JP2023083991A - 空間位置算出装置 - Google Patents

空間位置算出装置 Download PDF

Info

Publication number
JP2023083991A
JP2023083991A JP2021198038A JP2021198038A JP2023083991A JP 2023083991 A JP2023083991 A JP 2023083991A JP 2021198038 A JP2021198038 A JP 2021198038A JP 2021198038 A JP2021198038 A JP 2021198038A JP 2023083991 A JP2023083991 A JP 2023083991A
Authority
JP
Japan
Prior art keywords
points
spatial position
calculation device
audio signal
position calculation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021198038A
Other languages
English (en)
Inventor
徹 石井
Toru Ishii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2021198038A priority Critical patent/JP2023083991A/ja
Priority to PCT/JP2022/044581 priority patent/WO2023106237A1/ja
Publication of JP2023083991A publication Critical patent/JP2023083991A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S11/00Systems for determining distance or velocity not using reflection or reradiation
    • G01S11/14Systems for determining distance or velocity not using reflection or reradiation using ultrasonic, sonic, or infrasonic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/80Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using ultrasonic, sonic or infrasonic waves
    • G01S3/802Systems for determining direction or deviation from predetermined direction
    • G01S3/808Systems for determining direction or deviation from predetermined direction using transducers spaced apart and measuring phase or time difference between signals therefrom, i.e. path-difference systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/18Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using ultrasonic, sonic, or infrasonic waves
    • G01S5/26Position of receiver fixed by co-ordinating a plurality of position lines defined by path-difference measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/18Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using ultrasonic, sonic, or infrasonic waves
    • G01S5/30Determining absolute distances from a plurality of spaced points of known location

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

【課題】反射波や他の送信源との干渉や雑音の影響がある場合にも、測定対象の空間内の位置を高精度に算出する空間位置算出装置を提供する。【解決手段】原音声信号に対して変調を施した変調音声信号を送信する送信部と、変調音声信号を空間内の複数受信点で受信する受信部と、変調音声信号から生成した参照信号と、複数受信点でのそれぞれの受信信号との相互相関演算結果に基づいて、送信部と受信部のいずれかの空間位置座標、もしくは送信部から受信部に至る距離を算出する空間位置算出装置において、複数受信点の中の任意の2点それぞれでの受信信号と、参照信号との相互相関演算によって得られるそれぞれの相関波形の複数のピーク群の中から、送信部から2点に至るそれぞれの距離と、2点間の距離を3辺とする三角形が形成される条件を満たすピークの組合せのみを抽出することにより、誤った距離に生じる偽ピークを排除する。【選択図】図1

