the undiluted solution storage tank 13 and the other end connected to the front frame 2 via the undiluted solution supply pump 14 . A return pipe 16 is connected to the movable head 5, and part of the sludge discharged from the pressure dehydrator 1 is returned to the stock solution storage tank 13 as circulating sludge.

洗浄液供給管15は、一端を洗浄液貯留槽17に接続し、他端を原液供給管8、排出管19及び返送管16に接続している。各管に介装させた弁を操作することによって、加圧脱水装置1内に洗浄液を供給できる。洗浄液貯留槽17内の洗浄液は、洗浄液供給管15に介装させた洗浄液供給ポンプ18にて供給される。加圧脱水装置1に供給された洗浄液は、各ろ過室内のろ材22を洗浄した後、返送管16を通って洗浄液貯留槽17に返送される。
なお、洗浄液供給管15の他端を返送管16に接続し、ムーバブルヘッド5側から洗浄液を供給する形態としてもよい。
One end of the cleaning liquid supply pipe 15 is connected to the cleaning liquid storage tank 17 , and the other end is connected to the undiluted solution supply pipe 8 , the discharge pipe 19 and the return pipe 16 . The washing liquid can be supplied into the pressurized dehydrator 1 by operating the valves interposed in each pipe. The cleaning liquid in the cleaning liquid storage tank 17 is supplied by a cleaning liquid supply pump 18 interposed in the cleaning liquid supply pipe 15 . The washing liquid supplied to the pressurized dehydrator 1 is returned to the washing liquid storage tank 17 through the return pipe 16 after washing the filter medium 22 in each filtration chamber.
Alternatively, the other end of the cleaning liquid supply pipe 15 may be connected to the return pipe 16 to supply the cleaning liquid from the movable head 5 side.

加圧脱水装置1は、ろ板列の前段に位置し原液を濃縮する濃縮機構9と、濃縮機構9で生成した濃縮汚泥の吐出し側に連設し濃縮汚泥を脱水する脱水機構10と、を一体化させた構成としてある。本実施例における濃縮機構9及び脱水機構10の形態は、以下で詳述する。 The pressurized dehydrator 1 includes a thickening mechanism 9 positioned at the front stage of the row of filter plates to concentrate the raw liquid, a dehydrating mechanism 10 connected to the discharge side of the thickened sludge produced by the thickening mechanism 9 and dewatering the thickened sludge, are integrated. The forms of the concentration mechanism 9 and the dehydration mechanism 10 in this embodiment will be described in detail below.

図2、図3は、本発明の実施形態に係る加圧脱水装置の濃縮機構の概略側断面図及び濃縮機構を構成する濃縮ろ板の概略平面図である。
図2に示すように、濃縮機構9は、並列する複数の濃縮ろ板11…で構成している。隣接する一対の濃縮ろ板11,11間の中空部には濃縮ろ過室21…を形成し、各濃縮ろ過室21のろ過床24にはろ材22を張設している。濃縮ろ過室21に供給される原液は、ろ材22にて固液分離される。
2 and 3 are a schematic side sectional view of a concentrating mechanism of a pressurized dewatering apparatus according to an embodiment of the present invention, and a schematic plan view of a concentrating filter plate that constitutes the concentrating mechanism.
As shown in FIG. 2, the concentrating mechanism 9 is composed of a plurality of concentrating filter plates 11 arranged in parallel. Concentrating filtration chambers 21 are formed in hollow portions between a pair of adjacent concentrating filter plates 11, 11, and filter media 22 are stretched on the filtration floors 24 of the respective concentrating filtration chambers 21. As shown in FIG. The undiluted liquid supplied to the concentration filtration chamber 21 is solid-liquid separated by the filter medium 22 .

原液は、フロントフレーム2に連設する始端濃縮ろ板11aを貫通する連通路28aから濃縮機構9始端に位置する濃縮ろ過室21aに供給される。濃縮ろ過室21a及び後段の各濃縮ろ過室21には、前段から供給するための連通路28と、後段に排出するための連通路28と、を設けてあり、供給された原液は、一方の連通路28から他方の連通路28に向かって濃縮ろ過室21…内を流動する。それぞれの連通路28は、各濃縮ろ過室21の対称位置に設けてあり、原液は各濃縮ろ過室21を互い違いに供給・排出されつつ濃縮されて濃縮液となる。 The undiluted solution is supplied to the concentration filtration chamber 21a located at the beginning end of the concentration mechanism 9 through a communication passage 28a penetrating the beginning thickening filter plate 11a connected to the front frame 2. As shown in FIG. A communication passage 28 for supplying from the front stage and a communication passage 28 for discharging to the rear stage are provided in the concentration filtration chamber 21a and each concentration filtration chamber 21 at the rear stage. It flows from the communication passage 28 toward the other communication passage 28 in the concentration filtration chambers 21 . The respective communication passages 28 are provided at symmetrical positions of the respective concentration filtration chambers 21, and the undiluted liquid is concentrated while alternately supplied to and discharged from each concentration filtration chamber 21 to become a concentrated liquid.

濃縮液は、濃縮ろ過室21…内を互い違いに流動しながら濃縮液流路26を形成し、ろ材22にて濃縮ろ液を分離し濃縮濃度を高めた後、濃縮汚泥となる。濃縮機構9にて生成された濃縮汚泥は、濃縮機構9終端に位置する終端濃縮ろ板11bと後述する中間ろ板25との間に形成した濃縮ろ過室21bから中間ろ板25の連通路28bを介して後段に位置する脱水機構10に排出される。 The concentrated liquid alternately flows through the concentrated filtration chambers 21 to form a concentrated liquid flow path 26. After the concentrated filtrate is separated by the filter medium 22 to increase the concentration concentration, it becomes concentrated sludge. The thickened sludge produced in the thickening mechanism 9 passes through the thickening filter chamber 21b formed between the terminal thickening filter plate 11b located at the end of the thickening mechanism 9 and the intermediate filter plate 25, which will be described later, and the communication passage 28b of the intermediate filter plate 25. is discharged to the dewatering mechanism 10 located in the latter stage.

本実施形態では、始端濃縮ろ板11aを貫通する連通路28aを上方に設けている。原液供給管8から上方の連通路28aを介して濃縮ろ過室21aに供給された原液は、濃縮ろ過室21a内をろ材22に沿って平行に下向し、下方の連通路28から次段の濃縮ろ過室21に排出される。次段では濃縮ろ過室21内をろ材22に沿って平行に上向し、上方の連通路28から次段の濃縮ろ過室21に排出される。隣接する濃縮ろ過室21…にて反転流動を繰り返しつつ濃縮機構9にて生成された濃縮汚泥を中間ろ板25から脱水機構10へ供給(排出)する。 In this embodiment, a communication passage 28a is provided above the beginning thickening filter plate 11a. The stock solution supplied from the stock solution supply pipe 8 to the concentration filtration chamber 21a through the upper communication passage 28a flows downward in parallel along the filter medium 22 in the concentration filtration chamber 21a, and passes through the lower communication passage 28 to the next stage. It is discharged to the concentration filter chamber 21 . In the next stage, it moves upward in parallel along the filter medium 22 in the concentration filtration chamber 21 and is discharged from the upper communication passage 28 to the concentration filtration chamber 21 of the next stage. The thickened sludge produced in the thickening mechanism 9 is supplied (discharged) from the intermediate filter plate 25 to the dewatering mechanism 10 while repeating reverse flow in the adjacent thickening and filtering chambers 21 .

