JP2023081178A - 燃料電池システムおよび燃料電池システムの制御方法 - Google Patents

燃料電池システムおよび燃料電池システムの制御方法 Download PDF

Info

Publication number
JP2023081178A
JP2023081178A JP2021194914A JP2021194914A JP2023081178A JP 2023081178 A JP2023081178 A JP 2023081178A JP 2021194914 A JP2021194914 A JP 2021194914A JP 2021194914 A JP2021194914 A JP 2021194914A JP 2023081178 A JP2023081178 A JP 2023081178A
Authority
JP
Japan
Prior art keywords
fuel cell
oxidant
temperature
gas
supply pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021194914A
Other languages
English (en)
Inventor
大輔 倉品
Daisuke Kurashina
幸裕 福嶋
Yukihiro Fukushima
隆之 山田
Takayuki Yamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2021194914A priority Critical patent/JP2023081178A/ja
Publication of JP2023081178A publication Critical patent/JP2023081178A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

【課題】燃料電池スタックを停止する停止処理時、燃料電池スタックの温度が所定の温度に達するまでの時間を短縮する。【解決手段】燃料電池システムは、発電停止処理部(80)および冷却処理部(82)を有する。発電停止処理部(80)は、発電時に調整可能な流量範囲の下限よりも低く設定された発電停止用流量で原燃料ガスおよび酸化剤ガスを供給する。冷却処理部(82)は、燃料電池スタックの代表温度が発電可能温度を下回った場合に、原燃料ガスの供給を停止し、発電時に調整可能な流量範囲の上限よりも大きく設定された冷却用流量で酸化剤ガスを供給する。【選択図】図2

