JP2023082501A - Method for recovering valuable element, method for producing hydroxide of valuable element, and method for producing oxide of valuable element - Google Patents

Method for recovering valuable element, method for producing hydroxide of valuable element, and method for producing oxide of valuable element Download PDF

Info

Publication number
JP2023082501A
JP2023082501A JP2021196325A JP2021196325A JP2023082501A JP 2023082501 A JP2023082501 A JP 2023082501A JP 2021196325 A JP2021196325 A JP 2021196325A JP 2021196325 A JP2021196325 A JP 2021196325A JP 2023082501 A JP2023082501 A JP 2023082501A
Authority
JP
Japan
Prior art keywords
cobalt
hydrogen peroxide
substance
recovering
filtrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021196325A
Other languages
Japanese (ja)
Inventor
東洋司 山口
Toyoji Yamaguchi
純仁 小澤
Sumihito Ozawa
秀夫 木島
Hideo Kijima
万里子 篠田
Mariko Shinoda
博一 杉森
Hiroichi Sugimori
晋弘 藤田
Yukihiro Fujita
健男 春日
Takeo Kasuga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
JFE Material Co Ltd
Original Assignee
JFE Steel Corp
JFE Material Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, JFE Material Co Ltd filed Critical JFE Steel Corp
Priority to JP2021196325A priority Critical patent/JP2023082501A/en
Publication of JP2023082501A publication Critical patent/JP2023082501A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

To provide a novel method in which valuable element such as cobalt can be recovered from waste catalyst.SOLUTION: A substance containing at least molybdenum and cobalt is brought into contact with aqueous hydrogen peroxide to yield a leachate in which at least cobalt is leached from the substance. By filtering the leachate to separate the substance, a filtrate is obtained. The filtrate is subjected to alkali treatment, and the formed cobalt precipitate is separated by filtration.SELECTED DRAWING: Figure 1

Description

本発明は、少なくともモリブデンおよびコバルトを含有する物質(例えば、石油精製に用いられた使用済み脱硫触媒などの廃触媒)から有価元素を回収する方法、ならびに、有価元素の水酸化物の製造方法および有価元素の酸化物の製造方法に関する。 The present invention provides a method for recovering valuable elements from substances containing at least molybdenum and cobalt (for example, waste catalysts such as spent desulfurization catalysts used in petroleum refining), a method for producing hydroxides of valuable elements, and The present invention relates to a method for producing oxides of valuable elements.

従来、石油精製において、脱硫触媒を用いた脱硫が行なわれる。より詳細には、石油と高圧水素とを脱硫触媒上で反応させ、石油に含まれる硫黄分を硫化水素として除去する水素化脱硫が行なわれる。
このような脱硫触媒は、使用されるに従い、石油に含まれる重金属やタール分などで次第に被毒されて触媒活性が低下するため、定期的に交換される。この際、使用済み脱硫触媒(廃触媒)が発生する。
従来、資源循環の点から、廃触媒に含まれる種々の元素を回収する方法が提案されている(特許文献1)。
Conventionally, desulfurization using a desulfurization catalyst is performed in petroleum refining. More specifically, hydrodesulfurization is performed in which petroleum and high-pressure hydrogen are reacted on a desulfurization catalyst to remove sulfur contained in petroleum as hydrogen sulfide.
As such desulfurization catalysts are used, they are gradually poisoned by heavy metals and tars contained in petroleum and their catalytic activity decreases, so they are periodically replaced. At this time, a used desulfurization catalyst (waste catalyst) is generated.
Conventionally, from the viewpoint of resource recycling, a method for recovering various elements contained in spent catalysts has been proposed (Patent Document 1).

特開2013-133233号公報JP 2013-133233 A

脱硫触媒は、例えば、アルミナなどの担体上に、モリブデン(Mo)、コバルト(Co)等の金属元素を担持する。
モリブデンは、鋼に添加すると機械的強度や剛性が高まるため、特殊鋼やステンレス鋼に使用され、更に、高温で展性や延性に富むため、グリス等にも使用される。
近年、使用済み脱硫触媒などの廃触媒から、これらの元素(有価元素)を回収することが強く望まれている。
A desulfurization catalyst supports, for example, a metal element such as molybdenum (Mo) or cobalt (Co) on a carrier such as alumina.
Molybdenum is used in special steels and stainless steels because it increases mechanical strength and rigidity when added to steel, and is also used in greases and the like because it is highly malleable and ductile at high temperatures.
In recent years, there is a strong demand to recover these elements (valuable elements) from waste catalysts such as spent desulfurization catalysts.

そこで、本発明は、廃触媒などの物質からコバルト等の有価元素を回収できる新規な方法を提供することを目的とする。 Accordingly, an object of the present invention is to provide a novel method for recovering valuable elements such as cobalt from substances such as waste catalysts.

本発明者らは、鋭意検討した結果、下記構成を採用することにより、上記目的が達成されることを見出し、本発明を完成させた。 As a result of intensive studies, the inventors of the present invention have found that the above object can be achieved by adopting the following configuration, and completed the present invention.

