JP2023086617A - 電力制御システム及び電力制御機器 - Google Patents

電力制御システム及び電力制御機器 Download PDF

Info

Publication number
JP2023086617A
JP2023086617A JP2021201279A JP2021201279A JP2023086617A JP 2023086617 A JP2023086617 A JP 2023086617A JP 2021201279 A JP2021201279 A JP 2021201279A JP 2021201279 A JP2021201279 A JP 2021201279A JP 2023086617 A JP2023086617 A JP 2023086617A
Authority
JP
Japan
Prior art keywords
power
base
amount
demand
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021201279A
Other languages
English (en)
Inventor
一生 鈴木
Kazuo Suzuki
和明 東
Kazuaki Azuma
俊明 佐々木
Toshiaki Sasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2021201279A priority Critical patent/JP2023086617A/ja
Publication of JP2023086617A publication Critical patent/JP2023086617A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

Figure 2023086617000001
【課題】電気事業者による電力指令を満たしつつ、発電する電力の自己託送を実現する電力制御システム及び電力制御機器を提供する。
【解決手段】電力制御システム1Aは、第1拠点の電力需要を算出する需要算出部50Aと、電力需要及び第1拠点の発電部が発電する電力量に基づいて、所定の時間区分において第1拠点から電力系統に逆潮流する電力量を算出する同時同量算出部60Aと、電気事業者による電力指令を満たすとともに、電力需要に基づいて、第1拠点から電力系統に逆潮流する電力量の予定と実績との差が低減されるように、発電部が出力する電力を制御する出力制御部70Aと、を備える。
【選択図】図1

Description

本開示は、電力制御システム及び電力制御機器に関する。
従来、発電施設から出力される電力を、第三者エンティティによって管理される電力系統を介して、発電施設から需要施設に対して送電する仕組みとして、自己託送が知られている。自己託送を行うシステムにおいて、自己託送の電力を適切に把握する技術が提案されている(例えば、特許文献1参照)。
太陽光発電を行う場合、例えば発電量が多い時又は電力需要が少ない時期などには、電力系統に供給される電力が電気事業者の接続可能量を超えないように、発電の出力を抑制する必要がある(出力制御)。また、電力需要が多い時期などに太陽光発電が更に加わることにより、電力線が過熱すること防ぐため、出力制御が必要になることもある。電気事業者から電力に関する指令(電力指令)が発せられる場合、発電設備において、電力指令を満たすように電力の出力制御を行うことが求められる。出力制御において、出力制御の指令値及び異常検出結果に基づいて、電力指令の値を算出してパワーコンディショナに送信する技術が提案されている(例えば、特許文献2参照)。
特開2021-52557号公報 特開2017-229213号広報
上述したようなシステムにおいて、電気事業者による電力指令を満たしつつ、発電する電力の自己託送を好適に実現することが望まれている。
本開示の目的は、電気事業者による電力指令を満たしつつ、発電する電力の自己託送を実現し得る電力制御システム及び電力制御機器を提供することにある。
一実施形態に係る電力制御システムは、
第1拠点の電力需要を算出する需要算出部と、
前記電力需要及び前記第1拠点の発電部が発電する電力量に基づいて、所定の時間区分において前記第1拠点から電力系統に逆潮流する電力量を算出する同時同量算出部と、
電気事業者による電力指令を満たすとともに、前記電力需要に基づいて、前記第1拠点から電力系統に逆潮流する電力量の予定と実績との差が低減されるように、前記発電部が出力する電力を制御する出力制御部と、
を備える。
また、一実施形態に係る電力制御システムは、
第1拠点の電力需要を算出する需要算出部と、
前記電力需要及び前記第1拠点の発電部が発電する電力量に基づいて、所定の時間区分において前記第1拠点から電力系統に逆潮流する電力量を算出する同時同量算出部と、
電気事業者による電力指令を満たすとともに、前記電力需要に基づいて、前記第1拠点から電力系統に逆潮流する電力量の予定と実績との差が低減されるように、前記第1拠点の蓄電池の充電及び放電の少なくとも一方を制御する出力制御部と、
を備える。
また、一実施形態に係る電力制御機器は、
第1拠点の電力需要を算出する需要算出部と、
前記電力需要及び前記第1拠点の発電部が発電する電力量に基づいて、所定の時間区分において前記第1拠点から電力系統に逆潮流する電力量を算出する同時同量算出部と、
電気事業者による電力指令を満たすとともに、前記電力需要に基づいて、前記第1拠点から電力系統に逆潮流する電力量の予定と実績との差が低減されるように、前記発電部が出力する電力を制御する出力制御部と、
を備える。
また、一実施形態に係る電力制御機器は、
第1拠点の電力需要を算出する需要算出部と、
前記電力需要及び前記第1拠点の発電部が発電する電力量に基づいて、所定の時間区分において前記第1拠点から電力系統に逆潮流する電力量を算出する同時同量算出部と、
電気事業者による電力指令を満たすとともに、前記電力需要に基づいて、前記第1拠点から電力系統に逆潮流する電力量の予定と実績との差が低減されるように、前記第1拠点の蓄電池の充電及び放電の少なくとも一方を制御する出力制御部と、
を備える。
一実施形態によれば、電気事業者による電力指令を満たしつつ、発電する電力の自己託送を実現し得る電力制御システム及び電力制御機器を提供することができる。
一実施形態に係る電力制御システムの構成例を示す図である。 一実施形態に係る電力制御システムの動作を説明するフローチャートである。 一実施形態に係る電力制御システムの動作を説明する図である。 一実施形態に係る電力制御システムの動作を説明する図である。 一実施形態に係る電力制御システムの動作を説明する図である。 一実施形態に係る電力制御システムの動作を説明する図である。 一実施形態に係る電力制御システムの動作を説明する図である。 一実施形態に係る電力制御システムの動作を説明する図である。 一実施形態に係る電力制御システムの動作を説明する図である。 一実施形態に係る電力制御システムの動作を説明する図である。 一実施形態に係る電力制御システムの動作を説明する図である。
本開示において、電力制御システム及び/又は電力制御機器は、電力によって動作するシステム及び/又は機器としてよい。また、電力制御システム及び/又は電力制御機器は、電力を制御する機能を含むものとしてよい。電力制御システム及び/又は電力制御機器の機能は、電力を制御する機能に限定されず、他の機能を有してもよい。
また、本開示において、「自己託送」とは、例えば、経済産業省の外局である資源エネルギー庁によって制定された「自己託送に係る指針」(平成26年4月1日施行)に規定されたものとしてよい。すなわち、自己託送とは、自家用発電設備を設置する者が、当該自家用発電設備を用いて発電した電力を一般電気事業者が維持し、及び運用する送配電ネットワークを介して、当該自家用発電設備を設置する者の別の場所にある工場等に送電する際に、当該一般電気事業者が提供する送電サービスのこととしてよい。
以下、一実施形態に係る電力制御システムについて、図面を参照して説明する。
図1は、一実施形態に係る電力制御システムの構成例を示す図である。図1に示すように、一実施形態において、電力制御システム1Aは第1拠点に設置されるシステムとしてよく、電力制御システム1Bは第2拠点に設置されるシステムとしてよい。以下、電力制御システム1Aと電力制御システム1Bとを特に区別しない場合、単に「電力制御システム1」と総称する。
図1において、第1拠点は、図1の上側に示す一点鎖線よりも上の領域に模式的に示される拠点とし、第2拠点は、図1の下側に示す一点鎖線よりも下の領域に模式的に示される拠点とする。第1拠点及び/又は第2拠点は、例えば、いわゆる野立て太陽光発電を行う場所、各事業者の事業所又は営業所、工場、及び集合住宅など、電力の発電及び/又は消費が想定される任意の地点としてよい。また、図1において、第1拠点と第2拠点との間の領域は、例えば第1拠点又は第2拠点以外の他の拠点としてもよいし、第1拠点及び/又は第2拠点の一部としてもよいし、任意の拠点としてよい。
図1において、送電及び/又は受電の際の経路、すなわち電力の経路を、主として実線により示す。一方、図1において、情報の送信及び/又は受信の際の経路、すなわち電気信号の経路を、主として破線により示す。
また、図1に示す各機能部同士は、適宜、有線及び無線の少なくとも一方により接続されてよい。図1において、各機能部同士の間を有線及び無線の少なくとも一方により接続する通信インタフェース及び各種の中継器(中継機)などは、図示を省略してある。また、各機能部は、各種の情報及び/又はプログラムなどを記憶する例えば半導体メモリなどの記憶部を、適宜備えてもよい。図1において、半導体メモリなどの記憶部は、図示を省略してある。
図1に示すように、第1拠点の電力制御システム1Aは、発電部10A、電力調整部20A、負荷30A、スマートメータ40A、需要算出部50A、同時同量算出部60A、及び出力制御部70Aを含んで構成されてよい。電力制御システム1Aは、前述の機能部の一部を含まなくてもよいし、前述の機能部以外の他の機能部を含んでもよい。
また、図1に示すように、第2拠点の電力制御システム1Bは、発電部10B、電力調整部20B、負荷30B、スマートメータ40B、需要算出部50B、同時同量算出部60B、及び出力制御部70Bを含んで構成されてよい。電力制御システム1Bは、前述の機能部の一部を含まなくてもよいし、前述の機能部以外の他の機能部を含んでもよい。