Description

本発明は、燃料電池システムおよび燃料電池システムの制御方法に関する。
特許文献1には、燃料電池モジュールを有する燃料電池システムが開示されている。燃料電池モジュールは、燃料電池スタックと、部分酸化改質器とを有する。燃料電池システムの起動時に、部分酸化改質器は、原燃料ガスと酸化剤ガスとの混合ガスを改質する。部分酸化改質器で発生する高温の還元ガスが燃料電池スタックに供給されることにより、燃料電池スタックが加温される。
特開2013-89499号公報
上記特許文献1の燃料電池システムは、燃料電池スタックを停止する停止処理を開示していない。一般的に、燃料電池スタックの温度が所定の温度に達するまでの時間は長い傾向にあり、当該時間を短縮することが課題に挙げられる。
本発明は、上述した課題を解決することを目的とする。
本発明の第1の態様は、燃料ガスと酸化剤ガスとの電気化学反応により発電する固体酸化物形燃料電池セルが収容される燃料電池スタックを含むパワーユニットと、前記燃料ガスの原燃料ガスを前記パワーユニットに供給する原燃料供給ポンプと、前記酸化剤ガスを前記パワーユニットに供給する酸化剤供給機とを有する燃料電池システムであって、前記燃料電池スタックの温度を検出するスタック温度センサと、前記原燃料供給ポンプおよび前記酸化剤供給機を制御して、発電時に調整可能な流量範囲の下限よりも低く設定された発電停止用流量で前記原燃料ガスおよび前記酸化剤ガスを供給する発電停止処理部と、前記燃料電池スタックの代表温度が、前記燃料電池スタックが発電可能となる発電可能温度を下回った場合に、前記原燃料供給ポンプおよび前記酸化剤供給機を制御して、前記原燃料ガスの供給を停止し、前記流量範囲の上限よりも大きく設定された冷却用流量で前記酸化剤ガスを供給する冷却処理部と、を備える。
本発明の第2の態様は、燃料ガスと酸化剤ガスとの電気化学反応により発電する固体酸化物形燃料電池セルが収容される燃料電池スタックを含むパワーユニットと、前記燃料ガスの原燃料ガスを前記パワーユニットに供給する原燃料供給ポンプと、前記酸化剤ガスを前記パワーユニットに供給する酸化剤供給機とを有する燃料電池システムの制御方法であって、前記原燃料供給ポンプおよび前記酸化剤供給機を制御して、発電時に調整可能な流量範囲の下限よりも低く設定された発電停止用流量で前記原燃料ガスおよび前記酸化剤ガスを供給する発電停止処理ステップと、前記燃料電池スタックの代表温度が、前記燃料電池スタックが発電可能となる発電可能温度を下回った場合に、前記原燃料供給ポンプおよび前記酸化剤供給機を制御して、前記原燃料ガスの供給を停止し、前記流量範囲の上限よりも大きく設定された冷却用流量で前記酸化剤ガスを供給する冷却処理ステップと、を含む。
本発明によれば、発電時よりも多い酸化剤ガスを冷却媒体として燃料電池スタックに供給することができ、当該燃料電池スタックの温度降下率を高めることができる。この結果、燃料電池スタックの温度が所定の温度に達するまでの時間を短縮することができる。
図1は、一実施形態による燃料電池システムを示す図である。 図2は、制御装置の構成を示すブロック図である。 図3は、燃料電池スタックの温度の推移と、原燃料ガスおよび酸化剤ガスの流量とを示す図である。 図4は、酸化剤ガスの流れを示す図である。 図5は、燃料電池スタック、水蒸気改質器の触媒および部分酸化改質器の触媒の温度の推移を示す図である。 図6は、制御装置の制御処理の手順を示すフローチャートである。
図1は、一実施形態による燃料電池システム10を示す図である。燃料電池システム10は、原燃料供給ポンプ12と、水供給ポンプ14と、酸化剤供給機15と、パワーユニット20と、電力調整装置22とを有する。
原燃料供給ポンプ12は、原燃料ガスをパワーユニット20に供給する。原燃料ガスは、天然ガス、石油ガス等である。原燃料ガスは、メタン、エタン、プロパン、或いはブタン等の炭化水素を含む。水供給ポンプ14は、水をパワーユニット20に供給する。酸化剤供給機15は、第1酸化剤供給ポンプ16および第2酸化剤供給ポンプ18を含む。第1酸化剤供給ポンプ16および第2酸化剤供給ポンプ18は、それぞれ、酸化剤ガスをパワーユニット20に供給する。酸化剤ガスは、空気等である。酸化剤ガスは、酸素を含む。
パワーユニット20は、原燃料ガス、酸化剤ガスおよび水を用いて直流電力を生成し、当該直流電力を電力調整装置22に出力する。電力調整装置22は、パワーユニット20から出力された直流電力を交流電力に変換し、交流電力を電気設備に出力する。電気設備として、例えば、家屋に設けられた家庭用電気設備等が挙げられる。
パワーユニット20は、原燃料供給流路32と、水供給流路34と、第1酸化剤供給流路36と、第2酸化剤供給流路38と、第3酸化剤供給流路40と、燃料排ガス流路42と、酸化剤排ガス流路44と、燃焼排ガス流路46とを有する。また、パワーユニット20は、部分酸化改質器(POx)48と、水蒸気改質器(SR)50と、燃焼器52と、燃料電池スタック54と、第1熱交換器56と、第2熱交換器58と、第1開閉弁60と、第2開閉弁62とを有する。
原燃料供給流路32は、原燃料供給ポンプ12から出力される原燃料ガスを燃料電池スタック54に供給するための流路である。原燃料供給流路32の一端は、原燃料供給ポンプ12に接続される。原燃料供給流路32の他端は、燃料電池スタック54の燃料ガス入口部54-1に接続される。
水供給流路34は、水供給ポンプ14から出力される水を原燃料供給流路32に供給するための流路である。水供給流路34の一端は、水供給ポンプ14に接続される。水供給流路34の他端は、原燃料供給流路32に接続される。原燃料供給流路32において水供給流路34が接続される接続部位よりも下流の流路部分には、第1熱交換器56、部分酸化改質器48および水蒸気改質器50がこの順に設けられる。
第1酸化剤供給流路36は、第1酸化剤供給ポンプ16から出力される酸化剤ガスを燃料電池スタック54に供給するための流路である。第1酸化剤供給流路36の一端は、第1酸化剤供給ポンプ16に接続される。第1酸化剤供給流路36の他端は、燃料電池スタック54の酸化剤ガス入口部54-2に接続される。第1酸化剤供給流路36には、第2熱交換器58が設けられる。
第2酸化剤供給流路38は、第2酸化剤供給ポンプ18から出力される酸化剤ガスを第1酸化剤供給流路36に供給するための流路である。第2酸化剤供給流路38の一端は、第2酸化剤供給ポンプ18に接続される。第2酸化剤供給流路38の他端は、第1酸化剤供給流路36に接続される。第2酸化剤供給流路38には、第1開閉弁60が設けられる。
第3酸化剤供給流路40は、第2酸化剤供給流路38を流れる酸化剤ガスを部分酸化改質器48に供給するための流路である。第3酸化剤供給流路40の一端は、第1開閉弁60と第2酸化剤供給ポンプ18との間の第2酸化剤供給流路38の流路部分に接続される。第3酸化剤供給流路40の他端は、部分酸化改質器48に接続される。第3酸化剤供給流路40には、第2開閉弁62が設けられる。
燃料排ガス流路42は、燃料電池スタック54から排出される燃料排ガスを燃焼器52に供給するための流路である。燃料排ガス流路42の一端は、燃料電池スタック54の燃料ガス出口部54-3に接続される。燃料排ガス流路42の他端は、燃焼器52に接続される。
酸化剤排ガス流路44は、燃料電池スタック54から排出される酸化剤排ガスを燃焼器52に供給するための流路である。酸化剤排ガス流路44の一端は、燃料電池スタック54の酸化剤ガス出口部54-4に接続される。酸化剤排ガス流路44の他端は、燃焼器52に接続される。
