JP2023087778A - Method for producing sintered ore and sintering machine - Google Patents

Method for producing sintered ore and sintering machine Download PDF

Info

Publication number
JP2023087778A
JP2023087778A JP2021202254A JP2021202254A JP2023087778A JP 2023087778 A JP2023087778 A JP 2023087778A JP 2021202254 A JP2021202254 A JP 2021202254A JP 2021202254 A JP2021202254 A JP 2021202254A JP 2023087778 A JP2023087778 A JP 2023087778A
Authority
JP
Japan
Prior art keywords
gaseous fuel
fuel supply
plate
width direction
straightening plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021202254A
Other languages
Japanese (ja)
Inventor
啓之 福田
Hiroyuki Fukuda
佑介 野島
Yusuke Nojima
一洋 岩瀬
Kazuhiro Iwase
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2021202254A priority Critical patent/JP2023087778A/en
Publication of JP2023087778A publication Critical patent/JP2023087778A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

To provide a sintered ore production method and apparatus capable of eliminating local heat shortage in a sintering raw material layer and suppressing a decrease in the yield of sintered ore by controlling the amount of gas fuel supplied in the width direction of a sintering machine.SOLUTION: In a sintered ore production method, a sintering raw material containing an iron-containing raw material and a coagulant is charged into a pallet by an ore feeder of a sintering machine to form a charged layer, different amounts of gas fuel are supplied to the charged layer from a gas fuel feeder in the width direction of the pallet, and after the sintering raw material is sintered to obtain a sintered cake, the sintered cake is crushed to form a sintered ore. The gas fuel feeder includes a plurality of gas fuel supply pipes having a plurality of gas fuel discharge nozzles and a plurality of current plates in the moving direction of the pallet. The gas fuel discharge nozzles are provided to discharge the gas fuel in a horizontal direction parallel to the upper surface of the charged layer and in a width direction. The inclination angle θ of the current plates is 5° or more and satisfies the following formula (1). tanθ≤(W/2-D1)/H (1)SELECTED DRAWING: Figure 3

Description

本発明は、高炉原料である焼結鉱の製造方法および焼結機に関する。 TECHNICAL FIELD The present invention relates to a method for producing sintered ore, which is a raw material for blast furnaces, and a sintering machine.

従来、焼結鉱が製造される焼結機においては、焼結原料を無端移動式のパレットに装入し、当該パレットに装入して形成された焼結原料層(装入層)への点火及び気体燃料の吹き込み(供給)を行い、焼結原料を焼結することで焼結鉱の元となる焼結ケーキを製造している。 Conventionally, in a sintering machine that produces sintered ore, the sintering raw material is charged into an endless movable pallet, and the sintering raw material layer (charging layer) formed by charging the pallet A sintered cake, which is the source of sintered ore, is produced by sintering raw materials for sintering by igniting and blowing (supplying) gaseous fuel.

特許文献1には、焼結原料層への気体燃料の供給について、パレット上の焼結原料層への点火を行う点火炉の下流側において、焼結原料層の表面から吸引される気体燃料を焼結機の幅方向で均一に供給する方法が開示されている。 In Patent Document 1, regarding the supply of gaseous fuel to the sintering raw material layer, gaseous fuel sucked from the surface of the sintering raw material layer on the downstream side of the ignition furnace that ignites the sintering raw material layer on the pallet is disclosed. A method of supplying uniformly across the width of the sintering machine is disclosed.

特許第4735682号公報Japanese Patent No. 4735682

ここで、特許文献1に開示された気体燃料の供給方法では、焼結原料層に対して、焼結機の幅方向で均一に気体燃料を吹き込むことを目的とした設計思想となっている。このため、燃料ガス配管から水平方向にガスを吐出し、焼結機の幅方向で気体燃料が均一に拡散した後、焼結原料層に吸引される構成となっている。さらに、安全上の観点から、燃料ガス配管から供給される気体燃料について、吹き消え現象が起こる程の流速で噴出させることがあり、この場合、燃料ガス配管の周囲の気流の流速の方が大きいため、焼結原料層の表面に到達する前に、気体燃料が幅方向の広範囲に拡散することとなる。そのため、焼結原料層の中で部分的に熱不足となった箇所に対し、意図的に気体燃料の供給を強化することができず、成品の歩留が低下するという問題がある。 Here, in the gaseous fuel supply method disclosed in Patent Document 1, the design concept is aimed at blowing the gaseous fuel uniformly into the sintering raw material layer in the width direction of the sintering machine. Therefore, the gas is discharged horizontally from the fuel gas pipe, and after the gaseous fuel is uniformly diffused in the width direction of the sintering machine, it is sucked into the sintering raw material layer. Furthermore, from a safety point of view, the gaseous fuel supplied from the fuel gas pipe may be ejected at a flow velocity that causes a blow-out phenomenon.In this case, the flow velocity of the air flow around the fuel gas pipe is higher. Therefore, the gaseous fuel diffuses widely in the width direction before reaching the surface of the sintering raw material layer. Therefore, it is not possible to intentionally increase the supply of gaseous fuel to a portion of the sintering raw material layer that is partially lacking in heat, and there is a problem that the yield of the product is lowered.

本発明は、かかる事情を鑑みてなされたもので、焼結機の幅方向における気体燃料の供給量の調整を可能とすることで、装入層における局所的な熱不足を解消し、焼結鉱の歩留の低下を抑制できる焼結鉱の製造方法および焼結機を提供することを目的とする。 The present invention has been made in view of such circumstances, and by making it possible to adjust the amount of gaseous fuel supplied in the width direction of the sintering machine, it is possible to eliminate the local heat shortage in the charged layer and sinter. An object of the present invention is to provide a method for producing sintered ore and a sintering machine capable of suppressing a decrease in the yield of ore.