Description

本発明は、音波、超音波等の波動を利用した空間位置算出装置である。
送信部から送出された音波もしくは超音波等の波動が受信部に到達するタイミングを計測し、送信部を基準とする受信部の位置、もしくは受信部を基準とする送信部の位置を算出する技術が特許文献1に開示されている。また送信部と受信部が空間的近傍に配置され、送信部から送出された波動が対象物に反射されて受信部に戻るまでの往復時間を計測し対象物の位置を算出する技術として、前記波動に電波を用いるレーダー技術や、音波もしくは超音波を用いるソナー技術が広く知られている。
特許第4834293号 特許第5560711号 特許第5766903号
F. Seco et al., "Compensation of multiple access interference effects in CDMA-based acoustic positioning systems," IEEE Transactions on Instrumentation and Measurement., vol. 63, no. 10, pp. 2368-2378, 2014 [DOI: 10.1109/TIM.2014.2312511].
特許文献1に示されるよう、スペクトラム拡散符号により変調した超音波信号を用いることにより、高精度の三次元測位を行う技術が従来報告されている。
スペクトラム拡散符号を用いた測位では、受信機側で行う受信信号と送信信号の相関演算の出力波形において、理論的には送信波が受信機に到達するタイミングの1点のみで鋭いピークを示すため、高精度な測位が可能となるという特徴を有している。
しかしながら実環境下においては、壁や床等の近傍の反射物の影響により、前記相関演算の出力波形おいて、送信機から受信機に至る直線距離を伝搬する受信波(以降、直達波という)のピークよりも、より強度の強い反射波のピークが前記直線距離と異なる距離に観測されるという問題や、他の送信源との干渉や雑音の影響により前記直達波の相関波形上のピークの極大位置がずれ、測定誤差が増大するという問題が生じる場合があった。
これに対し特許文献2では、相関演算波形上の最大ピークの発生時点より以前に現れる副次ピークが最小となる擬似ランダム系列データを、測定に用いる信号として選択することにより、他の送信源との干渉の影響を軽減する技術が開示されている。
また特許文献3では、送信周期毎に異なるM系列符号を送信し、かつ、測定周期内の相関演算波形上の最初のピークを検出することにより、直達波を選択的に判別して測定するという技術が開示されている。
また非特許文献1では、所望の信号以外の成分を抑圧することにより、測位精度を向上させるという技術が開示されている。
しかしながら特許文献2は所望の送信信号以外の信号は抑圧されるものの所望の送信信号自身の反射波による干渉は防げない。また特許文献3は反射波の影響は排除できるが干渉により相関波形上のピークの極大位置がずれ測定誤差が増大する問題には対応できない。また非特許文献1は所望の信号以外の成分を除去する計算を一回の測定に対して繰り返し行うため、計算負荷が大きく処理時間や消費電力が増大してしまう、という課題があった。
本発明は、干渉や雑音の影響により上記従来技術では正確な測定ができない環境下であっても、測定対象の空間内の位置を高精度に算出することを目的としたものである。
上記目的を達成するため、本発明の空間位置算出装置は、原音声信号に対して変調を施した変調音声信号を送信する送信部と、前記変調音声信号を相互の位置関係が予め定められた空間内の複数点で受信する受信部と、前記変調音声信号から生成した参照信号と前記複数点それぞれの受信信号との相互相関演算結果に基づいて、前記送信部と前記受信部のいずれかの空間位置座標もしくは前記送信部から前記受信部に至る距離を算出する算出部を備え、前記複数受信点の中の任意の2点それぞれの受信信号と、前記参照信号との相互相関演算によって得られるそれぞれの相関波形の複数のピーク群の中から、算出した前記送信部から前記2点に至るそれぞれの距離と、前記2点間の距離を3辺とする三角形が形成される条件を満たすピークの組合せのみを抽出することにより、誤った距離に生じる偽ピークを排除することを特徴とする。
本発明の空間位置算出装置によれば、送信部からの変調音声信号の受信部への到達タイミングを特定するための相互相関演算を受信部で行う際に、単一点での受信信号では反射波や他の送信源の送信波との干渉により、本来の正しい距離とは異なる位置に相関波形の最大ピークが生じるために測定誤差が増大する場合でも、送信部の位置と2点の受信位置を頂点とする三角形が空間内に形成されるという制約を満たす組合せを、前記相関波形内のピーク群の中から抽出するために、相関波形内における前記送信部の位置から前記2点の受信位置に至る直線距離に対応するピークが必ずしもで最大値を示さない場合であっても、前記直線距離を算出出来る。これにより、測定対象の空間内の位置を高精度に算出することが可能となる。
