JP2022142809A - Recovery method of valuable elements - Google Patents

Recovery method of valuable elements Download PDF

Info

Publication number
JP2022142809A
JP2022142809A JP2021043007A JP2021043007A JP2022142809A JP 2022142809 A JP2022142809 A JP 2022142809A JP 2021043007 A JP2021043007 A JP 2021043007A JP 2021043007 A JP2021043007 A JP 2021043007A JP 2022142809 A JP2022142809 A JP 2022142809A
Authority
JP
Japan
Prior art keywords
hydrogen peroxide
catalyst
molybdenum
peroxide solution
waste catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021043007A
Other languages
Japanese (ja)
Inventor
正大 田部
Masahiro Tabe
東洋司 山口
Toyoji Yamaguchi
亮太 村井
Ryota Murai
悟郎 奥山
Goro Okuyama
博一 杉森
Hiroichi Sugimori
太一 小畑
Taichi Obata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
JFE Material Co Ltd
Original Assignee
JFE Steel Corp
JFE Material Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, JFE Material Co Ltd filed Critical JFE Steel Corp
Priority to JP2021043007A priority Critical patent/JP2022142809A/en
Publication of JP2022142809A publication Critical patent/JP2022142809A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

To provide a novel method capable of recovering valuable elements such as molybdenum and so on from a waste catalyst.SOLUTION: A method for recovering valuable elements, where when a waste catalyst containing at least molybdenum is immersed in hydrogen peroxide water to obtain a leachate in which molybdenum is leached from the waste catalyst, a temperature of the hydrogen peroxide water is kept at 85°C or less.SELECTED DRAWING: None

Description

本発明は、石油精製に用いられた使用済み脱硫触媒などの廃触媒から有価元素を回収する方法に関する。 The present invention relates to a method for recovering valuable elements from waste catalysts such as spent desulfurization catalysts used in petroleum refining.

従来、石油精製において、脱硫触媒を用いた脱硫が行なわれる。より詳細には、石油と高圧水素とを脱硫触媒上で反応させ、石油に含まれる硫黄分を硫化水素として除去する水素化脱硫が行なわれる。
このような脱硫触媒は、使用されるに従い、石油に含まれる重金属やタール分などで次第に被毒されて触媒活性が低下するため、定期的に交換される。この際、使用済み脱硫触媒(廃触媒)が発生する。
従来、資源循環の点から、廃触媒に含まれる種々の元素を回収する方法が提案されている(特許文献1)。
Conventionally, desulfurization using a desulfurization catalyst is performed in petroleum refining. More specifically, hydrodesulfurization is performed in which petroleum and high-pressure hydrogen are reacted on a desulfurization catalyst to remove sulfur contained in petroleum as hydrogen sulfide.
As such desulfurization catalysts are used, they are gradually poisoned by heavy metals and tars contained in petroleum and their catalytic activity decreases, so they are periodically replaced. At this time, a used desulfurization catalyst (waste catalyst) is generated.
Conventionally, from the viewpoint of resource recycling, a method for recovering various elements contained in spent catalysts has been proposed (Patent Document 1).

特開2013-133233号公報JP 2013-133233 A

脱硫触媒は、例えば、担体上に、モリブデン(Mo)等の金属元素を担持する。
モリブデンは、鋼に添加すると機械的強度や剛性が高まるため、特殊鋼やステンレス鋼に使用され、更に、高温で展性や延性に富むため、グリス等にも使用される。
近年、使用済み脱硫触媒などの廃触媒から、モリブデン等の元素(有価元素)を回収することが強く望まれている。
そこで、本発明は、廃触媒からモリブデン等の有価元素を回収できる新規な方法を提供することを目的とする。
A desulfurization catalyst supports, for example, a metal element such as molybdenum (Mo) on a carrier.
Molybdenum is used in special steels and stainless steels because it increases mechanical strength and rigidity when added to steel, and is also used in greases and the like because it is highly malleable and ductile at high temperatures.
In recent years, it is strongly desired to recover elements (valuable elements) such as molybdenum from waste catalysts such as spent desulfurization catalysts.
Accordingly, an object of the present invention is to provide a novel method for recovering valuable elements such as molybdenum from spent catalysts.