すなわち、本発明は、以下の[1]~[10]を提供する。
[1]少なくともモリブデンおよびコバルトを含有する物質を過酸化水素水に接触させて、上記物質から少なくともコバルトが浸出した浸出液を得て、上記浸出液をろ過して上記物質を分離することにより、ろ液を得て、上記ろ液にアルカリ処理を施し、生成したコバルト沈殿物をろ過によって分離する、有価元素の回収方法。
[2]上記過酸化水素水は、過酸化水素を含有し、上記物質の量に対する上記過酸化水素の量が、40質量%以下である、上記[1]に記載の有価元素の回収方法。
[3]上記物質の量に対する上記過酸化水素の量が、5質量%以上である、上記[2]に記載の有価元素の回収方法。
[4]上記物質を、上記過酸化水素水に接触させるに先立って、粉砕する、上記[1]~[3]のいずれかに記載の有価元素の回収方法。
[5]上記過酸化水素水と上記物質との質量比(過酸化水素水/物質)が、2/1以上である、上記[1]~[4]のいずれかに記載の有価元素の回収方法。
[6]上記ろ液に上記アルカリ処理を施すことにより、上記ろ液のpHを7以上にする、上記[1]~[5]のいずれかに記載の有価元素の回収方法。
[7]上記物質が、廃触媒である、上記[1]~[6]のいずれかに記載の有価元素の回収方法。
[8]上記廃触媒が、使用済み脱硫触媒である、上記[7]に記載の有価元素の回収方法。
[9]上記[1]~[8]のいずれかに記載の有価元素の回収方法を用いて、有価元素の水酸化物を得る、有価元素の水酸化物の製造方法。
[10]上記[1]~[8]のいずれかに記載の有価元素の回収方法を用いて、有価元素の酸化物を得る、有価元素の酸化物の製造方法。
That is, the present invention provides the following [1] to [10].
[1] A substance containing at least molybdenum and cobalt is brought into contact with a hydrogen peroxide solution to obtain a leachate in which at least cobalt is leached from the substance, and the leachate is filtered to separate the substance, resulting in a filtrate. A method for recovering valuable elements, comprising subjecting the filtrate to alkali treatment and separating the produced cobalt precipitate by filtration.
[2] The method for recovering valuable elements according to [1] above, wherein the hydrogen peroxide solution contains hydrogen peroxide, and the amount of the hydrogen peroxide relative to the amount of the substance is 40% by mass or less.
[3] The method for recovering a valuable element according to [2] above, wherein the amount of the hydrogen peroxide relative to the amount of the substance is 5% by mass or more.
[4] The method for recovering valuable elements according to any one of [1] to [3] above, wherein the substance is pulverized prior to being brought into contact with the hydrogen peroxide solution.
[5] Recovery of the valuable element according to any one of [1] to [4] above, wherein the mass ratio of the hydrogen peroxide solution to the substance (hydrogen peroxide solution/substance) is 2/1 or more. Method.
[6] The method for recovering a valuable element according to any one of [1] to [5] above, wherein the pH of the filtrate is adjusted to 7 or more by subjecting the filtrate to the alkali treatment.
[7] The method for recovering valuable elements according to any one of [1] to [6] above, wherein the substance is a spent catalyst.
[8] The method for recovering valuable elements according to [7] above, wherein the spent catalyst is a spent desulfurization catalyst.
[9] A method for producing a hydroxide of a valuable element, wherein the hydroxide of the valuable element is obtained by using the method for recovering the valuable element according to any one of [1] to [8] above.
[10] A method for producing an oxide of a valuable element, wherein the oxide of the valuable element is obtained by using the method for recovering the valuable element according to any one of [1] to [8] above.

本発明によれば、廃触媒などの物質からコバルト等の有価元素を回収できる。 According to the present invention, valuable elements such as cobalt can be recovered from substances such as waste catalysts.

有価元素の回収方法の流れを示すフローチャートである。It is a flowchart which shows the flow of the recovery method of a valuable element. 粉砕後の廃触媒の粒度分布である。It is the particle size distribution of the spent catalyst after pulverization.

本発明の有価元素の回収方法は、少なくともモリブデンおよびコバルトを含有する物質を過酸化水素水に接触させて、上記物質から少なくともコバルトが浸出した浸出液を得て、上記浸出液をろ過して上記物質を分離することにより、ろ液を得て、上記ろ液にアルカリ処理を施し、生成したコバルト沈殿物をろ過によって分離する。
本発明によれば、少なくともモリブデンおよびコバルトを含有する物質から、簡便に、コバルトをコバルト沈殿物として回収できる。
The method for recovering a valuable element of the present invention comprises contacting a substance containing at least molybdenum and cobalt with a hydrogen peroxide solution to obtain a leachate in which at least cobalt is leached from the substance, and filtering the leachate to remove the substance. By separating, a filtrate is obtained, the filtrate is subjected to alkali treatment, and the formed cobalt precipitate is separated by filtration.
According to the present invention, cobalt can be conveniently recovered as a cobalt precipitate from a substance containing at least molybdenum and cobalt.