以下、発電部10Aと発電部10Bとを特に区別しない場合、単に「発電部10」と記す。また、他の機能部についても同様に、電力制御システム1Aの機能部と電力制御システム1Bの機能部とを特に区別しない場合、単に当該機能部の参照番号を記す(すなわちA又はBのような記号を省略する)。例えば、電力調整部20Aと電力調整部20Bとを特に区別しない場合、単に「電力調整部20」と記す。
電力制御システム1Aの機能部に対応する電力制御システム1Bの各機能部は、それぞれ電力制御システム1Aの機能部と同じ構成又は同様の構成としてもよいし、異なる構成としてもよい。以下、説明の簡略化のために、電力制御システム1Aの機能部に対応する電力制御システム1Bの各機能部は、それぞれ電力制御システム1Aの機能部と同じものとして説明する。
以下、特に明記しない限り、基本的に、電力制御システム1Aについて、より詳細に説明する。しかしながら、電力制御システム1Bについても、電力制御システム1Aと同様又は類似の主旨に基づく説明が適用可能なものとしてもよい。
発電部10は、例えば太陽電池を備えることにより太陽光発電などのような発電を行う機能部としてよい。発電部10は、発電した電力を外部に出力可能なものとしてよい。発電部10は、発電部10が発電して外部に出力する電力を制御するパワーコンディショナ(以下、PCS(Power Conditioning Subsystem)とも記す)などを適宜含んでもよい。以下、発電部10は、太陽光発電を行うものとして説明する。しかしながら、一実施例において、発電部10が行う発電は、太陽光発電に限定されない。例えば、発電部10は、風力発電、水力発電、火力発電、燃料電池による発電、又はプラグインハイブリッド車による発電などを行うものとしてもよい。一実施形態において、発電部10は、電力系統に逆潮流することができる電力を発電してよい。発電部10は、既知の各種技術により構成することができる。したがって、発電部10のより詳細な説明は省略する。
発電部10が発電する電力は、(発電部10が備えるPCSを経て)スマートメータ40に供給されてよい。このため、図1に示すように、発電部10は、スマートメータ40と電力ラインによって接続されてよい。発電部10からスマートメータ40に供給される電力は、電力系統に逆潮流する電力としてもよい。また、このようにして逆潮流する電力は、自己託送の電力として利用されてもよい。また、発電部10からスマートメータ40に供給される電力は、電力系統によって余剰インバランスの電力として買電されてもよい。発電部10は、出力制御部70から送信される出力制御値(例えば%)に基づいて、出力する電力を制御してよい。また、発電部10が発電する電力の情報(出力される電力量など)は、需要算出部50に送信されてよい。
電力調整部20Aは、第1拠点における電力を調整する機能としてよい。また、電力調整部20Bは、第2拠点における電力を調整する機能としてよい。電力調整部20は、電力を外部に出力可能にする機能、及び、外部から電力を入力可能にする機能の少なくとも一方を備えてよい。具体的には、電力調整部20は、例えば蓄電池を備えてよい。電力調整部20は、電力調整部20が出力する電力及び電力調整部20に入力される電力の少なくとも一方を制御するPCSなどを適宜含んでもよい。すなわち、この場合、電力調整部20のPCSは、電力調整部20の蓄電池が放電する電力及び当該蓄電池に充電される電力の少なくとも一方を制御してよい。電力調整部20が充放電する電力によって、電力制御システム1は、後述する計画値の同時同量を達成するための調整力を得ることができる。
電力調整部20は、例えば定置型の蓄電池を備えてもよいし、例えばEVなどのような電気自動車又はプラグインハイブリッド車などの蓄電池(バッテリ)を備えてもよい。電力調整部20は、既知の各種技術により構成することができる。したがって、電力調整部20のより詳細な説明は省略する。
電力調整部20が放電する電力は、(電力調整部20が備えるPCSを経て)スマートメータ40に供給されてよい。また、電力調整部20は、発電部10から(電力調整部20が備えるPCSを経て)供給される電力を充電してよい。このため、図1に示すように、電力調整部20は、スマートメータ40と電力ラインによって接続されてよい。電力調整部20は、出力制御部70から送信される調整値(例えば%)に基づいて、充放電する電力を制御してよい。また、電力調整部20は、電力系統から供給される電力の充電ができないように制御されてよい。
電力調整部20は、発電部10が発電する電力の少なくとも一部を充電してもよい。
負荷30Aは、第1拠点において電力を消費する各種機器としてよい。また、負荷30Bは、第2拠点において電力を消費する各種機器としてよい。負荷30は、任意の電子機器により構成されるものとしてよい。
負荷30は、発電部10が発電する電力の少なくとも一部を消費してもよい。また、負荷30は、電力調整部20が放電する電力の少なくとも一部を消費してもよい。また、負荷30は、系統電力から買電した電力の少なくとも一部を消費してもよい。図1に示すように、負荷30は、発電部10、電力調整部20、及びスマートメータ40と、電力ラインによって接続されてよい。
スマートメータ40は、電力の情報をデジタルで計測するとともに、計測された情報を通信する機能を備える機能部としてよい。ここで、電力の情報とは、例えば、買電する電力量、逆潮流する電力量、及び/又は、電力に関連する時刻などの情報としてもよい。図1に示すように、スマートメータ40は、発電部10、電力調整部20、及び負荷30と、電力ラインによって接続されてよい。スマートメータ40は、既知の各種技術により構成することができる。したがって、スマートメータ40のより詳細な説明は省略する。
図1に示すように、第1拠点のスマートメータ40Aと、第2拠点のスマートメータ40Bとは、電力ライン(電力系統)によって接続されてよい。このように、スマートメータ40同士が電力ラインによって接続されることにより、一方の拠点から他方の拠点に電力の自己託送を行うことができる。図1において、第1拠点の発電部10Aが発電する電力を、第2拠点の負荷30Bに自己託送してもよい。また、図1において、第2拠点の発電部10Bが発電する電力を、第1拠点の負荷30Aに自己託送してもよい。このように双方向の自己託送を実現する場合、自己託送の方向を判断する機能部(以下、「判断部」と記す)を設けてもよい。このような判断部は、電力制御システム1Aの一部として第1拠点に設けてもよいし、電力制御システム1Bの一部として第2拠点に設けてもよいし、第1拠点又は第2拠点とは異なる場所に設けてもよい。
スマートメータ40Aは、需要算出部50及び出力制御部70に通信可能に接続されてよい。スマートメータ40Aは、第1拠点において買電及び/又は逆潮流する電力の情報(例えば電力量)を、需要算出部50に送信してよい。また、スマートメータ40は、発電部10が発電する電力のうち逆潮流する電力の情報(例えば電力量)を、出力制御部70に送信してよい。また、スマートメータ40は、発電部10が発電する電力のうち逆潮流する電力として自己託送する電力の情報(例えば電力量)を、出力制御部70に送信してもよい。
需要算出部50、同時同量算出部60、及び出力制御部70は、それぞれ、電力制御システム1の動作を制御するコントローラとしてよい。このコントローラは、種々の機能を実行するための制御及び処理能力を提供するために、例えば、CPU(Central Processing Unit)又はDSP(Digital Signal Processor)のような、少なくとも1つのプロセッサを含んでよい。コントローラは、1つのプロセッサで実現してよいし、複数のプロセッサで実現してよい。コントローラは、単一の集積回路として実現されてよい。プロセッサは、通信可能に接続された複数の集積回路及びディスクリート回路として実現されてよい。コントローラは、CPU又はDSP、及び当該CPU又はDSPで実行されるプログラムのようなソフトウェアとして構成されてよい。コントローラにおいて実行されるプログラム及びコントローラにおいて実行された処理の結果などは、それぞれ任意の記憶部に記憶されてよい。
需要算出部50、同時同量算出部60、及び出力制御部70は、それぞれ別個の機能部としてもよいし、少なくとも一部が併合した機能部としてもよいし、全てが併合した機能部としてもよい。需要算出部50、同時同量算出部60、及び出力制御部70は、それぞれハードウェア資源として構成されてもよいし、ソフトウェアとして構成されてもよいし、ソフトウェアとハードウェア資源とが協働することによって構築されてもよい。需要算出部50、同時同量算出部60、及び出力制御部70のそれぞれの機能については、さらに後述する。
電力サーバ200は、例えば電力会社のような電気事業者の各種情報を配信するサーバとしてよい。一実施形態において、電力サーバ200は、第1拠点及び/又は第2拠点のような各拠点に対し、電力に関する指令(電力指令)を送信してよい。ここで、電力指令とは、電力系統において電力の需要と供給のバランスが取れなくなるような場合に、発電による電力の出力の制御(例えば抑制など)を求めるような指令としてよい。また、このような電力指令は、例えば電力制御システム1における任意の機器によって、電力サーバ200から取得されてもよい。電力サーバ200は、例えば、電力制御システム1の同時同量算出部60及び/又は出力制御部70などに、電力指令を送信してよい。また、電力サーバ200は、例えば、電力指令を、出力制御部70を経由して、同時同量算出部60に送信してよい。また、電力制御システム1の同時同量算出部60及び/又は出力制御部70などが、電力サーバ200から電力指令を取得してもよい。このため、電力サーバ200は、電力制御システム1の同時同量算出部60及び/又は出力制御部70などに通信可能に接続されてよい。
一実施形態において、電力サーバ200は、同時同量算出部60及び/又は出力制御部70などに、発電の抑制量(例えば%)の値を含む電力指令を送信してよい。また、一実施形態において、電力サーバ200は、所定の1日における電力指令を、当該所定の1日の前日までに送信してもよいし、当該所定の1日の当日に送信してもよい。
電力サーバ200は、例えば通常のクライアントサーバシステムに用いられるようなサーバ(コンピュータ)としてよい。サーバとして使用されるコンピュータは、既知の各種技術により構成することができる。したがって、サーバとして使用されるコンピュータのより詳細な説明は省略する。
広域機関サーバ300は、例えば電力広域的運営推進機関(Organization for Cross-regional Coordination of Transmission Operators, JAPAN:OCCTO)のような機関が運営及び/又は利用するサーバ(コンピュータ)などの電子機器としてよい。電力広域的運営推進機関は、電気事業法(昭和39年7月11日法律第170号)に基づき、日本の電気事業の広域的運営を推進することを目的として設立された団体である。日本の全ての電気事業者が機関の会員となることを義務付けられている。機関は、会員各社の電気の需給状況を監視し、需給状況が悪化した会員に対する電力の融通を他の会員に指示する。広域機関サーバ300は、例えば通常のクライアントサーバシステムに用いられるようなサーバ(コンピュータ)としてよい。