なお、本実施形態では、始端濃縮ろ板11aを貫通する連通路28aを上方に設けているが、下方または左右に設け、対称位置に設けた連通路28に向かって流動させる構成であれば限定しない。また、各濃縮ろ板11に張設するろ材22として、ろ布を用いているが、ろ布の代わりにウェッジワイヤーやメタルメッシュ等の金属ろ材を用いてもよい。 In this embodiment, the communication passage 28a penetrating the starting thickening filter plate 11a is provided above, but it is limited to a configuration in which it is provided below or on the left and right and flows toward the communication passage 28 provided at a symmetrical position. do not. Moreover, although the filter cloth is used as the filter medium 22 stretched on each thickening filter plate 11, a metal filter medium such as a wedge wire or a metal mesh may be used instead of the filter cloth.

各濃縮ろ過室21を連通する連通路28は、図3(a)に示す濃縮ろ板11上方に形成した長穴の開口及び図3(b)に示す濃縮ろ板11下方に形成した長穴の開口である。各濃縮ろ過室21に形成される連通路28,28のうち、排出路となる連通路28は、濃縮ろ板11…を並列させた際に、供給路となる連通路28の対称位置に形成しているため、次段の濃縮ろ過室21への供給路となる。各連通路28は、各濃縮ろ過室21の対称位置に設ければよいため、隣接する濃縮ろ板11,11それぞれの左右対称位置や、斜め対称位置に設けてもよい。
なお、各連通路28に関し、図3(c)に示すように円形状のものを複数形成する等、設計事項に応じて適宜決定する。
Communicating passages 28 communicating with the concentration filtration chambers 21 are the openings of the long holes formed above the concentration filter plate 11 shown in FIG. is the opening of Of the communication paths 28, 28 formed in each concentration filtration chamber 21, the communication path 28, which serves as a discharge path, is formed at a symmetrical position with respect to the communication path 28, which serves as a supply path, when the concentration filter plates 11 are arranged in parallel. Therefore, it becomes a supply path to the concentration filtration chamber 21 in the next stage. Since each communication passage 28 may be provided at a symmetrical position of each concentration filter chamber 21, it may be provided at a laterally symmetrical position or an obliquely symmetrical position of each of the adjacent concentration filter plates 11, 11. FIG.
In addition, regarding each communication path 28, as shown in FIG. 3(c), a plurality of circular ones may be formed.

濃縮ろ過室21…の各ろ材22にて分離される濃縮ろ液は、濃縮ろ板11のろ過床24に形成するろ液通路29を介してろ液排出路30へ流れる。ろ液排出路30より排出される濃縮ろ液は、排出管19より外部に排出される。 The concentrated filtrate separated by the filter media 22 of the concentrated filter chambers 21 . The concentrated filtrate discharged through the filtrate discharge path 30 is discharged outside through the discharge pipe 19 .

図4は、本発明の他の実施形態に係る濃縮機構の概略側断面図である。
供給された原液が各濃縮ろ過室21内を2室ごとに互い違いに供給・排出されつつ濃縮されるものであり、2室ごとに互い違いに流動する濃縮液流路26を形成するように複数の濃縮ろ板11…を並列している。始端側に隣接する2室の濃縮ろ過室21a,21aを形成する濃縮ろ板11a,11の上方に開口する連通路28a,28aより供給された原液は、2室の濃縮ろ過室21a,21a内をろ材22に沿って平行に下向した後、連通路28a,28aの対称に位置する複数の連通路28…より後段の2室の濃縮ろ過室21,21に向かって流動する。なお、濃縮ろ板11上方の連通路28a,28aは連通している。濃縮ろ板11下方の複数の連通路28…も連通している。後段の2室の濃縮ろ過室21,21に供給された濃縮液は、ろ材22に沿って平行に上向し、連通路28…を介してさらに後段の濃縮ろ過室21b,21bへ供給される。各連通路28は、濃縮液が下向する2室の濃縮ろ過室21,21と濃縮液が上向する2室の濃縮ろ過室21,21を構成する各濃縮ろ板11の開口を連通して形成している。
FIG. 4 is a schematic cross-sectional side view of a concentrating mechanism according to another embodiment of the invention.
The supplied undiluted solution is concentrated while being alternately supplied and discharged in each of the concentration filtration chambers 21 every two chambers. Concentrating filter plates 11 are arranged in parallel. The undiluted solution supplied from the communication passages 28a, 28a opened above the thickening filter plates 11a, 11 forming the two thickening filter chambers 21a, 21a adjacent to the starting end side is introduced into the two thickening filter chambers 21a, 21a. flows downward along the filter medium 22 in parallel, and then flows toward the two concentrating filtration chambers 21, 21 in the latter stage from a plurality of communicating passages 28 positioned symmetrically with respect to the communicating passages 28a, 28a. The communication passages 28a, 28a above the thickening filter plate 11 are in communication with each other. A plurality of communication passages 28 below the thickening filter plate 11 are also communicated. The concentrated liquid supplied to the two rear-stage concentration filtration chambers 21, 21 rises in parallel along the filter medium 22 and is further supplied to the rear-stage concentration filtration chambers 21b, 21b via the communication passages 28. . Each of the communication passages 28 communicates the openings of the respective thickening filter plates 11 that constitute the two concentrated filtration chambers 21, 21 in which the concentrated liquid faces downward and the two concentrated filtration chambers 21, 21 in which the concentrated liquid faces upward. are formed.

2室ごとに群を形成する濃縮ろ過室21…は、各群の上方及び下方にそれぞれ連通路28…を有している。また、隣接する群と群の間にも連通路28を形成しているため、濃縮液を各群内に互い違いに流動させることができる。このように、各連通路28を交互に連続形成することで濃縮液を互い違いに流動させつつ濃縮することができる。濃縮機構9にて生成された濃縮汚泥は、終端に群を形成する濃縮ろ過室21b,21bから中間ろ板25の連通路28bを介して脱水機構10に供給される。 The concentrating filtration chambers 21 forming a group of two chambers each have communicating passages 28 above and below each group. In addition, since the communicating passages 28 are also formed between adjacent groups, the concentrated liquid can alternately flow within each group. In this way, by alternately forming the communication paths 28 continuously, the concentrated liquid can be concentrated while flowing alternately. The thickened sludge produced in the thickening mechanism 9 is supplied to the dewatering mechanism 10 through the communication passage 28b of the intermediate filter plate 25 from the thickening filter chambers 21b, 21b forming a group at the end.

なお、濃縮ろ過室21…を2室ごとではなく、3室以上ごとに群形成してもよい。使用する各濃縮ろ板11の連通路28の開口の形状、数量、位置等は図2と同様に適宜選択する。 Note that the concentration filtration chambers 21 may be grouped by three or more chambers instead of by two chambers. The shape, number, position, etc. of the openings of the communication passages 28 of each thickening filter plate 11 to be used are appropriately selected in the same manner as in FIG.

図2、図4で示した中間ろ板25は、終端濃縮ろ板11b及び後述する始端脱水ろ板12aの間に設けてあり、ろ板閉板時に終端濃縮ろ板11bとの間に濃縮ろ過室21を形成するとともに、始端脱水ろ板12aとの間に脱水ろ過室23を形成する。 The intermediate filter plate 25 shown in FIGS. 2 and 4 is provided between the terminal thickening filter plate 11b and the starting dewatering filter plate 12a, which will be described later. A chamber 21 is formed, and a dehydration filter chamber 23 is formed between the starting end dewatering filter plate 12a.

