JP2023073500A - Electrochemical measurement device and electrochemical measurement method for metal material - Google Patents

Electrochemical measurement device and electrochemical measurement method for metal material Download PDF

Info

Publication number
JP2023073500A
JP2023073500A JP2023059983A JP2023059983A JP2023073500A JP 2023073500 A JP2023073500 A JP 2023073500A JP 2023059983 A JP2023059983 A JP 2023059983A JP 2023059983 A JP2023059983 A JP 2023059983A JP 2023073500 A JP2023073500 A JP 2023073500A
Authority
JP
Japan
Prior art keywords
solution
reference electrode
electrochemical measurement
cell
outer cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023059983A
Other languages
Japanese (ja)
Other versions
JP2023073500A5 (en
Inventor
昌信 熊谷
Masanobu Kumagai
祐二 畑
Yuji Hata
幸範 保田
Yukinori Yasuda
浩志 梶山
Hiroshi Kajiyama
務 小森
Tsutomu Komori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Techno Research Corp
Original Assignee
JFE Techno Research Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Techno Research Corp filed Critical JFE Techno Research Corp
Publication of JP2023073500A publication Critical patent/JP2023073500A/en
Publication of JP2023073500A5 publication Critical patent/JP2023073500A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrochemical measurement device that is used for evaluating the corrosion resistance (corrosion characteristic) of metal material in a solution including fluoride ions (F-), the electrochemical measurement device capable of appropriately reducing the occurrence of contamination in the solution.
SOLUTION: An electrochemical measurement device performs electrochemical measurement of metal material in a solution including fluoride ions (F-), and comprises: a cell 1 that stores the solution; and a reference electrode 2 and a counter electrode 3 that are immersed in the solution in the cell 1, and in the device, the cell 1 is formed of fluorine resin. Preferably, the reference electrode 2 is formed of a double junction type reference electrode, and its external cylinder has a configuration in which the outside of a glass cylinder being a base material is covered with fluorine resin. In the electrochemical measurement of the metal material in the solution including fluoride ions (F-), contamination derived from glass (for example, boron (B), aluminum (Al), and silicon (Si)) in the solution can be reduced.
SELECTED DRAWING: Figure 1
COPYRIGHT: (C)2023,JPO&INPIT

Description

本発明は、フッ化物イオン(F)を含む溶液中での金属材料の耐食性(腐食特性)を評価するために用いる電気化学測定装置であって、特に、固体高分子形燃料電池に用いる金属セパレータ材料の耐食性を評価するのに好適な電気化学測定装置に関するものである。 The present invention is an electrochemical measurement device used to evaluate the corrosion resistance (corrosion characteristics) of a metal material in a solution containing fluoride ions (F ), and in particular, the metal used in polymer electrolyte fuel cells The present invention relates to an electrochemical measurement apparatus suitable for evaluating corrosion resistance of separator materials.

近年、固体高分子形燃料電池(Polymer Electrolyte Fuel Cell;PEFC)が自動車などのクリーンな次世代電源として注目されている。このPEFCは、他の燃料電池(例えば、リン酸形燃料電池、固体酸化物形燃料電池)に較べて、低温で作動し、高い発電効率を示すことから、その普及が進みつつある。
PEFCは2枚のセパレータで1枚の膜・電極接合体(Membrane Electrode Assembly;MEA)を挟み込むことにより、単セルを構成している。単セルが出力する電圧は0.7V程度であるため、実際には単セルを積層したスタックとして用いる。セパレータはスタックの総重量・体積の面で大きな割合を占めているため、セパレータの薄肉化・低コスト化の観点から、セパレータには、プレス加工可能で安価なステンレス鋼(SUS304、SUS316Lなど)などの金属材料に電気伝導性に優れた表面処理を施したものが採用されている。
In recent years, a polymer electrolyte fuel cell (PEFC) has attracted attention as a clean next-generation power source for automobiles and the like. The PEFC operates at a lower temperature than other fuel cells (for example, a phosphoric acid fuel cell and a solid oxide fuel cell) and exhibits high power generation efficiency, and is therefore becoming more and more popular.
The PEFC constitutes a single cell by sandwiching one membrane electrode assembly (MEA) between two separators. Since the voltage output from a single cell is about 0.7 V, a stack of stacked single cells is actually used. Since the separator occupies a large proportion of the total weight and volume of the stack, from the standpoint of thinning the separator and reducing the cost, the separator should be made of press-workable and inexpensive stainless steel (SUS304, SUS316L, etc.). A metal material that has been subjected to surface treatment with excellent electrical conductivity is adopted.