本発明者らは、鋭意検討した結果、下記構成を採用することにより、上記目的が達成されることを見出し、本発明を完成させた。 As a result of intensive studies, the inventors of the present invention have found that the above object can be achieved by adopting the following configuration, and completed the present invention.

すなわち、本発明は、以下の[1]~[4]を提供する。
[1]少なくともモリブデンを含有する廃触媒を過酸化水素水に浸漬させて、上記廃触媒からモリブデンが浸出した浸出液を得る際に、上記過酸化水素水の温度を85℃以下にする、有価元素の回収方法。
[2]上記廃触媒を、上記過酸化水素水に浸漬させるに先立って、粉砕する、上記[1]に記載の有価元素の回収方法。
[3]上記過酸化水素水と上記廃触媒との質量比(過酸化水素水/廃触媒)が、2/1以上である、上記[1]または[2]に記載の有価元素の回収方法。
[4]上記廃触媒が、使用済み脱硫触媒である、上記[1]~[3]のいずれかに記載の有価元素の回収方法。
That is, the present invention provides the following [1] to [4].
[1] A valuable element that keeps the temperature of the hydrogen peroxide water at 85° C. or less when a waste catalyst containing at least molybdenum is immersed in the hydrogen peroxide water to obtain a leachate in which molybdenum is leached from the waste catalyst. collection method.
[2] The method for recovering valuable elements according to [1] above, wherein the waste catalyst is pulverized before being immersed in the hydrogen peroxide solution.
[3] The method for recovering a valuable element according to [1] or [2] above, wherein the mass ratio of the hydrogen peroxide solution to the waste catalyst (hydrogen peroxide solution/waste catalyst) is 2/1 or more. .
[4] The method for recovering valuable elements according to any one of [1] to [3] above, wherein the spent catalyst is a used desulfurization catalyst.

本発明によれば、廃触媒からモリブデン等の有価元素を回収できる。 According to the present invention, valuable elements such as molybdenum can be recovered from spent catalysts.

過酸化水素水の温度とモリブデンの浸出率との関係を示すグラフである。4 is a graph showing the relationship between the temperature of hydrogen peroxide solution and the leaching rate of molybdenum.

本発明の有価元素の回収方法は、少なくともモリブデンを含有する廃触媒を過酸化水素水に浸漬させて、上記廃触媒からモリブデンが浸出した浸出液を得る際に、上記過酸化水素水の温度を85℃以下にする。 In the method for recovering valuable elements of the present invention, a waste catalyst containing at least molybdenum is immersed in hydrogen peroxide water to obtain a leachate in which molybdenum is leached from the waste catalyst. ℃ or less.

例えば、特許文献1に記載された従来の方法では、最初に廃触媒を焙焼する。この場合、焙焼機などの設備を要する。焙焼などの熱処理は、実用上、ある程度の大きさの設備規模で実施してスケールメリットを享受することが求められる。
これに対して、本発明では、廃触媒を焙焼しないでよいため、設備を簡素化できる。
For example, in the conventional method described in Patent Document 1, the waste catalyst is first roasted. In this case, equipment such as a roasting machine is required. Practically, heat treatment such as roasting is required to be carried out on a certain scale of equipment to enjoy scale merits.
In contrast, in the present invention, the equipment can be simplified because the waste catalyst need not be roasted.

以下、本発明の好適な実施形態を説明する。 Preferred embodiments of the present invention are described below.