中間ろ板25には、板厚方向に開口する連通路28bを形成してあり、濃縮ろ過室21…及び脱水ろ過室23…を連通している。連通路28bは濃縮汚泥の供給路であり、濃縮ろ過室21…で生成した濃縮汚泥を脱水ろ過室23に供給する。連通路28bは、濃縮ろ過室21と脱水ろ過室23を連通できればよいため、1つ以上の開口とする。連通路28bは、後段の脱水機10への供給方法がトップフィード方式の場合は、上方に設け、センターフィード方式の場合は中央に設け、ボトムフィード方式の場合は下方に配置する等、供給方式に合わせて適宜設計する。 The intermediate filter plate 25 is formed with communication passages 28b that are open in the plate thickness direction, and communicate the concentration filter chambers 21 and the dehydration filter chambers 23 with each other. The communication path 28b is a supply path for thickened sludge, and supplies the thickened sludge produced in the thickening and filtering chambers 21 to the dewatering and filtering chamber 23. As shown in FIG. Since the communication path 28b only needs to allow communication between the concentration filtration chamber 21 and the dehydration filtration chamber 23, one or more openings are provided. The communication path 28b is provided above when the supply method to the subsequent dehydrator 10 is the top feed method, is provided in the center when the center feed method is used, and is disposed below when the bottom feed method is used. Design accordingly.

なお、本実施形態では、濃縮機構9及び脱水機構10の間に中間ろ板25を配置し、濃縮機構9から脱水機構10へ濃縮汚泥を供給する構成としたが、濃縮機構9終端に位置する終端濃縮ろ板11bの連通路28と脱水機構10始端に位置する始端脱水ろ板12aの濃縮汚泥供給路20を連結させる構成としてもよい。いずれの形態においても、濃縮機構9と脱水機構10の間に濃縮汚泥を一時的に貯留する濃縮槽が不要となり、濃縮汚泥を濃縮機構9から脱水機構10に連続供給できるため脱水効率が低下しない。 In the present embodiment, the intermediate filter plate 25 is arranged between the thickening mechanism 9 and the dehydrating mechanism 10 to supply thickened sludge from the thickening mechanism 9 to the dehydrating mechanism 10 . The communication path 28 of the terminal thickening filter plate 11b and the thickened sludge supply path 20 of the starting dewatering filter plate 12a located at the starting end of the dewatering mechanism 10 may be connected. In either form, a thickening tank for temporarily storing thickened sludge is not required between the thickening mechanism 9 and the dewatering mechanism 10, and the thickened sludge can be continuously supplied from the thickening mechanism 9 to the dehydrating mechanism 10, so the dehydration efficiency does not decrease. .

図5は、本発明の実施形態に係る加圧脱水装置の脱水機構の概略側断面図である。
脱水機構10は、並列する複数の脱水ろ板12…で構成している。複数の脱水ろ板12…のうち、始端側に位置する始端脱水ろ板12aは、中間ろ板25を介して濃縮機構9と連設し、終端側に位置する終端脱水ろ板12bは、ムーバブルヘッド5と連設している。各脱水ろ板12の上方に濃縮汚泥供給路20を開口してあり、ろ板閉板時に連通することで、脱水機構10上方に濃縮汚泥流路27が形成される。隣接する脱水ろ板12,12間には、脱水ろ過室23…を形成してあり、各脱水ろ過室23内には、一対のろ材22を張設している。
FIG. 5 is a schematic cross-sectional side view of the dehydration mechanism of the pressurized dehydrator according to the embodiment of the present invention.
The dehydration mechanism 10 is composed of a plurality of dehydration filter plates 12 arranged in parallel. Among the plurality of dewatering filter plates 12, the starting dewatering filter plate 12a located on the starting end side is connected to the concentrating mechanism 9 via the intermediate filter plate 25, and the terminal dewatering filter plate 12b located on the terminal side is removable. It is connected with the head 5 . A thickened sludge supply channel 20 is opened above each dewatering filter plate 12 , and a thickened sludge channel 27 is formed above the dehydration mechanism 10 by communicating with the filter plate when the filter plate is closed. Dehydration filter chambers 23 are formed between adjacent dewatering filter plates 12, 12, and a pair of filter media 22 are stretched in each dewatering filter chamber 23. As shown in FIG.

濃縮機構9にて生成された濃縮汚泥は、中間ろ板25の連通路28bを介して濃縮汚泥流路27に向かって流入する。流入した濃縮汚泥は、各脱水ろ過室23…に供給され、各脱水ろ過室23内のろ材22に沿って平行に下向する。下向する濃縮汚泥は、ろ材22にて脱水ろ液を分離し、脱水ケーキを生成する。分離する脱水ろ液は、ろ材22を透過して脱水ろ過室23からろ過床24に形成するろ液通路29を介してろ液排出路30へ流れる。ろ液排出路30から排出される脱水ろ液は、排出管19を通って外部へ排出される。
なお、各脱水ろ板12の開口である濃縮汚泥供給路20の開口に関し、濃縮機構9と同様に長穴を1つ形成してもよいが、形状、数量等、特に制限されず設計条件に応じて選択する。
The thickened sludge produced by the thickening mechanism 9 flows into the thickened sludge flow path 27 through the communication passage 28b of the intermediate filter plate 25 . The thickened sludge that has flowed in is supplied to each of the dehydration and filtration chambers 23 . The descending thickened sludge separates the dehydrated filtrate by the filter medium 22 to produce a dehydrated cake. The dehydrated filtrate to be separated passes through the filter medium 22 and flows from the dewatering filter chamber 23 to the filtrate discharge channel 30 via the filtrate passage 29 formed in the filter bed 24 . The dehydrated filtrate discharged from the filtrate discharge path 30 is discharged to the outside through the discharge pipe 19 .
Regarding the opening of the thickened sludge supply channel 20, which is the opening of each dewatering filter plate 12, one long hole may be formed in the same manner as in the thickening mechanism 9, but the shape, number, etc. are not particularly limited and are subject to design conditions. Choose accordingly.

また、各脱水ろ過室23を形成する少なくとも一方の脱水ろ板12表面に膨張収縮可能なダイアフラム(図示しない)を張設し、脱水ろ過室23内の脱水ケーキを圧搾する構成としてもよい。 Further, an expandable and contractible diaphragm (not shown) may be stretched on the surface of at least one dewatering filter plate 12 forming each dewatering filter chamber 23 to squeeze the dehydrated cake in the dewatering filter chamber 23 .

脱水ろ板12に張設するろ材22の種類に関し、ろ布、金属ろ材等、特に制限されないが、濃縮機構9及び脱水機構10が独立配置しているため、濃縮機構9に固定式のろ材22を配置し、脱水機構10に走行式のろ材22を配置する等、各機構に適したろ材22を選定することもできる。脱水性能を高めるために、濃縮機構9に脱水機構10よりも通気度が高いろ材22を張設することも可能である。 Regarding the type of filter medium 22 stretched on the dewatering filter plate 12, there are no particular restrictions on the type of filter medium 22, such as filter cloth and metal filter medium. , and a traveling type filter medium 22 is arranged in the dehydration mechanism 10, and the filter medium 22 suitable for each mechanism can be selected. In order to improve the dehydration performance, it is also possible to stretch the filter medium 22 having a higher permeability than the dehydration mechanism 10 in the concentration mechanism 9 .

本実施形態において、濃縮機構9で使用するろ板形状を、脱水機構10のろ板形状と同一にした場合、任意のろ板を軸芯周りに180度回転し連通路28の位置を変更するとともにろ板列の配置を変えるだけで濃縮機構9と脱水機構10の増室、減室が可能となる。これにより、汚泥性状の変動に応じて最適な加圧脱水装置1を構成することもできる。
なお、濃縮機構9及び脱水機構10にそれぞれ配置するろ板の枚数や材質、形状等は供給される原液性状に応じて適宜設定する。
In this embodiment, if the shape of the filter plate used in the concentrating mechanism 9 is the same as the shape of the filter plate of the dewatering mechanism 10, any filter plate is rotated 180 degrees around its axis to change the position of the communication passage 28. At the same time, it is possible to increase or decrease the chambers of the concentrating mechanism 9 and the dehydrating mechanism 10 simply by changing the arrangement of the filter plate rows. As a result, it is also possible to construct an optimum pressurized dehydrator 1 according to fluctuations in sludge properties.
The number, material, shape, etc. of the filter plates arranged in the concentrating mechanism 9 and the dehydrating mechanism 10 are appropriately set according to the properties of the undiluted solution to be supplied.