本発明による一実施形態のシステム機能ブロック図である。 変調音声信号Y1、Y2、Y3及び受信信号X41の時間関係を示したタイミングチャートである。 変調音声信号Y1及び受信信号X41、X42、X43の時間関係を示したタイミングチャートである。 送信部1の内部構成の実施例を示す図である。 図4の内部信号のタイミングチャートである。 受信部4の内部構成例を示す図である。 相関演算部45で行う相互相関演算の説明図である。 相互相関演算の結果を、横軸をシフト量、縦軸を相関値として示したグラフである。 最大ピーク位置が1点で安定している場合の相関演算結果の最大ピーク付近の拡大図である。 最大ピーク位置が隣接する二つのピークの間でばらつく場合の相関演算結果の最大ピーク付近の拡大図である。 直達波よりも強度の強い反射波が存在する場合の相互相関演算の結果のグラフである。 送信部kと、受信マイクM1、M2、M3の空間内の位置関係を示した図である。 送信部k、受信マイクM1、M2の3点を頂点とする三角形を示した図である。
本発明による一実施形態のシステム機能ブロック図を図1に示す。
全体のシステムは、空間内の異なる位置に設置され所定の時間間隔で、それぞれ異なる疑似乱数系列を用いたスペクトラム拡散符号による二値位相変調音声信号Y1、Y2、Y3を各々空間へ送出する送信部1、2、3と、前記Y1、Y2、Y3が各々空間を伝搬して受信部4に到達したタイミングを示す受信タイミング信号Y4を出力する受信部4と、前記Y4に基づいて受信部4の空間位置座標Y5を算出する位置算出部5、から構成されている。なお位置算出部5は受信部4と必ずしも別体である必要はなく、受信部4と同一の筐体に内包されていてもよい。
図2は、前記Y1、Y2、Y3と、これらがそれぞれ空間を伝搬して受信部4のマイクM1に到達した信号である、Z11、Z21、Z31と、マイクM1における受信信号であるX41の時間関係を示したタイミングチャートである。
前記Y1、Y2、Y3はお互いに異なる符号系列により二値位相変調され、それぞれ送信部1、2、3から所定の時間間隔Tで周期的に送信される信号である。
それぞれ時刻ty1,ty2,ty3に送信されたY1、Y2、Y3は、送信部1、2、3からマイクM1に至る各々の距離に比例した伝搬時間Δt11、Δt21、Δt31だけ遅延した信号である、Z11、Z21、Z31が重畳された受信信号X41として、マイクM1で受信される。
なおTは、送信部1、2、3からの変調音声信号の出力タイミングを位置算出部5が知り得る限りどのような選び方でもよく、一定の固定値である以外にも、例えば予め定めた規則に基づいて間隔を逐次変更するものや、あるいは送信間隔Tの値を都度、前記変調音声信号に重畳して位置算出部5に伝えるもの、等の方式を採用することができる。
またty1,ty2,ty3についても、これらを位置置算出部5が知り得る限りどのような選び方でもよく、例えば、同時すなわちty1 = ty2 = ty3とする、あるいはty1-ty2, ty2-ty3, ty3-ty1をそれぞれ異なる所定の固定値として各々の送信部の出力タイミングをずらす、あるいはty1,ty2,ty3の値を都度ランダムに変更してそれぞれの前記変調音声信号Y1、Y2、Y3に重畳して位置算出部5に伝える、等の方式を採用することができる。
図1の位置算出部5における空間位置座標の算出方法には複数の方法が存在する。
例えば位置算出部5がty1,ty2,ty3を事前に知り得ている場合には、マイクM1にそれぞれの変調音声信号が到達する時刻である図2のt11,t21,t31を受信部4で計測し、(ty1,ty2,ty3)と(t11,t21,t31)のグループ間の差を取って得られる伝搬遅延時間Δt11、Δt21、Δt31に音速を乗じて送信部1、2、3それぞれとマイクM1との距離を求め、三辺測量の原理に基づいて送信部1、2、3を基準とするマイクM1の位置座標を算出することができる。
あるいは位置算出部5がty1,ty2,ty3を知りえない場合であっても、ty1 = ty2 = ty3、すなわち送信部の全てが同時に変調音声信号を出力する系であれば、図2のt11、t21、t31の三者から二者を選ぶ三通りの組合せに対する差であるt31-t11、t11-t21、t21-t31はそれぞれ、伝搬遅延時間の差であるΔt31-Δt11、Δt11-Δt21、Δt21-Δt31に一致するため、これら用いて異なる空間位置から同時に送信された信号の到達時間差に基づいて位置算出するTDoA(Time Difference of Arrival)として一般に知られた原理により、マイクM1の位置座標を算出することが可能である。
図3は、マイクM1、M2、M3におけるそれぞれの受信信号であるX41、X42、X43の時間関係を示したタイミングチャートである。