以下、本発明の好適な実施形態を、図1に基づいて説明する。
図1は、有価元素の回収方法の流れを示すフローチャートである。
A preferred embodiment of the present invention will be described below with reference to FIG.
FIG. 1 is a flow chart showing the flow of a method for recovering valuable elements.

少なくともモリブデンおよびコバルトを含有する物質としては、特に限定されないが、以下では、廃触媒を例に説明する。 Although the substance containing at least molybdenum and cobalt is not particularly limited, a waste catalyst will be described below as an example.

〈廃触媒の準備〉
廃触媒は、少なくともモリブデンおよびコバルトを含有する、例えば、使用済み脱硫触媒である。脱硫触媒は、例えば、アルミナ(Al)などの担体上に、モリブデン(Mo)、コバルト(Co)、ニッケル(Ni)などの金属元素を担持する。
<Preparation of spent catalyst>
A spent catalyst is, for example, a spent desulfurization catalyst containing at least molybdenum and cobalt. A desulfurization catalyst carries metal elements, such as molybdenum (Mo), cobalt (Co), and nickel (Ni), on carriers, such as alumina ( Al2O3 ), for example.

〈粉砕〉
廃触媒は、後述するように、過酸化水素水に接触させるが、これに先立って、粉砕することが好ましい。これにより、高効率な浸出が期待できる。廃触媒がアルミナ担体を有する(アルミナ骨格を有する)脱硫触媒である場合は、特に有用である。
廃触媒を粉砕する方法としては、特に限定されず、ボールミル、ジェットミル等を用いる公知の方法によって、簡便に粉砕できる。
粉砕後における廃触媒の粒度としては、1000μm以下が好ましく、500μm以下がより好ましい。
<Grinding>
As will be described later, the spent catalyst is brought into contact with a hydrogen peroxide solution, but prior to this, it is preferably pulverized. As a result, highly efficient leaching can be expected. It is particularly useful when the spent catalyst is a desulfurization catalyst having an alumina carrier (having an alumina skeleton).
The method for pulverizing the waste catalyst is not particularly limited, and it can be easily pulverized by a known method using a ball mill, jet mill, or the like.
The particle size of the waste catalyst after pulverization is preferably 1000 μm or less, more preferably 500 μm or less.

〈過酸化水素水との接触:浸出液の取得〉
廃触媒を、任意で粉砕した後、過酸化水素水(過酸化水素の水溶液)に接触させる。接触の方法は、特に限定されず、例えば、廃触媒を過酸化水素水に浸漬させることにより両者を接触させる方法が挙げられる。
これにより、廃触媒に含まれるモリブデンおよびコバルトのうち、少なくともコバルトを、過酸化水素水に浸出させる。
すなわち、得られる浸出液は、廃触媒、ならびに、この廃触媒から溶け出した成分であるコバルトを含有するスラリーである。このスラリーは、後述するように、例えば、強酸性である。
<Contact with hydrogen peroxide solution: Acquisition of leachate>
The spent catalyst, optionally after pulverization, is contacted with hydrogen peroxide water (aqueous solution of hydrogen peroxide). The contacting method is not particularly limited, and examples thereof include a method of contacting the two by immersing the spent catalyst in hydrogen peroxide water.
As a result, of the molybdenum and cobalt contained in the spent catalyst, at least cobalt is leached into the hydrogen peroxide solution.
That is, the leachate obtained is a slurry containing the spent catalyst and cobalt, which is a component leached from the spent catalyst. This slurry is, for example, strongly acidic as described later.

ところで、浸出液にコバルトだけでなく、モリブデンも多量に浸出している場合、後述するアルカリ処理を実施すると、一定量のモリブデンも共沈するため、得られるコバルト沈殿物の品位が低下しやすい。
また、モリブデンは、一般には、アルカリ側のpHで沈殿する元素ではないため、廃液に多くのモリブデンが残留して廃棄されることとなり、モリブデンのロスが増加する。
By the way, when not only cobalt but also a large amount of molybdenum is leached out of the leachate, if the alkali treatment described later is performed, a certain amount of molybdenum is coprecipitated, so the quality of the obtained cobalt precipitate is likely to deteriorate.
In addition, since molybdenum is generally not an element that precipitates at an alkaline pH, a large amount of molybdenum remains in the waste liquid and is discarded, increasing molybdenum loss.

そこで、本発明者らが検討した結果、高濃度の過酸化水素水を廃触媒に接触させると、モリブデン、コバルト等の各種金属が多量に浸出すること、および、過酸化水素水の濃度を低下させると、主としてコバルトのみが選択的に浸出することを見出した。
これは、コバルトが他の金属元素より過酸化水素による酸化を受けやすいためと考えられる。このため、希薄な過酸化水素水を廃触媒に接触させることにより、他の金属元素(例えばモリブデン)と比較して、コバルトが多く浸出した浸出液が得られる。
Therefore, as a result of investigation by the present inventors, it was found that a large amount of various metals such as molybdenum and cobalt are leached out when a high-concentration hydrogen peroxide solution is brought into contact with the waste catalyst, and that the concentration of the hydrogen peroxide solution is reduced. It was found that mainly only cobalt was selectively leached out when exposed to water.
This is probably because cobalt is more easily oxidized by hydrogen peroxide than other metal elements. Therefore, by bringing dilute hydrogen peroxide water into contact with the waste catalyst, a leachate containing more cobalt than other metal elements (eg, molybdenum) can be obtained.