一実施形態において、例えば第1拠点の電力制御システム1A及び/又は第2拠点の電力制御システム1Bのような各拠点の電力制御システムは、各拠点の発電計画を立案(生成)して、その発電計画を広域機関サーバ300に送信するものとしてよい。ここで、「発電計画」とは、例えば、発電施設(例えば第1拠点)から需要施設(例えば第2拠点)に対して送電する、所定の時間区分毎の電力量の計画値としてよい。例えば、一実施形態において、電力制御システム1の同時同量算出部60は、広域機関サーバ300に通信可能に接続されてよい。一実施形態において、電力制御システム1の同時同量算出部60は、立案された電力制御システム1の発電計画を、広域機関サーバ300に送信してよい。
例えば、一実施形態において、電力制御システム1の同時同量算出部60は、立案された電力制御システム1の所定の1日の発電計画を、当該所定の1日の前日まで(例えば当該所定の1日の前日の正午まで)に、広域機関サーバ300に送信してよい。
気象サーバ400は、各種気象情報(気象データ)などを配信するサーバとしてよい。気象サーバ400は、例えば気象庁のような行政機関によって運営されるサーバとしてもよいし、民間の情報提供会社などによって運営されるサーバとしてもよい。一実施形態において、気象サーバ400は、例えば第1拠点の電力制御システム1A及び/又は第2拠点の電力制御システム1Bのような各拠点の電力制御システムに、各種の気象情報(気象データ)を配信してよい。また、各種の気象情報(気象データ)は、例えば電力制御システム1における任意の機器によって、気象サーバ400から取得されてもよい。各種の気象情報(気象データ)は、例えば、所定の地点における、所定の時刻又は所定の時間区分の天候、気温、湿度、日照時間、日射量、雲量、降水量、及び/又は積雪量などの少なくともいずれかを含むものとしてよい。
一実施形態において、電力制御システム1の需要算出部50及び同時同量算出部60は、気象サーバ400に通信可能に接続されてよい。一実施形態において、気象サーバ400は、電力制御システム1の需要算出部50及び/又は同時同量算出部60に、各種の気象情報を送信してよい。気象サーバ400は、例えば通常のクライアントサーバシステムに用いられるようなサーバ(コンピュータ)としてよい。
一実施形態において、気象サーバ400は、実際の各種気象データを配信するのみならず、例えば各種気象データの予測を配信してもよい。また、一実施形態において、気象サーバ400は、各種気象データの予測として、例えば前日の予測又は数時間前の予測のような所定時間前の予測データ、当日の予測データ、及び、以後の予測のような所定時間後の予測データなど、各種の予測を配信してもよい。
次に、一実施形態に係る電力制御システム1において特徴的な機能を果たす、需要算出部50、同時同量算出部60、及び出力制御部70のそれぞれについて、より詳細に説明する。
需要算出部50は、電力制御システム1における電力の需要を算出する。一実施形態において、需要算出部50Aは、電力制御システム1Aにおける電力の需要、例えば負荷30Aに供給する電力の需要を算出する。一実施形態において、需要算出部50は、電力制御システム1における実際の電力需要(電力需要の実績値)のみならず、電力制御システム1における電力の予測値も算出してよい。
一実施形態において、需要算出部50は、発電部10から送信される情報、電力調整部20から送信される情報、及びスマートメータ40から送信される情報に基づいて、電力需要の実績値を算出してよい。この場合、発電部10から送信される情報は、発電部10の発電により実際に出力される電力量などのデータとしてよい。発電部10から送信される情報は、例えば発電部10のPCSから送信されたものとしてよい。また、電力調整部20から送信される情報は、電力調整部20の充放電により実際に充放電される電力量などのデータとしてよい。電力調整部20から送信される情報は、例えば電力調整部20のPCSから送信されたものとしてよい。また、スマートメータ40から送信される情報は、各拠点の電力制御システム1において実際に逆潮流及び/又は買電する電力のデータとしてよい。
一実施形態において、需要算出部50は、例えば次の式(1)に基づいて、電力需要の実績値を算出してよい。
(電力需要)=(発電部10の出力電力)+(電力調整部20の充放電電力)-(売電電力)+(買電電力) (1)
式(1)において、電力調整部20の充放電電力は、放電はプラスの電力とし、充電はマイナスの電力とする。このようにして算出された電力需要の実績値は、需要算出部50が備える記憶部などの任意の記憶部に記憶されてよい。
また、一実施形態において、需要算出部50は、上述のように、気象サーバ400から、例えば気温及び/又は湿度などの気象データを受信してよい。また、需要算出部50は、例えば気象サーバ400から受信した気象データを、需要算出部50が備える記憶部などの任意の記憶部に記憶してよい。
一実施形態において、需要算出部50は、例えば上述の気象データなどに基づいて、電力需要の予測値を算出してよい。この場合、需要算出部50は、電力需要の予測値を、例えば、記憶部に記憶された過去の電力需要の実績値と気象データとの関係をモデル化して、重回帰分析などによって算出してよい。また、一実施形態において、需要算出部50は、電力需要の予測値として、例えば前日の予測又は数時間前の予測のような所定時間前の予測データ、及び当日の予測データなど、各種の電力需要の予測を算出してもよい。このようにして需要算出部50によって算出された電力需要の予測値は、同時同量算出部60に供給されてよい。
このように、一実施形態において、需要算出部50Aは、第1拠点の電力需要を算出してよい。
同時同量算出部60は、同時同量を満たす発電計画を生成する。ここで、同時同量とは、自己託送元の電力の逆潮流よりも自己託送先の電力の需要(買電)が大きいことを前提に、発電計画と発電の実績とが、同じ時点で同じ量になっていることとしてよい。一実施形態において、同時同量算出部60は、需要算出部50から供給される電力需要の予測値に基づいて、逆潮流電力の予測値を算出してもよい。
上述のように、同時同量算出部60は、需要算出部50から電力需要の予測値を受信してよい。同時同量算出部60は、電力需要の予測値として、例えば前日の予測又は数時間前の予測のような所定時間前の予測データ、及び当日の予測データなど、各種の電力需要の予測を受信してもよい。
また、同時同量算出部60は、気象サーバ400から、例えば日射量などを含む気象データを受信してよい。特に、同時同量算出部60は、気象サーバ400から、各種気象データの予測を受信してもよい。上述のように、同時同量算出部60は、気象サーバ400から、例えば前日の予測又は数時間前の予測のような所定時間前の予測データ、当日の予測データ、及び、以後の予測のような所定時間後の予測データなど、各種の予測を受信してもよい。
一実施形態において、同時同量算出部60は、気象サーバ400から受信する気象データなどに基づいて、発電部10による発電量の予測を算出してよい。この場合、同時同量算出部60は、例えば次の式(2)に基づいて、発電部10による発電量の予測を算出してよい。
(発電部10の発電量)=(日射量)×(係数) (2)
ここで、日本産業規格(JIS)による「太陽光発電システムの発電電力量推定方法」(JIS C8907:2005)において、各種のパラメータから太陽光発電システムが発電する電力量を推定する式が規定されている。一実施形態において、その式を使用しても構わない。これらは、JIS C8907:2005において規定されているため、より詳細な説明は省略する。
また、一実施形態において、同時同量算出部60は、例えば、次の式(3)に基づいて電力制御システム1が設置された拠点における逆潮流電力を算出してよい。ここで、逆潮流する電力が発生するのは、発電する電力が電力需要の電力よりも大きくなる場合である。このため、式(3)に基づいて逆潮流電力を算出するのは、例えば発電する電力が需要電力よりも大きくなる場合としてよい。
(逆潮流電力)=(発電部10の発電)-(電力需要) (3)
同時同量算出部60は、この算出結果に基づき、その拠点における発電計画として生成してよい。例えば、この算出結果をそのまま発電計画として生成してもよいし、この算出結果にある係数を掛けた値を発電計画として生成してもよい。一実施形態において、同時同量算出部60は、このようにして生成された逆潮流電力の発電計画を、例えば出力制御部70及び/又は広域機関サーバ300に送信してよい。一実施形態において、同時同量算出部60は、生成された逆潮流電力の発電計画として、例えば前日の発電計画又は数時間前の発電計画のような所定時間前の発電、及び当日の発電計画などを、出力制御部70に送信してよい。
さらに、一実施形態において、同時同量算出部60は、電力サーバ200から送信される電力指令を受信してよい。一実施形態において、同時同量算出部60は、発電の抑制量(例えば%)の値を含む電力指令を、電力サーバ200から受信してよい。また、一実施形態において、同時同量算出部60は、電力サーバ200から送信される電力指令として、所定の1日の前日までに送信される電力指令を受信してもよいし、当該所定の1日の当日に送信される電力指令を受信してもよい。この場合、同時同量算出部60は、電力サーバ200から送信される電力指令を加味した上で生成された逆潮流電力の発電計画を、出力制御部70に送信してよい。
このように、同時同量算出部60は、その拠点における電力需要及び日射量などの入力に基づいて、その拠点における発電計画を生成してよい。このようにして生成された発電計画は、同時同量算出部60が備える記憶部などの任意の記憶部に記憶されてよい。また、同時同量算出部60は、このようにして生成された発電計画を、広域機関サーバ300に提出(送信)してよい。また、同時同量算出部60は、上述のようにして生成された発電計画を、出力制御部70に送信してよい。
上述のように、同時同量算出部60は、需要算出部50から供給される電力需要の予測値に基づいて、逆潮流電力の予測値を算出してよい。この場合、同時同量算出部60は、発電を合理的に予測した発電計画を、広域機関サーバ300及び/又は出力制御部70に事前に登録してよい。そして、同時同量算出部60は、発電計画と、当日の発電の実績とを、例えば30分単位(30分の時間区分)で一致させてよい(同時同量)。ここで、発電計画とは、電力系統に逆潮流する電力量としてよい。
一実施形態において、同時同量算出部60は、例えば以下の式(4)に基づいて、発電計画の電力量を算出してよい。
(発電計画の電力量)=(発電部10の出力電力量)-(負荷30の消費電力量) (4)
すなわち、発電計画の電力量とは、(発電部10の発電量(PCSから出力される発電量))-(その拠点において自家消費する電力量)として算出することができる。