燃焼排ガス流路46は、燃焼器52から排出される燃焼排ガスをパワーユニット20の外部に供給するための流路である。燃焼排ガス流路46の一端は、燃焼器52に接続される。燃焼排ガス流路46の他端は開放端であり、パワーユニット20の外部に配置される。燃焼排ガス流路46には、水蒸気改質器50、部分酸化改質器48、第1熱交換器56および第2熱交換器58がこの順に設けられる。
部分酸化改質器48には、第2酸化剤供給ポンプ18から第3酸化剤供給流路40を介して供給される酸化剤ガスと、原燃料供給ポンプ12から原燃料供給流路32を介して供給される原燃料ガスとが流入する。部分酸化改質器48は、原燃料ガスに含まれる炭化水素を、酸化剤ガスに含まれる酸素で部分酸化させることにより、水素ガスおよび一酸化炭素ガスを含む改質ガスを生成する。この改質には触媒が用いられる。部分酸化改質器48が生成した改質ガスは、原燃料供給流路32を介して燃料電池スタック54の燃料ガス入口部54-1から燃料電池スタック54に流入する。
水蒸気改質器50には、原燃料供給ポンプ12から原燃料供給流路32を介して供給される原燃料と水蒸気とを含む混合ガスが流入する。水蒸気は、水供給ポンプ14から水供給流路34を介して原燃料供給流路32に流入する水が第1熱交換器56で昇温されることにより生成される。水蒸気改質器50は、原燃料に含まれる炭化水素を改質して、水素ガスおよび二酸化炭素ガスを含む改質ガスを生成する。この改質には触媒が用いられる。水蒸気改質器50が生成した改質ガスは、原燃料供給流路32を介して燃料電池スタック54の燃料ガス入口部54-1から燃料電池スタック54に流入する。
燃焼器52は、点火プラグ52Xを有する。点火プラグ52Xは、燃料電池スタック54から供給される燃料排ガスおよび酸化剤排ガスを点火する。燃焼器52は、点火プラグ52Xによる点火によって燃焼を開始し、燃料排ガスおよび酸化剤排ガスを燃焼させる。燃料排ガスおよび酸化剤排ガスの燃焼によって得られた燃焼排ガスは、燃焼排ガス流路46を介してパワーユニット20の外部に排出される。
燃料電池スタック54は、複数の固体酸化物形燃料電池セル55を収容する。複数の固体酸化物形燃料電池セル55は、積層される。各固体酸化物形燃料電池セル55は、アノード電極55-1と、カソード電極55-2と、電解質膜55-3とを有する。電解質膜55-3は、アノード電極55-1およびカソード電極55-2に挟まれる。電解質膜55-3に用いられる材料は、酸素イオン導電性を有する安定化ジルコニア等の酸化物である。
燃料電池スタック54では、部分酸化改質器48または水蒸気改質器50から供給される改質ガス(燃料ガス)と、第2熱交換器58から供給される空気とが、各固体酸化物形燃料電池セル55に分配される。各固体酸化物形燃料電池セル55は、改質ガスと空気との電気化学反応により発電する。
各固体酸化物形燃料電池セル55のカソード電極55-2では、空気から酸素イオンが生成される。カソード電極55-2で未反応の空気を含む酸化剤排ガスは、各固体酸化物形燃料電池セル55から集められ、燃料電池スタック54の酸化剤ガス出口部54-4から排出される。
一方、各固体酸化物形燃料電池セル55のアノード電極55-1では、改質ガスに含まれる水素ガス、一酸化炭素ガスが、電解質膜55-3を透過した酸素イオンと反応して、水(水蒸気)および二酸化炭素ガスと、電子とが生成される。アノード電極55-1で生成された水(水蒸気)および二酸化炭素ガスを含む燃料排ガスは、各固体酸化物形燃料電池セル55から集められ、燃料電池スタック54の燃料ガス出口部54-3から排出される。
燃料電池システム10は、スタック温度センサ64と、第1改質器温度センサ66と、第2改質器温度センサ68と、制御装置70とをさらに有する。
スタック温度センサ64は、燃料電池スタック54の温度を検出するためのセンサである。本実施形態では、スタック温度センサ64は、燃料電池スタック54の酸化剤ガス出口部54-4に設置される。
第1改質器温度センサ66は、水蒸気改質器50の触媒の温度を検出するためのセンサである。第1改質器温度センサ66は、水蒸気改質器50の触媒に設置されてもよいし、水蒸気改質器50の触媒の近傍に配置されてもよい。
第2改質器温度センサ68は、部分酸化改質器48の触媒の温度を検出するためのセンサである。第2改質器温度センサ68は、部分酸化改質器48の触媒に設置されてもよいし、部分酸化改質器48の触媒の近傍に配置されてもよい。
制御装置70は、燃料電池スタック54の温度、電圧および発電電力のうちの少なくとも1つに基づいて、燃料電池スタック54の発電電力を調整する。この場合、制御装置70は、原燃料供給ポンプ12、水供給ポンプ14、第1酸化剤供給ポンプ16、第2酸化剤供給ポンプ18、第1開閉弁60および第2開閉弁62のうちの少なくとも1つを制御する。
燃料電池スタック54が安定的に発電を行うためには、燃料電池スタック54の温度が所定温度(発電可能温度)以上になる必要がある。そのため、まず初めに、制御装置70は、第1酸化剤供給ポンプ16を制御して、所定の流量範囲内の流量で酸化剤ガスを燃料電池スタック54に供給する。流量範囲は、発電時に調整可能な流量の範囲であり、予め設定される。また、制御装置70は、原燃料供給ポンプ12および第2酸化剤供給ポンプ18を制御して、所定の流量範囲内の流量で原燃料ガスおよび酸化剤ガスを供給する。この場合、制御装置70は、第1開閉弁60を閉じるとともに第2開閉弁62を開ける。これにより、原燃料ガスおよび酸化剤ガスが部分酸化改質器48に供給される。
部分酸化改質器48では、炭化水素と酸素との部分酸化反応により改質ガスが生成される。部分酸化反応では摂氏数百度の高熱が発生するため、改質ガスは高温になる。高温の改質ガスは、水蒸気改質器50を介して燃料電池スタック54に流入するため、水蒸気改質器50および燃料電池スタック54が昇温される。
部分酸化改質器48で改質ガスが生成されている段階においては、燃料電池スタック54の温度が所定温度(発電可能温度)に達していない。このため、燃料電池スタック54に流入した改質ガスおよび酸化剤ガスは、各固体酸化物形燃料電池セル55でほとんど電気化学反応しない。したがって、改質ガスおよび酸化剤ガスは、概ねそのまま燃料排ガスおよび酸化剤排ガスとして、燃料電池スタック54から流出する。
燃料電池スタック54から流出した燃料排ガスおよび酸化剤排ガスは、燃焼器52で燃焼される。この燃焼により得られる燃焼排ガスは、水蒸気改質器50、部分酸化改質器48、第1熱交換器56および第2熱交換器58を経由する燃焼排ガス流路46を流れる。このため、燃焼排ガス流路46に設けられた水蒸気改質器50、部分酸化改質器48、第1熱交換器56および第2熱交換器58は、燃焼排ガスによって昇温する。これにより、
第1酸化剤供給流路36を通る酸化剤ガスも、第2熱交換器58で昇温され、燃料電池スタック54に流入する。また、原燃料供給流路32を通る原燃料ガスも、第1熱交換器56で昇温され、燃料電池スタック54に流入する。このため、酸化剤ガスおよび原燃料ガスも、燃料電池スタック54の昇温に寄与する。
制御装置70は、第1改質器温度センサ66によって検出される温度に基づいて、水蒸気改質器50の触媒温度を推定する。水蒸気改質器50の触媒温度が水蒸気改質に必要な温度に達すると、制御装置70は、部分酸化改質器48による改質を停止させ、水蒸気改質器50による改質を開始させる。この場合、制御装置70は、第2酸化剤供給ポンプ18を制御して酸化剤ガスの供給を停止し、水供給ポンプ14を制御して所定の流量範囲内の流量で水を供給する。
これにより、原燃料供給ポンプ12から原燃料ガスが流入する原燃料供給流路32に水が流入し、当該水は原燃料供給流路32に設けられた第1熱交換器56で水蒸気に変化する。原燃料ガスと水蒸気とを含む混合ガスは、原燃料供給流路32を介して水蒸気改質器50に流入する。水蒸気改質器50では、炭化水素が水蒸気で改質され、当該改質により得られた改質ガスは、原燃料供給流路32を介して燃料電池スタック54に流入する。また、燃料電池スタック54には、第1酸化剤供給ポンプ16から第1酸化剤供給流路36を介して酸化剤ガスが流入する。