以上の点から、本実施形態においては、廃触媒に接触する過酸化水素水が含有する過酸化水素の量を、廃触媒の量(乾燥質量)に対して、一定値以下にすることが好ましい。
具体的には、廃触媒の量に対する過酸化水素の量(以下、便宜的に、「過酸化水素量p」ともいう)は、40質量%以下が好ましく、30質量%以下がより好ましく、20質量%以下が更に好ましい。これにより、廃触媒からコバルトのみを選択的に浸出させやすくなる。
From the above points, in the present embodiment, it is preferable that the amount of hydrogen peroxide contained in the hydrogen peroxide solution that contacts the spent catalyst is set to a certain value or less with respect to the amount (dry mass) of the spent catalyst. .
Specifically, the amount of hydrogen peroxide relative to the amount of spent catalyst (hereinafter also referred to as “hydrogen peroxide amount p” for convenience) is preferably 40% by mass or less, more preferably 30% by mass or less, and 20% by mass or less. % by mass or less is more preferable. This facilitates selective leaching of only cobalt from the spent catalyst.

一方、過酸化水素量pが低すぎると、コバルトが十分な浸出されないおそれがある。
このため、過酸化水素量pは、5質量%以上が好ましく、7質量%以上がより好ましく、10質量%以上が更に好ましい。
On the other hand, if the hydrogen peroxide amount p is too low, cobalt may not be leached sufficiently.
Therefore, the hydrogen peroxide amount p is preferably 5% by mass or more, more preferably 7% by mass or more, and even more preferably 10% by mass or more.

なお、例えば、後述する質量比(過酸化水素水/廃触媒)が10/1である場合、過酸化水素水の濃度(過酸化水素水における過酸化水素の含有量)が4質量%であれば、過酸化水素量pは40質量%になる。 For example, when the mass ratio (hydrogen peroxide solution/waste catalyst) described later is 10/1, even if the concentration of hydrogen peroxide solution (the content of hydrogen peroxide in the hydrogen peroxide solution) is 4% by mass. For example, the hydrogen peroxide amount p is 40% by mass.

過酸化水素水と廃触媒との質量比(過酸化水素水/廃触媒)は、効率良く浸出できるという理由から、2/1以上が好ましく、3/1以上がより好ましい。
一方、使用する過酸化水素水が適量となり、反応容器の増大およびコスト増を抑制できるという理由から、質量比(過酸化水素水/廃触媒)は、50/1以下が好ましく、30/1以下がより好ましい。
The mass ratio of the hydrogen peroxide solution to the waste catalyst (hydrogen peroxide solution/waste catalyst) is preferably 2/1 or more, more preferably 3/1 or more, for the reason that efficient leaching can be achieved.
On the other hand, the amount of hydrogen peroxide water used is appropriate, and the mass ratio (hydrogen peroxide water/waste catalyst) is preferably 50/1 or less, and 30/1 or less, because it is possible to suppress an increase in the size of the reaction vessel and an increase in cost. is more preferred.

廃触媒を過酸化水素水に接触させる時間(接触時間)は、廃触媒内部の有価元素を十分に浸出できるという理由から、10分以上が好ましく、15分以上がより好ましい。
一方で、接触時間を過剰に長くしても、浸出は定常状態に達し、浸出率の向上は望めない。このため、接触時間は、180分以下が好ましく、120分以下がより好ましい。
通常、事前に廃触媒を粉砕した場合は、1時間あれば廃触媒内部の有価元素を十分に浸出できる。
The time (contact time) during which the spent catalyst is brought into contact with the hydrogen peroxide solution is preferably 10 minutes or longer, more preferably 15 minutes or longer, because the valuable elements inside the spent catalyst can be sufficiently leached out.
On the other hand, even if the contact time is excessively long, the leaching reaches a steady state and the leaching rate cannot be improved. Therefore, the contact time is preferably 180 minutes or less, more preferably 120 minutes or less.
Usually, when the waste catalyst is pulverized in advance, the valuable elements inside the waste catalyst can be sufficiently leached out in one hour.

過酸化水素水を酸性にすることにより、廃触媒から有価元素を効率的に浸出できる。
もっとも、廃触媒が使用済み脱硫触媒である場合、酸を過酸化水素水に添加しなくてもよい。廃触媒中の硫化物が、過酸化水素によって硫酸体となり、硫酸イオンとなって過酸化水素水中に溶解することで、硫酸添加と同様の効果を発現するからである。実際に、過酸化水素水中に廃触媒(使用済み脱硫触媒)を入れると、pHは速やかに低下する。
Valuable elements can be efficiently leached from the spent catalyst by acidifying the hydrogen peroxide solution.
However, if the spent catalyst is a used desulfurization catalyst, the acid may not be added to the hydrogen peroxide solution. This is because the sulfide in the spent catalyst becomes a sulfate by hydrogen peroxide, becomes a sulfate ion, and dissolves in the hydrogen peroxide water, thereby exhibiting the same effect as addition of sulfuric acid. Actually, when a spent catalyst (used desulfurization catalyst) is placed in hydrogen peroxide water, the pH drops rapidly.