ここで、その拠点において自家消費する電力量は、発電部10の発電量(PCSから出力される発電量)、及びその拠点における電力需要から算出することができる。また、発電部10の発電量(PCSから出力される発電量)は、日射量などのデータから算出することができる。
このように、一実施形態において、例えば同時同量算出部60Aは、第1拠点の電力需要及び記第1拠点の発電部10Aが発電する電力量に基づいて、所定の時間区分において第1拠点から電力系統に逆潮流する電力量を算出してよい。
出力制御部70は、発電部10の発電による電力の出力を制御する。この場合、出力制御部70は、例えば発電部10が備えるPCSを制御することにより、発電部10から出力される電力の出力を制御してよい。また、出力制御部70は、電力調整部20に入力される電力及び/又は電力調整部20から出力される電力を制御してもよい。この場合も、出力制御部70は、例えば電力調整部20が備えるPCSを制御することにより、電力調整部20が放電する電力及び/又は電力調整部20に充電される電力を制御してよい。
一実施形態において、出力制御部70は、同時同量算出部60から受信する発電計画及び/又は電力サーバ200から受信する電力指令に基づいて、発電部10の発電による電力の出力を制御してよい。また、出力制御部70は、同時同量算出部60から受信する発電計画及び/又は電力サーバ200から受信する電力指令に基づいて、電力調整部20に入力される電力及び/又は電力調整部20から出力される電力を制御してよい。
この場合、出力制御部70は、同時同量算出部60から送信される逆潮流電力の発電計画を受信してよい。ここで、出力制御部70が同時同量算出部60から受信する発電計画は、例えば前日の発電計画又は数時間前の発電計画のような所定時間前の発電、及び当日の発電計画などとしてよい。
また、出力制御部70は、電力サーバ200から送信される電力指令を受信してよい。一実施形態において、出力制御部70は、発電の抑制量(例えば%)の値を含む電力指令を、電力サーバ200から受信してよい。また、一実施形態において、出力制御部70は、電力サーバ200から送信される電力指令として、所定の1日の前日までに送信される電力指令を受信してもよいし、当該所定の1日の当日に送信される電力指令を受信してもよい。
さらに、一実施形態において、出力制御部70は、スマートメータ40から送信される電力の情報を受信してよい。ここで、スマートメータ40から送信される電力の情報とは、発電部10が発電する電力のうち逆潮流する電力の情報(例えば電力量)としてよい。また、スマートメータ40から送信される電力の情報とは、発電部10が発電する電力のうち逆潮流する電力として自己託送する電力の情報(例えば電力量)としてもよい。
出力制御部70は、以上のように受信した情報の入力に基づいて、発電部10から出力される電力の出力を制御してよい。例えば、出力制御部70は、発電部10が出力する電力を制御する際に、電気事業者による電力指令が満たされるようにしてよい。さらに、例えば、出力制御部70は、発電部10が出力する電力を制御する際に、電力制御システム1が設置された拠点における電力需要に基づいて、当該拠点から電力系統に逆潮流する電力量の予定と実績との差が低減されるようにしてよい。
このように、例えば出力制御部70Aは、電気事業者による電力指令を満たすとともに、電力需要に基づいて、第1拠点から電力系統に逆潮流する電力量の予定と実績との差が低減されるように、発電部10が出力する電力を制御してよい。
また、出力制御部70は、前述のように受信した情報の入力に基づいて、電力調整部20に入力される電力及び/又は電力調整部20から出力される電力を制御してもよい。例えば、出力制御部70は、電力調整部20に入力される電力及び/又は電力調整部20から出力される電力を制御する際に、電気事業者による電力指令が満たされるようにしてよい。さらに、例えば、出力制御部70は、電力調整部20に入力される電力を制御する際に、電力制御システム1が設置された拠点における電力需要に基づいて、当該拠点から電力系統に逆潮流する電力量の予定と実績との差が低減されるようにしてよい。また、例えば、出力制御部70は、電力調整部20から出力される電力を制御する際に、電力制御システム1が設置された拠点における電力需要に基づいて、当該拠点から電力系統に逆潮流する電力量の予定と実績との差が低減されるようにしてよい。
このように、例えば出力制御部70Aは、電気事業者による電力指令を満たすとともに、電力需要に基づいて、第1拠点から電力系統に逆潮流する電力量の予定と実績との差が低減されるように、第1拠点の蓄電池の充電及び放電の少なくとも一方を制御してもよい。
出力制御部70は、発電部10によって出力される電力を制御するための出力制御値(例えば%)を発電部10に送信してよい。このようにして、出力制御部70は、発電部10に出力制御値を設定してよい。また、電力調整部20は、電力調整部20に入力される電力及び/又は電力調整部20から出力される電力を調整するための調整値(例えば%)を電力調整部20に送信してよい。このようにして、出力制御部70は、電力調整部20に調整値を設定してよい。
出力制御部70が発電部10及び/又は電力調整部20を制御する際、電力系統に逆潮流する電力量の予定と実績との差がゼロになるようにするのが理想である。つまり、出力制御部70が制御を行う際、電力系統に逆潮流する電力量の予定と実績とが同じ時点で同じ量になるようにするのが理想である(同時同量)。ようするに、自己託送として逆潮流させる電力の計画が、自己託送として実際に逆潮流させる電力に等しくようにするのが望ましい。しかしながら、例えば発電計画(予定)に対して実際の発電(実績)が同じにならないような状況も想定される。したがって、一実施形態において、出力制御部70が制御を行う際、電力系統に逆潮流する電力量の予定と実績との差が少しでも低減されるようにしてよい。電力系統に逆潮流する電力量の予定と実績とが完全に一致しない場合、その差をインバランス料金として精算してもよい。
次に、図1に示した電力制御システム1A及び電力制御システム1Bを利用する自己託送について、さらに説明する。
以下、例として、第1拠点の電力制御システム1A及び第2拠点の電力制御システム1Bともに、ある会社X(以下、適宜、X社と記す)が所有及び/又は管理する設備であるものとして説明する。ここで、X社は、自社以外の他社、例えば自社と親密な関係がある共同で設立した組合などとしてもよい。特に、第1拠点の電力制御システム1Aは、例として、X社が所有及び/又は管理する太陽光発電設備を含むものとする。また、第2拠点の電力制御システム1Bは、例として、X社が所有及び/又は管理する生産工場設備を含むものとする。そして、第1拠点の電力制御システム1A(例えば発電部10A)において発電された電力が、電力系統に逆潮流されて第2拠点に送電され、電力制御システム1B(例えば負荷30B)において消費される状況(自己託送)について説明する。この場合、発電部10Aを有する第1拠点と、負荷30Bを有する第2拠点とは、異なる受電場所とする。一実施形態において、自己託送を実現するに際し、出力抑制を加味しつつ、発電の計画値同時同量の算出を試みる。
自己託送において、発電の計画値同時同量の条件として、電力系統に逆潮流する電力量の計画(予定)と、実際に逆潮流する電力量(実績)とが、(極力)一致することが求められる。すなわち、図1において、スマートメータ40から出力制御部70に送信される情報であって、発電部10が発電する電力のうち逆潮流する電力の情報(例えば電力量)の計画(予定)と、実際に逆潮流する電力量(実績)とが、(極力)一致することが求められる。
例えば、生成した発電計画の電力量(予定)よりも、実際に発電した電力量(実績)が少なくなる場合、その差として足りない電力量は、不足インバランスとなる。この場合、電力系統に逆潮流する電力量の計画(予定)と、実際に逆潮流する電力量(実績)とが一致するという条件は満たされない(発電インバランス)。一方、例えば、生成した発電計画の電力量(予定)よりも、実際に発電した電力量(実績)が多くなる場合、その差のとして余る電力量は、余剰インバランスとなる。この場合も、電力系統に逆潮流する電力量の計画(予定)と、実際に逆潮流する電力量(実績)とが一致するという条件は満たされない(発電インバランス)。したがって、一実施形態に係る電力制御システム1は、このような発電インバランスが低減されるように電力を制御する。
図2は、第1拠点の電力制御システム1Aによる動作を説明するフローチャートである。以下、図2を参照して、電力制御システム1A及び電力制御システム1Bによる自己託送を実現するに際し、出力抑制を加味しつつ、発電の計画値同時同量を行う動作を、さらに説明する。
図2に示す動作は、例えば1日の24時間を30分単位で区分した時限ごとに行うものとしてよい。すなわち、図2に示す動作は、1日の24時間において最大48回行われるものとしてよい。
最初に、例として、電力制御システム1Aが電力制御を行う日(当日)の前日12時に行う動作について説明する。この場合、図2に示す動作は、当日1日の30分の時限ごとに区分された合計48コマを対象としてよい。
図2に示す動作が開始すると、第1拠点の電力制御システム1Aの需要算出部50Aは、第1拠点における初期の電力需要の算出を行う(ステップS11)。ここで、第1拠点における初期の電力需要とは、例えば負荷30Aによる初期の電力需要としてよい。ステップS11において、需要算出部50Aは、スマートメータ40から受信する電力の情報、及び気象サーバ200から受信する初期の気象データに基づいて、第1拠点における初期の電力需要の算出を行ってよい。ステップS11において需要算出部50Aが算出した第1拠点における初期の電力需要の情報は、同時同量算出部60Aに送信されてよい。
次に、同時同量算出部60Aは、第1拠点における初期の発電計画の生成を行う(ステップS13)。ステップS13において、同時同量算出部60Aは、需要算出部50Aから受信した第1拠点における初期の電力需要の情報、及び気象サーバ200から受信する初期の気象データに基づいて、第1拠点における初期の発電計画の生成を行ってよい。ステップS13において生成された初期の発電計画は、広域機関サーバ300及び出力制御部70Aに送信されてよい。
次に、出力制御部70Aは、例えば発電部10による発電電力の出力を制御する処理を、例えば内部などの任意の記憶部に記憶してよい(ステップS15)。ステップS15において、出力制御部70Aは、同時同量算出部60Aから受信した初期の発電計画に基づいて、発電部10による発電電力の出力を制御してよい。ステップS15において、出力制御部70Aは、初期の出力制御値を、発電部10に送信してよい。これにより、発電部10は、初期の出力制御値に基づいて、出力を制御することができる。
次に、例として、電力制御システム1Aが電力制御を行う日(当日)の前日であって当日までに行う動作について説明する。この場合、図2に示す動作は、当日1日の30分の時限ごとに区分された合計48コマを対象としてよい。