〈廃触媒の準備〉
廃触媒は、少なくともモリブデンを含有する。
廃触媒は、例えば、使用済み脱硫触媒である。脱硫触媒は、例えば、アルミナ(Al)などの担体上に、モリブデン(Mo)、コバルト(Co)、ニッケル(Ni)などの金属元素を担持する。更に、脱硫触媒は、リン酸塩系バインダを使用している場合には、リン(P)を含む。加えて、使用済み脱硫触媒は、多量の油分、タール分、硫黄(S)分、石油からのバナジウム(V)分、鉄(Fe)分なども含み得る。
<Preparation of spent catalyst>
The spent catalyst contains at least molybdenum.
A spent catalyst is, for example, a spent desulfurization catalyst. A desulfurization catalyst carries metal elements, such as molybdenum (Mo), cobalt (Co), and nickel (Ni), on carriers, such as alumina ( Al2O3 ), for example. Furthermore, the desulfurization catalyst contains phosphorus (P) when using a phosphate-based binder. In addition, the spent desulfurization catalyst may also contain large amounts of oil, tar, sulfur (S), vanadium (V) from petroleum, iron (Fe), and the like.

〈粉砕〉
廃触媒は、後述するように、過酸化水素水に浸漬させるが、これに先立って、粉砕することが好ましい。これにより、高効率な浸出が期待できる。廃触媒がアルミナ担体を有する(アルミナ骨格を有する)脱硫触媒である場合は、特に有用である。
廃触媒を粉砕する方法としては、特に限定されず、ジェットミル等を用いる公知の方法によって、簡便に粉砕できる。
粉砕後における廃触媒の粒度としては、500μm以下が好ましく、100μm以下がより好ましい。
<Grinding>
As will be described later, the spent catalyst is immersed in a hydrogen peroxide solution, but prior to this, it is preferable to pulverize it. As a result, highly efficient leaching can be expected. It is particularly useful when the spent catalyst is a desulfurization catalyst having an alumina carrier (having an alumina skeleton).
The method for pulverizing the waste catalyst is not particularly limited, and it can be easily pulverized by a known method using a jet mill or the like.
The particle size of the waste catalyst after pulverization is preferably 500 μm or less, more preferably 100 μm or less.

〈過酸化水素水への浸漬:浸出液の取得〉
廃触媒を、任意で粉砕した後、過酸化水素水(過酸化水素の水溶液)に浸漬させる。これにより、廃触媒に含まれるモリブデンを、過酸化水素水に浸出させる。すなわち、得られる浸出液は、廃触媒、ならびに、この廃触媒から溶け出した成分であるモリブデンを含有する。
<Immersion in hydrogen peroxide water: acquisition of leachate>
The spent catalyst is optionally pulverized and then immersed in hydrogen peroxide water (aqueous solution of hydrogen peroxide). As a result, molybdenum contained in the spent catalyst is leached into the hydrogen peroxide solution. That is, the resulting leachate contains the spent catalyst and molybdenum, which is a component leached from the spent catalyst.

ところで、後述するように、例えば、廃触媒が使用済み脱硫触媒である場合には、廃触媒中の硫化物が過酸化水素によって硫酸体となる反応(酸化反応)が生じて、過酸化水素水の温度が上昇する。
過酸化水素水の温度が過剰に上昇すると、廃触媒から過酸化水素水へのモリブデンの浸出が不十分となる。その理由は、明らかではないが、過酸化水素の自己分解の促進、モリブデン溶解度の低下などが考えられる。
By the way, as will be described later, for example, when the spent catalyst is a used desulfurization catalyst, a reaction (oxidation reaction) occurs in which the sulfide in the spent catalyst becomes a sulfuric substance by hydrogen peroxide, resulting in a hydrogen peroxide solution. temperature rises.
If the temperature of the hydrogen peroxide solution rises excessively, the leaching of molybdenum from the waste catalyst into the hydrogen peroxide solution becomes insufficient. Although the reasons for this are not clear, it is thought that the self-decomposition of hydrogen peroxide is accelerated, the solubility of molybdenum is lowered, and the like.