図6は、本発明の他の実施形態に係る濃縮機構の概略側断面図である。
内部を中空状に形成した濃縮ろ板31及び濃縮ろ板33を交互に並列して構成した濃縮機構9である。濃縮ろ板31及び濃縮ろ板33は、中空部を形成したろ枠上方にそれぞれ連通路28を開口しており、各連通路28は連通している。濃縮ろ板31は、表面にろ材22を張設するとともにろ枠下方にろ液排出路30を有する。濃縮ろ板33は、連通路28より供給される原液が流入する中空部を濃縮ろ過室21としている。濃縮ろ過室21に供給された原液は、隣接する濃縮ろ板31のろ材22にて濃縮汚泥と濃縮ろ液に固液分離される。
必要に応じて、各濃縮ろ板31の表面にろ材支持部材を設け、ろ材支持部材の上にろ材22を張設してもよい。
FIG. 6 is a schematic cross-sectional side view of a concentrating mechanism according to another embodiment of the invention.
The concentration mechanism 9 is configured by alternately arranging the concentration filter plates 31 and the concentration filter plates 33 which are hollow inside. The thickening filter plate 31 and the thickening filter plate 33 each have a communication passage 28 opening above the filter frame forming a hollow portion, and the communication passages 28 communicate with each other. The thickening filter plate 31 has the filter medium 22 stretched on its surface and has the filtrate discharge path 30 below the filter frame. The concentration filter plate 33 has a concentration filtration chamber 21 as a hollow portion into which the undiluted solution supplied from the communication passage 28 flows. The undiluted liquid supplied to the concentrated filtration chamber 21 is subjected to solid-liquid separation into concentrated sludge and concentrated filtrate by the filter medium 22 of the adjacent concentrated filter plate 31 .
If necessary, a filter medium support member may be provided on the surface of each thickening filter plate 31, and the filter medium 22 may be stretched over the filter medium support member.

原液は、フロントフレーム2に連設した始端濃縮ろ板31a及び隣接する濃縮ろ板33a上方の連通路28a,28aを通って濃縮ろ過室21aに供給される。濃縮ろ過室21aに供給された原液は、前段及び後段に隣接する濃縮ろ板31a,31の表面に張設したろ材22に沿って平行に下向した後、濃縮ろ板33a及び後段の濃縮ろ板31,33の下方の連通路28…を通って後段の濃縮ろ過室21bに向かって流動しながら濃縮される。後段の濃縮ろ過室21bに流入した濃縮液は、隣接する濃縮ろ板31,31bの表面に張設したろ材22に沿って平行に上向し、上方に形成された連通路28b,28bから後段に連設した脱水機構10に供給される。各濃縮ろ過室21を平行に流動する濃縮液は、ろ材22にて固液分離される。濃縮ろ液は、ろ材22を透過した後、濃縮ろ板31の中空部を通ってろ液排出路30より排出される。濃縮ろ板33の中空部が濃縮ろ過室21であるのに対し濃縮ろ板31の中空部は濃縮ろ液の排出部である。 The undiluted solution is supplied to the thickening filter chamber 21a through the leading end thickening filter plate 31a connected to the front frame 2 and the communicating passages 28a, 28a above the adjacent thickening filter plate 33a. The undiluted solution supplied to the concentration filtration chamber 21a is directed downward in parallel along the filter media 22 stretched over the surfaces of the concentration filter plates 31a and 31 adjacent to the front and rear stages, and then flows through the concentration filter plate 33a and the concentration filter of the rear stage. It is condensed while flowing through the communication passages 28 below the plates 31 and 33 toward the concentrating filtration chamber 21b in the latter stage. The concentrated liquid that has flowed into the concentration filter chamber 21b in the latter stage rises in parallel along the filter media 22 stretched on the surfaces of the adjacent concentration filter plates 31, 31b, and passes through the communication passages 28b, 28b formed above to the latter stage. is supplied to the dewatering mechanism 10 connected to the . Concentrated liquids flowing in parallel through the respective concentrated filtration chambers 21 are solid-liquid separated by the filter media 22 . After passing through the filter medium 22 , the concentrated filtrate passes through the hollow portion of the concentrated filter plate 31 and is discharged from the filtrate discharge channel 30 . The hollow portion of the thickening filter plate 33 is the thickening filtration chamber 21, whereas the hollow portion of the thickening filter plate 31 is a concentrated filtrate discharge portion.

このように、連通路28を上方及び下方に交互に配置することで、濃縮液が互い違いに流動する濃縮液流路26を形成することができる。隣接する濃縮ろ過室21にて反転流動を繰り返しつつ生成された濃縮汚泥は、終端に位置する終端濃縮ろ板31bの連通路28bより後段の脱水機構10へ連続的に供給(排出)する。この形態に関しても図2と同様に、終端濃縮ろ板31bの連通路と始端脱水ろ板12aの連通路を連通させる構成とする。連通路28の位置に関してもこれに限定されず、ろ枠の左右対称位置や斜め対象位置に形成させてもよい。 By arranging the communication paths 28 alternately upward and downward in this way, it is possible to form the concentrated liquid flow paths 26 in which the concentrated liquid alternately flows. The thickened sludge generated while repeating reverse flow in the adjacent thickening filter chamber 21 is continuously supplied (discharged) to the subsequent dehydration mechanism 10 through the communicating passage 28b of the terminal thickening filter plate 31b located at the end. In this configuration, as in FIG. 2, the communicating path of the terminal thickening filter plate 31b and the communicating path of the starting dewatering filter plate 12a are configured to communicate with each other. The position of the communication path 28 is not limited to this, either, and it may be formed in a symmetrical position or an obliquely symmetrical position of the filter frame.

図6の場合も、図4と同様に、隣り合う2以上の濃縮ろ過室21で形成された群を複数形成し、外部に設けた複数の配管と接続して群ごとに互い違いに濃縮液を流動させる構成としてもよい。 In the case of FIG. 6, as in FIG. 4, a plurality of groups formed by two or more concentrating filtration chambers 21 adjacent to each other are formed, and connected to a plurality of pipes provided outside to alternately supply the concentrated solution to each group. It is good also as a structure which makes it flow.

図7は、本発明の他の実施形態に係る濃縮機構の概略平面図である。
図7(a)は、図6の濃縮ろ板33内の中空部に流路形成リブ32を配設し、濃縮ろ板33内に形成される濃縮液流路26の距離を長くしたものであり、図7(b)は図6と同様の濃縮ろ板31である。濃縮ろ板33に設けた流路形成リブ32は、例えば先端が90度に折れ曲がった2枚1組の流路形成リブ32,32を濃縮ろ板33の内周壁の対称位置に配置することで、連通路28の一端から連通路28の対称位置にある連通路28に向かってジグザグ状の濃縮液流路26を形成できる。また、図示しない渦巻状に折れ曲がった2枚1組の流路形成リブ32,32を濃縮ろ板33の内周壁に配置することで、連通路28の一端から連通路28に向かって渦巻状に流れる濃縮液流路26を形成することもできる。長い濃縮液流路26を形成することで、濃縮ろ過室21内での濃縮液の濃縮時間を十分に確保できるため、濃縮液の濃縮濃度を高めることができる。これに伴い、後段の脱水ろ過室23での脱水効率が向上する。
FIG. 7 is a schematic plan view of a concentration mechanism according to another embodiment of the invention;
In FIG. 7(a), the channel-forming ribs 32 are arranged in the hollow portion of the thickening filter plate 33 of FIG. FIG. 7(b) shows a thickening filter plate 31 similar to that in FIG. The flow channel forming ribs 32 provided on the thickening filter plate 33 are arranged, for example, by arranging a set of two flow channel forming ribs 32, 32 with their ends bent at 90 degrees at symmetrical positions on the inner peripheral wall of the thickening filter plate 33. , a zigzag condensate flow path 26 can be formed from one end of the communication path 28 toward the communication path 28 at the symmetrical position of the communication path 28 . In addition, by arranging a set of two flow path forming ribs 32, 32 (not shown) that are spirally bent on the inner peripheral wall of the thickening filter plate 33, a spiral A flowing concentrate channel 26 can also be formed. By forming the long concentrated liquid flow path 26, the concentration time of the concentrated liquid in the concentrated filtration chamber 21 can be sufficiently ensured, so that the concentration concentration of the concentrated liquid can be increased. Accordingly, the dehydration efficiency in the subsequent dehydration filtration chamber 23 is improved.