図2に示す動作が開始すると、第1拠点の電力制御システム1Aの需要算出部50Aは、第1拠点における更新された電力需要の算出を行う(ステップS11)。ここで、第1拠点における更新された電力需要とは、例えば負荷30Aによる更新された電力需要としてよい。ステップS11において、需要算出部50Aは、スマートメータ40から受信する電力の情報、及び気象サーバ200から受信する更新された気象データに基づいて、第1拠点における更新された電力需要の算出を行ってよい。ステップS11において需要算出部50Aが算出した第1拠点における更新された電力需要の情報は、同時同量算出部60Aに送信されてよい。
次に、同時同量算出部60Aは、第1拠点における同時同量の算出及び更新された発電計画の生成を行う(ステップS13)。ステップS13において、同時同量算出部60Aは、需要算出部50Aから受信した第1拠点における更新された電力需要の情報、及び気象サーバ200から受信する更新された気象データに基づいて、第1拠点における同時同量の算出及び更新された発電計画の生成を行ってよい。ステップS13において生成された更新された発電計画は、広域機関サーバ300及び出力制御部70Aに送信されてよい。
次に、出力制御部70Aは、例えば発電部10による発電電力の更新された出力を制御してよい(ステップS15)。ステップS15において、出力制御部70Aは、同時同量算出部60Aから受信した更新された発電計画、及び電力サーバ200から受信した、更新された電力指令値に基づいて、発電部10による発電電力の更新された出力を制御してよい。ステップS15において、出力制御部70Aは、更新された出力制御値を、発電部10に送信してよい。これにより、発電部10は、更新された出力制御値に基づいて、出力を制御することができる。
次に、例として、電力制御システム1Aが電力制御を行う日(当日)の1時間前に行う動作について説明する。この場合、図2に示す動作は、当日の1時間以上後の30分の時限を対象としてよい。
図2に示す動作が開始すると、第1拠点の電力制御システム1Aの需要算出部50Aは、第1拠点における最終の電力需要の算出を行う(ステップS11)。ここで、第1拠点における最終の電力需要とは、例えば負荷30Aによる最終の電力需要としてよい。ステップS11において、需要算出部50Aは、スマートメータ40から受信する電力の情報、及び気象サーバ200から受信する最終の気象データに基づいて、第1拠点における最終の電力需要の算出を行ってよい。ステップS11において需要算出部50Aが算出した第1拠点における最終の電力需要の情報は、同時同量算出部60Aに送信されてよい。
次に、同時同量算出部60Aは、第1拠点における同時同量の算出及び最終の発電計画の生成を行う(ステップS13)。ステップS13において、同時同量算出部60Aは、需要算出部50Aから受信した第1拠点における最終の電力需要の情報、及び気象サーバ200から受信する最終の気象データに基づいて、第1拠点における同時同量の算出及び最終の発電計画の生成を行ってよい。ステップS13において生成された最終の発電計画は、広域機関サーバ300及び出力制御部70Aに送信されてよい。
次に、出力制御部70Aは、例えば発電部10による発電電力のさらに更新された出力を制御してよい(ステップS15)。ステップS15において、出力制御部70Aは、同時同量算出部60Aから受信した最終の発電計画、及び電力サーバ200から受信した更新された電力指令値に基づいて、発電部10による発電電力のさらに更新された出力を制御してよい。ステップS15において、出力制御部70Aは、さらに更新された出力制御値を、発電部10に送信してよい。これにより、発電部10は、さらに更新された出力制御値に基づいて、出力を制御することができる。
次に、例として、電力制御システム1Aが電力制御を行う日(当日)の0時間前に行う動作について説明する。この場合、図2に示す動作は、当日の0時間前の30分の時限を対象としてよい。
図2に示す動作が開始すると、第1拠点の電力制御システム1Aの需要算出部50Aは、第1拠点における最終の電力需要の算出を行う(ステップS11)。ここで、第1拠点における最終の電力需要とは、例えば負荷30Aによる最終の電力需要としてよい。ステップS11において、需要算出部50Aは、スマートメータ40から受信する電力の情報、及び気象サーバ200から受信する最終の気象データに基づいて、第1拠点における最終の電力需要の算出を行ってよい。ステップS11において需要算出部50Aが算出した第1拠点における最終の電力需要の情報は、同時同量算出部60Aに送信されてよい。この動作は、上述した、電力制御システム1Aが電力制御を行う日(当日)の1時間前に行う動作におけるステップS11の動作に加えて、さらに実行してもよい。
次に、同時同量算出部60Aは、第1拠点における同時同量の算出及び最終の発電計画の生成を行う(ステップS13)。ステップS13において、同時同量算出部60Aは、需要算出部50Aから受信した第1拠点における最終の電力需要の情報、及び気象サーバ200から受信する最終の気象データに基づいて、第1拠点における同時同量の算出及び最終の発電計画の生成を行ってよい。ステップS13において生成された最終の発電計画は、広域機関サーバ300及び出力制御部70Aに送信されてよい。この動作は、上述した、電力制御システム1Aが電力制御を行う日(当日)の1時間前に行う動作におけるステップS13の動作に加えて、さらに実行してもよい。
次に、出力制御部70Aは、例えば発電部10による発電電力の最終の出力を制御してよい(ステップS15)。ステップS15において、出力制御部70Aは、同時同量算出部60Aから受信した最終の発電計画、及び電力サーバ200から受信した最終の電力指令値に基づいて、発電部10による発電電力の最終の出力を制御してよい。ステップS15において、出力制御部70Aは、最終の出力制御値を、発電部10に送信してよい。これにより、発電部10は、最終の出力制御値に基づいて、出力を制御することができる。この動作は、上述した、電力制御システム1Aが電力制御を行う日(当日)の1時間前に行う動作におけるステップS15の動作に加えて、さらに実行してもよい。
次に、図3~図6を参照して、電力制御システム1Aによる電力制御について、具体的な例を挙げて、さらに説明する。
図3~図6は、横軸が時間を示し、縦軸が発電容量比を示している。図3~図6において、横軸は、1日の24時間を30分単位で区分(48区分)した様子を示している。図3~図6における横軸は、午前0時から開始し、午後23時59分で終了するものとしてよい。図3~図6において、縦軸の発電容量比は、単位を例えば[%]としてよい。ここで、発電容量比[%]は、例えば発電部10Aの場合、発電部10Aが備える太陽電池の容量、及び発電部10Aが備えるPCSの容量の小さいほうの容量を100として換算したものとしてよい。
図3は、発電計画が生成された時点において、電力サーバ200から受信した電力指令の電力の予定よりも、需要算出部50Aが算出した電力需要の電力の予定の方が大きい場合について示してある。図3において、発電部10Aが発電する電力の予定(発電の予定)を曲線により示してある。図3に示すように、発電部10Aの発電の予想(発電の予定)は、午前0時の開始時点ではほぼゼロであり、グラフ中央の正午にピークを迎え、午後23時59分の終了時点で再びほぼゼロとなっている。
図3に示すような場合、出力制御部70Aは、発電部10Aが発電する電力の予定(発電の予定)が、電力需要の電力の予定を超える領域を、出力制御の対象とする(出力制御値の予定)。すなわち、この場合、電力指令の電力の予定を超える領域であっても、電力需要の電力の予定を超えない領域は、出力制御の対象としない。
図4は、図3に示すような発電計画(予定)が生成されたが、実際の電力需要が予定よりも少なかった場合について示してある。図4に示す発電部10Aが発電する電力の実績(実際の発電)は、図3に示す発電の予定とほぼ同じであったとする。また、図4に示す電力サーバ200から受信した実際の電力指令の電力も、図3に示す電力指令の電力の予定とほぼ同じであったとする。一方、図4に示すように、実際の電力需要の電力は、図3に示した電力需要の予定の電力よりも少なく、図4に示す実際の電力指令の電力よりも少なかったとする。
図4に示すような場合、出力制御部70Aは、発電部10Aが実際に発電する電力(実際の発電)が、実際の電力指令を超える領域を、出力制御の対象とする(実際の出力制御値)。しかしながら、このような場合、発電部10Aが実際に発電する電力(実際の発電)が実際の電力需要の電力を超える領域は、出力制御の対象とならない。すなわち、この場合、実際の電力需要の電力を超える領域であって、実際の電力指令の電力の予定を超えない領域は、逆潮流する電力(実際の逆潮流)になる。
図3に示したように、発電計画(予定)が生成された時点においては、逆潮流する電力を発生していなかった。したがって、図4に示すように実際の逆潮流が生じることになると、発電のインバランスが生じるため、望ましくない。したがって、出力制御部70Aは、図4に示したような状況が生じないように、発電部10及び/又は電力調整部20を制御する。
図5は、電力制御システム1Aにおいて図4に示すような状況が発生しそうな場合に、実際に出力制御部70Aが実行する動作の例を説明する図である。図4においては、発電部10Aが実際に発電する電力(実際の発電)が実際の電力需要の電力を超える領域を出力制御の対象にしないと、発電のインバランスが生じる。そこで、出力制御部70Aは、図5に示すように、実際の出力制御として、発電部10Aが実際に発電する電力(実際の発電)が実際の電力需要の電力を超える領域を出力制御の対象にする(実際の出力制御値)。このように制御すれば、電力制御システム1Aにおいて、発電計画(予定)が生成された時点と同様に、逆潮流する電力は発生しない。
図6は、電力制御システム1Aにおいて図4に示すような状況が発生しそうな場合に、実際に出力制御部70Aが実行する動作の他の例を説明する図である。図4においては、発電部10Aが実際に発電する電力(実際の発電)が実際の電力需要の電力を超える領域を出力制御の対象にしないと、系統電力に逆潮流する電力が生じる(実際の逆潮流)。そこで、出力制御部70Aは、図4において実際の逆潮流として示した電力量を、図6に示すように、電力調整部20Aの蓄電池に充電してよい(実際の調整値)。このように制御しても、電力制御システム1Aにおいて、発電計画(予定)が生成された時点と同様に、逆潮流する電力は発生しない。
このように、一実施形態に係る電力制御システム1によれば、電気事業者による電力指令を満たしつつ、発電する電力の自己託送を実現し得る。
次に、図7~図11を参照して、電力制御システム1Aによる電力制御について、他の具体的な例を挙げて、さらに説明する。
図7~図11は、図3~図6と同様に、横軸が時間を示し、縦軸が発電容量比を示している。