〈ろ過による廃触媒の分離:ろ液の取得〉
次に、浸出液をろ過する。これにより、固形分である廃触媒を浸出液から分離して、ろ液を得る。ろ液は、廃触媒から溶け出した成分であるコバルトを、少なくとも含有する。
ろ過の方法は、対象とする固形分を分離して所望のろ液を取得できれば、特に限定されず、従来公知の方法を適宜採用できる。これは、後述するろ過においても、同様である。
<Separation of waste catalyst by filtration: acquisition of filtrate>
The exudate is then filtered. As a result, the waste catalyst, which is a solid content, is separated from the leachate to obtain a filtrate. The filtrate contains at least cobalt, which is a component eluted from the spent catalyst.
The method of filtration is not particularly limited as long as the target solid content can be separated and the desired filtrate can be obtained, and conventionally known methods can be appropriately employed. This also applies to filtration, which will be described later.

ろ過の残渣である廃触媒については、モリブデンは浸出せずに残留している一方で、コバルトは浸出しており除去されている。すなわち、乾式などの従来の方法では、廃触媒からコバルトを除去することは困難であったが、本実施形態によれば、これが実現できる。
このため、ろ過の残渣である廃触媒を、フェロモリブデン等の生産に供することができ、簡便に、モリブデンをリサイクルできる。
Regarding the waste catalyst, which is the residue of filtration, molybdenum remains without being leached out, while cobalt is leached out and removed. That is, although it was difficult to remove cobalt from the spent catalyst by conventional methods such as the dry method, this can be achieved according to the present embodiment.
Therefore, the waste catalyst, which is the residue of filtration, can be used for the production of ferromolybdenum and the like, and molybdenum can be easily recycled.

〈アルカリ処理:コバルト沈殿物の生成〉
次に、ろ液にアルカリ処理を施して、コバルト沈殿物を生成させる。すなわち、ろ液に、水酸化ナトリウム、水酸化カリウムなどのアルカリを添加することにより、ろ液中のコバルトが水酸化コバルトとして沈殿する。
ろ液にアルカリ処理を施すことにより、ろ液のpHを調整するが、このpHは、十分なコバルト回収率を得る目的から、7以上が好ましく、8以上がより好ましく、9以上が更に好ましい。
一方、中和のための酸が少量となり経済的であるという理由から、このpHは、13.5以下が好ましい。
<Alkaline treatment: formation of cobalt precipitate>
The filtrate is then subjected to alkaline treatment to produce cobalt precipitates. That is, by adding an alkali such as sodium hydroxide or potassium hydroxide to the filtrate, cobalt in the filtrate precipitates as cobalt hydroxide.
By subjecting the filtrate to alkali treatment, the pH of the filtrate is adjusted, and the pH is preferably 7 or higher, more preferably 8 or higher, and even more preferably 9 or higher in order to obtain a sufficient cobalt recovery rate.
On the other hand, the pH is preferably 13.5 or less because the amount of acid for neutralization is small and economical.

〈ろ過によるコバルト沈殿物の回収〉
次に、コバルト沈殿物が生成したろ液をろ過する。これにより、固形分であるコバルト沈殿物を、ろ液から分離する。こうして、廃触媒からコバルトをコバルト沈殿物として回収できる。
回収されるコバルト沈殿物は、例えば、コバルトの水酸化物である。更に、このコバルトの水酸化物を乾燥すれば、コバルトを酸化物の形態(つまり、コバルトの酸化物)にできる。乾燥の方法は、特に限定されず、公知の方法を採用できる。
コバルト沈殿物が分離されたろ液(残液)は、廃液として廃棄される。
<Recovery of Cobalt Precipitate by Filtration>
Next, the filtrate in which the cobalt precipitate is formed is filtered. This separates the cobalt precipitate, which is a solid content, from the filtrate. Cobalt can thus be recovered from the spent catalyst as a cobalt precipitate.
The recovered cobalt precipitate is, for example, cobalt hydroxide. Furthermore, drying the hydroxide of cobalt converts the cobalt into an oxide form (that is, an oxide of cobalt). A drying method is not particularly limited, and a known method can be adopted.
The filtrate (residual liquid) from which the cobalt precipitate has been separated is discarded as waste liquid.