燃料電池スタック54の温度が所定温度(発電可能温度)に達していない段階においては、ごく一部の改質ガスおよび酸化剤ガスが、各固体酸化物形燃料電池セル55で電気化学反応する。燃料電池スタック54の温度が高くなるにつれて、改質ガスおよび酸化剤ガスの電気化学反応の量が多くなる。燃料電池スタック54の温度が所定温度(発電可能温度)に達すると、燃料電池スタック54による通常の発電が、安定的に継続して行われる。
図2は、制御装置70の構成を示すブロック図である。制御装置70は、記憶部72、入力部74、表示部76および信号処理部78を有する。
記憶部72は、RAM等の揮発性メモリと、ROM、フラッシュメモリ、ハードディスク等の不揮発性メモリとを含む。記憶部72の少なくとも一部が、信号処理部78に備えられていてもよい。入力部74は、ユーザの操作に応じて入力される情報を信号処理部78に出力する。表示部76は、信号処理部78から供給される信号に基づいて、情報を表示する。
信号処理部78は、CPU、MPU等のプロセッサを含む。また、信号処理部78は、発電停止処理部80、冷却処理部82、再起動処理部84、設定部86および冷却停止処理部88を有する。発電停止処理部80、冷却処理部82、再起動処理部84、設定部86および冷却停止処理部88は、記憶部72に記憶されているプログラムをプロセッサが処理することで実現されてもよい。また、発電停止処理部80、冷却処理部82、再起動処理部84、設定部86および冷却停止処理部88の少なくとも1つが、ASIC、FPGA等の集積回路によって実現されてもよい。また、発電停止処理部80、冷却処理部82、再起動処理部84、設定部86および冷却停止処理部88の少なくとも1つが、ディスクリートデバイスを含む電子回路によって構成されてもよい。
発電停止処理部80は、発電を停止する停止指令を入力部74から受けると、原燃料供給ポンプ12を制御して、発電停止用流量で原燃料ガスを供給する。発電停止用流量は、発電を停止するために予め設定された流量であり、発電時に調整可能な流量範囲の下限よりも小さい。同様に、発電停止処理部80は、水供給ポンプ14を制御して発電停止用流量で水を供給し、第1酸化剤供給ポンプ16を制御して発電停止用流量で酸化剤ガスを供給する。
図3は、燃料電池スタック54の温度の推移と、原燃料ガスおよび酸化剤ガスの流量とを示す図である。原燃料ガスおよび酸化剤ガスの流量が減少すると(図3のF1、F2参照)、燃料電池スタック54から排出される燃料排ガスおよび酸化剤排ガスの量が少なくなる。したがって、燃焼器52での燃料排ガスおよび酸化剤排ガスの燃焼量が少なくなり、燃料電池スタック54の温度が時間経過に応じて徐々に下がる(図3のCT1参照)。
冷却処理部82は、スタック温度センサ64によって検出される温度(スタック温度)を代表温度として取得する。本実施形態では、スタック温度センサ64は、燃料電池スタック54の酸化剤ガス出口部54-4(図1)に設置されている。このため、酸化剤ガス出口部54-4の温度が代表温度である。
冷却処理部82は、代表温度を発電可能温度と比較する。代表温度が発電可能温度を下回った場合、冷却処理部82は、原燃料供給ポンプ12を制御して原燃料ガスの供給を停止し、水供給ポンプ14を制御して水の供給を停止する(図3のF3参照)。これにより、水蒸気改質器50から燃料電池スタック54に流入する改質ガスがなくなる。したがって、燃料電池スタック54による発電は完全に停止する。
さらに、代表温度が発電可能温度を下回った場合、冷却処理部82は、酸化剤供給機15を制御して冷却用流量で酸化剤ガスを供給する。冷却用流量は、燃料電池スタック54を冷却するために予め設定された流量であり、発電時に調整可能な流量範囲の上限よりも大きい。
図4は、酸化剤ガスの流れを示す図である。本実施形態では、冷却処理部82は、第1開閉弁60を開けるとともに第2開閉弁62を閉じ、第2酸化剤供給ポンプ18を制御して冷却用流量で酸化剤ガスを供給する。これにより、第1酸化剤供給ポンプ16から供給される酸化剤ガスに、第2酸化剤供給ポンプ18から供給される酸化剤ガスが加わる。このため、燃料電池スタック54に供給される酸化剤ガスが増量する(図3のF4参照)。増量した酸化剤ガスは冷却媒体として機能するため、燃料電池スタック54の温度降下率が高まる(図3のCT2参照)。この温度降下率は、原燃料ガスとともに酸化剤ガスの供給を停止した場合の温度降下率(図3のCT3参照)と比較して大幅に大きい。この結果、燃料電池スタック54が室温相当に到達するまでの時間を大幅に短縮することができる(図3のTM参照)。
なお、冷却処理部82は、発電停止用流量で第1酸化剤供給ポンプ16から供給される酸化剤ガスの流量を、冷却用流量に変更してもよい。これにより、燃料電池スタック54の温度降下率をより一段と高めることができる。
図5は、燃料電池スタック54、水蒸気改質器50の触媒および部分酸化改質器48の触媒の温度の推移を示す図である。再起動処理部84は、スタック温度センサ64によって検出される温度(スタック温度)を第1温度閾値と比較する。燃料電池スタック54には、ある温度にまで下がらない状態で再び温度を上げると、故障等が生じてしまう特定部材が含まれる。この特定部材として固体酸化物形燃料電池セル55が挙げられる。この固体酸化物形燃料電池セル55を保護するために必要な温度(第1保護温度)が第1温度閾値として設定される。第1温度閾値は、燃料電池スタック54の発電可能温度よりも低く、規定値よりも高い。
また、再起動処理部84は、第1改質器温度センサ66によって検出される温度(第1改質器温度)を第2温度閾値と比較する。水蒸気改質器50には、上述の特定部材として触媒が挙げられる。この水蒸気改質器50の触媒を保護するために必要な温度(第2保護温度)が第2温度閾値として設定される。第2温度閾値は、燃料電池スタック54の発電可能温度よりも低く、規定値よりも高い。なお、第2温度閾値は、第1温度閾値と同じであってもよいし、第1温度閾値よりも高くてもよい。
さらに、再起動処理部84は、第2改質器温度センサ68によって検出される温度(第2改質器温度)を第3温度閾値と比較する。部分酸化改質器48には、上述の特定部材として触媒が挙げられる。この部分酸化改質器48の触媒を保護するために必要な温度(第3保護温度)が第3温度閾値として設定される。第3温度閾値は、燃料電池スタック54の発電可能温度よりも低く、規定値よりも高い。なお、第3温度閾値は、第1温度閾値と同じであってもよいし、第1温度閾値よりも高くてもよい。また、第3温度閾値は、第2温度閾値と同じであってもよいし、異なっていてもよい。
スタック温度が第1温度閾値を下回り、かつ、第1改質器温度が第2温度閾値を下回り、かつ、第2改質器温度が第2温度閾値を下回った場合、再起動処理部84は、燃料電池スタック54による発電を再開させるために、燃料電池スタック54を再起動する。したがって、室温相当に到達する前に再起動することによる、燃料電池スタック54、部分酸化改質器48および水蒸気改質器50の故障を回避しながら、燃料電池スタック54を再起動することができる。また、スタック温度、第1改質器温度および第2改質器温度が室温相当に到達してから再起動する場合と比較して、燃料電池スタック54の温度が発電可能温度になるまでの時間を短縮することができる。この結果、メンテナンスのために燃料電池スタック54での発電を停止する必要があるが、当該発電の停止後、燃料電池スタック54の温度が室温に達する前の段階で室温に達する部品等を早期にメンテナンスすることが可能となる。