上記課題を解決する本発明の要旨構成は以下のとおりである。
[1]焼結機の給鉱装置で無端移動式のパレットに鉄含有原料と凝結材とを含む焼結原料を装入して装入層を形成し、前記給鉱装置の下流側に設けられる点火炉で前記装入層の上表面の前記凝結材に点火し、前記点火炉の下流側に設けられる気体燃料供給装置から前記パレットの幅方向に異なる量の気体燃料を前記装入層に供給し、前記パレットの下方に設けられた風箱で前記装入層内の空気を吸引し、前記凝結材を燃焼させて前記焼結原料を焼結して焼結ケーキとした後、前記焼結ケーキを破砕して焼結鉱とする、焼結鉱の製造方法であって、前記気体燃料供給装置は、前記パレットの移動方向に複数の気体燃料吐出ノズルを有する気体燃料供給管と、整流板とを複数有し、複数の前記気体燃料供給管は、前記幅方向において異なる位置に設けられ、前記気体燃料吐出ノズルは、前記気体燃料を前記上表面と平行な水平方向であって、前記幅方向に吐出するように設けられ、前記整流板は、前記気体燃料供給管から前記気体燃料の吐出方向に150mm以内の位置に設けられ、前記整流板の傾斜角度θは5°以上であって下記(1)式を満たし、かつ前記整流板の垂線方向の長さは50mm以上である、焼結鉱の製造方法。
tanθ≦(W/2-D1)/H・・・(1)
(1)式において、θは前記上表面の垂線に対して前記整流板の上端が前記気体燃料吐出ノズル側へ傾斜する方向を正とする前記整流板の傾斜角度(°)であり、Wは前記幅方向に隣合う前記気体燃料供給管間の距離(m)であり、D1は前記吐出方向における前記気体燃料供給管と前記整流板との距離(m)であり、Hは前記気体燃料供給管から前記上表面までの距離(m)である。
[2]前記気体燃料供給装置は、前記気体燃料供給管を囲むように設けられた筒状のフードと、前記フードの下端に設けられ前記フードの内側に突出する長さが20mm以上200mm以下の漏洩防止板と、前記フードと前記気体燃料供給管との間に設けられる端部整流板と、をさらに有し、前記端部整流板は、前記気体燃料供給管から前記気体燃料の吐出方向に150mm以内の位置に設けられ、前記端部整流板の傾斜角度φは、5°以上30°以下であって下記(2)式を満たし、かつ前記端部整流板の垂線方向の長さは50mm以上である、請求項1に記載の焼結鉱の製造方法。
(L-D2-B)/(H-S)≦tanφ・・・(2)
(2)式において、φは前記上表面の垂線に対して前記端部整流板の上端が前記気体燃料吐出ノズル側へ傾斜する方向を正とする前記端部整流板の傾斜角度(°)であり、Lは前記フードと前記気体燃料供給管との距離(m)であり、D2は前記吐出方向における前記気体燃料供給管と前記端部整流板との距離(m)であり、Bは前記漏洩防止板の前記長さ(m)であり、Sは前記漏洩防止板と前記上表面との距離(m)である。
[3]前記装入層の前記幅方向の両端部への気体燃料の供給量を前記幅方向の全体の平均気体燃料供給量よりも増加させる、[1]または[2]に記載の焼結鉱の製造方法。
[4]焼結時の熱量が不足している前記幅方向における前記装入層の位置を特定し、前記位置への気体燃料の供給量を前記幅方向の全体の平均気体燃料供給量よりも増加させる、[1]から[3]のいずれか一つに記載の焼結鉱の製造方法。
[5]鉄含有原料と凝結材とを含む焼結原料を供給する給鉱装置と、前記焼結原料が装入されて装入層が形成される無端移動式のパレットと、前記給鉱装置の下流側に設けられ、前記装入層の上表面の凝結材に点火する点火炉と、前記点火炉の下流側に設けられ、前記パレットの幅方向に異なる量の気体燃料を前記装入層に供給する気体燃料供給装置と、前記パレットの下方に設けられ前記装入層内の空気を吸引する風箱と、を有する焼結機であって、前記気体燃料供給装置は、前記パレットの移動方向に複数の気体燃料吐出ノズルを有する気体燃料供給管と、整流板とを複数有し、複数の前記気体燃料供給管は、前記幅方向において異なる位置に設けられ、前記気体燃料吐出ノズルは、前記気体燃料を前記上表面と平行な水平方向であって、前記幅方向に吐出するように設けられ、前記整流板は、前記気体燃料吐出ノズルから前記気体燃料の吐出方向に150mm以内の位置に設けられ、前記整流板の傾斜角度θは5°以上であって下記(1)式を満たし、かつ前記整流板の垂線方向の長さは50mm以上である、焼結機。
tanθ≦(W/2-D1)/H・・・(1)
(1)式において、θは前記上表面の垂線に対して前記整流板の上端が前記気体燃料吐出ノズル側へ傾斜する方向を正とする前記整流板の傾斜角度(°)であり、Wは前記幅方向に隣合う前記気体燃料供給管間の距離(m)であり、D1は前記吐出方向における前記気体燃料供給管と前記整流板との距離(m)であり、Hは前記気体燃料供給管から前記上表面までの距離(m)である。
[6]前記気体燃料供給装置は、前記気体燃料供給管を囲むように設けられた筒状のフードと、前記フードの下端に設けられ前記フードの内側に突出する長さが20mm以上200mm以下の漏洩防止板と、前記フードと前記気体燃料供給管との間に設けられる端部整流板と、をさらに有し、前記端部整流板は、前記気体燃料供給管から前記気体燃料の吐出方向に150mm以内の位置に設けられ、端部整流板の傾斜角度φは5°以上30°以下であって下記(2)式を満たし、かつ前記端部整流板の垂線方向の長さは50mm以上である、請求項5に記載の焼結機。
(L-D2-B)/(H-S)≦tanφ・・・(2)
(2)式において、φは前記上表面の垂線に対して前記端部整流板の上端が前記気体燃料吐出ノズル側へ傾斜する方向を正とする前記端部整流板の傾斜角度(°)であり、Lは前記フードと前記気体燃料供給管との距離(m)であり、D2は前記吐出方向における前記気体燃料供給管と前記端部整流板との距離(m)であり、Bは前記漏洩防止板の前記長さ(m)であり、Sは前記漏洩防止板と前記上表面との距離(m)である。
The gist and configuration of the present invention for solving the above problems are as follows.
[1] A sintering raw material containing an iron-containing raw material and a condensing material is charged into an endless movable pallet in a sintering machine feeding device to form a charging layer, and is provided downstream of the sintering machine. The coagulant on the upper surface of the charging layer is ignited in the ignition furnace, and different amounts of gaseous fuel are supplied to the charging layer in the width direction of the pallet from a gaseous fuel supply device provided downstream of the ignition furnace. The sintering raw material is sintered by sintering the sintering raw material by sucking the air in the charged layer with an air box provided below the pallet, and burning the coagulant to form a sintered cake. A method for producing sintered ore by crushing cake to obtain sintered ore, wherein the gaseous fuel supply device includes a gaseous fuel supply pipe having a plurality of gaseous fuel discharge nozzles in the moving direction of the pallet, and a rectifier. The plurality of gaseous fuel supply pipes are provided at different positions in the width direction, and the gaseous fuel discharge nozzle discharges the gaseous fuel in a horizontal direction parallel to the upper surface. The rectifying plate is provided so as to discharge in the width direction, the rectifying plate is provided at a position within 150 mm in the discharge direction of the gaseous fuel from the gaseous fuel supply pipe, and the inclination angle θ of the rectifying plate is 5° or more. A method for producing sintered ore, wherein the following formula (1) is satisfied, and the straightening plate has a length of 50 mm or more in the vertical direction.
tan θ≦(W/2−D1)/H (1)
In the formula (1), θ is the inclination angle (°) of the straightening plate with respect to the normal to the upper surface, with the direction in which the upper end of the straightening plate inclines toward the gaseous fuel discharge nozzle as positive, and W is is the distance (m) between the gaseous fuel supply pipes adjacent in the width direction, D1 is the distance (m) between the gaseous fuel supply pipe and the straightening plate in the discharge direction, and H is the gaseous fuel supply Distance (m) from the tube to the top surface.
[2] The gaseous fuel supply device includes a cylindrical hood provided to surround the gaseous fuel supply pipe, and a length of 20 mm or more and 200 mm or less that is provided at the lower end of the hood and protrudes inside the hood. A leakage prevention plate and an end straightening plate provided between the hood and the gaseous fuel supply pipe are further provided, and the end straightening plate extends from the gaseous fuel supply pipe in the discharge direction of the gaseous fuel. provided at a position within 150 mm, the inclination angle φ of the end straightening plate is 5° or more and 30° or less and satisfies the following formula (2), and the length of the end straightening plate in the vertical direction is 50 mm The method for producing sintered ore according to claim 1, which is the above.
(L-D2-B)/(H-S) ≤ tanφ (2)
In the formula (2), φ is the inclination angle (°) of the end straightening plate, with the direction in which the upper end of the end straightening plate inclines toward the gaseous fuel discharge nozzle with respect to the normal to the upper surface as positive. where L is the distance (m) between the hood and the gaseous fuel supply pipe, D2 is the distance (m) between the gaseous fuel supply pipe and the end straightening plate in the discharge direction, and B is the above is the length (m) of the leak-proof plate, and S is the distance (m) between the leak-proof plate and the top surface;
[3] The sintering according to [1] or [2], wherein the amount of gaseous fuel supplied to both ends of the charging layer in the width direction is made larger than the average amount of gaseous fuel supply in the entire width direction. Ore production method.
[4] Identify the position of the charging layer in the width direction where the amount of heat during sintering is insufficient, and make the gaseous fuel supply amount to the position higher than the average gaseous fuel supply amount in the entire width direction. The method for producing a sintered ore according to any one of [1] to [3], wherein the sintered ore is increased.
[5] A feeder for supplying sintering raw material containing an iron-containing raw material and a coagulant, an endless movable pallet in which the sintering raw material is charged to form a charged layer, and the ore feeder an ignition furnace for igniting the coagulant on the upper surface of the charging layer; and a wind box provided below the pallet for sucking air in the charge layer, wherein the gaseous fuel supply device is used to move the pallet A plurality of gaseous fuel supply pipes having a plurality of gaseous fuel discharge nozzles in a direction and a plurality of rectifying plates, the plurality of gaseous fuel supply pipes being provided at different positions in the width direction, and the gaseous fuel discharge nozzles comprising: The gaseous fuel is discharged in the horizontal direction parallel to the upper surface and in the width direction, and the current plate is positioned within 150 mm from the gaseous fuel discharge nozzle in the gaseous fuel discharge direction. wherein the current plate has an inclination angle θ of 5° or more, satisfies the following formula (1), and has a length of 50 mm or more in the vertical direction of the current plate.
tan θ≦(W/2−D1)/H (1)
In the formula (1), θ is the inclination angle (°) of the straightening plate with respect to the normal to the upper surface, with the direction in which the upper end of the straightening plate inclines toward the gaseous fuel discharge nozzle as positive, and W is is the distance (m) between the gaseous fuel supply pipes adjacent in the width direction, D1 is the distance (m) between the gaseous fuel supply pipe and the straightening plate in the discharge direction, and H is the gaseous fuel supply Distance (m) from the tube to the top surface.
[6] The gaseous fuel supply device includes a cylindrical hood provided so as to surround the gaseous fuel supply pipe, and a length of 20 mm or more and 200 mm or less that is provided at the lower end of the hood and protrudes inside the hood. A leakage prevention plate and an end straightening plate provided between the hood and the gaseous fuel supply pipe are further provided, and the end straightening plate extends from the gaseous fuel supply pipe in the discharge direction of the gaseous fuel. provided at a position within 150 mm, the inclination angle φ of the end straightening plate is 5° or more and 30° or less so as to satisfy the following formula (2), and the length of the end straightening plate in the vertical direction is 50 mm or more. 6. The sintering machine of claim 5, wherein
(L-D2-B)/(H-S) ≤ tanφ (2)
In the formula (2), φ is the inclination angle (°) of the end straightening plate, with the direction in which the upper end of the end straightening plate inclines toward the gaseous fuel discharge nozzle with respect to the normal to the upper surface as positive. where L is the distance (m) between the hood and the gaseous fuel supply pipe, D2 is the distance (m) between the gaseous fuel supply pipe and the end straightening plate in the discharge direction, and B is the above is the length (m) of the leak-proof plate, and S is the distance (m) between the leak-proof plate and the top surface;

本発明によれば、焼結機の幅方向における気体燃料の供給量の調整が可能となり、装入層において部分的に熱不足となる箇所が生じても、焼結機の幅方向において気体燃料の供給量を調整することで、装入層における局所的な熱不足を解消でき、焼結鉱の歩留の低下を抑制できる。 According to the present invention, it is possible to adjust the amount of gaseous fuel supplied in the width direction of the sintering machine. By adjusting the supply amount of , it is possible to eliminate the local heat shortage in the charging layer and suppress the decrease in the yield of sintered ore.

焼結鉱の製造装置の一例を示す模式図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic diagram which shows an example of the manufacturing apparatus of a sintered ore. 気体燃料供給装置の断面模式図である。It is a cross-sectional schematic diagram of a gaseous fuel supply apparatus. 気体燃料供給管及び整流板の配置構成を示す模式図である。It is a schematic diagram which shows the arrangement configuration of a gaseous fuel supply pipe and a straightening plate. 幅方向端部における気体燃料供給管及び端部整流板の配置構成を示す模式図である。It is a schematic diagram which shows the arrangement structure of the gaseous fuel supply pipe|tube and the edge part straightening plate in the width direction edge part. 装入層の断面領域の歩留調査の結果を示す図である。FIG. 4 shows the results of a yield study of cross-sectional areas of the loading layer; コークス比と装入層の収縮量との関係を示すグラフである。4 is a graph showing the relationship between the coke ratio and the amount of shrinkage of the charging layer.

以下、本発明の実施形態を通じて本発明を説明する。図1は、本実施形態に係る焼結鉱の製造方法が実施できる焼結鉱の製造装置10の一例を示す模式図である。ヤード11に保管された鉄含有原料12は、搬送コンベア14によって配合槽22に搬送される。鉄含有原料12は、種々の銘柄の鉄鉱石および製鉄所内発生ダストを含む。 Hereinafter, the present invention will be described through embodiments of the present invention. FIG. 1 is a schematic diagram showing an example of a sintered ore manufacturing apparatus 10 capable of implementing the sintered ore manufacturing method according to the present embodiment. The iron-containing raw material 12 stored in the yard 11 is transported to the blending tank 22 by the transport conveyor 14 . Iron-bearing feedstock 12 includes various grades of iron ore and steel mill dust.

原料供給部20は、複数の配合槽22、24、25、26、28を備える。配合槽22には、鉄含有原料12が貯留される。配合槽24には、石灰石や生石灰等を含むCaO含有原料16が貯留される。配合槽25には、ドロマイトや精錬ニッケルスラグ等を含むMgO含有原料17が貯留される。配合槽26には、ロッドミルを用いて粒径1mm以下に破砕された粉コークスや無煙炭を含む凝結材18が貯留される。配合槽28には、焼結鉱の篩下となった粒径5mm以下の返鉱(焼結鉱篩下粉)が貯留される。 The raw material supply unit 20 includes a plurality of mixing tanks 22, 24, 25, 26, and 28. The iron-containing raw material 12 is stored in the mixing tank 22 . The CaO-containing raw material 16 containing limestone, quicklime, etc. is stored in the mixing tank 24 . MgO-containing raw materials 17 containing dolomite, refined nickel slag, etc. are stored in the mixing tank 25 . A coagulant 18 containing fine coke and anthracite crushed to a particle size of 1 mm or less using a rod mill is stored in the blending tank 26 . Return ore having a particle size of 5 mm or less (sintered ore undersized powder) that has become the undersized sintered ore is stored in the blending tank 28 .

原料供給部20の配合槽22~28から、各原料が所定量切り出され、これらが配合されて焼結原料となる。焼結原料は、搬送コンベア30によってドラムミキサー36に搬送される。MgO含有原料17は、任意配合原料であって、焼結原料に配合されてもよく、配合されなくてもよい。 A predetermined amount of each raw material is cut out from the blending tanks 22 to 28 of the raw material supply unit 20, and blended to form a sintering raw material. The raw material for sintering is transported to the drum mixer 36 by the transport conveyor 30 . The MgO-containing raw material 17 is an optional mixed raw material, and may or may not be mixed with the sintering raw material.

ドラムミキサー36に搬送された焼結原料は、適量の水34が添加されてドラムミキサー36に投入され、例えば、平均粒径3.0~6.0mmの擬似粒子に造粒される。造粒された焼結原料は、搬送コンベア38によって焼結機40の給鉱装置42に搬送される。ドラムミキサー36は、焼結原料を造粒する造粒装置の一例であり、ドラムミキサー36は複数あってもよく、ドラムミキサー36に代えてペレタイザー造粒機を用いてもよい。また、ドラムミキサー36及びペレタイザー造粒機の両方を用いてもよく、ドラムミキサー36の上流に高速撹拌機を設置して、焼結原料を撹拌してもよい。 The sintering raw material conveyed to the drum mixer 36 is added with an appropriate amount of water 34 and charged into the drum mixer 36 to be granulated into pseudo-particles having an average particle size of 3.0 to 6.0 mm, for example. The granulated raw material for sintering is transported to the ore feeder 42 of the sintering machine 40 by the transport conveyor 38 . The drum mixer 36 is an example of a granulating device that granulates the raw material for sintering. A plurality of drum mixers 36 may be provided, and a pelletizer granulator may be used instead of the drum mixer 36 . Moreover, both the drum mixer 36 and the pelletizer granulator may be used, or a high-speed stirrer may be installed upstream of the drum mixer 36 to stir the raw material for sintering.