<S1 閉板工程>
並列する複数の濃縮ろ板11…及び脱水ろ板12…を締付シリンダー7によって閉板し、隣接する濃縮ろ板11,11間に濃縮ろ過室21…を形成し、隣接する脱水ろ板12,12間に脱水ろ過室23…を形成する。各濃縮ろ過室21及び各脱水ろ過室23にはろ材22を張設してあり、固液分離可能な空間が形成される。このとき、排出管19に介装した弁V2は開であり、その他の弁は、閉である。
<S1 plate closing process>
A plurality of thickening filter plates 11 and dewatering filter plates 12 arranged in parallel are closed by a clamping cylinder 7 to form thickening filter chambers 21 between the adjacent thickening filter plates 11, 11, and the adjacent dewatering filter plates 12. , 12, dehydrating and filtering chambers 23 are formed. A filter medium 22 is stretched in each concentration filtration chamber 21 and each dehydration filtration chamber 23 to form a space capable of solid-liquid separation. At this time, the valve V2 interposed in the discharge pipe 19 is open, and the other valves are closed.

<S2 圧入工程>
原液供給管8に介装した弁V1及び返送管16に介装した弁V3を開いた後、原液供給ポンプ14を駆動する。原液供給ポンプ14の駆動により、原液供給管8を介して原液貯留槽13内の原液が加圧脱水装置1に圧入供給される。原液は、事前に定めた値を用いて一定圧で圧入供給する。
<S2 press-fitting step>
After opening the valve V1 interposed in the undiluted solution supply pipe 8 and the valve V3 interposed in the return pipe 16, the undiluted solution supply pump 14 is driven. By driving the undiluted liquid supply pump 14 , the undiluted liquid in the undiluted liquid storage tank 13 is pressurized and supplied to the pressurized dehydrator 1 through the undiluted liquid supply pipe 8 . The stock solution is injected at a constant pressure using a predetermined value.

加圧脱水装置1に供給された原液は、複数の濃縮ろ過室11…内を上下互い違いに流動しながら濃縮され、濃縮液流路26を形成する。ろ板列前段の濃縮機構9にて生成された濃縮汚泥は、連通路28bを介して後段に連設する複数の脱水ろ過室23…に向かって供給される。濃縮ろ過室11…を流れる濃縮液は、液分を多く含んでおり流動性を有しているため、原液を一定圧で圧入しつづけることで複数の濃縮ろ過室21…を流動できる。 The undiluted liquid supplied to the pressurized dehydrator 1 is condensed while flowing alternately up and down in the plurality of concentrating filtration chambers 11 to form a condensed liquid flow path 26 . The thickened sludge produced by the thickening mechanism 9 at the front stage of the filter plate row is supplied through the communication passage 28b toward the plurality of dehydration filtration chambers 23 connected at the rear stage. Since the concentrated liquid flowing through the concentrated filtration chambers 11 contains a large amount of liquid and has fluidity, it can flow through the plurality of concentrated filtration chambers 21 by continuously injecting the undiluted liquid at a constant pressure.

連通路28bより供給(排出)される濃縮汚泥は、脱水ろ板12…上部に形成した濃縮汚泥流路27に向かって流入した後、脱水ろ板12,12間の脱水ろ過室23…に供給されるが、一部の濃縮汚泥は、ムーバブルヘッド5側より循環汚泥として排出され、返送管16を介して原液貯留槽13に返送される。このように濃縮汚泥を循環させることで、濃縮ろ過室21…内に常時流れを生じさせることができる。 The thickened sludge supplied (discharged) from the communication passage 28b flows toward the thickened sludge channel 27 formed in the upper part of the dewatering filter plates 12, and then supplied to the dewatering filter chambers 23 between the dewatering filter plates 12, 12. However, part of the thickened sludge is discharged from the movable head 5 side as circulating sludge and returned to the raw liquid storage tank 13 through the return pipe 16 . By circulating the thickened sludge in this way, a constant flow can be generated in the thickening/filtering chambers 21 .

1.濃縮
原液供給管8から圧入される原液は、始端濃縮ろ板11aの連通路28aに向かって流入した後、始端濃縮ろ板11aと始端濃縮ろ板11aに隣接する濃縮ろ板11の間に形成される濃縮ろ過室21a内を下向しながら濃縮される。下向した濃縮液は、始端濃縮ろ板11aの連通路28aの対称に位置する連通路28を介して次段の濃縮ろ過室21に流入した後、次段の濃縮ろ過室21を上向し、連通路28を介してさらに次段の濃縮ろ過室21にする。このように、濃縮ろ過室21…内を上下互い違いに流動しながら各濃縮ろ過室21内のろ材22にて濃縮されて濃縮汚泥を生成する。
1. After the undiluted liquid pressurized from the concentrated undiluted liquid supply pipe 8 flows toward the communication passage 28a of the starting thickening filter plate 11a, it is formed between the starting thickening filter plate 11a and the thickening filter plate 11 adjacent to the starting thickening filter plate 11a. It is concentrated while moving downward in the concentrated filtration chamber 21a. The downward concentrated liquid flows into the next-stage concentration filtration chamber 21 through the communication passages 28 located symmetrically with the communication passages 28a of the leading end concentration filter plate 11a, and then flows upward in the next-stage concentration filtration chamber 21. , through a communication passage 28 to form the next concentration filtration chamber 21 . In this manner, the sludge is concentrated by the filter medium 22 in each thickening/filtrating chamber 21 while flowing alternately in the thickening/filtrating chambers 21 to produce thickened sludge.

各濃縮ろ過室21を流動する濃縮液は、濃縮ろ過室21のろ過床24のろ材22に沿って平行に原液を流動させながら固液分離することでろ材22表面へのSSの付着を防ぎ、目詰まりを防止できるため、初期の通水性を保持できる。これにより、ろ材22洗浄の機会を減らすことができるため、洗浄液使用量や洗浄時に発生する電気代等の削減が可能となる。 The concentrated liquid flowing through each concentrated filtration chamber 21 is solid-liquid separated by flowing the undiluted liquid in parallel along the filter media 22 of the filter bed 24 of the concentrated filtration chamber 21, thereby preventing SS from adhering to the surface of the filter media 22. Since clogging can be prevented, initial water permeability can be maintained. As a result, it is possible to reduce the frequency of cleaning the filter media 22, thereby reducing the amount of cleaning liquid used and the cost of electricity generated during cleaning.

各濃縮ろ過室21内を流れる濃縮液は、濃縮ろ過室21内に十分行き渡り、ろ材22にて濃縮ろ液を分離し、分離した濃縮ろ液は、濃縮ろ板11のろ液通路29を介してろ液排出路30より排出される。その後、ろ液排出路30から排出管19を通って外部に排出される。 The concentrated liquid flowing in each of the concentrated filtration chambers 21 spreads sufficiently within the concentrated filtration chambers 21, the concentrated filtrate is separated by the filter medium 22, and the separated concentrated filtrate passes through the filtrate passage 29 of the concentrated filter plate 11. It is discharged from the filtrate discharge passage 30. After that, it is discharged outside through the discharge pipe 19 from the filtrate discharge path 30 .