PEFCの発電環境においては、MEAのプロトン伝導性膜として使用されているパーフルオロスルホン酸高分子膜の劣化によって遊離する硫酸イオン(SO 2-)やフッ化物イオン(F)がセパレータ/ガス拡散層に濃縮し、フッ化物イオン(F)を含む酸性環境となるため、セパレータ用の金属材料には、そのような環境下での耐食性が必要となる。このためセパレータ用の金属材料について、PEFC模擬環境、すなわちフッ化物イオン(F)を含む酸性水溶液中での耐食性(腐食特性)を評価するための電気化学測定が行われる。
一般に、金属材料の電気化学測定は、セルに入れられた試験液に、試験対象試料の作用電極、電流を流すための対極、基準となる参照電極からなる3電極を浸漬した装置で行われ(例えば、特許文献1)、上述したセパレータ用の金属材料の電気化学測定では、PEFC模擬環境となる所定濃度のフッ化物イオン(F)を含む酸性水溶液が試験液として用いられる。
In a PEFC power generation environment, sulfate ions (SO 4 2− ) and fluoride ions (F ) liberated due to the deterioration of the perfluorosulfonic acid polymer membrane used as the proton-conducting membrane of the MEA are released into the separator/gas. Since it is concentrated in the diffusion layer and becomes an acidic environment containing fluoride ions (F ), the metal material for the separator is required to have corrosion resistance under such an environment. For this reason, electrochemical measurements are performed to evaluate the corrosion resistance (corrosion characteristics) of metal materials for separators in a simulated PEFC environment, that is, in an acidic aqueous solution containing fluoride ions (F ).
In general, electrochemical measurements of metallic materials are performed with a device in which three electrodes consisting of a working electrode of a sample to be tested, a counter electrode for passing current, and a reference electrode are immersed in a test solution placed in a cell ( For example, in Patent Document 1), in the electrochemical measurement of the metal material for the separator described above, an acidic aqueous solution containing a predetermined concentration of fluoride ions (F ), which simulates a PEFC environment, is used as a test liquid.

特開2011-196737号公報JP 2011-196737 A

しかしながら、本発明者らが試験および検討を重ねた結果、上述したセパレータ用の金属材料の電気化学測定において、試験液(フッ化物イオン(F)を含む酸性水溶液)にコンタミが発生し、これが耐食性評価の精度に影響を及ぼしていることが判明した。具体的には、(i)電気化学測定に供した試験液について、誘導結合プラズマ質量分析(ICP-MS)や誘導結合プラズマ発光分光分析(ICP-AES)により試料(セパレータ用の金属材料)からの溶出金属の定量分析を行うが、コンタミがその分析結果に悪影響を及ぼしていること、(ii)電気化学測定に供した試料について、後に接触抵抗の測定試験を行うが、コンタミにより接触抵抗が増加し、高精度な測定ができないこと、(iii)電気化学測定中にコンタミの一部が試料(作用電極)の腐食を加速させ、腐食電流の測定精度を低下させること、などの事実が判明した。 However, as a result of repeated tests and studies by the present inventors, contamination occurred in the test solution (acidic aqueous solution containing fluoride ions (F )) in the electrochemical measurement of the metal material for the separator described above, and this caused contamination. It was found that this affects the accuracy of corrosion resistance evaluation. Specifically, (i) for the test liquid subjected to electrochemical measurement, from the sample (metal material for separator) by inductively coupled plasma mass spectrometry (ICP-MS) or inductively coupled plasma atomic emission spectrometry (ICP-AES) Quantitative analysis of eluted metals is performed, but contamination has an adverse effect on the analysis results. (iii) some of the contaminants accelerate the corrosion of the sample (working electrode) during electrochemical measurements, lowering the measurement accuracy of the corrosion current. bottom.

したがって本発明の目的は、フッ化物イオン(F)を含む溶液中での金属材料の耐食性(腐食特性)を評価するために用いる電気化学測定装置において、フッ化物イオン(F)を含む溶液中でのコンタミの発生が適切に抑えられ、このため特に、固体高分子形燃料電池に用いる金属セパレータ材料の耐食性を評価するのに好適な電気化学測定装置を提供することにある。 Therefore, an object of the present invention is to provide an electrochemical measurement apparatus used for evaluating the corrosion resistance (corrosion characteristics) of a metal material in a solution containing fluoride ions (F ). It is an object of the present invention to provide an electrochemical measuring apparatus which is suitable for evaluating the corrosion resistance of metal separator materials used in polymer electrolyte fuel cells because the generation of contamination inside is appropriately suppressed.