図7は、発電計画が生成された時点において、需要算出部50Aが算出した電力需要の電力の予定よりも、電力サーバ200から受信した電力指令の電力の予定の方が大きい場合について示してある。図7においても、図3と同様に、発電部10Aが発電する電力の予定(発電の予定)を曲線により示してある。
図7に示すような場合、出力制御部70Aは、発電部10Aが発電する電力の予定(発電の予定)が、電力指令の電力の予定を超える領域を、出力制御の対象とする(出力制御値の予定)。すなわち、この場合、電力需要の電力の予定を超える領域であっても、電力指令の電力の予定を超えない領域は、出力制御の対象としない。このような場合、発電部10Aが発電する電力の予定(発電の予定)が、電力需要の電力の予定を超える領域であって、電力需要の電力の予定を超えない領域は、電力を逆潮流することができる(逆潮流の予定)。
図8は、図7に示すような発電計画(予定)が生成されたが、実際の電力需要が予定よりも多かった場合について示してある。図8に示す発電部10Aが発電する電力の実績(実際の発電)は、図7に示す発電の予定とほぼ同じであったとする。また、図8に示す電力サーバ200から受信した実際の電力指令の電力も、図7に示す電力指令の電力の予定とほぼ同じであったとする。一方、図8に示すように、実際の電力需要の電力は、図7に示した電力需要の予定の電力よりも多くなったが、図8に示す実際の電力指令の電力よりは少なかったとする。
図8に示すような場合、出力制御部70Aは、発電部10Aが実際に発電する電力(実際の発電)が実際の電力指令を超える領域を、出力制御の対象とする(実際の出力制御値)。このような場合、実際の電力需要の電力を超える領域であって、実際の電力指令の電力の予定を超えない領域は、逆潮流する電力(実際の逆潮流)になる。しかしながら、この場合、図8に示す逆潮流する電力(実際の逆潮流)の電力量は、図7に示した逆潮流する電力(逆潮流の予定)の電力量よりも少なくなってしまう。したがって、図8に示すように実際の逆潮流が生じることになると、インバランスが生じるため、望ましくない。このため、出力制御部70Aは、図8に示したような状況が生じないように、発電部10及び/又は電力調整部20を制御する。
図9は、電力制御システム1Aにおいて図8に示すような状況が発生しそうな場合に、実際に出力制御部70Aが実行する動作の例を説明する図である。図8においては、逆潮流する電力(実際の逆潮流)を増大させないと、インバランスが生じる。そこで、出力制御部70Aは、図9に示すように、逆潮流する電力(実際の逆潮流)では不足する電力量を、電力調整部20Aが放電する電力で補う(実際の調整値)。すなわち、出力制御部70Aは、電力調整部20Aが放電する電力(実際の調整値)を、逆潮流する電力(実際の逆潮流)に加算するように制御する。このように制御すれば、電力制御システム1Aにおいて、発電計画(予定)が生成された時点(図7)と同じ量の逆潮流する電力を発生させることができる(図9)。
このように、一実施形態に係る電力制御システム1によれば、電気事業者による電力指令を満たしつつ、発電する電力の自己託送を実現し得る。
図10は、図7に示すような発電計画(予定)が生成されたが、実際の電力需要が予定よりも少なかった場合について示してある。図10に示す発電部10Aが発電する電力の実績(実際の発電)は、図7に示す発電の予定とほぼ同じであったとする。また、図10に示す電力サーバ200から受信した実際の電力指令の電力も、図7に示す電力指令の電力の予定とほぼ同じであったとする。一方、図10に示すように、実際の電力需要の電力は、図7に示した電力需要の予定の電力よりも少なくなったとする。
図10に示すような場合、出力制御部70Aは、発電部10Aが実際に発電する電力(実際の発電)が実際の電力指令を超える領域を、出力制御の対象とする(実際の出力制御値)。このような場合、実際の電力需要の電力を超える領域であって、実際の電力指令の電力の予定を超えない領域は、逆潮流する電力(実際の逆潮流)になる。しかしながら、この場合、図10に示す逆潮流する電力(実際の逆潮流)の電力量は、図7に示した逆潮流する電力(逆潮流の予定)の電力量よりも多くなってしまう。したがって、図10に示すように実際の逆潮流が生じることになると、インバランスが生じるため、望ましくない。このため、出力制御部70Aは、図10に示したような状況が生じないように、発電部10及び/又は電力調整部20を制御する。
図11は、電力制御システム1Aにおいて図10に示すような状況が発生しそうな場合に、実際に出力制御部70Aが実行する動作の例を説明する図である。図10においては、逆潮流する電力(実際の逆潮流)を低減させないと、インバランスが生じる。そこで、出力制御部70Aは、図10に示す逆潮流する電力(実際の逆潮流)のうち余剰の電力量を、図11に示すように電力調整部20Aに充電する(実際の調整値)。すなわち、出力制御部70Aは、逆潮流する電力(実際の逆潮流)の一部を、電力調整部20Aに充電する(実際の調整値)するように制御する。このように制御すれば、電力制御システム1Aにおいて、発電計画(予定)が生成された時点(図7)と同じ量の逆潮流する電力を発生させることができる(図11)。
このように、一実施形態に係る電力制御システム1によれば、電気事業者による電力指令を満たしつつ、発電する電力の自己託送を実現し得る。
上述のように、生成した発電計画の電力量(予定)と、実際に発電した電力量(実績)とが一致しない場合、不足インバランス又は余剰インバランスが生じる。このような場合、電力系統に逆潮流する電力量の計画(予定)と、実際に逆潮流する電力量(実績)とが一致するという条件は満たされない(発電インバランス)。余剰インバランスついての対策としては、発電の出力制御により発電実績を低減することができる。このため、発電の出力制御により、余剰インバランスをゼロにし得る。しかしながら、発電の出力制御によっては、不足インバランスをゼロにすることは困難である。このため、発電計画において、発電計画の電力量を予め小さくすることも考えられる。
しかしながら、このようにすると、小さくした電力量(インバランス分)が出力制御されることになり、無駄が生じる。
そこで、PCSの定格出力電力を上回る太陽光パネルを接続する、いわゆる過積載により、PCSの定格出力を発電実績とすることで、不足インバランスを生じにくくしてもよい。また、このようにすることで、余剰インバランスの出力制御も生じにくくすることができる。さらに、PCSの定格出力電力を小さくすることにより、PCSのコストを低減することも期待できる。過積載の状態を実現することにより、発電の計画値同時同量を好適に実行することで、インバランスを抑え、利益を拡大し得る。また、一実施形態に係る電力制御システム1によれば、電力調整部20において電力を調整することができる。このため、電力調整部20において電力を調整することにより、インバランスを調整することができる。
上述した実施形態のように、自己託送において、第1拠点と第2拠点とは異なる拠点としてよい。一実施形態において、同時同量算出部60は、電力需要及び第1拠点の発電部が発電する電力量に基づいて、所定の時間区分において第1拠点から電力系統に逆潮流する電力量であって第2拠点に供給される電力量を算出してよい。また、一実施形態において、出力制御部70は、電気事業者による電力指令を満たすとともに、電力需要に基づいて、第1拠点から電力系統に逆潮流する電力量であって第2拠点に供給される電力量の予定と実績との差が低減されるように制御を行ってよい。
上述の実施形態は代表的な例として説明したが、本開示の趣旨及び範囲内で、多くの変更及び置換が可能であることは当業者に明らかである。したがって、本開示は、上述の実施形態によって制限するものと解するべきではなく、特許請求の範囲から逸脱することなく、種々の変形及び変更が可能である。例えば、実施形態の構成図に記載の複数の構成ブロックを1つに組み合わせたり、あるいは1つの構成ブロックを分割したりすることが可能である。
上述した実施形態は、電力制御システム1A及び/又は電力制御システム1Bのようなシステムとしての実施のみに限定されない。例えば、上述した実施形態は、電力制御システム1A及び/又は電力制御システム1Bのようなシステムの少なくとも一部を構成する機器(例えば電力制御機器など)として実施してもよい。
上述した実施形態は、第1拠点の電力制御システム1A及び第2拠点の電力制御システム1Bのようなシステムとしての実施について説明した。しかしながら、一実施形態に係るシステムは、第1拠点の電力制御システム1A及び第2拠点の電力制御システム1Bのみならず、さらに第3拠点の電力制御システム1Cを含んでもよいし、それ以上の電力制御システムを含んでもよい。この場合、例えば同時同量算出部60Aは、第1拠点の電力需要及び第1拠点の発電部が発電する電力量に基づいて、所定の時間区分において第1拠点から電力系統に逆潮流する電力量であって第1拠点と異なる複数の拠点に供給される電力量を算出してもよい。また、出力制御部70Aは、電気事業者による電力指令を満たすとともに、電力需要に基づいて、第1拠点から電力系統に逆潮流する電力量であって第1拠点と異なる複数の拠点に供給される電力量の予定と実績との差が低減されるように制御を行ってもよい。
上述した実施形態は、第1拠点の発電部10Aが発電する電力を、第2拠点の負荷30Bに自己託送する態様を想定して説明した。しかしながら、上述したように、一実施形態において、第2拠点の発電部10Bが発電する電力を、第1拠点の負荷30Aに自己託送してもよい。この場合、同時同量算出部60Aは、第2拠点の電力需要及び第2拠点の発電部が発電する電力量に基づいて、所定の時間区分において第2拠点から電力系統に逆潮流する電力量であって第1拠点に供給される電力量を算出してもよい。また、出力制御部70Aは、電気事業者による電力指令を満たすとともに、第2拠点の電力需要に基づいて、第2拠点から電力系統に逆潮流する電力量であって第1拠点に供給される電力量の予定と実績との差が低減されるように制御を行ってもよい。
上述した実施形態において、電力制御システム1のようなシステムは、太陽光発電などを行う発電部10を含むものとしてもよい。この場合、例えば、電力制御システム1Aは、第1拠点に設置された発電部10Aを含むものとし、電力制御システム1Bは、第2拠点に設置された発電部10Bを含むものとしてもよい。一方、電力制御システム1のようなシステムは、太陽光発電などを行う発電部10を制御するシステムとして、発電部10を含まないものとしてもよい。
また、上述した実施形態は、例えば、上述したシステム又は機器の制御方法として実施してもよい。また、上述した実施形態は、例えば、上述したシステム又は機器のコンピュータにおいて実行されるプログラムとして実施してもよい。さらに、上述した実施形態は、例えば、上述したシステム又は機器のコンピュータにおいて実行されるプログラムを記録した記録媒体、すなわちコンピュータ読み取り可能な記録媒体として実施してもよい。
1 電力制御システム
10 発電部
20 電力調整部
30 負荷
40 スマートメータ
50 需要算出部
60 同時同量算出部
70 出力制御部
200 電力サーバ
300 広域機関サーバ
400 気象サーバ