2.脱水
濃縮機構11で生成された濃縮汚泥は、中間ろ板25の連通路28bを通って脱水ろ過室23…に連続的に圧入供給される。供給された濃縮汚泥は、濃縮汚泥流路27に向かって流入した後、各脱水ろ過室23に供給される。
2. The thickened sludge produced by the dewatering/thickening mechanism 11 is continuously press-fed into the dewatering/filtering chambers 23 through the communication passages 28b of the intermediate filter plate 25. As shown in FIG. The supplied thickened sludge flows into the thickened sludge channel 27 and then is supplied to each dehydration and filtration chamber 23 .

圧入された濃縮汚泥は、脱水ろ過室23内に十分に行き渡り、内部に張設したろ材22によって脱水ろ液を分離する。ろ材22間には固形分が蓄積し、脱水ケーキを生成する。分離した脱水ろ液は、ろ材22を透過した後、ろ液通路29を介してろ液排出路30から排出される。その後、排出管19より外部へ排出される。 The injected thickened sludge spreads sufficiently in the dehydration filtration chamber 23, and the dehydration filtrate is separated by the filter media 22 stretched inside. Solids accumulate between the filter media 22 to form a dewatered cake. The separated dehydrated filtrate passes through the filter medium 22 and is discharged from the filtrate discharge channel 30 through the filtrate passage 29 . After that, it is discharged from the discharge pipe 19 to the outside.

本実施形態では、濃縮機構9から排出される濃縮汚泥の連通路28bを脱水機構10と直列に連結しているため、濃縮機構9で生成された濃縮汚泥を途切れることなく、脱水機構10に連続供給できる。また、供給された濃縮汚泥は、濃縮汚泥流路27に向かって流入した後、濃縮汚泥流路27を流れる濃縮汚泥の静圧により各脱水ろ過室23に圧入される。これにより、短時間で脱水ケーキを生成できる。また、連通路28bを介して連結するため、濃縮汚泥を貯留する濃縮汚泥貯留槽の設置が不要となりそれに伴う配管やポンプ等も不要であるため設備全体がコンパクトになる。
なお、圧入工程は予め定められた一定時間継続する。
In this embodiment, since the communication passage 28b for the thickened sludge discharged from the thickening mechanism 9 is connected in series with the dewatering mechanism 10, the thickened sludge generated in the thickening mechanism 9 is continuously connected to the dewatering mechanism 10. can supply. Further, the supplied thickened sludge flows into the thickened sludge channel 27 and then is forced into each dehydration filter chamber 23 by the static pressure of the thickened sludge flowing through the thickened sludge channel 27 . Thereby, a dehydrated cake can be produced in a short time. In addition, since the connection is made through the communication passage 28b, installation of a thickened sludge storage tank for storing thickened sludge is not required, and associated pipes, pumps, etc. are not required, so that the entire facility can be made compact.
It should be noted that the press-fitting process continues for a predetermined period of time.

<S3.開板工程>
一定時間、原液を圧入した後、原液供給ポンプ14を停止し、弁V1を閉じる。その後、締付シリンダー7を駆動し、脱水機構10の脱水ろ板12…を開板し、脱水ろ過室23…に形成された脱水ケーキを排出する。脱水ろ板12…を開板することにより、脱水ケーキは機外へ落下する。このとき、開板は脱水機構10のみ行うものとし、濃縮機構9の濃縮ろ板11…は開板せず、閉板状態にしておく。
なお、ダイアフラムろ板を用いる場合は、開板工程S3前に圧搾工程を行う。また、圧搾工程後に洗浄液供給管15から洗浄液を供給してケーキ洗浄を行い、ケーキ中の不純物を排出した後、次工程に移行してもよい。
<S3. Plate opening process>
After pressurizing the stock solution for a certain period of time, the stock solution supply pump 14 is stopped and the valve V1 is closed. After that, the clamping cylinder 7 is driven to open the dewatering filter plates 12 of the dewatering mechanism 10, and the dehydrated cake formed in the dewatering filter chambers 23 is discharged. By opening the dewatering filter plates 12, the dehydrated cake falls out of the machine. At this time, only the dehydration mechanism 10 is opened, and the concentration filter plates 11 of the concentration mechanism 9 are not opened and are kept closed.
In addition, when using a diaphragm filter plate, a compression process is performed before the plate-opening process S3. Further, after the pressing step, the cleaning liquid may be supplied from the cleaning liquid supply pipe 15 to wash the cake, and after the impurities in the cake are discharged, the next step may be performed.

<S4.ろ材洗浄工程>
脱水ケーキを排出した後、締付シリンダー7を駆動し、脱水ろ板12…を再度、閉板する。濃縮機構9は閉板状態であるため、脱水ろ板12…のみ閉板することで加圧脱水装置1全体が再び閉板状態となる。
<S4. Filter medium washing process>
After discharging the dewatered cake, the clamping cylinder 7 is driven to close the dewatering filter plates 12 again. Since the concentrating mechanism 9 is in the plate closed state, by closing only the dehydration filter plates 12 .

脱水ろ板12…を閉板した後、排出管19に介装した弁V2及び返送管16に介装した弁V3を閉にするとともに、洗浄液供給管15に介装した弁V4、弁V5及び返送管16に介装した弁V7を開にし、洗浄液供給ポンプ18を駆動する。洗浄液貯留槽17の洗浄液は、洗浄液供給管15を経て原液供給部及びろ液排出部より濃縮ろ過室21…及び脱水ろ過室23…へ供給される。時間経過と共に各ろ過室は洗浄液で充填されるため、各ろ過室内のろ材22を浸漬状態に保つことができ、ろ材22が乾燥することを防止する。これにより次の脱水運転開始までの運転停止期間中にろ材22に付着した母液が蒸発し炭酸カルシウムや硫酸カルシウム等の結晶物によってろ材22の目詰まりが生じない。 After the dewatering filter plates 12 are closed, the valve V2 interposed in the discharge pipe 19 and the valve V3 interposed in the return pipe 16 are closed, and the valves V4, V5 and V5 interposed in the washing liquid supply pipe 15 are closed. The valve V7 interposed in the return pipe 16 is opened, and the washing liquid supply pump 18 is driven. The cleaning liquid in the cleaning liquid storage tank 17 is supplied to the concentrated filtration chambers 21 and the dehydration filtration chambers 21 through the cleaning liquid supply pipe 15 from the undiluted liquid supply section and the filtrate discharge section. Since each filtration chamber is filled with the cleaning liquid over time, the filter media 22 in each filtration chamber can be kept immersed, preventing the filter media 22 from drying out. As a result, the mother liquid adhering to the filter media 22 evaporates during the shutdown period until the start of the next dehydration operation, and clogging of the filter media 22 by crystals such as calcium carbonate and calcium sulfate does not occur.

なお、弁V4、V5は、同時に開にして供給しても交互に開閉して供給してもよい。また、ムーバブルヘッド5側から洗浄液を供給する洗浄液供給管15を追加し、弁V6を操作して加圧脱水装置1の両側から洗浄液を供給してもよい。各ろ過室内に洗浄液を供給できればよいため、洗浄液供給管15の構成は設計事項に応じて適宜選択する。 The valves V4 and V5 may be opened at the same time or may be opened and closed alternately. Alternatively, a cleaning liquid supply pipe 15 may be added to supply the cleaning liquid from the movable head 5 side, and the cleaning liquid may be supplied from both sides of the pressurized dehydrator 1 by operating the valve V6. Since it is sufficient to supply the cleaning liquid into each filtration chamber, the configuration of the cleaning liquid supply pipe 15 is appropriately selected according to the design items.