受信マイクM1、M2、M3は受信部4内部の近接した位置に配置されており、各々と送信部1との距離が異なるため、前記Y1は、この各々の距離に応じて異なる伝搬時間Δt11、Δt12、Δt13だけ遅延した信号Z11、Z12、Z13として、それぞれM1、M2、M3に到達する。
送信部2および送信部3から送出されるY2、Y3に関しても同様に、それぞれの伝搬距離に応じて遅延時間が異なる信号がM1、M2、M3に到達するため、それぞれの受信信号のX41、X42、X43には、前記Z11、Z12、Z13に加え、Y2の到達信号であるZ21、Z22、Z23と、Y3の到達信号であるZ31、Z32、Z33とが、それぞれ異なるタイミングで重畳された信号が受信される。
図2および図3では説明の便宜上、Y1、Y2、Y3として1符号につき搬送波の1波長をあてた符号長2の短い符号を例として記載しているが、実用上は適宜、より長い符号長の疑似乱数系列のスペクトラム拡散符号を用いることで、受信信号の受信部4への到達タイミング算出の精度や、雑音や他信号に対する干渉耐性を高めることが可能である。
次に送信部1の内部構成の第一の実施例を図4に、また図4の内部信号のタイミングチャートを図5に示す。送信部1は、原音声信号生成部12、疑似乱数生成部13、変調部14、制御タイマ15からなる。
原音声信号生成部12は、例えば水晶発振器やマイクロコントローラの内蔵発振器等で構成され、一定周波数の原音声信号Y12を発生する。
制御タイマ15は、前記Tを周期とする動作制御信号Y15を、疑似乱数生成部13と変調部14に対して出力する。
疑似乱数生成部13は、M系列やGold符号あるいはKasami符号等の、一般に知られた疑似乱数系列に従い「1」または「0」の二値の疑似乱数Y13を発生する。
変調部14は原音声信号Y12と疑似乱数Y13を入力し、Y13の値が「0」の時は原音声信号Y12と同位相、Y13の値が「1」の時は原音声信号Y12と逆位相となるよう二値位相変調が施された変調音声信号Y1を空中に送出する。
疑似乱数生成部13と変調部14はいずれも、制御信号Y15がHiの期間は動作し、Loの期間は停止するよう、Y15により制御される。またY15が次にLoからHiになるタイミングで疑似乱数生成部13はリセットされ、あらかじめ定められた疑似乱数Y13を再び先頭から出力する。
図5において、Y15がLoからHiに遷移する立ち上がりエッジの間隔が、前記Tに相当する。
送信部2、送信部3においても、内部構成は図4、内部信号のタイミングは図5に示した送信部1と同様であるが、それぞれ内部で生成する疑似乱数がY13とは異なる。
送信部2、送信部3の内部で生成する疑似乱数をそれぞれY23、Y33とすると、疑似乱数Y13、Y23、Y33のいずれの組合せを取って相互相関演算を行っても明確なピークを示さない、いわゆる直交性の高い疑似乱数が選ぶことにより、受信部4における後述の相互相関演算において各々の送信部の変調音声信号を他のものと間違うことなく抽出することが可能となる。
続いて受信部4の内部構成例を図6に示す。
受信部4は、受信マイクM1、M2、M3、受信バッファメモリ41、42、43、参照信号生成部44、相関演算部45、相対速度予測部46、倍率変更部47、受信信号選択部48、よりなる。
受信マイクM1、M2、M3におけるそれぞれの受信信号X41、X42、X43は、それぞれの受信バッファメモリ41、42、43に一旦保持される。
受信選択部48は、受信バッファメモリ41、42、43から、それぞれの受信記録信号Y41、Y42、Y43を選択して読出した信号である選択受信記録信号Y48を、相関演算部45に出力する。なおY41、Y42、Y43はそれぞれ、前述の一旦保持されたX41、X42、X43に対し、相関演算部45での相関演算に必要な区間が読みだされた信号である。
この相関演算に必要な区間とは、受信部4と送信部2の位置関係上取りうる、最も近距離の伝搬時間をtmin、逆に最も遠距離の伝搬時間をtmaxと表した時、tminからtmaxに至る区間として決定できる。
参照信号生成部44は、図4の変調部14と同様の機能を有しており、送信部1、2、3各々の変調音声信号Y1、Y2、Y3と同一の信号を逐次、参照信号Y44として倍率変更部47に出力する。
相対速度予測部46は送信部1、2、3と受信部4とのそれぞれの間の相対速度を予測し、この予測した相対速度によるドップラー効果により前記受信信号に生じる時間方向の伸縮を補償する倍率を倍率変更部47に設定する。
倍率変更部47は、参照信号Y44を相対速度予測部46に指定された倍率に従って時間方向に伸縮して、補正参照信号Y47として、相関演算部45に出力する。
相関演算部45は、選択受信記録信号Y48と補正参照信号Y47の相互相関演算を行うことにより、受信部4が各々の送信部からの変調音声信号の受信タイミングを算出する。