本発明者らは、上記の課題を解決すべく、コンタミの発生源とその対策について検討した結果、以下のような知見を得た。
上述した金属セパレータ材料の電気化学測定において、試験液(フッ化物イオン(F)を含む溶液)に生じたコンタミの成分を調べたところ、その主体はガラス成分の一部(ボロン(B)、アルミニウム(Al)、シリコン(Si)など)であり、電気化学測定装置のセルや参照電極を構成しているガラス由来の成分であることが判った。すなわち、従来の電気化学測定装置ではガラス製セルが使用されているが、金属セパレータ材料の電気化学測定では、試験液温度が80℃程度と比較的高温であるために、セルのガラスが試験液中のフッ化物イオン(F)により汚染され、試験液中にガラス成分の一部がコンタミとして溶出することが判った。また、参照電極として使用されるダブルジャンクション型参照電極の外筒にもガラスが使用されており、この外筒からも試験液中にガラス成分の一部がコンタミとして溶出することが判った。
In order to solve the above-described problems, the inventors of the present invention have obtained the following findings as a result of examining sources of contamination and countermeasures against them.
In the electrochemical measurement of the metal separator material described above, when the components of contamination generated in the test solution (solution containing fluoride ions (F )) were examined, the main component was a part of the glass component (boron (B), aluminum (Al), silicon (Si), etc.), and was found to be a component derived from the glass constituting the cell and reference electrode of the electrochemical measurement device. That is, a glass cell is used in a conventional electrochemical measurement device, but in the electrochemical measurement of a metal separator material, the temperature of the test solution is relatively high, about 80°C. It was found that the glass was contaminated with fluoride ions (F ) inside, and part of the glass component was eluted into the test liquid as contamination. In addition, glass was also used for the outer cylinder of the double-junction reference electrode used as the reference electrode, and it was found that part of the glass component was eluted as contaminants from this outer cylinder into the test solution.

また、試験液中のコンタミには塩化物イオン(Cl)も含まれており、これが試験対象試料(作用電極)の腐食を速めることが判った。上述したように金属セパレータ材料の電気化学測定では、試験液温度が80℃程度と比較的高温であるために、ダブルジャンクション型参照電極(外筒)の内部液の塩化物イオン(Cl)が液絡部から過剰に滲出して試験液中に混入し、コンタミとなることが判った。 Contaminants in the test solution also contained chloride ions ( Cl.sup.- ), which accelerated the corrosion of the test sample (working electrode). As described above, in the electrochemical measurement of the metal separator material, the temperature of the test solution is relatively high at about 80°C, so the chloride ions (Cl ) in the internal solution of the double-junction reference electrode (outer cylinder) are Excessive exudation from the liquid junction was found to mix into the test liquid and cause contamination.

そこで、以上のようなコンタミ対策について検討した結果、セルをフッ素樹脂で構成することにより、さらに好ましくは、ダブルジャンクション型参照電極の外筒にフッ素樹脂被覆を施すことにより、試験液中に含まれるガラス由来のコンタミ(ボロン(B)、アルミニウム(Al)、シリコン(Si)など)を効果的に低減できることが判った。
さらに、ダブルジャンクション型参照電極の外筒の液絡部を所定の線径以下のセラミック多孔質体で構成することにより、内部液の塩化物イオン(Cl)の試験液中への過剰な滲出・混入を適切に防止でき、試験液中の塩化物イオン(Cl)濃度を低減できることが判った。
Therefore, as a result of examining the above contamination countermeasures, it was found that by configuring the cell with fluororesin, more preferably by coating the outer cylinder of the double-junction reference electrode with fluororesin, it is contained in the test solution It was found that glass-derived contamination (boron (B), aluminum (Al), silicon (Si), etc.) can be effectively reduced.
Furthermore, by configuring the liquid junction of the outer cylinder of the double-junction reference electrode with a ceramic porous material having a predetermined wire diameter or less, excessive exudation of chloride ions (Cl ) from the internal liquid into the test liquid・It was found that contamination can be properly prevented and the chloride ion (Cl ) concentration in the test solution can be reduced.