再起動処理部84による再起動処理は次のように実行される。すなわち、再起動処理部84は、原燃料供給ポンプ12を制御して、発電時の流量範囲の流量で原燃料ガスを供給し、水供給ポンプ14を制御して、発電時の流量範囲の流量で水を供給する。これにより、水蒸気改質器50による改質が再開される。また、再起動処理部84は、酸化剤供給機15を制御して、発電時の流量範囲の流量で酸化剤ガスを供給する。本実施形態では、再起動処理部84は、第2酸化剤供給ポンプ18を制御して酸化剤ガスの供給を停止し、第1酸化剤供給ポンプ16を制御して、発電時の流量範囲の流量で酸化剤ガスを供給する。これにより、水蒸気改質器50から供給される改質ガスと、第1酸化剤供給ポンプ16から供給される酸化剤ガスとの電気化学反応が燃料電池スタック54において再開する。したがって、燃料電池スタック54による発電が再開する。
設定部86は、再起動処理部84による処理を実行させるか否かをユーザに設定させる。設定部86は、ユーザ操作に応じて、入力部74から供給される情報に基づいて、再起動処理部84による処理を実行させるか否かを判定する。
再起動処理部84による処理を実行させると判定した場合、設定部86は、再起動処理部84による処理を有効に設定する。この場合、燃料電池スタック54の温度が室温に達する前に、再起動処理部84による上述の処理が実行され、冷却処理部82による燃料電池スタック54の冷却が自動的に終了する。
逆に、再起動処理部84による処理を実行させないと判定した場合、設定部86は、再起動処理部84による処理を無効に設定する。この場合、再起動処理部84による上述の処理が実行されずに、冷却処理部82による燃料電池スタック54の冷却が継続する。
冷却停止処理部88は、スタック温度センサ64によって検出される温度(スタック温度)を第4温度閾値と比較する。第4温度閾値は、第1温度閾値、第2温度閾値および第3温度閾値よりも小さい。例えば、室温に相当する温度が第4温度閾値として設定される。スタック温度が第4温度閾値を下回った場合、冷却停止処理部88は、酸化剤供給機15を制御して酸化剤ガスの供給を停止する。本実施形態では、冷却停止処理部88は、第1酸化剤供給ポンプ16を制御して酸化剤ガスの供給を停止するとともに、第2酸化剤供給ポンプ18を制御して酸化剤ガスの供給を停止する。
次に、上述した燃料電池システム10の制御方法を説明する。図6は、制御装置70の制御処理の手順を示すフローチャートである。発電を停止する停止指令を制御装置70が受けると、制御処理が開始される。
ステップS1において、発電停止処理部80は、原燃料供給ポンプ12を制御して発電停止用流量で原燃料ガスを供給し、水供給ポンプ14を制御して発電停止用流量で水を供給し、第1酸化剤供給ポンプ16を制御して発電停止用流量で酸化剤ガスを供給する。原燃料ガス、水および酸化剤ガスの供給が発電停止用流量で始まると、制御処理はステップS2に移行する。
ステップS2において、冷却処理部82は、スタック温度センサ64によって検出される温度(スタック温度)を代表温度として取得し、当該代表温度を発電可能温度と比較する。代表温度が発電可能温度を下回っていない場合(ステップS2:NO)、制御処理はステップS2に留まる。逆に、代表温度が発電可能温度を下回った場合(ステップS2:YES)、制御処理はステップS3に移行する。
ステップS3において、冷却処理部82は、原燃料供給ポンプ12を制御して原燃料ガスの供給を停止し、水供給ポンプ14を制御して水の供給を停止する。また、冷却処理部82は、酸化剤供給機15を制御して冷却用流量で酸化剤ガスを供給する。本実施形態では、冷却処理部82は、第1開閉弁60を開けるとともに第2開閉弁62を閉じ、第2酸化剤供給ポンプ18を制御して冷却用流量で酸化剤ガスを供給する。酸化剤ガスの供給が冷却用流量で始まると、制御処理はステップS4に移行する。
ステップS4において、設定部86は、再起動するか否かを判定する。設定部86は、再起動処理部84による処理を有効に設定した場合、再起動すると判定する(ステップS4:YES)。この場合、制御処理はステップS5に進む。逆に、設定部86は、再起動処理部84による処理を無効に設定した場合、再起動しないと判定する(ステップS4:NO)。この場合、制御処理はステップS7に進む。
ステップS5において、再起動処理部84は、スタック温度センサ64によって検出される温度(スタック温度)を第1温度閾値と比較する。また、再起動処理部84は、第1改質器温度センサ66によって検出される温度(第1改質器温度)を第2温度閾値と比較する。さらに、再起動処理部84は、第2改質器温度センサ68によって検出される温度(第2改質器温度)を第3温度閾値と比較する。各比較結果が次の条件を満たさない場合(ステップS5:NO)、制御処理は、ステップS5に留まる。逆に、各比較結果が次の条件を満たす場合(ステップS5:YES)、制御処理は、ステップS6に移行する。条件は、スタック温度が第1温度閾値を下回り、かつ、第1改質器温度が第2温度閾値を下回り、かつ、第2改質器温度が第3温度閾値を下回る場合である。
ステップS6において、再起動処理部84は、原燃料供給ポンプ12を制御して、発電時の流量範囲の流量で原燃料ガスを供給する。また、再起動処理部84は、水供給ポンプ14を制御して、発電時の流量範囲の流量で水を供給する。さらに、再起動処理部84は、酸化剤供給機15を制御して、発電時の流量範囲の流量で酸化剤ガスを供給し始める。本実施形態では、再起動処理部84は、第2酸化剤供給ポンプ18を制御して酸化剤ガスの供給を停止し、第1酸化剤供給ポンプ16を制御して、発電時の流量範囲の流量で酸化剤ガスを供給する。原燃料ガス、水および酸化剤ガスの供給が発電時の流量範囲の流量で始まると、制御処理は終了する。
ステップS7において、冷却停止処理部88は、スタック温度センサ64によって検出される温度(スタック温度)を第4温度閾値と比較する。スタック温度が第4温度閾値を下回っていない場合(ステップS7:NO)、制御処理はステップS7に留まる。逆に、スタック温度が第4温度閾値を下回った場合(ステップS7:YES)、制御処理はステップS8に進む。
ステップS8において、冷却停止処理部88は、酸化剤供給機15を制御して酸化剤ガスの供給を停止する。本実施形態では、冷却停止処理部88は、第1酸化剤供給ポンプ16を制御して酸化剤ガスの供給を停止するとともに、第2酸化剤供給ポンプ18を制御して酸化剤ガスの供給を停止する。酸化剤ガスの供給が停止されると、制御処理は終了する。
上記実施形態は、以下のように変形されることとしてもよい。
(変形例1)
部分酸化改質器48、第3酸化剤供給流路40、第1開閉弁60および第2開閉弁62は、パワーユニット20に備えられていなくてもよい。本変形例の場合、第2酸化剤供給ポンプ18から供給される酸化剤ガスは、燃料電池スタック54を冷却するための冷却媒体としてのみ用いられる。
(変形例2)
第2酸化剤供給流路38、第1開閉弁60および第2開閉弁62は、パワーユニット20に備えられていなくてもよい。本変形例の場合、第2酸化剤供給ポンプ18は、第3酸化剤供給流路40に接続される。また、本変形例の場合、冷却処理部82は、第1酸化剤供給ポンプ16を制御して、酸化剤ガスの流量を、発電停止用流量から冷却用流量に変更する。
(変形例3)
スタック温度センサ64は、燃料電池スタック54の酸化剤ガス出口部54-4以外に設置されてもよい。この場合、スタック温度センサ64は、スタック温度センサ64によって検出される温度に基づいて代表温度を推定し得る。また、スタック温度センサ64は、燃料電池スタック54に複数設置されてもよい。この場合、冷却処理部82は、複数のスタック温度センサ64の各々によって検出される温度の平均を代表温度として取得し得る。