図7は、相関演算部45で行う相互相関演算の説明図である。ここでは図6におけるY48としてY41を選択した際の、前記受信タイミングを算出する例を示している。
今、相関演算部45には、選択されたY41と同波形であるY48と、変調音声信号Y2のレプリカであるY44に対し前述の倍率変更を施した補正参照信号Y47とが、入力される。
なお図7では送信部2と受信部4との相対速度がゼロかつ前述の予測相対速度もゼロの例を示しており、Y47は参照信号Y44と同波形である。
相関演算部45は、Y48に対し、Y47をtminからtmaxに渡り順次シフトして相互相関演算を行い、相関が最大ピークを示すタイミングt21を求め、この時点をZ21が受信部4に受信されたタイミングとして算出する。
図8は上記の相互相関演算の結果を、横軸をシフト量、縦軸を相関値として示したグラフである。
さらに受信部4は、図7に示したのと同様の相互相関演算を、送信部1、送信部3に関しても行うことで、Z11、Z31がそれぞれ受信部4に受信されたタイミングであるt11、t31も同様に算出する。
次に受信選択部48において、受信記録信号Y41、Y42、Y43を用いて、何らかの理由により相関演算波形上において直達波のピークが必ずしも最大値を示さない問題が生じている状況でも、直達波の受信タイミングを正しく求める手法について述べる。
まずこの問題の一例である、干渉や雑音の影響により直達波の相関波形上のピークの極大位置がずれ、測定誤差が増大する現象を、図9と図10を用いて説明する。
図9と図10はそれぞれ、空間内の位置座標が異なる相互の距離が数cm程度離れたある2点に受信マイクM1を設置した場合の、受信記録信号Y41と変調音声信号Y2に対する相関演算部45における相互相関演算の波形の最大ピーク付近の拡大図である。
図9、図10において、実線で示すグラフは相関演算部45で複数回行った相互相関演算の初回の波形であり、グラフ上の点はこの複数回のそれぞれの波形で得られた最大ピーク点を重畳したものである。
図9は干渉の影響がなく1点において相関波形が常に最大ピークを示す例であり、複数回のいずれの波形においても常に時刻t21で最大ピークを示している。
一方、図10は最大ピークの鋭さが鈍る例であり、受信マイクM1の位置が静止しているにも関わらず最大ピーク位置が測定回によりt21とt21’の隣接する二つのピーク間でばらついており、いずれが直達波の伝搬距離に相当するのかを判別できないという問題が生じている。
なおここで、図9および図10における波形の周期は、変調音声信号の搬送波に用いる超音波の周期に一致しているため、図9の場合はこの超音波の波長よりも高精度な測位が出来ているのに対し、図10の場合は測定回によっては1波長の誤差が生じることを意味している。
続いて、相関演算波形上において直達波のピークが必ずしも最大値を示さない別の事例である、強度の強い反射波のピークが直達波の伝搬距離とは異なる距離に観測される問題について、図11を用いて説明する。
図11は、図8と同様、相関演算部45における受信記録信号Y41と変調音声信号Y2に対する相関演算波形を示したものであるが、直達波よりも強度の強い反射波がM1に受信されているために、直達波の到達時刻t21ではなく反射波の到達時刻t21’’にて最大ピークが観測されている点が図8との相違点である。
図11の状況では、最大ピーク位置に基づいて算出する距離は反射波の伝搬距離となるために、図10に示した最大ピークの鋭さが鈍る現象に起因して生じる超音波の1波長分の誤差よりもさらに大きな誤差が生じるという問題が発生する。
次に、上述の問題に対処し、受信部4の位置座標を正確に求める本発明の原理について説明する。
図12は、送信部kと、複数の受信マイクの空間内の位置関係の説明図であり、qkは送信部kの位置、p1、p2、p3はそれぞれ受信マイクM1、M2、M3のマイクの位置を示している。
図中、d12、d23、d31はそれぞれ p1-p2間、p2-p3間、p3-p1間の距離であり、またrk1、rk2、rk3はそれぞれ、qk-p1間、qk-p2間、qk-p3間の距離を示している。
今、pi、 pj、qk(但しi,jは1,2,3から任意の2つを選ぶ組合せ)の3点は空間内において三角形を形成するため、dij, rki, rkj は以下の式を満たす。
Figure 2023083991000002
今、空中を伝搬する音速をvsとすると、前記[数1]は以下のように書き換えられる。
Figure 2023083991000003
ただしここで、tki、tkjはそれぞれ、受信マイクMi、Mjで観測された各々の受信記録信号と送信部kが送信する変調音声信号との相互相関演算結果の波形上において、piとpjにおけるqk からの直達波によるピークが観測される時刻である。