そこで、浸出液を得る際に、過酸化水素水の温度を85℃以下にする。これにより、廃触媒からモリブデンが十分に浸出する。
この効果がより優れるという理由から、過酸化水素水の温度は、75℃以下が好ましく、65℃以下がより好ましく、60℃以下が更に好ましい。
下限は特に限定されず、例えば、25℃以上にすることが好ましく、30℃以上がより好ましい。
Therefore, when obtaining the leachate, the temperature of the hydrogen peroxide solution is set to 85° C. or lower. As a result, molybdenum is sufficiently leached from the spent catalyst.
Since this effect is more excellent, the temperature of the hydrogen peroxide solution is preferably 75°C or lower, more preferably 65°C or lower, and even more preferably 60°C or lower.
The lower limit is not particularly limited, and for example, it is preferably 25°C or higher, more preferably 30°C or higher.

なお、使用する設備等をスケールアップする際には、各種溶液の単位体積当たりの表面積が低下することで外気への放熱効率が悪化し、結果として、過酸化水素水の温度が上昇しやすい。この場合、適宜、熱交換器などを用いて過酸化水素水の温度を上述した範囲に維持することで、効率的にモリブデンを浸出できる。 In addition, when the equipment to be used is scaled up, the surface area per unit volume of various solutions decreases, which deteriorates the efficiency of heat radiation to the outside air, and as a result, the temperature of the hydrogen peroxide solution tends to rise. In this case, molybdenum can be efficiently leached by appropriately maintaining the temperature of the hydrogen peroxide solution within the above-described range using a heat exchanger or the like.

浸出液を取得するに際して、過酸化水素水と廃触媒との質量比(過酸化水素水/廃触媒)は、効率良く浸出できるという理由から、2/1以上が好ましく、3/1以上がより好ましい。
とりわけ、モリブデンなどを効率良く浸出させる観点から、質量比(過酸化水素水/廃触媒)は、10/1以上が好ましく、15/1以上がより好ましく、20/1以上が更に好ましい。
一方、使用する過酸化水素水が適量となり、反応容器の増大およびコスト増を抑制できるという理由から、質量比(過酸化水素水/廃触媒)は、50/1以下が好ましく、40/1以下がより好ましい。
When obtaining the leaching solution, the mass ratio of the hydrogen peroxide solution and the waste catalyst (hydrogen peroxide solution/waste catalyst) is preferably 2/1 or more, more preferably 3/1 or more, because leaching can be performed efficiently. .
In particular, from the viewpoint of efficiently leaching molybdenum and the like, the mass ratio (hydrogen peroxide solution/waste catalyst) is preferably 10/1 or more, more preferably 15/1 or more, and even more preferably 20/1 or more.
On the other hand, the amount of hydrogen peroxide water used is appropriate, and the mass ratio (hydrogen peroxide water/waste catalyst) is preferably 50/1 or less, and 40/1 or less, because it is possible to suppress an increase in the size of the reaction vessel and an increase in cost. is more preferred.

用いる過酸化水素水の濃度(過酸化水素水における過酸化水素の含有量)は、質量比(過酸化水素水/廃触媒)に比例して増減する。
質量比(過酸化水素水/廃触媒)が上記範囲である場合、過酸化水素水の濃度は、効率良く浸出できるという理由から、3質量%以上が好ましく、4質量%以上がより好ましく、5質量%以上が更に好ましく、6質量%以上が特に好ましい。
一方、過酸化水素水の濃度を過剰に高くした場合、得られる効果は飽和しやすい。このため、コスト面の観点からは、過酸化水素水の濃度は、例えば、20質量%以下であり、18質量%以下が好ましく、15質量%以下がより好ましい。
The concentration of the hydrogen peroxide solution used (content of hydrogen peroxide in the hydrogen peroxide solution) increases or decreases in proportion to the mass ratio (hydrogen peroxide solution/waste catalyst).
When the mass ratio (hydrogen peroxide solution/waste catalyst) is within the above range, the concentration of the hydrogen peroxide solution is preferably 3% by mass or more, more preferably 4% by mass or more, for the reason that leaching can be performed efficiently. % by mass or more is more preferable, and 6% by mass or more is particularly preferable.
On the other hand, when the concentration of the hydrogen peroxide solution is excessively increased, the obtained effect tends to saturate. Therefore, from the viewpoint of cost, the concentration of the hydrogen peroxide solution is, for example, 20% by mass or less, preferably 18% by mass or less, and more preferably 15% by mass or less.