本実施形態において、擬似粒子の平均粒径は算術平均粒径であって、Σ(Vi×di)(但し、Viはi番目の粒度範囲の中にある粒子の存在比率であり、diはi番目の粒度範囲の代表粒径である。)で定義される粒径である。 In the present embodiment, the average particle diameter of the pseudo-particles is the arithmetic mean particle diameter, Σ (Vi × di) (where Vi is the abundance ratio of particles in the i-th particle size range, and di is i It is a representative particle size in the second particle size range.).

焼結機40は、例えば、下方吸引式のドワイトロイド焼結機である。焼結機40は、給鉱装置42と、無端移動式のパレット44と、点火炉46と、気体燃料供給装置47と、ウインドボックス等の風箱48とを有する。給鉱装置42において焼結原料がパレット44に装入され、焼結原料の装入層が形成される。そして、装入層が形成されたパレット44は、給鉱装置42の下流側に設けられる点火炉46に移動する。点火炉46において装入層の表層(上表面)に含まれる凝結材18が点火される。その後、パレット44の下方に設けられた風箱48を通じて空気を吸引しながら、点火炉46の下流側に設けられる気体燃料供給装置47において装入層に気体燃料および酸素富化空気を吸気させ、装入層内で気体燃料と凝結材18とを燃焼させつつ装入層内の燃焼を継続し、溶融帯を装入層の下方へ移動させる。これにより、装入層は焼結されて焼結ケーキが形成される。気体燃料として、高炉ガス、コークス炉ガス、高炉・コークス炉混合ガス、転炉ガス、天然ガス、メタンガス、エタンガス、プロパンガス、都市ガス、シェールガスなどの可燃性ガスを用いてよい。 The sintering machine 40 is, for example, a downward suction Dwight Lloyd sintering machine. The sintering machine 40 has an ore feeding device 42, an endlessly movable pallet 44, an ignition furnace 46, a gaseous fuel supply device 47, and a wind box 48 such as a wind box. The sintering raw material is loaded into a pallet 44 in the feeder 42 to form a charged layer of sintering raw material. Then, the pallet 44 on which the charged layer is formed moves to an ignition furnace 46 provided downstream of the ore feeder 42 . The coagulant 18 contained in the surface layer (upper surface) of the charge layer is ignited in the ignition furnace 46 . After that, while sucking air through the wind box 48 provided below the pallet 44, the gaseous fuel and oxygen-enriched air are sucked into the charging layer in the gaseous fuel supply device 47 provided downstream of the ignition furnace 46, Burning gaseous fuel and condensate 18 in the charging bed continue combustion in the charging bed to move the molten zone below the charging bed. The charge layer is thereby sintered to form a sinter cake. As the gaseous fuel, combustible gases such as blast furnace gas, coke oven gas, blast furnace/coke oven mixed gas, converter gas, natural gas, methane gas, ethane gas, propane gas, city gas, and shale gas may be used.

本実施形態における焼結機40の機長方向はパレット44の移動方向と同じ方向であり、焼結機40の幅方向は当該移動方向に対して垂直な方向であって、パレット44の幅方向と同じ方向である。 The machine length direction of the sintering machine 40 in the present embodiment is the same direction as the moving direction of the pallet 44, and the width direction of the sintering machine 40 is a direction perpendicular to the moving direction and is the same as the width direction of the pallet 44. in the same direction.

焼結ケーキは、破砕機50によって破砕され、冷却機60によって冷却され、篩分け装置70によって篩分けされる。このようにして、粒径5mm超の焼結鉱が製造され、搬送コンベア76によって高炉80へ装入される。一方、篩分け装置70により篩分けられる粒径5mm以下の返鉱74は、搬送コンベア78によって原料供給部20の配合槽28に搬送される。焼結鉱72の粒径および返鉱74の粒径は、篩によって篩分けられる粒径を意味し、例えば粒径5mm超とは、目開き5mmの篩を用いて篩上に篩分けされる粒径であり、粒径5mm以下とは、目開き5mmの篩を用いて篩下に篩分けされる粒径である。焼結鉱72および返鉱74の粒径の各値は、あくまで一例であり、この値に限定するものではない。 The sintered cake is crushed by a crusher 50, cooled by a cooler 60, and screened by a screening device 70. In this way, sintered ore having a particle size of more than 5 mm is produced and charged into the blast furnace 80 by the transfer conveyor 76 . On the other hand, the return ore 74 having a particle size of 5 mm or less sieved by the sieving device 70 is conveyed to the mixing tank 28 of the raw material supply section 20 by the conveyer 78 . The particle size of the sintered ore 72 and the particle size of the return ore 74 mean the particle size sieved by a sieve. It is a particle size, and a particle size of 5 mm or less is a particle size that is sieved under a sieve with an opening of 5 mm. Each value of the grain size of the sintered ore 72 and the return ore 74 is merely an example, and is not limited to this value.

次に、図2を参照して、気体燃料供給装置47の構成について説明する。図2は、気体燃料供給装置47の断面模式図である。図2において、図面の横方向が焼結機40及びパレット44の幅方向に相当する。図面の奥行方向が焼結機40の機長方向であり、パレット44の移動方向に相当する。 Next, the configuration of the gaseous fuel supply device 47 will be described with reference to FIG. FIG. 2 is a schematic cross-sectional view of the gaseous fuel supply device 47. As shown in FIG. In FIG. 2 , the horizontal direction of the drawing corresponds to the width direction of the sintering machine 40 and the pallet 44 . The depth direction of the drawing is the machine length direction of the sintering machine 40 and corresponds to the moving direction of the pallet 44 .

図2に示す気体燃料供給装置47は、四角筒状のフード6と、複数の酸素富化空気供給管1と、複数の気体燃料供給管3と、複数の遮蔽板2とを有する。図2に示す通り、気体燃料供給装置47には、例えば、焼結機40及びパレット44の幅方向に向けて、9本の酸素富化空気供給管1と、5本の気体燃料供給管3と、31枚の遮蔽板2とが設けられている。これらは、四角筒状のフード6の中において、下方から上方に向けて気体燃料供給管3、遮蔽板2、酸素富化空気供給管1の順に設けられる。9本の酸素富化空気供給管1には、焼結機40の機長方向(パレット44の移動方向)において異なる位置に複数の酸素富化空気吐出ノズルが設けられており、5本の気体燃料供給管3にも機長方向において異なる位置に複数の気体燃料吐出ノズル3aが設けられている。また、気体燃料供給管3は、機長方向に対して垂直なパレット44の幅方向において異なる位置に設けられている。 A gaseous fuel supply device 47 shown in FIG. As shown in FIG. 2, the gaseous fuel supply device 47 includes, for example, nine oxygen-enriched air supply pipes 1 and five gaseous fuel supply pipes 3 in the width direction of the sintering machine 40 and the pallet 44. and 31 shielding plates 2 are provided. These are provided in order of the gaseous fuel supply pipe 3, the shielding plate 2, and the oxygen-enriched air supply pipe 1 from the bottom to the top in the rectangular cylindrical hood 6. As shown in FIG. The nine oxygen-enriched air supply pipes 1 are provided with a plurality of oxygen-enriched air discharge nozzles at different positions in the machine length direction of the sintering machine 40 (moving direction of the pallet 44). The supply pipe 3 is also provided with a plurality of gaseous fuel discharge nozzles 3a at different positions in the machine length direction. Further, the gaseous fuel supply pipes 3 are provided at different positions in the width direction of the pallet 44 perpendicular to the machine length direction.

各々の酸素富化空気吐出ノズルから酸素富化空気が吐出され、装入層4に酸素富化空気が供給される。各々の気体燃料吐出ノズル3aからは気体燃料が吐出され、装入層4に気体燃料が供給される。装入層4の上層は、中層、下層に比べて焼結時の温度が低温になりやすく歩留りが低下しやすい。この点につき、本実施形態では、気体燃料や酸素富化空気を装入層4に供給することで、装入層4の上層の焼結時の温度を高めることができ、装入層4の上層の歩留の低下を抑制できる。また、遮蔽板2は気体燃料の上昇を防止し、上部(フード6内における酸素富化空気供給管1よりも上方の空間)での酸素富化空気と気体燃料との混合を抑制する。なお、図2に示すように遮蔽板2を設けた場合であっても、気体燃料がフード6内の上部に流れる可能性があるため、遮蔽板2の上方に気体燃料の有無を検出する検出器(図示省略)を設けて、気体燃料の上昇の有無を常時監視することが好ましい。 Oxygen-enriched air is discharged from each oxygen-enriched air discharge nozzle and supplied to the charging layer 4 . The gaseous fuel is discharged from each gaseous fuel discharge nozzle 3 a and supplied to the loading layer 4 . The upper layer of the charge layer 4 tends to be sintered at a lower temperature than the middle and lower layers, and the yield tends to decrease. In this regard, in the present embodiment, by supplying gaseous fuel or oxygen-enriched air to the charging layer 4, the temperature during sintering of the upper layer of the charging layer 4 can be increased. A decrease in the yield of the upper layer can be suppressed. In addition, the shield plate 2 prevents the gaseous fuel from rising and suppresses mixing of the oxygen-enriched air and the gaseous fuel in the upper portion (the space above the oxygen-enriched air supply pipe 1 in the hood 6). Even if the shield plate 2 is provided as shown in FIG. 2, gaseous fuel may flow to the upper part of the hood 6. A device (not shown) is preferably provided to constantly monitor whether gaseous fuel rises or not.

図2を用いて、気体燃料供給装置47に酸素富化空気供給管1および遮蔽板2を設けた構成を説明したが、酸素富化空気供給管1及び遮蔽板2は必ずしも設けられていなくてもよい。ただし、遮蔽板2を設けることで、焼結機40の周辺の風(気流)による気体燃料への影響が抑制され、気体燃料のフード6の外部への飛散が抑制されるため、気体燃料供給装置47には遮蔽板2を設けることが好ましい。気体燃料供給装置47は、各気体燃料供給管3への気体燃料の供給量を制御する制御装置(不図示)を有する。各気体燃料供給管3への気体燃料の供給量は当該制御装置によって制御される。 Although the configuration in which the gaseous fuel supply device 47 is provided with the oxygen-enriched air supply pipe 1 and the shield plate 2 has been described with reference to FIG. 2, the oxygen-enriched air supply pipe 1 and the shield plate 2 are not necessarily provided. good too. However, by providing the shield plate 2, the influence of the wind (air current) around the sintering machine 40 on the gaseous fuel is suppressed, and the scattering of the gaseous fuel to the outside of the hood 6 is suppressed. Preferably, the device 47 is provided with the shielding plate 2 . The gaseous fuel supply device 47 has a control device (not shown) that controls the amount of gaseous fuel supplied to each gaseous fuel supply pipe 3 . The amount of gaseous fuel supplied to each gaseous fuel supply pipe 3 is controlled by the control device.