本発明は、上述した実施形態および変形例に限らず、本発明の要旨を逸脱することなく、種々の構成を取り得る。
上記の実施形態および変形例から把握しうる発明および効果を以下に記載する。
(1)本発明は、燃料ガスと酸化剤ガスとの電気化学反応により発電する固体酸化物形燃料電池セル(55)が収容される燃料電池スタック(54)を含むパワーユニット(20)と、前記燃料ガスの原燃料ガスを前記パワーユニットに供給する原燃料供給ポンプ(12)と、前記酸化剤ガスを前記パワーユニットに供給する酸化剤供給機(15)とを有する燃料電池システム(10)である。前記燃料電池スタックの温度を検出するスタック温度センサ(64)と、前記原燃料供給ポンプおよび前記酸化剤供給機を制御して、発電時に調整可能な流量範囲の下限よりも低く設定された発電停止用流量で前記原燃料ガスおよび前記酸化剤ガスを供給する発電停止処理部(80)と、前記燃料電池スタックの代表温度が、前記燃料電池スタックが発電可能となる発電可能温度を下回った場合に、前記原燃料供給ポンプおよび前記酸化剤供給機を制御して、前記原燃料ガスの供給を停止し、前記流量範囲の上限よりも大きく設定された冷却用流量で前記酸化剤ガスを供給する冷却処理部(82)と、を備える。
これにより、発電時に流量よりも多い酸化剤ガスを冷却媒体として燃料電池スタックに供給することができ、当該燃料電池スタックの温度降下率を高めることができる。この結果、燃料電池スタックの温度が所定の温度に達するまでの時間を短縮することができる。
(2)本発明は、燃料電池システムであって、前記酸化剤供給機は、第1酸化剤供給ポンプ(16)および第2酸化剤供給ポンプ(18)を有し、前記パワーユニットは、前記燃料電池スタックと前記第1酸化剤供給ポンプとに接続される第1酸化剤供給流路(36)と、前記第1酸化剤供給流路と前記第2酸化剤供給ポンプとに接続される第2酸化剤供給流路(38)と、前記第2酸化剤供給流路に設けられる第1開閉弁(60)とを有し、前記発電停止処理部は、前記第1開閉弁を閉じ、前記第1酸化剤供給ポンプを制御して前記酸化剤ガスを供給し、前記冷却処理部は、前記第1開閉弁を開け、前記第1酸化剤供給ポンプおよび前記第2酸化剤供給ポンプを制御して前記酸化剤ガスを供給してもよい。これにより、第1酸化剤供給ポンプのみが備えられる場合に比べて、燃料電池スタックに供給可能な酸化剤ガス量を多くすることができる。したがって、燃料電池スタックの温度降下率をより一段と高めることができる。
(3)本発明は、燃料電池システムであって、前記パワーユニットは、前記原燃料ガスと前記酸化剤ガスとの混合ガスを改質する部分酸化改質器(48)と、前記第2酸化剤供給流路と前記部分酸化改質器とに接続される第3酸化剤供給流路(40)と、前記第3酸化剤供給流路に設けられる第2開閉弁(62)とを有してもよい。これにより、部分酸化改質に用いる酸化剤ガスと、燃料電池スタックの冷却に用いる酸化剤ガスとを共用することができ、この結果、酸化剤ガスを供給するためのポンプ数を削減することができる。
(4)本発明は、燃料電池システムであって、前記スタック温度センサは、前記燃料電池スタックの酸化剤ガス出口部(54-4)に設けられ、前記代表温度は、前記スタック温度センサによって検出される温度であってもよい。これにより、1つのスタック温度センサによって燃料電池スタック全体の温度を精度良く捕捉することができる。
(5)本発明は、燃料電池システムであって、前記スタック温度センサによって検出される温度が、前記発電可能温度よりも低く規定値よりも高い第1温度閾値を下回った場合に、前記原燃料供給ポンプおよび前記酸化剤供給機を制御して、前記流量範囲の流量で前記原燃料ガスおよび前記酸化剤ガスを供給する再起動処理部(84)を有してもよい。これにより、室温相当に到達する前に再起動することによる、燃料電池スタックの故障を回避しながら、燃料電池スタックを再起動することができる。この結果、メンテナンスのために燃料電池スタックでの発電を停止する必要があるが、当該発電の停止後、燃料電池スタックの温度が室温に達する前の段階で室温に達する部品等を早期にメンテナンスすることが可能となる。
(6)本発明は、燃料電池システムであって、前記パワーユニットは、前記原燃料ガスと水蒸気との混合ガスを改質する水蒸気改質器(50)と、前記水蒸気改質器の温度を検出する第1改質器温度センサ(66)とを有し、前記スタック温度センサによって検出される温度が前記第1温度閾値を下回り、かつ、前記第1改質器温度センサによって検出される温度が前記発電可能温度よりも低く規定値よりも高い第2温度閾値を下回った場合に、前記再起動処理部は、前記原燃料供給ポンプおよび前記酸化剤供給機を制御してもよい。これにより、室温相当に到達する前に再起動することによる、水蒸気改質器の故障を回避しながら、燃料電池スタックを再起動することができる。
(7)本発明は、燃料電池システムであって、前記パワーユニットは、前記原燃料ガスと前記酸化剤ガスとの混合ガスを改質する部分酸化改質器と、前記部分酸化改質器の温度を検出する第2改質器温度センサ(68)とを有し、前記スタック温度センサによって検出される温度が前記第1温度閾値を下回り、かつ、前記第1改質器温度センサによって検出される温度が第2温度閾値を下回り、かつ、前記第2改質器温度センサによって検出される温度が前記発電可能温度よりも低く規定値よりも高い第3温度閾値を下回った場合に、前記再起動処理部は、前記原燃料供給ポンプおよび前記酸化剤供給機を制御してもよい。これにより、部分酸化改質器の故障を回避しながら、燃料電池スタックを再起動することができる。
(8)本発明は、燃料電池システムであって、前記再起動処理部による処理を実行させるか否かをユーザに設定させる設定部(86)を有してもよい。これにより、メンテナンス等が必要な場合にのみ、再起動処理部による処理を実行させることができる。
(9)本発明は、燃料ガスと酸化剤ガスとの電気化学反応により発電する固体酸化物形燃料電池セルが収容される燃料電池スタックを含むパワーユニットと、前記燃料ガスの原燃料ガスを前記パワーユニットに供給する原燃料供給ポンプと、前記酸化剤ガスを前記パワーユニットに供給する酸化剤供給機とを有する燃料電池システムの制御方法であって、前記原燃料供給ポンプおよび前記酸化剤供給機を制御して、発電時に調整可能な流量範囲の下限よりも低く設定された発電停止用流量で前記原燃料ガスおよび前記酸化剤ガスを供給する発電停止処理ステップ(S1)と、前記燃料電池スタックの代表温度が、前記燃料電池スタックが発電可能となる発電可能温度を下回った場合に、前記原燃料供給ポンプおよび前記酸化剤供給機を制御して、前記原燃料ガスの供給を停止し、前記流量範囲の上限よりも大きく設定された冷却用流量で前記酸化剤ガスを供給する冷却処理ステップ(S3)と、を含む。
これにより、発電時に流量よりも多い酸化剤ガスを冷却媒体として燃料電池スタックに供給することができ、当該燃料電池スタックの温度降下率を高めることができる。この結果、燃料電池スタックの温度が所定の温度に達するまでの時間を短縮することができる。
10…燃料電池システム 12…原燃料供給ポンプ
14…水供給ポンプ 15…酸化剤供給機
16…第1酸化剤供給ポンプ 18…第2酸化剤供給ポンプ
20…パワーユニット 22…電力調整装置
32…原燃料供給流路 34…水供給流路
36…第1酸化剤供給流路 38…第2酸化剤供給流路
40…第3酸化剤供給流路 42…燃料排ガス流路
44…酸化剤排ガス流路 46…燃焼排ガス流路
48…部分酸化改質器 50…水蒸気改質器
52…燃焼器 54…燃料電池スタック
56…第1熱交換器 58…第2熱交換器
60…第1開閉弁 62…第2開閉弁
80…発電停止処理部 82…冷却処理部
84…再起動処理部 86…設定部
88…冷却停止処理部