廃触媒を過酸化水素水に浸漬させる時間(浸漬時間)は、例えば、15分間以上である。上限は特に限定されないが、事前に廃触媒を粉砕した場合は、1時間あれば廃触媒内部の有価元素を十分に浸出できる。 The time (immersion time) for immersing the waste catalyst in the hydrogen peroxide solution is, for example, 15 minutes or longer. Although the upper limit is not particularly limited, if the spent catalyst is pulverized in advance, the valuable element inside the spent catalyst can be sufficiently leached out in one hour.

過酸化水素水を酸性にすることにより、廃触媒から有価元素を効率的に浸出できる。
もっとも、廃触媒が使用済み脱硫触媒である場合、酸を過酸化水素水に添加しなくてもよい。廃触媒中の硫化物が、過酸化水素によって硫酸体となり、硫酸イオンとなって過酸化水素水中に溶解することで、硫酸添加と同様の効果を発現するからである。実際に、過酸化水素水中に廃触媒(使用済み脱硫触媒)を入れると、pHは速やかに低下し、1前後に収まる。
Valuable elements can be efficiently leached from the spent catalyst by acidifying the hydrogen peroxide solution.
However, if the spent catalyst is a used desulfurization catalyst, the acid may not be added to the hydrogen peroxide solution. This is because the sulfide in the spent catalyst becomes a sulfate by hydrogen peroxide, becomes a sulfate ion, and dissolves in the hydrogen peroxide water, thereby exhibiting the same effect as addition of sulfuric acid. In fact, when a waste catalyst (used desulfurization catalyst) is put into hydrogen peroxide water, the pH drops rapidly and stays at around 1.

取得した浸出液に対しては、例えば、ろ過を施す。これにより、固形分である廃触媒を浸出液から分離して、ろ液を得る。得られたろ液は、廃触媒から溶け出した成分であるモリブデンを含有する。
ろ過の方法は、対象とする固形分を分離して所望のろ液を取得できれば、特に限定されず、従来公知の方法を適宜採用できる。
その後、例えば、ろ液に含まれるモリブデンを沈殿させてから、更にろ過することにより、モリブデン沈殿物を分離する。分離したモリブデン沈殿物は、電炉還元など任意の処理を施すことにより、フェロモリブデン等の製品としてリサイクルできる。
The obtained leachate is filtered, for example. As a result, the waste catalyst, which is a solid content, is separated from the leachate to obtain a filtrate. The obtained filtrate contains molybdenum, which is a component dissolved from the spent catalyst.
The method of filtration is not particularly limited as long as the target solid content can be separated and the desired filtrate can be obtained, and conventionally known methods can be appropriately employed.
Thereafter, the molybdenum precipitate is separated, for example, by precipitating the molybdenum contained in the filtrate and then further filtering. The separated molybdenum precipitate can be recycled as a product such as ferro-molybdenum by subjecting it to any treatment such as electric furnace reduction.

以下に、実施例を挙げて本発明を具体的に説明する。ただし、本発明は、以下に説明する実施例に限定されない。 EXAMPLES The present invention will be specifically described below with reference to Examples. However, the present invention is not limited to the examples described below.