次に、気体燃料供給管3と、気体燃料供給管3の近傍に配置される整流板5の構成について、図3を用いて説明する。図3は、気体燃料供給管3及び整流板5の配置構成を示す模式図である。図3に示す通り、気体燃料供給管3の気体燃料吐出ノズル3aから吐出される気体燃料は、装入層4の上表面に対しほぼ平行(水平)な方向(図中矢印参照)であって、焼結機40及びパレット44の幅方向に向けて吐出される。そして、整流板5に衝突し、整流板5の傾斜角度に基づいて、装入層4の上表面において区分けされた供給領域に向けて、個別に調整された流量の気体燃料が供給されることとなる。 Next, the configuration of the gaseous fuel supply pipe 3 and the current plate 5 arranged near the gaseous fuel supply pipe 3 will be described with reference to FIG. 3 . FIG. 3 is a schematic diagram showing the arrangement configuration of the gaseous fuel supply pipe 3 and the current plate 5. As shown in FIG. As shown in FIG. 3, the gaseous fuel discharged from the gaseous fuel discharge nozzle 3a of the gaseous fuel supply pipe 3 is directed substantially parallel (horizontal) to the upper surface of the charging layer 4 (see the arrow in the figure). , in the width direction of the sintering machine 40 and the pallet 44 . Then, the gaseous fuel collides with the rectifying plate 5 and is supplied to the divided supply areas on the upper surface of the charging layer 4 based on the inclination angle of the rectifying plate 5 at a flow rate that is individually adjusted. becomes.

整流板5は、気体燃料吐出ノズル3aに対し、気体燃料の吐出方向であって、気体燃料供給管3から150mm以内の距離となる位置に設けることが好ましい。気体燃料供給管3からの距離が150mmを超えると、吐出された気体燃料が、整流板5へ衝突する前に、装入層4へ吸気されている他の空気と拡散して下方へ流れてしまい、整流板5による気体燃料の供給位置の制御が不可能になるためである。そして、整流板5は、気体燃料供給管3から100mm以内の距離となる位置に設けることがより好ましい。気体燃料吐出ノズル3aから吐出された気体燃料は、100mm以内の距離であれば、水平方向への移動を概ね維持できるため、整流板5による流動制御が正確に実施できるからである。また、整流板5の垂線方向の長さは50mm以上であることが好ましい。整流板5の垂線方向の長さを50mm以上とすることで、整流板5に気体燃料が確実に衝突させ、気体燃料の供給位置を制御できる。 It is preferable that the straightening plate 5 is provided at a position within 150 mm from the gaseous fuel supply pipe 3 in the gaseous fuel discharge direction with respect to the gaseous fuel discharge nozzle 3a. When the distance from the gaseous fuel supply pipe 3 exceeds 150 mm, the discharged gaseous fuel diffuses with other air sucked into the charge layer 4 before colliding with the current plate 5 and flows downward. This is because it becomes impossible to control the supply position of the gaseous fuel by the straightening plate 5 . Further, it is more preferable to provide the rectifying plate 5 at a position within 100 mm from the gaseous fuel supply pipe 3 . This is because the gaseous fuel discharged from the gaseous fuel discharge nozzle 3a can generally maintain its horizontal movement within a distance of 100 mm, so that the flow control by the current plate 5 can be performed accurately. Moreover, it is preferable that the length of the current plate 5 in the vertical direction is 50 mm or more. By setting the length of the straightening plate 5 in the vertical direction to 50 mm or more, the gaseous fuel can reliably collide with the straightening plate 5, and the supply position of the gaseous fuel can be controlled.

図3に示す整流板5の傾斜角度θは5°以上であって以下の(1)式を満たすことが好ましい。
tanθ≦(W/2-D1)/H・・・(1)
ここで、θは装入層4の上表面の垂線Kに対して整流板5の上端が気体燃料吐出ノズル3a側へ傾斜する方向を正とする整流板5の傾斜角度(°)であり、Wは幅方向に隣合う気体燃料供給管3間の距離(m)であり、D1は、気体燃料の吐出方向における気体燃料供給管3と整流板5との距離(m)であり、Hは気体燃料供給管3から装入層4の上表面までの距離(m)である。
It is preferable that the inclination angle .theta. of the rectifying plate 5 shown in FIG. 3 is 5.degree.
tan θ≦(W/2−D1)/H (1)
Here, θ is the inclination angle (°) of the rectifying plate 5 with respect to the perpendicular line K to the upper surface of the charging layer 4, and the direction in which the upper end of the rectifying plate 5 inclines toward the gaseous fuel discharge nozzle 3a is positive. W is the distance (m) between the gaseous fuel supply pipes 3 adjacent in the width direction, D1 is the distance (m) between the gaseous fuel supply pipe 3 and the current plate 5 in the discharge direction of the gaseous fuel, and H is It is the distance (m) from the gaseous fuel supply pipe 3 to the upper surface of the charging layer 4 .

整流板5の傾斜角度θが5°よりも小さいと、整流板5に衝突した後の気体燃料がフード6内における上方にも拡散し、気体燃料漏洩の問題が発生する。このため、整流板5の傾斜角度θを5°以上にすることで、整流板5への衝突の後に整流板5に沿った上方への流動を抑制でき、吸気されている空気と共に下方へ流れる。 If the inclination angle θ of the straightening plate 5 is smaller than 5°, the gaseous fuel after colliding with the straightening plate 5 diffuses upward in the hood 6, causing a problem of gaseous fuel leakage. Therefore, by setting the inclination angle θ of the current plate 5 to 5° or more, the upward flow along the current plate 5 after colliding with the current plate 5 can be suppressed, and the air flows downward together with the sucked air. .

(1)式よりθが大きい場合((1)式を満たさない場合)には、幅方向に隣り合う気体燃料供給管3同士で気体燃料が供給される領域(装入層4の上表面)の一部が重なることとなり、装入層4の上表面にて区分けされた各供給領域に対して、気体燃料の供給量の個別の調整が困難となる。このため、(1)式を満たす構成とすることで、装入層4の上表面における気体燃料の供給領域を区分けでき、加えて、気体燃料供給管3への気体燃料の供給量を制御することで、区分けされた供給領域ごとへの気体燃料の供給量が調整可能となる。 When θ is larger than the formula (1) (when the formula (1) is not satisfied), the region where the gaseous fuel is supplied between the gaseous fuel supply pipes 3 adjacent to each other in the width direction (upper surface of the charging layer 4) , and it becomes difficult to individually adjust the amount of gaseous fuel supplied to each supply area divided on the upper surface of the charging layer 4 . Therefore, by adopting a configuration that satisfies the formula (1), the gaseous fuel supply region on the upper surface of the charging layer 4 can be divided, and in addition, the amount of gaseous fuel supplied to the gaseous fuel supply pipe 3 can be controlled. This makes it possible to adjust the amount of gaseous fuel supplied to each divided supply area.

なお、整流板5を用いること無く、気体燃料吐出ノズル3aの向きを傾斜させた場合には、吐出流量に応じて吐出流速が変化することになり、装入層4の上表面に気体燃料が到達した際に、幅方向に大きく拡散してしまう。その一方で、整流板5を用いた場合には、整流板5に気体燃料を衝突させて気体燃料の運動量を低下させると共に、整流板5の傾斜角度に応じて気体燃料の流れの向きを調整できるため、吐出流量の変化が生じたとしても、気体燃料の流動制御が可能となる。 If the direction of the gaseous fuel discharge nozzle 3a is tilted without using the rectifying plate 5, the discharge flow rate will change according to the discharge flow rate, and the gaseous fuel will flow on the upper surface of the charging layer 4. When it reaches, it spreads widely in the width direction. On the other hand, when the straightening plate 5 is used, the gaseous fuel collides with the straightening plate 5 to reduce the momentum of the gaseous fuel, and the direction of the flow of the gaseous fuel is adjusted according to the inclination angle of the straightening plate 5. Therefore, it is possible to control the gaseous fuel flow even if the discharge flow rate changes.

次に、焼結機40の幅方向端部における気体燃料供給管3及び端部整流板7の構成について、図4を用いて説明する。図4は、幅方向端部における気体燃料供給管3及び端部整流板7の配置構成を示す模式図である。図4に示す通り、フード6の内壁面に最も近い位置に設けられる気体燃料供給管3については、フード6の内壁面側に向けて気体燃料を吐出する方向であって、フード6と気体燃料供給管3との間に端部整流板7を設ける。そして、気体燃料供給管3を挟んで端部整流板7と対向する位置には、先述した整流板5が設けられる。 Next, the configuration of the gaseous fuel supply pipe 3 and the end rectifying plate 7 at the widthwise end of the sintering machine 40 will be described with reference to FIG. FIG. 4 is a schematic diagram showing the arrangement configuration of the gaseous fuel supply pipe 3 and the end rectifying plate 7 at the end in the width direction. As shown in FIG. 4, the gaseous fuel supply pipe 3 provided closest to the inner wall surface of the hood 6 is in the direction of discharging the gaseous fuel toward the inner wall surface of the hood 6. An end straightening plate 7 is provided between the supply pipe 3 and the supply pipe 3 . At a position facing the end straightening plate 7 with the gaseous fuel supply pipe 3 interposed therebetween, the above-described straightening plate 5 is provided.

ここで、パレット44を機長方向に移動可能とする装置の構成から、図4に示す通り、気体燃料供給管3を囲むように設けられた四角筒状のフード6とパレット44との間には、隙間Sが存在する。このため、パレット44の幅方向の端部の装入層4に向けて、意図的に気体燃料を供給すると、装入層4の表面に気体燃料が衝突した際に当該気体燃料が拡散し、フード6とパレット44との間の隙間Sから気体燃料が漏洩し、効果的な気体燃料の供給が不可能となる。従来は、安全上の観点から、パレット44の幅方向端部の装入層4に向けた気体燃料の直接的な供給が行えず、その他の幅方向の空間に存在する気体燃料が幅方向端部の装入層4に低濃度でゆっくり吸引されて焼結が行われるため、幅方向端部の装入層4においては、最終的な製品としての歩留値は低くなっていた。 Here, from the configuration of the device that allows the pallet 44 to move in the aircraft length direction, as shown in FIG. , a gap S exists. Therefore, if the gaseous fuel is intentionally supplied toward the charged layer 4 at the end of the width direction of the pallet 44, the gaseous fuel diffuses when it collides with the surface of the charged layer 4, The gaseous fuel leaks from the gap S between the hood 6 and the pallet 44, making it impossible to supply the gaseous fuel effectively. Conventionally, from the viewpoint of safety, the gaseous fuel could not be directly supplied to the charge layer 4 at the widthwise end of the pallet 44, and the gaseous fuel existing in the other space in the widthwise direction could not be supplied to the widthwise end. Since sintering is performed by being slowly sucked into the charge layer 4 at the end portion in the width direction, the yield value as the final product is low in the charge layer 4 at the end portion in the width direction.