本発明は、このような知見に基づきなされたもので、以下を要旨とするものである。
[1]フッ化物イオン(F)を含む溶液中で金属材料の電気化学測定を行う装置であって、
溶液を収容するセル(1)と、該セル(1)内の溶液に浸漬される参照電極(2)および対極(3)を備え、セル(1)がフッ素樹脂で構成されることを特徴とする電気化学測定装置。
[2]上記[1]の電気化学測定装置において、参照電極(2)がダブルジャンクション型参照電極からなり、その外筒は、基材であるガラス製の筒体の外側がフッ素樹脂で被覆されていることを特徴とする電気化学測定装置。
The present invention was made based on such findings, and has the following gist.
[1] A device for electrochemical measurement of a metal material in a solution containing fluoride ions (F ),
It comprises a cell (1) containing a solution, a reference electrode (2) and a counter electrode (3) immersed in the solution in the cell (1), and the cell (1) is made of fluororesin. electrochemical measurement device.
[2] In the electrochemical measurement device of [1] above, the reference electrode (2) consists of a double-junction reference electrode, and the outer cylinder of the outer cylinder is coated with a fluororesin on the outside of the glass cylinder that is the base material. An electrochemical measurement device characterized by comprising:

[3]上記[1]または[2]の電気化学測定装置において、参照電極(2)がダブルジャンクション型参照電極からなり、その外筒の先端部の液絡部がセラミック多孔質体で構成され、該セラミック多孔質体の線径が0.7mm以下であることを特徴とする電気化学測定装置。
[4]上記[1]~[3]のいずれかの電気化学測定装置において、セル(1)に付属する蓋体(4)およびコネクタ(5)がフッ素樹脂で構成されることを特徴とする電気化学測定装置。
[5]上記[1]~[4]のいずれかの電気化学測定装置を用い、固体高分子形燃料電池に用いる金属セパレータ材料の電気化学測定を行うことを特徴とする金属材料の電気化学測定方法。
[3] In the electrochemical measurement device of [1] or [2] above, the reference electrode (2) is a double-junction reference electrode, and the liquid junction at the tip of the outer cylinder is made of a ceramic porous body. . An electrochemical measurement device, wherein the wire diameter of the ceramic porous body is 0.7 mm or less.
[4] In the electrochemical measurement device according to any one of [1] to [3] above, the lid (4) and connector (5) attached to the cell (1) are made of fluororesin. Electrochemical measurement device.
[5] Electrochemical measurement of a metal material, characterized in that electrochemical measurement of a metal separator material used in a polymer electrolyte fuel cell is performed using the electrochemical measurement device according to any one of [1] to [4] above. Method.

本発明の電気化学測定装置は、セルをフッ素樹脂で構成したことにより、好ましくはさらに、ダブルジャンクション型参照電極の外筒にフッ素樹脂被覆を施したことにより、フッ化物イオン(F)を含む溶液中で金属材料の耐食性(腐食特性)を評価するために行う電気化学測定において、溶液中のガラス由来のコンタミ(ボロン(B)、アルミニウム(Al)、シリコン(Si)など)を低く抑えることができる。また、これに加えて、ダブルジャンクション型参照電極の外筒の液絡部を所定の線径以下のセラミック多孔質体で構成することにより、内部液の塩化物イオン(Cl)が溶液中に過剰に滲出・混入することを防止でき、溶液中の参照電極内部液由来のコンタミ(塩化物イオン(Cl))も低く抑えることができる。これらの結果、溶液中の溶出金属の分析精度、試料の接触抵抗の測定精度、腐食電流の測定精度などが向上し、金属材料の耐食性(腐食特性)を的確に評価することができる。このため本発明の電気化学測定装置は、固体高分子形燃料電池に用いる金属セパレータ材料の耐食性を評価するための電気化学測定装置として特に好適なものである。 The electrochemical measurement device of the present invention contains fluoride ions (F ) by configuring the cell with a fluororesin, preferably by coating the outer cylinder of the double-junction reference electrode with a fluororesin. In electrochemical measurements performed to evaluate the corrosion resistance (corrosion properties) of metal materials in solution, glass-derived contaminants (boron (B), aluminum (Al), silicon (Si), etc.) in the solution should be kept low. can be done. In addition to this, by forming the liquid junction of the outer cylinder of the double-junction reference electrode with a ceramic porous material having a predetermined wire diameter or less, chloride ions (Cl ) of the internal liquid are released into the solution. It is possible to prevent excessive exudation and contamination, and to suppress contamination (chloride ions (Cl )) derived from the reference electrode internal liquid in the solution. As a result, the analysis accuracy of eluted metals in solution, the measurement accuracy of sample contact resistance, the measurement accuracy of corrosion current, etc. are improved, and the corrosion resistance (corrosion characteristics) of metal materials can be accurately evaluated. Therefore, the electrochemical measurement apparatus of the present invention is particularly suitable as an electrochemical measurement apparatus for evaluating the corrosion resistance of metal separator materials used in polymer electrolyte fuel cells.