廃触媒として、石油精製プラントより供試された、使用済み間接脱硫触媒を用いた。この廃触媒は、直径2~3mmおよび長さ3~5mm前後の円筒形であり、アルミナ担体に種々の元素が担持されていた。廃触媒の組成をICP(誘導結合プラズマ)発光分光分析法によって求めた。廃触媒の組成を下記表1に示す。 A used indirect desulfurization catalyst sampled from an oil refining plant was used as the spent catalyst. This waste catalyst had a cylindrical shape with a diameter of 2 to 3 mm and a length of about 3 to 5 mm, and various elements were supported on an alumina carrier. The composition of the spent catalyst was determined by ICP (inductively coupled plasma) emission spectroscopy. The composition of the spent catalyst is shown in Table 1 below.

Figure 2022142809000001
Figure 2022142809000001

準備した廃触媒を、500μm以下に粉砕してから、過酸化水素水(濃度:7.5質量%)に浸漬させて、浸出液を得た。過酸化水素水と廃触媒との質量比(過酸化水素水/廃触媒)は、20/1とした。浸漬時間は1時間とした。
得られた浸出液について、ろ過により固形分(廃触媒)を除去してから液組成を求めた。ろ過(吸引ろ過)には、5Cろ紙(保持粒子径:1μm)を用いた。液組成はICP発光分光分析法によって求めた。固形分(廃触媒)を除去した浸出液の液組成および廃触媒の組成(表1を参照)から、モリブデンの浸出率(単位:質量%)を求めた。
このとき、温度制御機能付きマグネチックスターラー、ウォーターバス、氷などを用いて過酸化水素水の温度(単位:℃)を変化させて、温度ごとにモリブデンの浸出率を求めた。結果を図1のグラフに示す。
The prepared waste catalyst was pulverized to 500 μm or less and immersed in a hydrogen peroxide solution (concentration: 7.5% by mass) to obtain a leachate. The mass ratio of the hydrogen peroxide solution and the waste catalyst (hydrogen peroxide solution/waste catalyst) was 20/1. The immersion time was 1 hour.
The obtained leachate was filtered to remove the solid content (waste catalyst), and then the liquid composition was determined. 5C filter paper (retention particle size: 1 μm) was used for filtration (suction filtration). The liquid composition was determined by ICP emission spectrometry. The molybdenum leaching rate (unit: mass %) was obtained from the liquid composition of the leachate from which the solid content (waste catalyst) was removed and the composition of the waste catalyst (see Table 1).
At this time, the temperature of the hydrogen peroxide solution (unit: °C) was changed using a magnetic stirrer with a temperature control function, a water bath, ice, etc., and the leaching rate of molybdenum was determined for each temperature. The results are shown in the graph of FIG.

図1は、過酸化水素水の温度とモリブデンの浸出率との関係を示すグラフである。
図1のグラフに示すように、モリブデンの浸出率は、明らかに、過酸化水素水の温度の影響を受けていることが分かった。より詳細には、過酸化水素水の温度が低下するほど、モリブデンの浸出率が増加する傾向が見られた。例えば、過酸化水素水の温度が約90℃である場合よりも、この温度が85℃以下である場合の方が、モリブデンの浸出率は良好であった。
FIG. 1 is a graph showing the relationship between the temperature of the hydrogen peroxide solution and the leaching rate of molybdenum.
As shown in the graph of FIG. 1, it was found that the molybdenum leaching rate was clearly affected by the temperature of the hydrogen peroxide solution. More specifically, there was a tendency that the lower the temperature of the hydrogen peroxide solution, the higher the molybdenum leaching rate. For example, the leaching rate of molybdenum was better when the temperature of the hydrogen peroxide solution was 85°C or lower than when the temperature was about 90°C.