Claims (9)

  1. 燃料ガスと酸化剤ガスとの電気化学反応により発電する固体酸化物形燃料電池セルが収容される燃料電池スタックを含むパワーユニットと、前記燃料ガスの原燃料ガスを前記パワーユニットに供給する原燃料供給ポンプと、前記酸化剤ガスを前記パワーユニットに供給する酸化剤供給機とを有する燃料電池システムであって、
    前記燃料電池スタックの温度を検出するスタック温度センサと、
    前記原燃料供給ポンプおよび前記酸化剤供給機を制御して、発電時に調整可能な流量範囲の下限よりも低く設定された発電停止用流量で前記原燃料ガスおよび前記酸化剤ガスを供給する発電停止処理部と、
    前記燃料電池スタックの代表温度が、前記燃料電池スタックが発電可能となる発電可能温度を下回った場合に、前記原燃料供給ポンプおよび前記酸化剤供給機を制御して、前記原燃料ガスの供給を停止し、前記流量範囲の上限よりも大きく設定された冷却用流量で前記酸化剤ガスを供給する冷却処理部と、
    を備える、燃料電池システム。
  2. 請求項1に記載の燃料電池システムであって、
    前記酸化剤供給機は、第1酸化剤供給ポンプおよび第2酸化剤供給ポンプを有し、
    前記パワーユニットは、前記燃料電池スタックと前記第1酸化剤供給ポンプとに接続される第1酸化剤供給流路と、前記第1酸化剤供給流路と前記第2酸化剤供給ポンプとに接続される第2酸化剤供給流路と、前記第2酸化剤供給流路に設けられる第1開閉弁とを有し、
    前記発電停止処理部は、前記第1開閉弁を閉じ、前記第1酸化剤供給ポンプを制御して前記酸化剤ガスを供給し、
    前記冷却処理部は、前記第1開閉弁を開け、前記第1酸化剤供給ポンプおよび前記第2酸化剤供給ポンプを制御して前記酸化剤ガスを供給する、燃料電池システム。
  3. 請求項2に記載の燃料電池システムであって、
    前記パワーユニットは、前記原燃料ガスと前記酸化剤ガスとの混合ガスを改質する部分酸化改質器と、前記第2酸化剤供給流路と前記部分酸化改質器とに接続される第3酸化剤供給流路と、前記第3酸化剤供給流路に設けられる第2開閉弁とを有する、燃料電池システム。
  4. 請求項1~3のいずれか1項に記載の燃料電池システムであって、
    前記スタック温度センサは、前記燃料電池スタックの酸化剤ガス出口部に設けられ、
    前記代表温度は、前記スタック温度センサによって検出される温度である、燃料電池システム。
  5. 請求項1~4のいずれか1項に記載の燃料電池システムであって、
    前記スタック温度センサによって検出される温度が、前記発電可能温度よりも低く規定値よりも高い第1温度閾値を下回った場合に、前記原燃料供給ポンプおよび前記酸化剤供給機を制御して、前記流量範囲の流量で前記原燃料ガスおよび前記酸化剤ガスを供給する再起動処理部を有する、燃料電池システム。
  6. 請求項5に記載の燃料電池システムであって、
    前記パワーユニットは、前記原燃料ガスと水蒸気との混合ガスを改質する水蒸気改質器と、前記水蒸気改質器の温度を検出する第1改質器温度センサとを有し、
    前記スタック温度センサによって検出される温度が前記第1温度閾値を下回り、かつ、前記第1改質器温度センサによって検出される温度が前記発電可能温度よりも低く規定値よりも高い第2温度閾値を下回った場合に、前記再起動処理部は、前記原燃料供給ポンプおよび前記酸化剤供給機を制御する、燃料電池システム。
  7. 請求項6に記載の燃料電池システムであって、
    前記パワーユニットは、前記原燃料ガスと前記酸化剤ガスとの混合ガスを改質する部分酸化改質器と、前記部分酸化改質器の温度を検出する第2改質器温度センサとを有し、
    前記スタック温度センサによって検出される温度が前記第1温度閾値を下回り、かつ、前記第1改質器温度センサによって検出される温度が第2温度閾値を下回り、かつ、前記第2改質器温度センサによって検出される温度が前記発電可能温度よりも低く規定値よりも高い第3温度閾値を下回った場合に、前記再起動処理部は、前記原燃料供給ポンプおよび前記酸化剤供給機を制御する、燃料電池システム。
  8. 請求項5~7のいずれか1項に記載の燃料電池システムであって、
    前記再起動処理部による処理を実行させるか否かをユーザに設定させる設定部を有する、燃料電池システム。
  9. 燃料ガスと酸化剤ガスとの電気化学反応により発電する固体酸化物形燃料電池セルが収容される燃料電池スタックを含むパワーユニットと、前記燃料ガスの原燃料ガスを前記パワーユニットに供給する原燃料供給ポンプと、前記酸化剤ガスを前記パワーユニットに供給する酸化剤供給機とを有する燃料電池システムの制御方法であって、
    前記原燃料供給ポンプおよび前記酸化剤供給機を制御して、発電時に調整可能な流量範囲の下限よりも低く設定された発電停止用流量で前記原燃料ガスおよび前記酸化剤ガスを供給する発電停止処理ステップと、
    前記燃料電池スタックの代表温度が、前記燃料電池スタックが発電可能となる発電可能温度を下回った場合に、前記原燃料供給ポンプおよび前記酸化剤供給機を制御して、前記原燃料ガスの供給を停止し、前記流量範囲の上限よりも大きく設定された冷却用流量で前記酸化剤ガスを供給する冷却処理ステップと、
    を含む、燃料電池システムの制御方法。
JP2021194914A 2021-11-30 2021-11-30 燃料電池システムおよび燃料電池システムの制御方法 Pending JP2023081178A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021194914A JP2023081178A (ja) 2021-11-30 2021-11-30 燃料電池システムおよび燃料電池システムの制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021194914A JP2023081178A (ja) 2021-11-30 2021-11-30 燃料電池システムおよび燃料電池システムの制御方法