本発明の電気化学測定装置の一実施形態を模式的に示す説明図BRIEF DESCRIPTION OF THE DRAWINGS An explanatory diagram schematically showing one embodiment of the electrochemical measurement device of the present invention. 本発明の電気化学測定装置が備えるダブルジャンクション型参照電極の一実施形態を、外筒を縦断面した状態で示す図面Drawing showing an embodiment of a double-junction reference electrode provided in the electrochemical measurement device of the present invention in a state in which the outer cylinder is longitudinally sectioned. 図2中のA部の部分拡大図Partially enlarged view of part A in FIG. 図2中のB部の部分拡大図Partially enlarged view of B part in FIG. 本発明の電気化学測定装置が備えるダブルジャンクション型参照電極の他の実施形態を示すもので、外筒の先端部の部分拡大縦断面図FIG. 2 shows another embodiment of the double-junction reference electrode provided in the electrochemical measurement apparatus of the present invention, and is a partially enlarged vertical cross-sectional view of the tip of the outer cylinder. 本発明の電気化学測定装置が備えるダブルジャンクション型参照電極の他の実施形態を、外筒および冷却筒を縦断面した状態で示す図面Drawing showing another embodiment of the double-junction reference electrode provided in the electrochemical measurement apparatus of the present invention in a state in which the outer cylinder and the cooling cylinder are longitudinally sectioned. 図6中のVII-VII線に沿う断面図Sectional view along line VII-VII in Fig. 6 図6および図7に示す参照電極の使用状態を示す説明図Explanatory diagram showing how the reference electrodes shown in FIGS. 6 and 7 are used

本発明の電気化学測定装置は、フッ化物イオン(F)を含む溶液中での金属材料の耐食性(腐食特性)を評価するために用いる装置であり、この電気化学測定装置は、基本的には、セル内の溶液中で試験対象試料に電位を印加し、その電気的レスポンス(腐食電流など)を測定するために使用されるが、さらに、セル内の溶液中への溶出金属の定量分析などを行うためにも使用され、それらの測定・分析結果に基づき、金属材料の耐食性(腐食特性)を評価することができる。 The electrochemical measuring device of the present invention is a device used to evaluate the corrosion resistance (corrosion characteristics) of a metal material in a solution containing fluoride ions (F ), and this electrochemical measuring device is basically is used to apply a potential to a sample under test in solution in a cell and measure its electrical response (corrosion current, etc.). etc., and the corrosion resistance (corrosion characteristics) of metal materials can be evaluated based on the results of these measurements and analyses.

図1は、本発明の電気化学測定装置の一実施形態を模式的に示すもので、装置の使用状態を示す説明図(セルを縦断面した状態の説明図)である。
この電気化学測定装置は、フッ化物イオン(F)を含む溶液y(酸性水溶液)を収容するセル1(試験槽)と、このセル1内の溶液yに浸漬される参照電極2および対極3を備え、装置使用時には、図示するように試験対象金属材料である試料x(作用電極)も溶液yに浸漬される。これらの構成は、従来使用されている公知の測定装置と同様である。
FIG. 1 schematically shows one embodiment of the electrochemical measurement device of the present invention, and is an explanatory view (explanatory view of a state in which the cell is longitudinally sectioned) showing how the device is used.
This electrochemical measurement apparatus includes a cell 1 (test tank) containing a solution y (acidic aqueous solution) containing fluoride ions (F ), a reference electrode 2 and a counter electrode 3 which are immersed in the solution y in the cell 1. When using the apparatus, a sample x (working electrode), which is a metal material to be tested, is also immersed in the solution y as shown. These configurations are similar to those of conventionally used known measuring devices.

セル1は上部が開放したビーカー状の容器であり、上部開口に蓋体4が装着される。この蓋体4には、上記参照電極2や対極3などを取り付けるための複数の取付孔40が貫設されている。参照電極2、対極3および試料xは、それぞれ取付孔40を通じてセル1内に挿し込まれ、コネクタ5を介して蓋体4に支持される。すなわち、コネクタ5は、参照電極2、対極3および試料xを蓋体4に支持させる役目をする。また、コネクタ5は、溶液yの蒸発防止のため、取付孔40の上端を塞ぐ役目もする。
また、蓋体4には、温度計を取り付けるための取付孔(図示せず)が貫設されてもよい。温度計は、その取付孔を通じてセル1内に挿し込まれる。温度計を挿し込むことで、例えば液温を制御しようとするときに、液温を正確に評価することができる。
The cell 1 is a beaker-like container with an open top, and a lid 4 is attached to the top opening. A plurality of mounting holes 40 for mounting the reference electrode 2 and the counter electrode 3 are formed through the cover 4 . The reference electrode 2 , the counter electrode 3 and the sample x are each inserted into the cell 1 through the mounting holes 40 and supported by the lid 4 via the connector 5 . That is, the connector 5 serves to support the reference electrode 2 , the counter electrode 3 and the sample x on the lid 4 . The connector 5 also serves to block the upper end of the mounting hole 40 in order to prevent evaporation of the solution y.
Further, the cover 4 may be provided with a mounting hole (not shown) for mounting a thermometer. A thermometer is inserted into the cell 1 through its mounting hole. By inserting a thermometer, the liquid temperature can be accurately assessed, for example, when trying to control the liquid temperature.