洗浄液は、濃縮ろ過室21…を浸漬させた後、脱水ろ過室23…を浸漬させ、各ろ過室内のろ材表面に付着したSS(懸濁物質)を除去し、洗浄排水として脱水ろ過室23…の濃縮汚泥供給路20…を通って返送管16より排出される。洗浄排水は、返送管16を通って、洗浄液貯留槽17に返送される。本実施形態では、ろ材洗浄を循環洗浄としており、供給する洗浄液をろ過室内に循環させているため、後から供給された洗浄液にてSSが後段へと押し流され、効率よくSSを除去できる。循環洗浄は、タイマーを用いて予め定めた一定時間行っているが、ろ液濃度等を計測し、所望の値を検知した時点で終了してもよい。
なお、洗浄液貯留槽17に返送した洗浄排水は、公知の手段にて適宜固液分離を行い、SSを除去する。洗浄排水が高濁度で再使用不可の場合、洗浄排水を外部に排出しつつ、洗浄液貯留槽17に洗浄水を別途供給する。
After the concentration filtration chambers 21 are immersed in the washing liquid, the dewatering filtration chambers 23 are immersed in the washing liquid to remove SS (suspended solids) adhering to the surface of the filter media in each filtration chamber, and the dehydration filtration chambers 23 are discharged as washing drainage. The thickened sludge is discharged from the return pipe 16 through the thickened sludge supply passages 20 . The washing waste water is returned to the washing liquid storage tank 17 through the return pipe 16 . In this embodiment, the cleaning of the filter medium is performed by circulation cleaning, and the supplied cleaning liquid is circulated in the filtration chamber. Therefore, the SS is washed away by the cleaning liquid supplied later, and the SS can be efficiently removed. Circulation washing is performed for a predetermined period of time using a timer, but may be terminated when a desired value is detected by measuring the filtrate concentration or the like.
The cleaning wastewater returned to the cleaning liquid storage tank 17 is appropriately subjected to solid-liquid separation by a known means to remove SS. If the cleaning waste water is highly turbid and cannot be reused, the cleaning water is separately supplied to the cleaning liquid storage tank 17 while discharging the cleaning waste water to the outside.

ろ材洗浄工程S4終了後、洗浄液供給ポンプ18を停止し、弁V4、弁V5を閉にするとともに、弁V2を開にし、各ろ過室内に残留した洗浄排水を排出する。洗浄は脱水運転終了後に毎回実施するのではなく、脱水運転開始前に洗浄周期の設定を行ない、運転回数が設定値になった場合に洗浄を実施している。排出されるろ液濃度を計測し計測値が基準値となった際に洗浄を実施する方法としてもよい。 After the filter medium cleaning step S4, the cleaning liquid supply pump 18 is stopped, the valves V4 and V5 are closed, and the valve V2 is opened to discharge the cleaning wastewater remaining in each filtration chamber. Cleaning is not performed every time after the dehydration operation is completed, but the cleaning cycle is set before the dehydration operation is started, and the cleaning is performed when the number of times of operation reaches the set value. A method of measuring the concentration of the discharged filtrate and performing washing when the measured value reaches the reference value may be employed.

本実施では、濃縮機構9及び脱水機構10を浸漬洗浄しているが、濃縮機構9のみ浸漬洗浄とし、脱水機構10は公知の洗浄方法を用いて洗浄液を噴射してろ材22の洗浄を行ってもよい。 In this embodiment, the concentrating mechanism 9 and the dehydrating mechanism 10 are immersed and washed, but only the concentrating mechanism 9 is immersed and washed, and the dehydrating mechanism 10 cleans the filter medium 22 by injecting a cleaning liquid using a known cleaning method. good too.

各工程の切り替えに用いる指標に関しても予め定めた所定時間ではなく、圧力やろ液濃度等を測定しながら所望の値が得られた場合に切り替える等、条件に応じて適宜選択する。 As for the index used for switching between steps, it is appropriately selected according to the conditions, such as switching when a desired value is obtained while measuring the pressure, filtrate concentration, etc., instead of a predetermined time.

上述し、かつ図面に記載した本実施形態に限定されるものではなく、特許請求の範囲に記載した発明の要旨を逸脱しない範囲で変形実施を可能とする。 The present invention is not limited to the embodiments described above and illustrated in the drawings, and modifications can be made without departing from the gist of the invention described in the claims.

本発明に係る濃縮機構を有する加圧脱水装置および加圧脱水方法は、濃縮機構及び脱水機構を連設し一体的に構成したものであるため、1つの装置で汚泥の濃縮及び脱水ができる。脱水機とは別個に濃縮機を設ける必要がないため、濃縮機の設置費用及び運転費用がかからないうえ、設備全体がコンパクトになる。また、濃縮槽を介さずに濃縮汚泥を濃縮機構から脱水機構に供給するものであり、濃縮汚泥を濃縮槽に長期滞留させずに脱水機に連続供給可能となるため、短時間で低含水率の脱水ケーキを生成できる。コンパクトな装置で高効率の脱水が可能であるため、無機質を多く含む生産プロセスや産業排水に用いるフイルタープレスとして好適であり、上水・工水スラッジや化学プラントなどの固形分の少ない原液の長時間ろ過にも使用できる。 Since the pressurized dehydrator and the pressurized dewatering method having the thickening mechanism according to the present invention are integrally configured by connecting the thickening mechanism and the dehydrating mechanism, sludge can be thickened and dewatered with one device. Since there is no need to install a thickener separately from the dehydrator, installation costs and operating costs for the thickener are not required, and the entire facility can be made compact. In addition, the thickened sludge is supplied from the thickening mechanism to the dewatering mechanism without going through the thickening tank, and the thickened sludge can be continuously supplied to the dehydrator without remaining in the thickening tank for a long time. of dehydrated cake can be produced. Since it is possible to dehydrate highly efficiently with a compact device, it is suitable as a filter press for production processes and industrial wastewater containing a large amount of inorganic substances. It can also be used for time filtration.

1 加圧脱水装置
9 濃縮機構
10 脱水機構
12 脱水ろ板
13 原液貯留槽
15 洗浄液供給管
16 返送管
21 濃縮ろ過室
22 ろ材
23 脱水ろ過室
28、28b 連通路
1 Pressurized Dehydrator 9 Concentration Mechanism 10 Dehydration Mechanism 12 Dehydration Filter Plate 13 Undiluted Solution Storage Tank 15 Washing Liquid Supply Pipe 16 Return Pipe 21 Concentration Filtration Chamber 22 Filter Media 23 Dehydration Filtration Chambers 28, 28b Communicating Path

Claims (6)