[数2]を用いることにより、図10や図11に示した問題が生じているために相互相関演算結果の波形上に直達波のピーク候補が複数存在する場合であっても、正しい候補を絞りこむことができる。
例えば、受信マイクiおよび受信マイクjの各々の相互相関波形において、それぞれ最大ピークから順に値が大きいN個ずつのピークを各々抽出し、(tki、tkj)に対して取りうるN2通りの組合せのうち、[数2]を満たさない組合せは間違いとして排除できる。
今、受信マイクの相互間の距離dijを、測定に用いる超音波の波長の2分の1以下に設定すれば、[数2]を満たす(tki、tkj)の組合せを、直達波による正しい組合せのみに限定することができる。
この理由は、相互相関演算波形に現れる複数のピークどうしは、図10に示すように、少なくとも超音波の1波長相当の時間以上に離れるため、受信マイクMi、Mjにおける直達波によるピークの時刻をそれぞれtki_T、tkj_T、また、直達波によるものではない偽ピークの時刻をそれぞれtki_F、tkj_Fと表すと、直達波による組合せ (tki_T、tkj_T) が[数2]を満たしている限りにおいて、いずれか一方が直達波によらない組合せである (tki_F、tkj_T)、(tki_T、tkj_F)はいずれも、原理上[数2]を満たさなくなるためである。
dijを超音波の波長の2分の1以下に設定するには、例えば面実装タイプの小型マイクをプリント回路基板上に隣接して実装すること等により実現できる。
またdijを超音波の波長の2分の1以下とする事ができない場合でも、[数2]を満たすピークの組合せが一つしかなければ、これを正しい組合せとして選別できる。
なお、[数1]もしくは[数2]による判定は、受信マイクが2個の場合にも用いることができるが、この場合には(i, j)として取りうる組合せが1通りしかないために[数2]による判定式も1つしか存在しないのに対し、図12に示したように3個の受信マイクが直線上に並ばないように配置されている場合には、取りうる(i, j)の組合せが3通りあるために[数2]による判定式も3つ存在し、これら3つの式のいずれをも満たすものが前述の複数の候補の中から最終候補として絞り込まれるため、受信マイクが2個の際と比べて、より偽ピークを排除する効率を高めることができる。
今、受信マイクが3個あり、それぞれのマイク毎に最大ピークから順にN個のピークを抽出したするとピークの組合せはN3通りとなるが、各マイクからピーク抽出する際に、最大ピーク値と比較してピーク値が2分の1未満のものは抽出しない等の制約を設け、明らかに直達波とはみなせないものは抽出しない等の処理を施すことにより、[数2]による判定を行う前記組合せの数を予め減らし、処理負荷を軽減することが可能である。
上述の全ての処理を統合し、取りうる(i, j)の全ての組合せにおいて[数2]を満たす直達波のピーク候補がなお複数存在する場合には、最終解の決定方法として、例えば、直達波のピークを唯一に特定できた前回や前々回の過去の測定からの予測位置に一番近いものを選ぶ、あるいは、残ったピーク候補の組合せの中で、同一の組合せ内のピーク値の合計値が最も高いものを選ぶ、という方法を取ることができる。
以上により、送信部kからの変調音声信号の直達波が受信マイクM1、M2、M3それぞれに到達した時刻(tk1、tk2、tk3)が求められ、この組合せ自体、もしくは受信部4の基準位置として予め定めた受信マイクiにおける到達時刻tkiが、受信部4の到達タイミングY4として出力される。
次に本発明における、送信部kの到来角を求める実施例について説明する。
今、図12において、各々の受信マイク位置に関し、p2が前記受信部4の基準位置であり、p2を原点として直交する2軸であるx軸とy軸上にそれぞれp1、p3が配置されているものとする。
図13に示すよう、三角形qk p2 p1において、辺qk p1、辺qk p2の長さをそれぞれrk1、rk2とし、辺qk p2と辺p2 p1がなす角、すなわち、p2におけるqkの方位とx軸がなす角を
Figure 2023083991000004
とすると、
Figure 2023083991000005
は余弦定理により、以下の式で求めることが出来る。
Figure 2023083991000006
同様に、p2におけるqkの方位とy軸がなす角
Figure 2023083991000007
についても、以下の式により求められる。
Figure 2023083991000008
1 送信部
2 送信部
3 送信部
4 受信部
5 位置算出部
12 原音声信号生成部
13 疑似乱数生成部
14 変調部
15 制御タイマ
41 受信バッファメモリ
42 受信バッファメモリ
43 受信バッファメモリ
44 参照信号生成部
45 相関演算部
46 相対速度予測部
47 倍率変更部
48 受信信号選択部
M1 受信マイク
M2 受信マイク
M3 受信マイク