本発明装置では、セル1がフッ素樹脂で構成される。従来装置のセルはガラス製であるが、さきに述べたようにガラス製のセルにフッ化物イオン(F)を含む溶液を入れるとガラス成分(ボロン(B)、アルミニウム(Al)、シリコン(Si)など)が溶出してコンタミとなることが判った。これに対して、本発明装置が備えるフッ素樹脂製のセル1はフッ化物イオン(F)を含む溶液に対して安定であり、ガラス由来の溶出成分のようなコンタミを生じることがない。
また、セル1に付属する蓋体4およびコネクタ5は、溶液yが直に接する部材ではないが、蒸発した溶液yが付着することになるので、これらの部材もフッ素樹脂で構成されることが好ましい。
In the device of the present invention, the cell 1 is made of fluororesin. The cell of the conventional device is made of glass. As mentioned earlier, when a solution containing fluoride ions (F ) is put into the cell made of glass, the glass components (boron (B), aluminum (Al), silicon ( Si), etc.) was found to be eluted and become contaminants. On the other hand, the fluororesin cell 1 provided in the apparatus of the present invention is stable against a solution containing fluoride ions (F ) and does not cause contamination such as eluted components derived from glass.
Although the lid 4 and the connector 5 attached to the cell 1 are not members that the solution y comes into direct contact with, the evaporated solution y adheres to them, so these members may also be made of fluororesin. preferable.

参照電極2は、シングルジャンクション型、ダブルジャンクション型のいずれでもよいが、ダブルジャンクション型参照電極は、内筒の内部液の塩化物イオン(Cl)が外筒の内部液を経由して試験液中に極微量リークするので、外筒の内部液の塩化物イオン(Cl)濃度を下げることでリークした塩化物イオン(Cl)による腐食の加速を抑制することができる利点があり、このため、参照電極2としてはダブルジャンクション型参照電極の方が好ましい。
本発明装置では、ガラス由来の溶出成分によるコンタミを生じないようにするため、このダブルジャンクション型参照電極の外筒は、基材であるガラス製の筒体の外側がフッ素樹脂で被覆されることが好ましい。なお、ダブルジャンクション型参照電極の外筒自体をフッ素樹脂で構成することも検討されたが、フッ素樹脂製の外筒と液絡部を構成するセラミック多孔質体との熱膨張差が大きいため、外筒の内部液が試験液中に多量に漏洩し、使用に耐え得ないことが判った。これに対して、外筒の基材であるガラス製の筒体は熱膨張率がセラミック多孔質体に近く、そのような問題は生じない。
The reference electrode 2 may be of either a single-junction type or a double-junction type. In the double-junction reference electrode, chloride ions (Cl ) in the internal solution of the inner cylinder pass through the internal solution of the outer cylinder to the test solution. Since a very small amount leaks inside, there is an advantage that the acceleration of corrosion due to the leaked chloride ions (Cl ) can be suppressed by lowering the chloride ion (Cl ) concentration of the inner liquid of the outer cylinder. Therefore, the reference electrode 2 is preferably a double-junction reference electrode.
In the device of the present invention, in order to prevent contamination by eluted components derived from glass, the outer cylinder of the double-junction reference electrode is coated with a fluororesin on the outer side of the glass cylindrical body that is the base material. is preferred. Although it has been considered to construct the outer cylinder of the double-junction reference electrode itself with fluororesin, the difference in thermal expansion between the outer cylinder made of fluororesin and the ceramic porous material that constitutes the liquid junction is large. A large amount of the liquid inside the outer cylinder leaked into the test liquid, and it was found that it could not withstand use. On the other hand, a cylinder made of glass, which is the base material of the outer cylinder, has a coefficient of thermal expansion close to that of a ceramic porous body, and does not cause such a problem.