Claims (11)

  1. 第1拠点の電力需要を算出する需要算出部と、
    前記電力需要及び前記第1拠点の発電部が発電する電力量に基づいて、所定の時間区分において前記第1拠点から電力系統に逆潮流する電力量を算出する同時同量算出部と、
    電気事業者による電力指令を満たすとともに、前記電力需要に基づいて、前記第1拠点から電力系統に逆潮流する電力量の予定と実績との差が低減されるように、前記発電部が出力する電力を制御する出力制御部と、
    を備える、電力制御システム。
  2. 第1拠点の電力需要を算出する需要算出部と、
    前記電力需要及び前記第1拠点の発電部が発電する電力量に基づいて、所定の時間区分において前記第1拠点から電力系統に逆潮流する電力量を算出する同時同量算出部と、
    電気事業者による電力指令を満たすとともに、前記電力需要に基づいて、前記第1拠点から電力系統に逆潮流する電力量の予定と実績との差が低減されるように、前記第1拠点の蓄電池の充電及び放電の少なくとも一方を制御する出力制御部と、
    を備える、電力制御システム。
  3. 前記発電部をさらに備え、
    前記発電部は、前記第1拠点に設置される、請求項1又は2に記載の電力制御システム。
  4. 前記同時同量算出部は、前記電力需要及び前記第1拠点の発電部が発電する電力量に基づいて、所定の時間区分において前記第1拠点から電力系統に逆潮流する電力量であって前記第1拠点と異なる第2拠点に供給される電力量を算出する、請求項1から3のいずれかに記載の電力制御システム。
  5. 前記出力制御部は、電気事業者による電力指令を満たすとともに、前記電力需要に基づいて、前記第1拠点から電力系統に逆潮流する電力量であって前記第1拠点と異なる第2拠点に供給される電力量の予定と実績との差が低減されるように制御を行う、請求項1から4のいずれかに記載の電力制御システム。
  6. 前記同時同量算出部は、前記第1拠点と異なる第2拠点の電力需要及び前記第2拠点の発電部が発電する電力量に基づいて、所定の時間区分において前記第2拠点から電力系統に逆潮流する電力量であって前記第1拠点に供給される電力量を算出する、請求項1から3のいずれかに記載の電力制御システム。
  7. 前記出力制御部は、電気事業者による電力指令を満たすとともに、前記第1拠点と異なる第2拠点の電力需要に基づいて、前記第2拠点から電力系統に逆潮流する電力量であって第1拠点に供給される電力量の予定と実績との差が低減されるように制御を行う、請求項1から3のいずれか又は請求項6に記載の電力制御システム。
  8. 前記同時同量算出部は、前記電力需要及び前記第1拠点の発電部が発電する電力量に基づいて、所定の時間区分において前記第1拠点から電力系統に逆潮流する電力量であって前記第1拠点と異なる複数の拠点に供給される電力量を算出する、請求項1から3のいずれかに記載の電力制御システム。
  9. 前記出力制御部は、電気事業者による電力指令を満たすとともに、前記電力需要に基づいて、前記第1拠点から電力系統に逆潮流する電力量であって前記第1拠点と異なる複数の拠点に供給される電力量の予定と実績との差が低減されるように制御を行う、請求項1から3のいずれか又は請求項8に記載の電力制御システム。
  10. 第1拠点の電力需要を算出する需要算出部と、
    前記電力需要及び前記第1拠点の発電部が発電する電力量に基づいて、所定の時間区分において前記第1拠点から電力系統に逆潮流する電力量を算出する同時同量算出部と、
    電気事業者による電力指令を満たすとともに、前記電力需要に基づいて、前記第1拠点から電力系統に逆潮流する電力量の予定と実績との差が低減されるように、前記発電部が出力する電力を制御する出力制御部と、
    を備える、電力制御機器。
  11. 第1拠点の電力需要を算出する需要算出部と、
    前記電力需要及び前記第1拠点の発電部が発電する電力量に基づいて、所定の時間区分において前記第1拠点から電力系統に逆潮流する電力量を算出する同時同量算出部と、
    電気事業者による電力指令を満たすとともに、前記電力需要に基づいて、前記第1拠点から電力系統に逆潮流する電力量の予定と実績との差が低減されるように、前記第1拠点の蓄電池の充電及び放電の少なくとも一方を制御する出力制御部と、
    を備える、電力制御機器。
JP2021201279A 2021-12-10 2021-12-10 電力制御システム及び電力制御機器 Pending JP2023086617A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021201279A JP2023086617A (ja) 2021-12-10 2021-12-10 電力制御システム及び電力制御機器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021201279A JP2023086617A (ja) 2021-12-10 2021-12-10 電力制御システム及び電力制御機器