このため、本実施形態においては、フード6の下方の位置にてフード6の内側に突出する20mm以上200mm以下の長さの水平部を有する漏洩防止板8を設けている。これにより、フード6とパレット44との間の隙間Sから気体燃料が漏洩することが防止され、幅方向端部の装入層4への気体燃料の直接的な供給を可能としている。ここで、漏洩防止板8の長さが20mmより短いと、漏洩防止効果が無くなる。漏洩防止板8の長さが200mmより長いと、装入層4の端部を広く覆う構成となるため、装入層4の端部への気体燃料の効率的な供給が不可能となる。なお、漏洩防止板8は、フード6の内壁面における設置位置が高くなるほど、後述する(2)式を満たすことが難しくなるため、四角筒状のフード6の内側であって、フード6の下端近傍に設置することが好ましい。 For this reason, in this embodiment, a leakage prevention plate 8 having a horizontal portion with a length of 20 mm or more and 200 mm or less protruding inside the hood 6 is provided at a position below the hood 6 . This prevents the gaseous fuel from leaking from the gap S between the hood 6 and the pallet 44, and enables direct supply of the gaseous fuel to the charge layer 4 at the end in the width direction. Here, if the length of the leakage prevention plate 8 is shorter than 20 mm, the leakage prevention effect is lost. If the length of the leakage prevention plate 8 is longer than 200 mm, the end portion of the charge layer 4 will be widely covered, and gaseous fuel cannot be efficiently supplied to the end portion of the charge layer 4 . The higher the installation position of the leak prevention plate 8 on the inner wall surface of the hood 6, the more difficult it becomes to satisfy the equation (2) described later. It is preferable to install it in the vicinity.

図4に示す通り、焼結機40の幅方向端部においても、気体燃料供給管3の気体燃料吐出ノズル3aから吐出される気体燃料は、装入層4の上表面に対しほぼ平行(水平)な方向(図中矢印参照)であって、焼結機40及びパレット44の幅方向に向けて吐出される。そして、端部整流板7に衝突し、端部整流板7の傾斜角度に基づいて、漏洩防止板8の上面に向けて、気体燃料が流動制御される。 As shown in FIG. 4, even at the widthwise end of the sintering machine 40, the gaseous fuel discharged from the gaseous fuel discharge nozzle 3a of the gaseous fuel supply pipe 3 is substantially parallel (horizontal) to the upper surface of the charging layer 4. ) direction (see the arrow in the drawing), and is discharged in the width direction of the sintering machine 40 and the pallet 44 . Then, it collides with the end straightening plate 7 , and based on the inclination angle of the end straightening plate 7 , the flow of the gaseous fuel is controlled toward the upper surface of the leakage prevention plate 8 .

端部整流板7は、整流板5と同様に気体燃料吐出ノズル3aに対し、気体燃料の吐出方向であって、気体燃料供給管3から150mm以内の距離となる位置に設けることが好ましい。気体燃料供給管3からの距離が150mmを超えると、吐出された気体燃料が、端部整流板7へ衝突する前に、装入層4へ吸気されている他の空気と拡散して下方へ流れてしまい、端部整流板7による供給位置の制御が不可能になるためである。そして、端部整流板7は、気体燃料供給管3から100mm以内の距離に設けることがより好ましい。気体燃料吐出ノズル3aから吐出された気体燃料は、100mm以内の距離であれば、水平方向への移動を概ね維持できるため、端部整流板7による流動制御が正確に実施できるからである。また、端部整流板7の垂線方向の長さも、整流板5と同様に50mm以上であることが好ましい。端部整流板7の垂線方向の長さを50mm以上とすることで、端部整流板7に気体燃料が確実に衝突させ、気体燃料の供給位置を制御できる。 Like the straightening plate 5, the end straightening plate 7 is preferably provided at a position within 150 mm from the gaseous fuel supply pipe 3 in the gaseous fuel discharge direction with respect to the gaseous fuel discharge nozzle 3a. When the distance from the gaseous fuel supply pipe 3 exceeds 150 mm, the discharged gaseous fuel diffuses with other air sucked into the charging layer 4 before colliding with the end rectifying plate 7 and moves downward. This is because the flow will flow, and control of the supply position by the end straightening plate 7 will become impossible. Further, it is more preferable to provide the end rectifying plate 7 at a distance of 100 mm or less from the gaseous fuel supply pipe 3 . This is because the gaseous fuel discharged from the gaseous fuel discharge nozzle 3a can generally maintain its horizontal movement within a distance of 100 mm, so that the flow control by the end rectifying plate 7 can be performed accurately. Also, the length of the end rectifying plate 7 in the vertical direction is preferably 50 mm or more, like the rectifying plate 5 . By setting the vertical length of the end straightening plate 7 to 50 mm or more, the gaseous fuel can reliably collide with the end straightening plate 7, and the gaseous fuel supply position can be controlled.

端部整流板7の傾斜角度φは、5°以上30°以下であって下記の(2)式を満たすことが好ましい。
(L-D2-B)/(H-S)≦tanφ・・・・(2)
ここで、φは装入層4の上表面の垂線Kに対して端部整流板7の上端が気体燃料吐出ノズル3a側へ傾斜する方向を正とする端部整流板7の傾斜角度(°)であり、Lはフード6と気体燃料供給管3との距離(m)であり、D2は、気体燃料の吐出方向における気体燃料供給管3と端部整流板7との距離(m)であり、Bは漏洩防止板8の水平部の長さ(m)であり、Sは漏洩防止板8と装入層4の上表面との距離(m)である。
The inclination angle φ of the end rectifying plate 7 preferably ranges from 5° to 30° and satisfies the following formula (2).
(L-D2-B)/(H-S) ≤ tanφ (2)
Here, φ is the inclination angle (° ), L is the distance (m) between the hood 6 and the gaseous fuel supply pipe 3, and D2 is the distance (m) between the gaseous fuel supply pipe 3 and the end straightening plate 7 in the discharge direction of the gaseous fuel. where B is the length (m) of the horizontal portion of the leakage prevention plate 8 and S is the distance (m) between the leakage prevention plate 8 and the upper surface of the charging layer 4 .

端部整流板7の傾斜角度φが5°よりも小さいと、端部整流板7に衝突した後の気体燃料がフード6内における上方にも拡散し、気体燃料漏洩の問題が発生する。このため、端部整流板7の傾斜角度φを5°以上にすることで、端部整流板7への衝突の後に端部整流板7に沿った上方への流動を抑制でき、吸気されている空気と共に下方へ流れる。 If the inclination angle φ of the end rectifying plate 7 is smaller than 5°, the gaseous fuel after colliding with the end rectifying plate 7 diffuses upward in the hood 6, causing a problem of gaseous fuel leakage. Therefore, by setting the inclination angle φ of the end straightening vanes 7 to 5° or more, it is possible to suppress the upward flow along the end straightening vanes 7 after colliding with the end straightening vanes 7, and the air is sucked. flows downward with the air.

なお、端部整流板7の傾斜角度φが30°よりも大きいと、気体燃料がフード6の壁面に衝突した際に、壁面の上方へ沿った流れが発生してフード6内における上方への拡散が起こるため、効果的な気体燃料の供給ができなくなる。そのため、(2)式を満たすことにより、装入層4の幅端部の漏洩防止板8の上面への気体燃料の供給を意図的に実施でき、フード6からの気体燃料の漏洩を防止できる。 If the inclination angle φ of the end rectifying plate 7 is larger than 30°, when the gaseous fuel collides with the wall surface of the hood 6, a flow along the wall surface is generated, causing an upward flow in the hood 6. Diffusion will occur, resulting in an ineffective supply of gaseous fuel. Therefore, by satisfying the expression (2), the gaseous fuel can be intentionally supplied to the upper surface of the leakage prevention plate 8 at the width end of the charge layer 4, and leakage of the gaseous fuel from the hood 6 can be prevented. .

以上の通り、本実施形態においては、気体燃料を水平方向に向けて吐出可能な気体燃料吐出ノズル3aを設けると共に、気体燃料供給管3から150mm以内の距離となる位置に整流板5を設け、先述した(1)式を満たす構成とすることで、装入層4の上表面に対する気体燃料の供給について、気体燃料の供給領域の区分けが可能となり、複数ある供給領域から特定の供給領域を選択して気体燃料を供給できるようになる。 As described above, in this embodiment, the gaseous fuel discharge nozzle 3a capable of discharging the gaseous fuel in the horizontal direction is provided, and the current plate 5 is provided at a position within 150 mm from the gaseous fuel supply pipe 3, By adopting a configuration that satisfies the above-described formula (1), it is possible to divide the gaseous fuel supply area for the supply of gaseous fuel to the upper surface of the charging layer 4, and select a specific supply area from a plurality of supply areas. gaseous fuel can be supplied.

さらに、焼結機40の幅方向端部に端部整流板7を設けると共に、フード6の内壁面の下部に漏洩防止板8を設け、先述した(2)式を満たす構成とすることで、装入層4の幅方向端部において、フード6からの気体燃料の漏洩を防止できる。 Furthermore, by providing an end rectifying plate 7 at the end of the sintering machine 40 in the width direction and providing a leakage prevention plate 8 at the lower part of the inner wall surface of the hood 6 to satisfy the above-mentioned formula (2), Leakage of the gaseous fuel from the hood 6 can be prevented at the width direction end of the charging layer 4 .

次に、従来の焼結方法であって、整流板5や端部整流板7を用いずに焼結鉱を製造した場合の焼結鉱の歩留状況について、図5を用いて説明する。図5に示す寸法情報に関する数値単位は、mm(ミリメートル)である。図5は、幅方向3.8m、装入層厚570mmの装入層4について、上層~下層に亘る断面方向において、3行10列で区分した断面領域の焼結鉱の歩留調査の結果を示す図である。各断面領域における数値は、当該断面領域における最終的な製品としての歩留値である。 Next, the yield of sintered ore when sintered ore is produced by a conventional sintering method without using straightening plate 5 or end straightening plate 7 will be described with reference to FIG. The numerical unit for the dimensional information shown in FIG. 5 is mm (millimeter). Fig. 5 shows the result of a sintered ore yield survey of a cross-sectional area divided into 3 rows and 10 columns in the cross-sectional direction from the upper layer to the lower layer for the charging layer 4 with a width direction of 3.8 m and a charging layer thickness of 570 mm. It is a figure which shows. A numerical value in each cross-sectional area is a yield value as a final product in the cross-sectional area.

図5に示す通り、装入層4の下層に比べて上層の歩留が低く、パレット44の幅方向中央部に比べて両端部の歩留が特に低いことがわかる。このため、当該歩留を向上させるために気体燃料を装入層4に供給する場合、幅方向中央部の歩留を基準に気体燃料を幅方向に均一に供給すると、両端部の歩留を十分に上昇させることができない。一方、両端部の歩留を基準に気体燃料を幅方向に均一に供給すると、幅方向中央部への気体燃料の供給量が過剰となるので、当該過剰となる気体燃料分のコストが上昇してしまう。 As shown in FIG. 5, it can be seen that the yield of the upper layer of the charging layer 4 is lower than that of the lower layer, and that the yield of both ends of the pallet 44 is particularly low compared to the widthwise center of the pallet 44 . For this reason, when gaseous fuel is supplied to the charging layer 4 in order to improve the yield, if the gaseous fuel is uniformly supplied in the width direction based on the yield at the center in the width direction, the yield at both ends can be increased. cannot be raised sufficiently. On the other hand, if the gaseous fuel is uniformly supplied in the width direction based on the yield at both ends, the amount of gaseous fuel supplied to the central portion in the width direction becomes excessive, so the cost of the excess gaseous fuel increases. end up

これに対し、本実施形態に係る焼結鉱の製造方法および焼結機では、装入層4の上表面において、装入層4の幅方向における気体燃料の供給領域の区分けが可能となり、複数ある供給領域から特定の供給領域を選択すると共に当該供給領域への気体燃料の供給量を調整できる。このため、装入層4のパレット44の幅方向の気体燃料の供給量について、幅方向両端部への気体燃料の供給量を全体の平均気体燃料の供給量よりも増加させることができる。これにより、パレット44の幅方向の両端部の歩留を他の領域よりも向上できるので、気体燃料を過剰に供給することを抑制しつつ、焼結鉱の歩留を向上できる。 On the other hand, in the sintered ore production method and the sintering machine according to the present embodiment, it is possible to divide the gaseous fuel supply region in the width direction of the charging layer 4 on the upper surface of the charging layer 4. A specific supply area can be selected from the supply areas and the amount of gaseous fuel supplied to the supply area can be adjusted. Therefore, with respect to the amount of gaseous fuel supplied in the width direction of the pallet 44 of the charging layer 4, the amount of gaseous fuel supplied to both ends in the width direction can be made larger than the average gaseous fuel supply amount of the whole. As a result, the yield of both ends in the width direction of the pallet 44 can be improved more than other regions, so that the yield of sintered ore can be improved while suppressing the excessive supply of gaseous fuel.