図2~図4は、本発明装置が参照電極2として備えるダブルジャンクション型参照電極の一実施形態を示すものであり、図2は外筒を縦断面した状態で示す全体図、図3は図2中のA部(外筒の先端部)の部分拡大図、図4は図2中のB部(内筒の先端部)の部分拡大図である。
このダブルジャンクション型参照電極は、外筒20、この外筒20の内部に配される内筒21、この内筒21の内部に配されるAg/AgCl電極22、外筒20の先端部の液絡部(ジャンクション)を構成するセラミック多孔質体23、内筒21の先端部の液絡部(ジャンクション)を構成するセラミック多孔質体24、外筒20内に充填される内部液25(溶液y)、内筒21内に充填される内部液26(KCl)などで構成され、これらの構成は、従来使用されている公知のダブルジャンクション型参照電極と同様である。
2 to 4 show an embodiment of a double-junction reference electrode provided as the reference electrode 2 in the device of the present invention, FIG. 2, and FIG. 4 is a partially enlarged view of B portion (tip of the inner cylinder) in FIG.
This double-junction reference electrode comprises an outer cylinder 20, an inner cylinder 21 disposed inside the outer cylinder 20, an Ag/AgCl electrode 22 disposed inside the inner cylinder 21, and a liquid at the tip of the outer cylinder 20. A ceramic porous body 23 forming a junction, a ceramic porous body 24 forming a liquid junction at the tip of the inner cylinder 21, and an internal liquid 25 (solution y ), an internal liquid 26 (KCl) filled in the inner cylinder 21, and the like.

外筒20は、基材であるガラス製の筒体27の外側にフッ素樹脂被覆層28が形成されている。溶液yと接触するガラス基材(筒体27)表面をなるべく少なくするという観点から、フッ素樹脂被覆層28は、少なくとも、溶液yと接触する外筒20表面(蒸発した溶液yが付着する外筒20表面を含む)の主要部に形成されることが好ましい。
本実施形態では、筒体27の下部側(先端側)の相当長さ部分(筒体全長の半分以上の長さ部分)に対して、筒体先端面を除く周面全体(図2に示す範囲)にフッ素樹脂被覆層28が形成されている。このフッ素樹脂被覆層28は、フッ素樹脂製の熱収縮用チューブを筒体27に被せた後、これを熱収縮させることにより形成したものであるため、筒体27の先端面にはフッ素樹脂被覆層28がなく、この部分でガラス基材が溶液yと接触するが、この程度の接触範囲であればガラス成分の溶出は無視できる程度であり、問題ない。
なお、通常、内筒21もガラス製であるが、溶液yと接触するものではないので、フッ素樹脂被覆層は設ける必要はない。
The outer cylinder 20 has a fluororesin coating layer 28 formed on the outside of a glass cylinder 27 that is a base material. From the viewpoint of minimizing the surface of the glass substrate (cylindrical body 27) in contact with the solution y, the fluororesin coating layer 28 is provided at least on the surface of the outer cylinder 20 (the outer cylinder to which the evaporated solution y adheres) in contact with the solution y. 20 surface).
In this embodiment, the entire peripheral surface (shown in FIG. 2) except for the distal end surface of the cylindrical body is applied to a considerable length portion (a portion having a length of half or more of the total length of the cylindrical body) on the lower side (tip side) of the cylindrical body 27. A fluororesin coating layer 28 is formed in the area). The fluororesin coating layer 28 is formed by covering the cylinder 27 with a heat-shrinkable tube made of fluororesin and then thermally shrinking it. There is no layer 28, and the glass base material contacts the solution y at this portion, but within this extent of contact, the elution of the glass component is negligible, and there is no problem.
The inner cylinder 21 is also usually made of glass, but since it does not come into contact with the solution y, it is not necessary to provide a fluororesin coating layer.

フッ素樹脂被覆層28は、上述したようにフッ素樹脂製の熱収縮用チューブを筒体27に被せた後、ヒートガンなどにより熱収縮させる方法、フッ素樹脂を塗装(液体塗料のスプレー塗装、粉体塗装など)する方法など、任意の方法で形成することができる。
フッ素樹脂を塗装する方法では、筒体27の先端面にもフッ素樹脂被覆層28を形成することができる。図5は、その場合の実施形態を示すもので、外筒20の先端部の部分拡大縦断面図である。フッ素樹脂被覆層28は、筒体27の周面だけでなく筒体27の先端面にも形成されている。
The fluororesin coating layer 28 can be formed by covering the cylindrical body 27 with a fluororesin heat-shrinkable tube as described above, and then heat-shrinking it with a heat gun or the like, or by coating with fluororesin (spray coating of liquid paint, powder coating, etc.). etc.).
In the method of coating the fluororesin, the fluororesin coating layer 28 can also be formed on the tip surface of the cylinder 27 . FIG. 5 shows an embodiment in that case, and is a partially enlarged vertical cross-sectional view of the distal end portion of the outer cylinder 20. As shown in FIG. The fluororesin coating layer 28 is formed not only on the peripheral surface of the cylinder 27 but also on the tip surface of the cylinder 27 .