Claims (4)

少なくともモリブデンを含有する廃触媒を過酸化水素水に浸漬させて、前記廃触媒からモリブデンが浸出した浸出液を得る際に、
前記過酸化水素水の温度を85℃以下にする、有価元素の回収方法。
When immersing a waste catalyst containing at least molybdenum in a hydrogen peroxide solution to obtain a leachate in which molybdenum is leached from the waste catalyst,
A method for recovering valuable elements, wherein the temperature of the hydrogen peroxide solution is set to 85° C. or lower.
前記廃触媒を、前記過酸化水素水に浸漬させるに先立って、粉砕する、請求項1に記載の有価元素の回収方法。 2. The method for recovering valuable elements according to claim 1, wherein the waste catalyst is pulverized prior to being immersed in the hydrogen peroxide solution. 前記過酸化水素水と前記廃触媒との質量比(過酸化水素水/廃触媒)が、2/1以上である、請求項1または2に記載の有価元素の回収方法。 3. The method for recovering valuable elements according to claim 1, wherein the mass ratio of said hydrogen peroxide solution to said waste catalyst (hydrogen peroxide solution/waste catalyst) is 2/1 or more. 前記廃触媒が、使用済み脱硫触媒である、請求項1~3のいずれか1項に記載の有価元素の回収方法。 The method for recovering valuable elements according to any one of claims 1 to 3, wherein the spent catalyst is a spent desulfurization catalyst.
JP2021043007A 2021-03-17 2021-03-17 Recovery method of valuable elements Pending JP2022142809A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021043007A JP2022142809A (en) 2021-03-17 2021-03-17 Recovery method of valuable elements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021043007A JP2022142809A (en) 2021-03-17 2021-03-17 Recovery method of valuable elements

Publications (1)

Publication Number Publication Date
JP2022142809A true JP2022142809A (en) 2022-10-03

Family

ID=83454919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021043007A Pending JP2022142809A (en) 2021-03-17 2021-03-17 Recovery method of valuable elements

Country Status (1)

Country Link
JP (1) JP2022142809A (en)

Similar Documents

Publication Publication Date Title
JP5925776B2 (en) Method for separating and recovering metals
JP5387851B2 (en) Method for recovering valuable metals from spent catalyst
Park et al. Selective recovery of molybdenum from spent HDS catalyst using oxidative soda ash leach/carbon adsorption method
CN102051483B (en) Method for reclaiming metals from molybdenum-containing waste catalyst
Park et al. Hydrometallurgical processing and recovery of molybdenum trioxide from spent catalyst
Mishra et al. Recovery of metal values from spent petroleum catalyst using leaching-solvent extraction technique
JP3703813B2 (en) Method for separating and recovering valuable metals
US4554138A (en) Leaching metals from spent hydroprocessing catalysts with ammonium sulfate
JP5495418B2 (en) Method for recovering manganese
JP2006328440A (en) Method for recovering nickel from spent catalyst
JPS5980737A (en) Recovery of metals from waste hydrogenation catalyst
CN102492858A (en) Method for separating enriched nickel and cobalt from battery waste leaching solution
Wang et al. Recent advances in the recovery of transition metals from spent hydrodesulfurization catalysts
JPH08509157A (en) Catalyst recovery method
JP2022142809A (en) Recovery method of valuable elements
JP7042719B2 (en) Method for manufacturing nickel sulfate compound
Abbas et al. Green and selective recovery process of Mo, V, and Ni from spent hydrodesulfurization catalysts via novel ionic liquids and deep eutectic solvents technology
JP2006314986A (en) Method for recovering molybdic acid
JP7359181B2 (en) Method of recovering valuable elements
JP7359180B2 (en) Method of recovering valuable elements
Kurniawan et al. A Review on the Metallurgical Recycling Process of Vanadium from Secondary Resources
JP2022143126A (en) Recovery method of valuable elements
Mikoda et al. Vanadium removal from spent sulfuric acid plant catalyst using citric acid and Acidithiobacillus thiooxidans
MARAFI et al. Role of EDTA on metal removal from refinery waste catalysts
JP2022142896A (en) Recovery method of valuable elements

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210527