次に、コークス比と装入層の収縮量との関係について、図6を用いて説明する。図6は、コークス比と装入層の収縮量との関係を示すグラフである。コークス比は、焼結原料に含まれる凝結材18である粉コークスの配合割合(質量%)である。装入層4の収縮量(mm)は、焼結原料をパレット44に装入して装入層4を形成させた後の装入層4の上表面位置が焼結後にどのくらい低下したかを示し、装入層4が形成された後の上表面高さと焼結後の装入層4の上表面高さとの差により算出される。 Next, the relationship between the coke ratio and the amount of contraction of the charging layer will be described with reference to FIG. FIG. 6 is a graph showing the relationship between the coke ratio and the amount of shrinkage of the charging layer. The coke ratio is the blending ratio (% by mass) of coke fine, which is the condensing material 18 contained in the raw material for sintering. The amount of shrinkage (mm) of the charging layer 4 is how much the upper surface position of the charging layer 4 after charging the sintering raw material into the pallet 44 to form the charging layer 4 has decreased after sintering. It is calculated from the difference between the top surface height of the charged layer 4 after formation and the top surface height of the charged layer 4 after sintering.

図6に示す通り、焼結原料のコークス比が高くなるにしたがって装入層4の収縮量は大きくなることが確認できる。ここで、焼結原料のコークス比は焼結時の熱量を示すので、この結果から、焼結による装入層4の収縮量と焼結時の熱量とには相関関係があり、装入層4の収縮量を測定することで、焼結時の熱量が求められることがわかる。 As shown in FIG. 6, it can be confirmed that the amount of shrinkage of the charging layer 4 increases as the coke ratio of the sintering raw material increases. Here, since the coke ratio of the sintering raw material indicates the amount of heat during sintering, this result shows that there is a correlation between the amount of shrinkage of the charging layer 4 due to sintering and the amount of heat during sintering. By measuring the amount of shrinkage of 4, it can be seen that the amount of heat during sintering can be obtained.

つまり、装入層4が形成された直後の位置、及び、焼結機の機端の位置(装入層4の焼結工程を終える位置)に非接触式の位置測定装置を設置して各々の位置で上表面の高さを測定し、焼結前後の装入層4の上表面の高さの差(収縮量)を算出することで、装入層4の幅方向において熱不足となる位置の特定が可能となる。非接触式の位置測定装置として、レーザー変位計または音波式の距離計を用いることができるが、位置測定が可能な測定器である限り、特定の測定器に限定されない。 That is, a non-contact position measuring device is installed at the position immediately after the charge layer 4 is formed and at the end of the sintering machine (the position where the charge layer 4 is finished being sintered). By measuring the height of the upper surface of the charging layer 4 at the position of , and calculating the difference in the height of the upper surface of the charging layer 4 before and after sintering (the amount of shrinkage), the heat shortage occurs in the width direction of the charging layer 4 It becomes possible to identify the position. A laser displacement meter or a sonic range finder can be used as the non-contact position measuring device, but the measuring device is not limited to a specific measuring device as long as it is a measuring device capable of position measurement.

このため、本実施形態に係る焼結鉱の製造方法および焼結機では、焼結後の装入層4の焼結後の収縮量を測定して、焼結時の熱量が不足している装入層4の幅方向の位置を特定し、当該位置に相当する供給領域の位置への気体燃料の供給量を、当該幅方向における全体の平均気体燃料供給量よりも増加させてもよい。 Therefore, in the method for producing sintered ore and the sintering machine according to the present embodiment, the amount of shrinkage after sintering of the charging layer 4 after sintering is measured, and the amount of heat during sintering is insufficient. A position in the width direction of the charging layer 4 may be specified, and the amount of gaseous fuel supplied to the position of the supply area corresponding to the position may be increased from the average gaseous fuel supply amount of the entire width direction.

また、焼結後の装入層4の収縮量の測定を行わなくとも、焼結時に熱不足となる位置(例えば、装入層4の幅方向両端部)が予め特定されている場合には、装入層4の熱不足となる位置への気体燃料の供給量を、全体の平均気体燃料供給量よりも増加させてもよい。 Further, even if the amount of shrinkage of the charged layer 4 after sintering is not measured, if the positions where the heat is insufficient during sintering (for example, both ends in the width direction of the charged layer 4) are specified in advance. , the amount of gaseous fuel supplied to the heat-deficient locations of the charge layer 4 may be increased relative to the overall average gaseous fuel supply.

このように、焼結原料の成分濃度の変動によりパレット44の幅方向において焼結時の熱量が少なくなる位置が発生した場合でも、熱量が低下した装入層4の位置を特定し、当該位置に相当する供給領域への気体燃料の供給量を、他の供給領域よりも増加させることで熱量を補填でき、熱量低下による焼結鉱の生産性低下(歩留低下)を抑制できる。 In this way, even if there is a position in the width direction of the pallet 44 where the amount of heat during sintering decreases due to fluctuations in the component concentration of the raw material for sintering, the position of the charge layer 4 where the amount of heat has decreased is identified, and the position is determined. By increasing the amount of gaseous fuel supplied to the supply area corresponding to , more than the other supply areas, the amount of heat can be compensated, and the decrease in productivity of sintered ore (decrease in yield) due to the decrease in the amount of heat can be suppressed.

以下、本実施形態に係る焼結鉱の製造方法および焼結機を用いて、焼結鉱の歩留を調べた実施例を説明する。 EXAMPLES Hereinafter, examples in which the yield of sintered ore was examined using the method for producing sintered ore and the sintering machine according to the present embodiment will be described.

<実施例1>
本実施例では、幅3.8m、層厚570mmの装入層4に対し、図2に示すように、装入層4の上表面から500mm上方の位置に、気体燃料供給管3を幅方向対称に800mmピッチで5本設置した。供給される気体燃料として都市ガスを使用し、吸引大気に対して、0.4vol.%になるように調整し、幅方向中央に設けた気体燃料供給管3の気体燃料吐出ノズル3aから水平に噴射した。
<Example 1>
In this embodiment, as shown in FIG. 2, the gaseous fuel supply pipe 3 is positioned 500 mm above the upper surface of the charging layer 4 in the width direction of the charging layer 4 having a width of 3.8 m and a layer thickness of 570 mm. Five of them were installed symmetrically at a pitch of 800 mm. City gas is used as gaseous fuel to be supplied, and 0.4 vol. %, and injected horizontally from the gaseous fuel discharge nozzle 3a of the gaseous fuel supply pipe 3 provided in the center in the width direction.

また、気体燃料供給装置47におけるパレット44の移動方向の前後に、超音波式変位計を気体燃料供給管3と同じ幅方向の位置に5個設置した。整流板5の傾斜角度θ、吐出方向の距離D1および長さを変えた条件でそれぞれ焼成を実施した。焼成後のパレットを抜き出し、装入層4の上層である層高さ方向の1/3部分を幅方向にて10分割し、中央2カ所の平均歩留を調査した。表1に、整流板5の設置条件を示す。なお、整流板5を設置しなかった場合の平均歩留は79%であった。 Further, five ultrasonic displacement gauges were installed at positions in the same width direction as the gaseous fuel supply pipe 3 before and after the gaseous fuel supply device 47 in the moving direction of the pallet 44 . Firing was performed under conditions in which the inclination angle θ of the rectifying plate 5, the distance D1 in the discharge direction, and the length were changed. The fired pallet was extracted, and the 1/3 portion in the layer height direction, which is the upper layer of the charging layer 4, was divided into 10 parts in the width direction, and the average yield at the two central portions was investigated. Table 1 shows installation conditions of the rectifying plate 5 . The average yield was 79% when the rectifying plate 5 was not installed.

Figure 2023087778000002
Figure 2023087778000002

発明例1は、長さ100mmの整流板5を気体燃料供給管3から100mm離れた位置において、傾斜角度θ=20°で設置することで、都市ガスを気体燃料供給管3の直下の中央2カ所の範囲に供給することができたため、当該範囲の平均歩留が2%向上した。 In invention example 1, a straightening plate 5 having a length of 100 mm is installed at a position 100 mm away from the gaseous fuel supply pipe 3 at an inclination angle of θ = 20°, so that the city gas is directed to the center 2 directly below the gaseous fuel supply pipe 3. We were able to supply several areas, resulting in a 2% increase in average yield for those areas.

比較例1は、整流板5と気体燃料供給管3との距離が300mmと大きかったため、中央2カ所の範囲に都市ガスを効果的に供給できなかった。このため、当該範囲の平均歩留は整流板5を設けなかった場合と同じとなり、平均歩留を向上させることができなかった。比較例2は、整流板5の傾斜角度θを0°としたため、都市ガスが上方へ漏洩してしまい、安全上の観点から、都市ガス供給を中止した。比較例3は、整流板5の傾斜角度θを60°としたため、先述した(1)式を満たさなくなり、中央2カ所の範囲に都市ガスを効果的に供給できなかった。このため、当該範囲の平均歩留は整流板5を設けなかった場合と同じとなり、平均歩留を向上させることができなかった。比較例4は、長さ40mmの整流板5を用いたため、中央2カ所の範囲に都市ガスを効果的に供給できなかった。このため、当該範囲の平均歩留は整流板5を設けなかった場合と同じとなり、平均歩留を向上させることができなかった。比較例5は整流板5を設置しない場合の結果であり、平均歩留は79%であった。 In Comparative Example 1, since the distance between the rectifying plate 5 and the gaseous fuel supply pipe 3 was as large as 300 mm, city gas could not be effectively supplied to the central two areas. For this reason, the average yield in this range is the same as when the current plate 5 is not provided, and the average yield could not be improved. In Comparative Example 2, since the inclination angle θ of the straightening plate 5 was set to 0°, city gas leaked upward, and the supply of city gas was stopped from the viewpoint of safety. In Comparative Example 3, since the inclination angle θ of the rectifying plate 5 was set to 60°, the aforementioned formula (1) was not satisfied, and town gas could not be effectively supplied to the central two areas. For this reason, the average yield in this range is the same as when the current plate 5 is not provided, and the average yield could not be improved. In Comparative Example 4, since the straightening plate 5 having a length of 40 mm was used, city gas could not be effectively supplied to the central two areas. For this reason, the average yield in this range is the same as when the current plate 5 is not provided, and the average yield could not be improved. Comparative Example 5 is the result when the current plate 5 is not installed, and the average yield was 79%.