Publications (1)

Publication Number Publication Date
JP2023081178A true JP2023081178A (ja) 2023-06-09

Family

ID=86656910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021194914A Pending JP2023081178A (ja) 2021-11-30 2021-11-30 燃料電池システムおよび燃料電池システムの制御方法

Country Status (1)

Country Link
JP (1) JP2023081178A (ja)

Similar Documents

Publication Publication Date Title
US8927162B2 (en) Solid oxide fuel cell system performing different restart operations depending on operation temperature
US8497044B2 (en) Solid oxide fuel cell device
US20130183600A1 (en) Fuel cell device
EP2808298B1 (en) Method for operating hydrogen generation device and method for operating a fuel cell system
US8501358B2 (en) Solid oxide fuel cell device
US20100304235A1 (en) Solid oxide fuel cell device
JP5204757B2 (ja) 水素生成装置およびその運転方法、並びに燃料電池システム、
EP3264508B1 (en) Fuel cell system and method for operating the same
JP2017050049A (ja) 燃料電池システム
US20110076577A1 (en) Solid oxide fuel cell device
JP7068052B2 (ja) 燃料電池システム、起動制御プログラム
JP5794206B2 (ja) 燃料電池システム
JP5748055B2 (ja) 固体酸化物型燃料電池
JP2023081178A (ja) 燃料電池システムおよび燃料電池システムの制御方法
US9214690B2 (en) Solid oxide fuel cell device
JP5765667B2 (ja) 固体酸化物形燃料電池装置
JP2007200771A (ja) 燃料電池発電装置の改質触媒温度制御システムおよびその制御方法
WO2012132409A1 (ja) 水素生成装置及びその運転方法
JP5274003B2 (ja) 燃料電池システム
JP2014123576A (ja) 固体酸化物形燃料電池システム
JP2023072298A (ja) 固体酸化物燃料電池システムおよび固体酸化物燃料電池システムの制御方法
JP5783370B2 (ja) 固体酸化物型燃料電池
JP7226129B2 (ja) 燃料電池システムおよびその制御方法
JP7359029B2 (ja) 燃料電池システム
EP3588649B1 (en) Fuel cell system and control method thereof