以上説明したように、本実施形態によれば、廃触媒からコバルトを選択的に浸出させてコバルト沈殿物として回収でき、一方で、モリブデンは廃触媒に残留させて回収できる。
このため、本実施形態によれば、例えば、廃触媒からモリブデンおよびコバルトを共に浸出させ、個別に回収する方法と比べて、工程を簡略化できる。
一般的には、多段階の工程が必要な場合、設備が複雑になり、建設費などのコストが増大する(実用的には、ある程度の大きさの設備規模で実施し、スケールメリットを享受することが求められる)。このため、本実施形態においては、コスト面でも優位性がある。
また、本実施形態においては、熱効率等の面から設備を大型化せざるを得ない焙焼等の熱処理を実施しないため、この点からも、設備を簡素化できる。
As described above, according to the present embodiment, cobalt can be selectively leached from the spent catalyst and recovered as a cobalt precipitate, while molybdenum can be recovered while remaining in the spent catalyst.
Therefore, according to the present embodiment, the process can be simplified compared to, for example, a method in which both molybdenum and cobalt are leached from the waste catalyst and recovered separately.
In general, when a multi-step process is required, the equipment becomes complicated and costs such as construction costs increase (practically, it should be implemented on a certain scale of equipment and enjoying economies of scale. required). Therefore, this embodiment is superior in terms of cost.
In addition, in this embodiment, heat treatment such as roasting, which requires an increase in the size of the equipment from the viewpoint of thermal efficiency, is not performed, so the equipment can be simplified from this point of view as well.

以下に、実施例を挙げて本発明を具体的に説明する。ただし、本発明は、以下に説明する実施例に限定されない。 EXAMPLES The present invention will be specifically described below with reference to examples. However, the present invention is not limited to the examples described below.

〈実施例1〉
図1に基づいて説明した流れに沿って、少なくともモリブデンおよびコバルトを含有する物質である廃触媒から有価元素を回収した。
<Example 1>
Valuable elements were recovered from waste catalysts, which are substances containing at least molybdenum and cobalt, along the flow described with reference to FIG.

《廃触媒の準備》
廃触媒として、石油精製プラントより供試された、使用済み間接脱硫触媒を用いた。
この廃触媒は、直径2~3mmおよび長さ3~5mm前後の円筒形であり、アルミナ担体に種々の元素が担持されていた。
廃触媒の組成をICP(誘導結合プラズマ)発光分光分析法によって求めた。廃触媒の組成を下記表1に示す。
《Preparation of spent catalyst》
A used indirect desulfurization catalyst sampled from an oil refining plant was used as the spent catalyst.
This waste catalyst had a cylindrical shape with a diameter of 2 to 3 mm and a length of about 3 to 5 mm, and various elements were supported on an alumina carrier.
The composition of the spent catalyst was determined by ICP (inductively coupled plasma) emission spectroscopy. The composition of the spent catalyst is shown in Table 1 below.

Figure 2023082501000002
Figure 2023082501000002

《粉砕》
準備した廃触媒10kgを、100Lの純水と混合し、湿式ボールミルを用いて、120分間粉砕した。粉砕後の廃触媒のメジアン径は、12μmであった。粉砕後の廃触媒の粒度分布を図2に示す。
《Shatter》
10 kg of the prepared spent catalyst was mixed with 100 L of pure water and pulverized for 120 minutes using a wet ball mill. The median diameter of the spent catalyst after pulverization was 12 μm. FIG. 2 shows the particle size distribution of the spent catalyst after pulverization.

《過酸化水素水との接触およびろ過》
次に、粉砕後の廃触媒と純水との混合物に、過酸化水素水(濃度:35質量%)を、上述した過酸化水素量pが15質量%となる量で添加し、その後、15分撹拌して、浸出液を得た。
得られた浸出液をろ過することにより、廃触媒を分離して、ろ液を得た。ろ過(吸引ろ過)には、5Cろ紙(保持粒子径:1μm)を用いた(以下同様)。
《Contact with hydrogen peroxide solution and filtration》
Next, hydrogen peroxide solution (concentration: 35% by mass) is added to the mixture of the pulverized waste catalyst and pure water in such an amount that the above hydrogen peroxide amount p becomes 15% by mass. After stirring for a minute, an exudate was obtained.
The resulting leachate was filtered to separate the spent catalyst and obtain a filtrate. 5C filter paper (retained particle size: 1 μm) was used for filtration (suction filtration) (the same applies hereinafter).

《アルカリ処理およびろ過》
ろ液にアルカリ処理を施した。すなわち、ろ液に水酸化ナトリウム水溶液を添加することにより、ろ液のpHを12に調整し、1時間経過させた。これにより、ろ液中にコバルト沈殿物を生成させた。
コバルト沈殿物が生成したろ液をろ過することにより、コバルト沈殿物を分離して、回収し、乾燥した。乾燥したコバルト沈殿物の組成をICP発光分光分析法によって求めた。コバルト沈殿物の組成を下記表2に示す。
《Alkaline treatment and filtration》
Alkali treatment was applied to the filtrate. That is, the pH of the filtrate was adjusted to 12 by adding an aqueous solution of sodium hydroxide to the filtrate, and the pH was allowed to pass for 1 hour. This produced a cobalt precipitate in the filtrate.
The cobalt precipitate was separated, collected and dried by filtering the filtrate in which the cobalt precipitate was formed. The composition of the dried cobalt precipitate was determined by ICP emission spectroscopy. The composition of the cobalt precipitate is shown in Table 2 below.

なお、金属元素は水酸化物の形態で沈殿しており、例えば、コバルト沈殿物は、Co(OH)・HOの式で表されると仮定する。 It is assumed that the metal element is precipitated in the form of a hydroxide, and for example, the cobalt precipitate is represented by the formula Co(OH) 3 ·H 2 O.