Claims (5)

  1. 原音声信号に対して変調を施した変調音声信号を送信する送信部と、前記変調音声信号を空間内の複数受信点で受信する受信部と、前記変調音声信号から生成した参照信号と、前記複数受信点でのそれぞれの受信信号との相互相関演算結果に基づいて、前記送信部と前記受信部のいずれかの空間位置座標、もしくは前記送信部から前記受信部に至る距離を算出する空間位置算出装置において、前記複数受信点の中の任意の2点それぞれの受信信号と、前記参照信号との相互相関演算によって得られるそれぞれの相関波形の複数のピーク群の中から、算出した前記送信部から前記2点に至るそれぞれの距離と、前記2点間の距離を3辺とする三角形が形成される条件を満たすピークの組合せのみを抽出することにより、誤った距離に生じる偽ピークを排除することを特徴とする空間位置算出装置。
  2. 請求項1に記載の空間位置算出装置において、前記三角形が形成される条件として、前記送信部から前記2点に至るそれぞれの距離の差が、前記2点間の距離よりも小さくなる、という条件を用いることを特徴とする空間位置算出装置。
  3. 請求項1又は請求項2に記載の空間位置算出装置において、前記2点間の距離のうち少なくとも一つが、前記原音声信号の波長の2分の1以下となるように、前記複数受信点が配置されていることを特徴とする空間位置算出装置。
  4. 請求項1ないし請求項3のいずれか1項に記載の空間位置算出装置において、前記複数受信点は、同一直線上にない3点の組合せを少なくとも一つ以上含むことを特徴とする空間位置算出装置。
  5. 請求項4に記載の空間位置算出装置において、前記算出部で得られる、前記送信部と前記複数受信点それぞれとの距離に基づいて、前記送信部に対して前記受信部が相対的になす角度を求めることを特徴とする、空間位置算出装置。
JP2021198038A 2021-12-06 2021-12-06 空間位置算出装置 Pending JP2023083991A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021198038A JP2023083991A (ja) 2021-12-06 2021-12-06 空間位置算出装置
PCT/JP2022/044581 WO2023106237A1 (ja) 2021-12-06 2022-12-02 空間位置算出装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021198038A JP2023083991A (ja) 2021-12-06 2021-12-06 空間位置算出装置