<実施例2>
次に、幅方向の両端部の装入層4も含め、気体燃料供給管3の気体燃料吐出ノズル3aの全てを水平方向に噴射し、整流板5に加え端部整流板7も設置した。表2に、端部整流板7や漏洩防止板8に関する条件と結果を示す。整流板5は、長さ60mmの構成とし、気体燃料供給管3から50mm離れた位置にて傾斜角度θを30°として設置した。なお、装入層4の幅方向の端部に都市ガスを供給しなかった場合には、幅方向の両端部から300mmの部分であって、装入層4の上層である層高さ方向の1/3部分の歩留は67%であった。
<Example 2>
Next, all of the gaseous fuel discharge nozzles 3a of the gaseous fuel supply pipe 3, including the charged layers 4 at both ends in the width direction, were ejected in the horizontal direction, and the straightening plate 5 and the end straightening plate 7 were also installed. Table 2 shows the conditions and results of the end current plate 7 and the leakage prevention plate 8. The straightening plate 5 was configured to have a length of 60 mm, and was installed at a position 50 mm away from the gaseous fuel supply pipe 3 with an inclination angle θ of 30°. In addition, when the city gas is not supplied to the ends of the charging layer 4 in the width direction, a portion of 300 mm from both ends in the width direction, which is the upper layer of the charging layer 4, in the height direction The yield of the 1/3 portion was 67%.

Figure 2023087778000003
Figure 2023087778000003

発明例2は、長さ150mmの端部整流板7を気体燃料供給管3から80mm離れた位置にて傾斜角度φを20°として設置した。そして、装入層4の上表面から100mmの高さ位置に水平部が100mmの長さの漏洩防止板8を設置したので、フード6の下端の隙間から都市ガスが漏洩することなく、装入層4の端部に都市ガスを供給することができ、歩留が75%に向上した。 In invention example 2, the end straightening plate 7 having a length of 150 mm was installed at a position 80 mm away from the gaseous fuel supply pipe 3 with an inclination angle φ of 20°. At a height of 100 mm from the upper surface of the charging layer 4, a leakage prevention plate 8 with a horizontal portion of 100 mm long is installed. City gas could be supplied to the edge of layer 4, and the yield improved to 75%.

参考例1は、端部整流板7の傾斜角度φを0°としたため、都市ガスが上方およびパレット44とフード6との隙間から拡散してしまい、安全上の観点から、都市ガス供給を中止した。参考例2は、端部整流板7の傾斜角度φを45°としたため、都市ガスが上方へ拡散してしまい、都市ガス供給を中止した。参考例3は、端部整流板7を気体燃料供給管3から200mmの位置に設置したので、都市ガスの流動制御を行うことができず、都市ガスが上方へ拡散してしまい、都市ガス供給を中止した。参考例4は、端部整流板7の長さを40mmとして設置したため、都市ガスの流動制御を行うことができず、都市ガスの一部が上方へ拡散したため、都市ガス供給を中止した。参考例5では、漏洩防止板8の長さを10mmとしたため、パレット44とフード6との隙間から都市ガスが漏洩したため、都市ガス供給を中止した。参考例6では、漏洩防止板8の水平部の長さを250mmとしたため、装入層4の幅方向の端部に都市ガスが効果的に供給されず、歩留は69%となった。参考例7は、漏洩防止板8を装入層4の上表面から200mmの位置に設置したため、パレット44とフード6との隙間から都市ガスが漏洩したため、都市ガス供給を中止した。 In Reference Example 1, since the inclination angle φ of the end rectifying plate 7 is set to 0°, the city gas diffuses upward and through the gap between the pallet 44 and the hood 6, and the supply of city gas is stopped from the viewpoint of safety. bottom. In Reference Example 2, since the inclination angle φ of the end rectifying plate 7 was set to 45°, the city gas diffused upward, and the city gas supply was stopped. In Reference Example 3, since the end rectifying plate 7 was installed at a position 200 mm from the gaseous fuel supply pipe 3, the city gas flow control could not be performed, and the city gas diffused upward, causing the city gas to be supplied. was discontinued. In Reference Example 4, since the length of the end rectifying plate 7 was set to 40 mm, the city gas flow could not be controlled, and part of the city gas diffused upward, so the supply of city gas was stopped. In Reference Example 5, since the length of the leakage prevention plate 8 was set to 10 mm, city gas leaked from the gap between the pallet 44 and the hood 6, and the supply of city gas was stopped. In Reference Example 6, since the length of the horizontal portion of the leakage prevention plate 8 was set to 250 mm, city gas was not effectively supplied to the ends of the charge layer 4 in the width direction, resulting in a yield of 69%. In Reference Example 7, since the leakage prevention plate 8 was installed at a position 200 mm from the upper surface of the charging layer 4, city gas leaked from the gap between the pallet 44 and the hood 6, and the supply of city gas was stopped.

以上の結果から、垂線方向の長さが50mm以上であり、気体燃料供給管からの距離が150mm以内であり、かつ、先述した(1)式を満たすように整流板5を設けることで気体燃料を特定範囲に選択的に供給でき、当該範囲の歩留を向上できることが確認された。さらに、焼結機40の幅方向端部に端部整流板7を設けると共に、フード6の内壁面の下部に漏洩防止板8を設け、先述した(2)式を満たす構成とすることで、装入層4の幅方向端部においてフード6からの気体燃料の漏洩を防止しつつ気体燃料を供給でき、当該範囲の歩留を向上できることが確認された。 From the above results, the length in the vertical direction is 50 mm or more, the distance from the gas fuel supply pipe is within 150 mm, and the rectifying plate 5 is provided so as to satisfy the above-described formula (1). can be selectively supplied to a specific range, and the yield of the range can be improved. Furthermore, by providing an end rectifying plate 7 at the end of the sintering machine 40 in the width direction and providing a leakage prevention plate 8 at the lower part of the inner wall surface of the hood 6 to satisfy the above-mentioned formula (2), It was confirmed that the gaseous fuel could be supplied while preventing gaseous fuel from leaking from the hood 6 at the width direction end of the charging layer 4, and the yield in the range could be improved.

1 酸素富化空気供給管
2 遮蔽板
3 気体燃料供給管
3a 気体燃料吐出ノズル
4 装入層
5 整流板
6 フード
7 端部整流板
8 漏洩防止板
10 焼結鉱の製造装置
11 ヤード
12 鉄含有原料
14、30、38、76、78 搬送コンベア
16 CaO含有原料
17 MgO含有原料
18 凝結材
20 原料供給部
22、24、25、26、28 配合槽
34 水
36 ドラムミキサー
40 焼結機
42 給鉱装置
44 パレット
46 点火炉
47 気体燃料供給装置
48 風箱
50 破砕機
60 冷却機
70 篩分け装置
72 焼結鉱
74 返鉱
80 高炉
D1 気体燃料供給管と整流板との距離
D2 気体燃料供給管と端部整流板との距離
θ 装入層の上表面の垂線に対する整流板の傾斜角度
φ 装入層の上表面の垂線に対する端部整流板の傾斜角度
H 気体燃料供給管から装入層の上表面までの距離
W 幅方向に隣合う気体燃料供給管間の距離
K 装入層の上表面の垂線
B 漏洩防止板の水平部の長さ
S 隙間
REFERENCE SIGNS LIST 1 Oxygen-enriched air supply pipe 2 Shield plate 3 Gaseous fuel supply pipe 3a Gaseous fuel discharge nozzle 4 Charging layer 5 Straightening plate 6 Hood 7 End straightening plate 8 Leakage prevention plate 10 Production equipment for sintered ore 11 Yard 12 Iron content Raw materials 14, 30, 38, 76, 78 Conveyor 16 CaO-containing raw material 17 MgO-containing raw material 18 Coagulant 20 Raw material supply part 22, 24, 25, 26, 28 Mixing tank 34 Water 36 Drum mixer 40 Sintering machine 42 Supply Device 44 pallet 46 ignition furnace 47 gaseous fuel supply device 48 wind box 50 crusher 60 cooler 70 screening device 72 sintered ore 74 return ore 80 blast furnace D1 distance between gaseous fuel supply pipe and straightening plate D2 gaseous fuel supply pipe and Distance from end straightening plate θ Inclination angle of straightening plate with respect to normal to top surface of charging layer φ Inclination angle of end straightening plate with respect to normal to upper surface of charging layer H Above top of charging layer from gaseous fuel supply pipe Distance to the surface W Distance between gaseous fuel supply pipes adjacent in the width direction K Vertical line to the upper surface of the charged layer B Length of the horizontal part of the leakage prevention plate S Gap

Claims (6)