Publications (1)

Publication Number Publication Date
JP2023086617A true JP2023086617A (ja) 2023-06-22

Family

ID=86850273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021201279A Pending JP2023086617A (ja) 2021-12-10 2021-12-10 電力制御システム及び電力制御機器

Country Status (1)

Country Link
JP (1) JP2023086617A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023054225A (ja) * 2019-04-11 2023-04-13 株式会社三洋物産 遊技機
JP2023054224A (ja) * 2019-04-11 2023-04-13 株式会社三洋物産 遊技機

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023054225A (ja) * 2019-04-11 2023-04-13 株式会社三洋物産 遊技機
JP2023054224A (ja) * 2019-04-11 2023-04-13 株式会社三洋物産 遊技機

Similar Documents

Publication Publication Date Title
US11594888B2 (en) Methods and systems for adjusting power consumption based on a fixed-duration power option agreement
US9438041B2 (en) System and method for energy distribution
Ghofrani et al. A framework for optimal placement of energy storage units within a power system with high wind penetration
WO2014115556A1 (ja) 電力系統の制御システム
WO2014143908A1 (en) System and method for energy distribution
CN102509167B (zh) 基于虚拟电厂的光伏发电能量管理系统
JP2023086617A (ja) 電力制御システム及び電力制御機器
US11900488B2 (en) Energy control and storage system for controlling power based on a load shape
WO2019182016A1 (ja) 電力情報管理システム、管理方法、プログラム、電力情報管理サーバ、通信端末、及び、電力システム
JP2006288014A (ja) エネルギー供給システム、および供給制御システム
TWI725606B (zh) 電動車充電站分散式電能管理方法
Shaaban et al. Day-ahead optimal scheduling for demand side management in smart grids
JP2017046507A (ja) 系統安定化システム
WO2017163934A1 (ja) 電力制御システム、制御装置、制御方法およびコンピュータプログラム
JP2023095550A (ja) 電力制御システム及び電力制御機器
JP2021164405A (ja) 需要管理基盤の分散資源統合運営システム
JP2023098309A (ja) 電力制御システム
Li et al. Distributed Stochastic Scheduling of Massive Backup Batteries in Cellular Networks for Operational Reserve and Frequency Support Ancillary Services
JP2005135266A (ja) 電力取引支援システム
NL2028655B1 (en) Method and system for controllingan amount of charging resources available to a plurality of electric vehicle supply equipments
JP7225142B2 (ja) 電力供給源管理システム
EP4372641A1 (en) System and method to control electric vehicle fleet charging or microgrid operation considering a heuristic approach to extend battery life
EP4371807A1 (en) Optimized control of power depots using multi-tenant charging system-of-systems
JP2023165545A (ja) 電力制御機器、電力制御システム、及びプログラム
WO2024105199A1 (en) System and method to control electric vehicle fleet charging or microgrid operation considering a heuristic approach to extend battery life

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240117