《評価》
下記式に基づいて、コバルト歩留り(単位:質量%)を求めた。結果を下記表2に示す。コバルト歩留りの値が大きいほど、廃触媒から多くのコバルトをコバルト沈殿物として回収できたと評価できる。
コバルト歩留り=100×(コバルト沈殿物中のコバルト量/準備した時点での廃触媒中のコバルト量)
"evaluation"
Cobalt yield (unit: % by mass) was determined based on the following formula. The results are shown in Table 2 below. It can be evaluated that the larger the value of the cobalt yield, the more cobalt could be recovered from the spent catalyst as cobalt precipitates.
Cobalt yield = 100 x (amount of cobalt in cobalt precipitate/amount of cobalt in spent catalyst at the time of preparation)

更に、下記式に基づいて、モリブデンロス(単位:質量%)を求めた。結果を下記表2に示す。モリブデンロスの値が小さいほど、多くのモリブデンを廃触媒から浸出させないで、廃触媒に残留させたまま回収できたと評価できる。
モリブデンロス=100×{1-(浸出液から分離した時点での廃触媒中のモリブデン量/準備した時点での廃触媒中のモリブデン量)}
Furthermore, molybdenum loss (unit: % by mass) was determined based on the following formula. The results are shown in Table 2 below. It can be evaluated that the smaller the value of molybdenum loss, the more molybdenum was recovered while remaining in the spent catalyst without leaching out from the spent catalyst.
Molybdenum loss = 100 × {1-(amount of molybdenum in spent catalyst at time of separation from leachate/amount of molybdenum in spent catalyst at time of preparation)}

〈実施例2〉
過酸化水素量pを40質量%に変更した以外は、実施例1と同様にして、コバルト沈殿物を回収し、コバルト沈殿物の組成、コバルトの歩留りおよびモリブデンロスを求めた。結果を下記表2に示す。
<Example 2>
Cobalt precipitates were recovered in the same manner as in Example 1, except that the hydrogen peroxide amount p was changed to 40% by mass, and the composition of the cobalt precipitates, the yield of cobalt, and the molybdenum loss were determined. The results are shown in Table 2 below.

〈実施例3〉
過酸化水素量pを50質量%に変更した以外は、実施例1と同様にして、コバルト沈殿物を回収し、コバルト沈殿物の組成、コバルトの歩留りおよびモリブデンロスを求めた。結果を下記表2に示す。
<Example 3>
Cobalt precipitates were recovered in the same manner as in Example 1, except that the hydrogen peroxide amount p was changed to 50% by mass, and the composition of the cobalt precipitates, the yield of cobalt, and the molybdenum loss were determined. The results are shown in Table 2 below.

Figure 2023082501000003
Figure 2023082501000003

〈評価結果まとめ〉
上記表2に示すように、実施例1(過酸化水素量p:15質量%)では、コバルト歩留りは71質量%であり、得られたコバルト沈殿物は、良質なコバルト原料として精錬メーカー等においてリサイクル可能な品質であった。
実施例2(過酸化水素量p:40質量%)では、実施例1と比較して、コバルト歩留りが大きく増加した。
実施例3(過酸化水素量p:50質量%)では、実施例1~2と比較して、モリブデンロスが増加していた。
<Summary of evaluation results>
As shown in Table 2 above, in Example 1 (hydrogen peroxide amount p: 15% by mass), the cobalt yield was 71% by mass, and the obtained cobalt precipitate was used as a high-quality raw material for cobalt by refining manufacturers and the like. It was of recyclable quality.
In Example 2 (hydrogen peroxide amount p: 40% by mass), compared with Example 1, the cobalt yield increased greatly.
In Example 3 (hydrogen peroxide amount p: 50% by mass), molybdenum loss increased compared to Examples 1 and 2.

Claims (10)