Publications (1)

Publication Number Publication Date
JP2023083991A true JP2023083991A (ja) 2023-06-16

Family

ID=86730465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021198038A Pending JP2023083991A (ja) 2021-12-06 2021-12-06 空間位置算出装置

Country Status (2)

Country Link
JP (1) JP2023083991A (ja)
WO (1) WO2023106237A1 (ja)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4815661B2 (ja) * 2000-08-24 2011-11-16 ソニー株式会社 信号処理装置及び信号処理方法
JP4356530B2 (ja) * 2004-06-11 2009-11-04 沖電気工業株式会社 パルス音の到来時間差推定方法及びその装置
JP2006317161A (ja) * 2005-05-10 2006-11-24 Matsushita Electric Ind Co Ltd 追尾システム
WO2009084490A1 (ja) * 2007-12-28 2009-07-09 Nec Corporation 位置決定システム、送信装置、受信装置及び位置決定方法
JPWO2021039606A1 (ja) * 2019-08-29 2021-03-04
WO2021130818A1 (ja) * 2019-12-23 2021-07-01 三菱電機株式会社 検出装置、検出方法、及び、検出プログラム
CN112098929B (zh) * 2020-01-20 2024-05-14 苏州触达信息技术有限公司 智能设备间的相对角度确定方法、装置、系统和智能设备

Also Published As

Publication number Publication date
WO2023106237A1 (ja) 2023-06-15

Similar Documents

Publication Publication Date Title
CN104007418B (zh) 一种基于时间同步的大基阵水下宽带扩频信标导航定位系统及方法
EP1540365B1 (en) Underwater location apparatus
CN104272132B (zh) 确定水下节点的位置
Khyam et al. Design of chirp waveforms for multiple-access ultrasonic indoor positioning
EP2081050B1 (en) Multiple object localisation with a network of receivers
CN112470023B (zh) 通过使用基于波的信号定位至少一个对象的测位方法以及测位系统
JP2011038993A (ja) 水中目標物探索システム、水中目標物探索方法及び水中目標物探索用プログラム
JP4507245B2 (ja) 時間測定システム、物体検出システム、シフト測定方法
WO2021039606A1 (ja) 空間位置算出装置
JP5454475B2 (ja) 位置検出システム、送信装置、受信装置、位置検出方法、位置検出プログラム
JP6207817B2 (ja) 水中位置関係情報取得システム
JP2006284257A (ja) 音波伝搬距離推定方法及び音波伝搬距離推定装置
US6028823A (en) Geodetic position estimation for underwater acoustic sensors
WO2023106237A1 (ja) 空間位置算出装置
JP2017166880A (ja) 音響測定装置、音響測定方法、マルチビーム音響測定装置及び開口合成ソナー
JP5757303B2 (ja) 水中音響測位システム
RU2308054C2 (ru) Гидроакустическая синхронная дальномерная навигационная система
Bonito Acoustic system for ground truth underwater positioning in DEEC's test tank
CN111337881B (zh) 一种利用螺旋桨噪声的水下目标探测方法
KR101917503B1 (ko) 직교 코드가 포함된 수중음향신호를 이용한 다중 수중표적 거리 추정 방법 및 시스템
WO2023008230A1 (ja) 水中測位システム及び方法
RU2739478C1 (ru) Способ обработки псевдошумового сигнала в гидролокации
RU2470317C1 (ru) Разностно-дальномерное гидроакустическое устройство определения местоположения надводного или подводного судна относительно заданного фарватера
Ghiotto et al. Mobile submarine target strength measurement
RU2104486C1 (ru) Способ определения расстояния до объекта с подвижного наблюдателя