多数のろ板を並列して形成した複数のろ過室の一方から原液を供給し、ろ過室に設けたろ材にて固液分離を行う加圧脱水装置において、
ろ過室を形成するろ板列の前段に、
中空状に形成した濃縮ろ過室(21)にろ材(22)を設け、濃縮ろ過室(21)の一方に開口する連通路(28)から原液を供給し、ろ材(22)に対して平行に原液を通水させつつろ材(22)にて液分を透過して固液分離し、連通路(28)の対称位置に開口する連通路(28)から次段の濃縮ろ過室(21)に濃縮汚泥を排出する濃縮機構(9)と、
濃縮機構(9)の吐出側に一体的に連設し、連通路(28b)を介して濃縮汚泥を開閉自在な脱水ろ板(12)間の脱水ろ過室(23)に設けたろ材(22)にて液分を透過して固液分離する脱水機構(10)と、
濃縮機構(9)から脱水機構(10)に供給される濃縮汚泥の一部を原液貯留槽(13)に返送する返送管(16)と、を備える
ことを特徴とする濃縮機構を有する加圧脱水装置。
A pressurized dehydrator that supplies a stock solution from one of a plurality of filtration chambers formed by parallelly forming a large number of filter plates, and performs solid-liquid separation with a filter medium provided in the filtration chamber,
In front of the row of filter plates that form the filtration chamber,
A filter medium (22) is provided in the concentration filtration chamber (21) formed in a hollow shape. While the undiluted liquid is passed through the filter medium (22), the liquid is permeated and solid-liquid separated. A thickening mechanism (9) for discharging thickened sludge;
A filter medium (22) provided in a dewatering filter chamber (23) between dewatering filter plates (12) integrally connected to the discharge side of the thickening mechanism (9) and capable of freely opening and closing thickened sludge through a communication passage (28b). ), a dehydration mechanism (10) that permeates the liquid and separates the solid from the liquid;
and a return pipe (16) for returning part of the thickened sludge supplied from the thickening mechanism (9) to the dewatering mechanism (10) to the raw liquid storage tank (13). dehydration equipment.
前記濃縮ろ過室(21)は、隣接する一対の前記濃縮ろ板(11)間に形成される中空部である
ことを特徴とする請求項1に記載の濃縮機構を有する加圧脱水装置。
2. The pressurized dehydrator having a concentrating mechanism according to claim 1, wherein said concentrating filter chamber (21) is a hollow portion formed between a pair of said concentrating filter plates (11) adjacent to each other.
前記濃縮ろ過室(21)は、前記濃縮ろ板(11)内に形成される中空部である
ことを特徴とする請求項1に記載の濃縮機構を有する加圧脱水装置。
2. The pressurized dehydrator having a concentrating mechanism according to claim 1, wherein said concentrating filter chamber (21) is a hollow portion formed in said concentrating filter plate (11).
前記濃縮ろ過室(21)は、複数並列しそれぞれ交互に連続形成される前記連通路(28)に連通する
ことを特徴とする請求項1から請求項3までの何れか一項に記載の濃縮機構を有する加圧脱水装置。
The concentration filtration chamber (21) according to any one of claims 1 to 3, characterized in that a plurality of the concentration filtration chambers (21) communicate with the communication passages (28) that are arranged in parallel and alternately continuously formed. A pressurized dewatering device with a mechanism.
前記濃縮ろ過室(21)と連通する洗浄液供給管(15)を設ける
ことを特徴とする請求項1から請求項4までの何れか一項に記載の濃縮機構を有する加圧脱水装置。
5. The pressurized dehydrator having a concentrating mechanism according to any one of claims 1 to 4, further comprising a washing liquid supply pipe (15) communicating with the concentrating filtration chamber (21).
多数のろ板を並列して形成した複数のろ過室の一方から原液を供給し、ろ過室に設けたろ材にて固液分離を行う加圧脱水装置において、
ろ過室を形成するろ板列の前段で、
ろ材(22)を設けた中空状の濃縮ろ過室(21)の一方に開口する連通路(22)から原液を供給し、ろ材(22)に対して平行に原液を通水させつつろ材(22)にて液分を透過して固液分離し、連通路(22)の対称位置に開口する連通路(22)から次段の濃縮ろ過室(21)に濃縮汚泥を排出し、
濃縮ろ過室(21)に連設し、開閉自在な脱水ろ板(12)列で形成される脱水ろ過室(23)に濃縮汚泥を供給し、脱水ろ過室(23)に設けたろ材にて液分を透過して固液分離し、脱水ケーキを生成するとともに、
濃縮ろ過室(21)から脱水ろ過室(23)に供給される濃縮汚泥の一部を原液貯留槽(13)に返送する
ことを特徴とする濃縮機構を有する加圧脱水方法。
A pressurized dehydrator that supplies a stock solution from one of a plurality of filtration chambers formed by parallelly forming a large number of filter plates, and performs solid-liquid separation with a filter medium provided in the filtration chamber,
At the front stage of the filter plate row forming the filtration chamber,
The stock solution is supplied from a communication passage (22) that opens to one side of a hollow concentration filtration chamber (21) provided with a filter medium (22), and the stock solution is passed through the filter medium (22) in parallel with the filter medium (22). ) permeates the liquid to separate solid and liquid, and discharges the thickened sludge from the communication passage (22) that opens at a symmetrical position of the communication passage (22) to the next thickening filtration chamber (21),
The thickened sludge is supplied to the dewatering and filtering chamber (23) connected to the thickening and filtering chamber (21) and formed by a row of dewatering filter plates (12) that can be freely opened and closed. Permeate the liquid to separate the solid and liquid to produce a dehydrated cake,
A pressurized dehydration method having a thickening mechanism, characterized in that part of thickened sludge supplied from a thickening filter chamber (21) to a dehydrating filter chamber (23) is returned to a stock solution storage tank (13).
JP2021205107A 2021-12-17 2021-12-17 Pressure dehydration device having concentration mechanism and pressure dehydration method Pending JP2023090239A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021205107A JP2023090239A (en) 2021-12-17 2021-12-17 Pressure dehydration device having concentration mechanism and pressure dehydration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021205107A JP2023090239A (en) 2021-12-17 2021-12-17 Pressure dehydration device having concentration mechanism and pressure dehydration method

Publications (1)

Publication Number Publication Date
JP2023090239A true JP2023090239A (en) 2023-06-29

Family

ID=86937125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021205107A Pending JP2023090239A (en) 2021-12-17 2021-12-17 Pressure dehydration device having concentration mechanism and pressure dehydration method

Country Status (1)

Country Link
JP (1) JP2023090239A (en)

Similar Documents

Publication Publication Date Title
KR100405152B1 (en) Variable Pore Micro Filter Having Simple and Compact Structure Capable of Side Stream Filtration and Cross Flow Filtration
JP5637670B2 (en) Solid-liquid separation method and apparatus
JP7022278B2 (en) Osmotic dehydration method and osmotic dehydration system of filter press
US6224766B1 (en) Membrane treatment method and membrane treatment apparatus
EA038713B1 (en) Filter with closely-spaced vertical plates
JPS5927279B2 (en) Sludge dewatering equipment
KR100967169B1 (en) Filter apparatus for water-treatment system
JP2023090239A (en) Pressure dehydration device having concentration mechanism and pressure dehydration method
JP5102913B2 (en) Apparatus and method for concentrating backwash wastewater from membrane filtration
KR100678990B1 (en) Dryer of using filter press
KR100495982B1 (en) Cylindrical filter press-dehydration machine
KR101973736B1 (en) Method for production of sludge dewatering cake in ceramic membrane filtration process using submerged membrane and pressurized membrane
JP5149133B2 (en) Apparatus and method for concentrating backwash wastewater from membrane filtration
CN204469549U (en) High-efficiency desulfurization waste liquid carries salt retracting device
KR101973738B1 (en) Method for cleaning of ceramic membrane filtration system using submerged membrane and pressurized membrane
CN104645830B (en) High-efficiency desulfurization waste liquid is carried salt retracting device
JP7283030B2 (en) Dehydrated cake washing method in filter press
JP7390579B2 (en) How to clean filter press cake
CN111871020A (en) Wastewater purification system adopting multi-medium filtration
KR102379631B1 (en) Small-sized wastewater treatment apparatus for hog farming and animal husbandry
JP4235330B2 (en) Membrane treatment method
CN212701358U (en) Reverse osmosis separation experiment machine
CN218280765U (en) Water treatment device with dynamic filtering element of filtering layer
SU1379272A1 (en) Installation for separating coagulated water suspensions
JP5483263B2 (en) Filter press squeezing dewatering method and squeezing dewatering device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231129