少なくともモリブデンおよびコバルトを含有する物質を過酸化水素水に接触させて、前記物質から少なくともコバルトが浸出した浸出液を得て、
前記浸出液をろ過して前記物質を分離することにより、ろ液を得て、
前記ろ液にアルカリ処理を施し、生成したコバルト沈殿物をろ過によって分離する、有価元素の回収方法。
contacting a substance containing at least molybdenum and cobalt with a hydrogen peroxide solution to obtain a leachate in which at least cobalt is leached from the substance;
filtering the leachate to separate the material to obtain a filtrate;
A method for recovering valuable elements, comprising subjecting the filtrate to alkali treatment and separating the formed cobalt precipitate by filtration.
前記過酸化水素水は、過酸化水素を含有し、
前記物質の量に対する前記過酸化水素の量が、40質量%以下である、請求項1に記載の有価元素の回収方法。
The hydrogen peroxide solution contains hydrogen peroxide,
2. The method for recovering valuable elements according to claim 1, wherein the amount of said hydrogen peroxide relative to the amount of said substance is 40% by mass or less.
前記物質の量に対する前記過酸化水素の量が、5質量%以上である、請求項2に記載の有価元素の回収方法。 3. The method for recovering valuable elements according to claim 2, wherein the amount of said hydrogen peroxide relative to the amount of said substance is 5% by mass or more. 前記物質を、前記過酸化水素水に接触させるに先立って、粉砕する、請求項1~3のいずれか1項に記載の有価元素の回収方法。 4. The method for recovering valuable elements according to any one of claims 1 to 3, wherein the substance is pulverized prior to being brought into contact with the hydrogen peroxide solution. 前記過酸化水素水と前記物質との質量比(過酸化水素水/物質)が、2/1以上である、請求項1~4のいずれか1項に記載の有価元素の回収方法。 The method for recovering valuable elements according to any one of claims 1 to 4, wherein the mass ratio of said hydrogen peroxide solution and said substance (hydrogen peroxide solution/substance) is 2/1 or more. 前記ろ液に前記アルカリ処理を施すことにより、前記ろ液のpHを7以上にする、請求項1~5のいずれか1項に記載の有価元素の回収方法。 The method for recovering valuable elements according to any one of claims 1 to 5, wherein the pH of the filtrate is adjusted to 7 or more by subjecting the filtrate to the alkaline treatment. 前記物質が、廃触媒である、請求項1~6のいずれか1項に記載の有価元素の回収方法。 The method for recovering valuable elements according to any one of claims 1 to 6, wherein the substance is a spent catalyst. 前記廃触媒が、使用済み脱硫触媒である、請求項7に記載の有価元素の回収方法。 8. The method for recovering valuable elements according to claim 7, wherein the spent catalyst is a used desulfurization catalyst. 請求項1~8のいずれか1項に記載の有価元素の回収方法を用いて、有価元素の水酸化物を得る、有価元素の水酸化物の製造方法。 A method for producing a hydroxide of a valuable element, wherein the hydroxide of the valuable element is obtained by using the method for recovering the valuable element according to any one of claims 1 to 8. 請求項1~8のいずれか1項に記載の有価元素の回収方法を用いて、有価元素の酸化物を得る、有価元素の酸化物の製造方法。 A method for producing an oxide of a valuable element, wherein the oxide of the valuable element is obtained by using the method for recovering the valuable element according to any one of claims 1 to 8.
JP2021196325A 2021-12-02 2021-12-02 Method for recovering valuable element, method for producing hydroxide of valuable element, and method for producing oxide of valuable element Pending JP2023082501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021196325A JP2023082501A (en) 2021-12-02 2021-12-02 Method for recovering valuable element, method for producing hydroxide of valuable element, and method for producing oxide of valuable element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021196325A JP2023082501A (en) 2021-12-02 2021-12-02 Method for recovering valuable element, method for producing hydroxide of valuable element, and method for producing oxide of valuable element

Publications (1)

Publication Number Publication Date
JP2023082501A true JP2023082501A (en) 2023-06-14

Family

ID=86728567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021196325A Pending JP2023082501A (en) 2021-12-02 2021-12-02 Method for recovering valuable element, method for producing hydroxide of valuable element, and method for producing oxide of valuable element

Country Status (1)

Country Link
JP (1) JP2023082501A (en)

Similar Documents

Publication Publication Date Title
JP3703813B2 (en) Method for separating and recovering valuable metals
JP5925776B2 (en) Method for separating and recovering metals
US4554138A (en) Leaching metals from spent hydroprocessing catalysts with ammonium sulfate
US7837960B2 (en) Process for separating and recovering base metals from used hydroprocessing catalyst
US8287618B2 (en) Method or process for recovering Mo, V, Ni, Co and Al from spent catalysts using ultrasonic assisted leaching with EDTA
JP5387851B2 (en) Method for recovering valuable metals from spent catalyst
US4432953A (en) Leaching cobalt from spent hydroprocessing catalysts with sulfur dioxide
KR102154600B1 (en) Selective leaching method of cathode active material from lithium ion battery
GB2073723A (en) Recovering chromium vanadium molybdenum and tungsten
JP2006328440A (en) Method for recovering nickel from spent catalyst
JP5344170B2 (en) Tungsten recovery process
US20110229366A1 (en) Method for recovering rhenium and other metals from rhenium-bearing materials
CN112342389A (en) Method for recovering valuable metal from waste chemical catalyst
KR101487549B1 (en) A Separation and Recovery Process of Metals from Petroleum Desulfurization Waste Catalyst
JP2023082501A (en) Method for recovering valuable element, method for producing hydroxide of valuable element, and method for producing oxide of valuable element
JP2006314986A (en) Method for recovering molybdic acid
JP2011089176A (en) Method for refining molybdenum
CA2938953C (en) Scandium recovery process
JP5673471B2 (en) Method for removing copper ions in aqueous nickel chloride solution and method for producing electronickel
JP7359181B2 (en) Method of recovering valuable elements
JP7359180B2 (en) Method of recovering valuable elements
JP2022142809A (en) Recovery method of valuable elements
JP2022142896A (en) Recovery method of valuable elements
JP2022142889A (en) Recovery method of valuable elements
WO2003080878A1 (en) Process for the recovery of nickel from spent catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240206

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20240206