焼結機の給鉱装置で無端移動式のパレットに鉄含有原料と凝結材とを含む焼結原料を装入して装入層を形成し、
前記給鉱装置の下流側に設けられる点火炉で前記装入層の上表面の前記凝結材に点火し、
前記点火炉の下流側に設けられる気体燃料供給装置から前記パレットの幅方向に異なる量の気体燃料を前記装入層に供給し、
前記パレットの下方に設けられた風箱で前記装入層内の空気を吸引し、前記凝結材を燃焼させて前記焼結原料を焼結して焼結ケーキとした後、前記焼結ケーキを破砕して焼結鉱とする、焼結鉱の製造方法であって、
前記気体燃料供給装置は、前記パレットの移動方向に複数の気体燃料吐出ノズルを有する気体燃料供給管と、整流板とを複数有し、
複数の前記気体燃料供給管は、前記幅方向において異なる位置に設けられ、
前記気体燃料吐出ノズルは、前記気体燃料を前記上表面と平行な水平方向であって、前記幅方向に吐出するように設けられ、
前記整流板は、前記気体燃料供給管から前記気体燃料の吐出方向に150mm以内の位置に設けられ、
前記整流板の傾斜角度θは5°以上であって下記(1)式を満たし、かつ前記整流板の垂線方向の長さは50mm以上である、焼結鉱の製造方法。
tanθ≦(W/2-D1)/H・・・(1)
(1)式において、θは前記上表面の垂線に対して前記整流板の上端が前記気体燃料吐出ノズル側へ傾斜する方向を正とする前記整流板の傾斜角度(°)であり、Wは前記幅方向に隣合う前記気体燃料供給管間の距離(m)であり、D1は前記吐出方向における前記気体燃料供給管と前記整流板との距離(m)であり、Hは前記気体燃料供給管から前記上表面までの距離(m)である。
forming a charging layer by charging a sintering raw material containing an iron-containing raw material and a condensate into an endless movable pallet by a feeding device of a sintering machine;
igniting the condensate on the upper surface of the charging layer in an ignition furnace provided downstream of the feeder;
supplying different amounts of gaseous fuel to the charging layer in the width direction of the pallet from a gaseous fuel supply device provided downstream of the ignition furnace;
Air in the charge layer is sucked by an air box provided below the pallet, and the coagulant is burned to sinter the sintering raw material into a sintered cake, and then the sintered cake is A method for producing sintered ore by crushing to make sintered ore,
The gaseous fuel supply device has a plurality of gaseous fuel supply pipes having a plurality of gaseous fuel discharge nozzles in the moving direction of the pallet, and a plurality of straightening plates,
The plurality of gaseous fuel supply pipes are provided at different positions in the width direction,
The gaseous fuel discharge nozzle is provided to discharge the gaseous fuel in a horizontal direction parallel to the upper surface and in the width direction,
The rectifying plate is provided at a position within 150 mm from the gaseous fuel supply pipe in the discharge direction of the gaseous fuel,
A method for producing a sintered ore, wherein the current plate has an inclination angle θ of 5° or more, satisfies the following formula (1), and has a length of 50 mm or more in the vertical direction of the current plate.
tan θ≦(W/2−D1)/H (1)
In the formula (1), θ is the inclination angle (°) of the straightening plate with respect to the normal to the upper surface, with the direction in which the upper end of the straightening plate inclines toward the gaseous fuel discharge nozzle as positive, and W is is the distance (m) between the gaseous fuel supply pipes adjacent in the width direction, D1 is the distance (m) between the gaseous fuel supply pipe and the straightening plate in the discharge direction, and H is the gaseous fuel supply Distance (m) from the tube to the top surface.
前記気体燃料供給装置は、前記気体燃料供給管を囲むように設けられた筒状のフードと、前記フードの下端に設けられ前記フードの内側に突出する長さが20mm以上200mm以下の漏洩防止板と、前記フードと前記気体燃料供給管との間に設けられる端部整流板と、をさらに有し、
前記端部整流板は、前記気体燃料供給管から前記気体燃料の吐出方向に150mm以内の位置に設けられ、
前記端部整流板の傾斜角度φは、5°以上30°以下であって下記(2)式を満たし、かつ前記端部整流板の垂線方向の長さは50mm以上である、請求項1に記載の焼結鉱の製造方法。
(L-D2-B)/(H-S)≦tanφ・・・(2)
(2)式において、φは前記上表面の垂線に対して前記端部整流板の上端が前記気体燃料吐出ノズル側へ傾斜する方向を正とする前記端部整流板の傾斜角度(°)であり、Lは前記フードと前記気体燃料供給管との距離(m)であり、D2は前記吐出方向における前記気体燃料供給管と前記端部整流板との距離(m)であり、Bは前記漏洩防止板の前記長さ(m)であり、Sは前記漏洩防止板と前記上表面との距離(m)である。
The gaseous fuel supply device includes a cylindrical hood provided so as to surround the gaseous fuel supply pipe, and a leakage prevention plate provided at the lower end of the hood and having a length of 20 mm or more and 200 mm or less protruding inside the hood. and an end straightening plate provided between the hood and the gaseous fuel supply pipe,
The end straightening plate is provided at a position within 150 mm from the gaseous fuel supply pipe in the gaseous fuel discharge direction,
2. The end straightening plate according to claim 1, wherein the inclination angle φ of the end straightening plate is 5° or more and 30° or less, satisfying the following formula (2), and the vertical length of the end straightening plate is 50 mm or more. A method for producing the described sintered ore.
(L-D2-B)/(H-S) ≤ tanφ (2)
In the formula (2), φ is the inclination angle (°) of the end straightening plate, with the direction in which the upper end of the end straightening plate inclines toward the gaseous fuel discharge nozzle with respect to the normal to the upper surface as positive. where L is the distance (m) between the hood and the gaseous fuel supply pipe, D2 is the distance (m) between the gaseous fuel supply pipe and the end straightening plate in the discharge direction, and B is the above is the length (m) of the leak-proof plate, and S is the distance (m) between the leak-proof plate and the top surface;
前記装入層の前記幅方向の両端部への気体燃料の供給量を前記幅方向の全体の平均気体燃料供給量よりも増加させる、請求項1または請求項2に記載の焼結鉱の製造方法。 The production of sintered ore according to claim 1 or 2, wherein the gaseous fuel supply amount to both ends of the charging layer in the width direction is increased more than the overall average gaseous fuel supply amount in the width direction. Method. 焼結時の熱量が不足している前記幅方向における前記装入層の位置を特定し、前記位置への気体燃料の供給量を前記幅方向の全体の平均気体燃料供給量よりも増加させる、請求項1から請求項3のいずれか一項に記載の焼結鉱の製造方法。 Identifying the position of the charging layer in the width direction where the amount of heat during sintering is insufficient, and increasing the gaseous fuel supply amount to the position above the average gaseous fuel supply amount in the entire width direction; The method for producing sintered ore according to any one of claims 1 to 3. 鉄含有原料と凝結材とを含む焼結原料を供給する給鉱装置と、
前記焼結原料が装入されて装入層が形成される無端移動式のパレットと、
前記給鉱装置の下流側に設けられ、前記装入層の上表面の凝結材に点火する点火炉と、
前記点火炉の下流側に設けられ、前記パレットの幅方向に異なる量の気体燃料を前記装入層に供給する気体燃料供給装置と、
前記パレットの下方に設けられ前記装入層内の空気を吸引する風箱と、
を有する焼結機であって、
前記気体燃料供給装置は、前記パレットの移動方向に複数の気体燃料吐出ノズルを有する気体燃料供給管と、整流板とを複数有し、
複数の前記気体燃料供給管は、前記幅方向において異なる位置に設けられ、
前記気体燃料吐出ノズルは、前記気体燃料を前記上表面と平行な水平方向であって、前記幅方向に吐出するように設けられ、
前記整流板は、前記気体燃料吐出ノズルから前記気体燃料の吐出方向に150mm以内の位置に設けられ、
前記整流板の傾斜角度θは5°以上であって下記(1)式を満たし、かつ前記整流板の垂線方向の長さは50mm以上である、焼結機。
tanθ≦(W/2-D1)/H・・・(1)
(1)式において、θは前記上表面の垂線に対して前記整流板の上端が前記気体燃料吐出ノズル側へ傾斜する方向を正とする前記整流板の傾斜角度(°)であり、Wは前記幅方向に隣合う前記気体燃料供給管間の距離(m)であり、D1は前記吐出方向における前記気体燃料供給管と前記整流板との距離(m)であり、Hは前記気体燃料供給管から前記上表面までの距離(m)である。
a feeder for supplying a sintering raw material comprising an iron-bearing raw material and a condensate;
an endless movable pallet on which the sintering raw material is charged to form a charging layer;
an ignition furnace provided downstream of the feeder for igniting the condensate on the upper surface of the charging layer;
a gaseous fuel supply device provided on the downstream side of the ignition furnace and supplying different amounts of gaseous fuel to the charging layer in the width direction of the pallet;
a wind box provided below the pallet for sucking air in the charging bed;
A sintering machine having
The gaseous fuel supply device has a plurality of gaseous fuel supply pipes having a plurality of gaseous fuel discharge nozzles in the moving direction of the pallet, and a plurality of straightening plates,
The plurality of gaseous fuel supply pipes are provided at different positions in the width direction,
The gaseous fuel discharge nozzle is provided to discharge the gaseous fuel in a horizontal direction parallel to the upper surface and in the width direction,
The rectifying plate is provided at a position within 150 mm in the gaseous fuel discharge direction from the gaseous fuel discharge nozzle,
A sintering machine, wherein the current plate has an inclination angle θ of 5° or more, satisfies the following formula (1), and has a length of 50 mm or more in the vertical direction of the current plate.
tan θ≦(W/2−D1)/H (1)
In the formula (1), θ is the inclination angle (°) of the straightening plate with respect to the normal to the upper surface, with the direction in which the upper end of the straightening plate inclines toward the gaseous fuel discharge nozzle as positive, and W is is the distance (m) between the gaseous fuel supply pipes adjacent in the width direction, D1 is the distance (m) between the gaseous fuel supply pipe and the straightening plate in the discharge direction, and H is the gaseous fuel supply Distance (m) from the tube to the top surface.
前記気体燃料供給装置は、前記気体燃料供給管を囲むように設けられた筒状のフードと、前記フードの下端に設けられ前記フードの内側に突出する長さが20mm以上200mm以下の漏洩防止板と、前記フードと前記気体燃料供給管との間に設けられる端部整流板と、をさらに有し、
前記端部整流板は、前記気体燃料供給管から前記気体燃料の吐出方向に150mm以内の位置に設けられ、
端部整流板の傾斜角度φは5°以上30°以下であって下記(2)式を満たし、かつ前記端部整流板の垂線方向の長さは50mm以上である、請求項5に記載の焼結機。
(L-D2-B)/(H-S)≦tanφ・・・(2)
(2)式において、φは前記上表面の垂線に対して前記端部整流板の上端が前記気体燃料吐出ノズル側へ傾斜する方向を正とする前記端部整流板の傾斜角度(°)であり、Lは前記フードと前記気体燃料供給管との距離(m)であり、D2は前記吐出方向における前記気体燃料供給管と前記端部整流板との距離(m)であり、Bは前記漏洩防止板の前記長さ(m)であり、Sは前記漏洩防止板と前記上表面との距離(m)である。
The gaseous fuel supply device includes a cylindrical hood provided so as to surround the gaseous fuel supply pipe, and a leakage prevention plate provided at the lower end of the hood and having a length of 20 mm or more and 200 mm or less protruding inside the hood. and an end straightening plate provided between the hood and the gaseous fuel supply pipe,
The end straightening plate is provided at a position within 150 mm from the gaseous fuel supply pipe in the gaseous fuel discharge direction,
6. The end straightening plate according to claim 5, wherein the inclination angle φ of the end straightening plate is 5° or more and 30° or less to satisfy the following formula (2), and the length of the end straightening plate in the vertical direction is 50 mm or more. sintering machine.
(L-D2-B)/(H-S) ≤ tanφ (2)
In the formula (2), φ is the inclination angle (°) of the end straightening plate, with the direction in which the upper end of the end straightening plate inclines toward the gaseous fuel discharge nozzle with respect to the normal to the upper surface as positive. where L is the distance (m) between the hood and the gaseous fuel supply pipe, D2 is the distance (m) between the gaseous fuel supply pipe and the end straightening plate in the discharge direction, and B is the above is the length (m) of the leak-proof plate, and S is the distance (m) between the leak-proof plate and the top surface;
JP2021202254A 2021-12-14 2021-12-14 Method for producing sintered ore and sintering machine Pending JP2023087778A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021202254A JP2023087778A (en) 2021-12-14 2021-12-14 Method for producing sintered ore and sintering machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021202254A JP2023087778A (en) 2021-12-14 2021-12-14 Method for producing sintered ore and sintering machine

Publications (1)

Publication Number Publication Date
JP2023087778A true JP2023087778A (en) 2023-06-26

Family

ID=86899883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021202254A Pending JP2023087778A (en) 2021-12-14 2021-12-14 Method for producing sintered ore and sintering machine

Country Status (1)

Country Link
JP (1) JP2023087778A (en)

Similar Documents

Publication Publication Date Title
JP5408180B2 (en) Raw material charging equipment for sintering machine
JP5386953B2 (en) Sintering machine and method for operating sintered ore
JP5843063B2 (en) Sintering machine and gaseous fuel supply method
AU2013291376B2 (en) Gaseous fuel supply apparatus for sintering machine
JP6024890B2 (en) Method and apparatus for supplying gaseous fuel to a sintering machine
CN104797720A (en) Oxygen-gas fuel supply device for sintering machine
JP2023087778A (en) Method for producing sintered ore and sintering machine
JP5593607B2 (en) Method for producing sintered ore and sintering machine
JP6519036B2 (en) Blast furnace operation method
JP5428195B2 (en) Sintering machine
JP2023057724A (en) Method for manufacturing sintered ore and sintering machine
US9534272B2 (en) Method for producing sintered ore
JP5581582B2 (en) Sintering machine
JP2007277594A (en) Sintered ore production method
EP3372936B1 (en) Apparatus and method for charging raw material
JP2023057725A (en) Method for manufacturing sintered ore and sintering machine
JP2014055328A (en) Measurement method for air flow rate in sintering machine and production method for sintered ore
JP6874780B2 (en) Sintered ore manufacturing method
JP2014031580A (en) Oxygen-gaseous fuel supply unit of sintering machine
JP5862872B2 (en) Sintering machine and gaseous fuel supply method
JP6866856B2 (en) Sintered ore manufacturing method and blast furnace operation method
WO2023210411A1 (en) Granulation device, method for producing granulation sintering raw material, and method for producing sintered ore
KR20230157466A (en) Sintered ore manufacturing method and sintered ore manufacturing device
KR20050010264A (en) Method for manufacturing sintered ore using the baking tempature on the wind box
JP2014055329A (en) Measurement method for air flow rate in sintering machine and production method for sintered ore

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240423