セル1およびフッ素樹脂被覆層28(さらには、蓋体4やコネクタ5など)を構成するフッ素樹脂の種類に特別な制限はない。使用可能なフッ素樹脂としては、例えば、ポリテトラフルオロエチレン(PTFE)、ポリクロロトリフルオロエチレン(PCTFE,CTFE)、ポリフッ化ビニリデン(PVDF)、ポリフッ化ビニル(PVF)、四フッ化エチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、四フッ化エチレン・六フッ化プロピレン共重合体(FEP)、エチレン・四フッ化エチレン共重合体(ETFE)、エチレン・クロロトリフルオロエチレン共重合体(ECTFE)などが挙げられ、これらの1種以上を用いることができる。 There is no particular limitation on the type of fluororesin forming the cell 1 and the fluororesin coating layer 28 (furthermore, the lid 4, the connector 5, etc.). Usable fluororesins include, for example, polytetrafluoroethylene (PTFE), polychlorotrifluoroethylene (PCTFE, CTFE), polyvinylidene fluoride (PVDF), polyvinyl fluoride (PVF), tetrafluoroethylene/perfluoro Alkyl vinyl ether copolymer (PFA), ethylene tetrafluoride/propylene hexafluoride copolymer (FEP), ethylene/tetrafluoroethylene copolymer (ETFE), ethylene/chlorotrifluoroethylene copolymer (ECTFE) etc., and one or more of these can be used.

以上のように本発明装置は、セル1がフッ素樹脂で構成され、好ましくは、参照電極2として、基材であるガラス製の筒体の外側がフッ素樹脂で被覆された外筒20を備えるダブルジャンクション型参照電極を用いることにより、溶液y中のガラス由来のコンタミ(ボロン(B)、アルミニウム(Al)、シリコン(Si)など)を低く抑えることができる。すなわち、溶液y中に含まれるボロン(B)、アルミニウム(Al)、シリコン(Si)の定量分析において、溶液y中のボロン(B)、アルミニウム(Al)、シリコン(Si)の各定量分析値を0.4mgL-1未満、好ましくは0.1mgL-1未満とすることができる。 As described above, in the device of the present invention, the cell 1 is made of a fluororesin, and preferably, as the reference electrode 2, the double cell is provided with the outer cylinder 20 of which the outer surface of the glass cylinder as the base material is coated with a fluororesin. By using the junction-type reference electrode, glass-derived contaminants (boron (B), aluminum (Al), silicon (Si), etc.) in the solution y can be kept low. That is, in the quantitative analysis of boron (B), aluminum (Al), and silicon (Si) contained in solution y, each quantitative analysis value of boron (B), aluminum (Al), and silicon (Si) in solution y can be less than 0.4 mgL −1 , preferably less than 0.1 mgL −1 .

ダブルジャンクション型参照電極の液絡部は、通常、セラミック多孔質体で構成されるが、溶液yの温度が比較的高温の場合(例えば、80℃程度)には、外筒20の内部液の塩化物イオン(Cl)が液絡部から過剰に滲出して溶液y中に混入し、コンタミとなる。この問題に対して、外筒20の先端部の液絡部を構成するセラミック多孔質体23の線径dを0.7mm以下とすることが好ましく、0.5mm以下とすることがより好ましい。これにより、外筒20の内部液の塩化物イオン(Cl)が液絡部を通じて溶液y中に過剰に滲出・混入することを防止し、溶液y中での塩化物イオン(Cl)の濃度を低く抑えることができる。具体的には、溶液y中の参照電極内部液由来の塩化物イオン(Cl)の濃度を2.0mgL-1未満とすることができる。一方、セラミック多孔質体23の線径dの下限は特にないが、線径dが小さすぎるとセラミック多孔質体23の抵抗が増加し、液詰まりを起こすおそれがあるので、0.1mm程度を下限とすることが好ましい。 The liquid junction of the double-junction reference electrode is usually composed of a ceramic porous material. Chloride ions (Cl ) exude excessively from the liquid junction and mix into the solution y, resulting in contamination. To address this problem, the wire diameter d1 of the ceramic porous body 23 forming the liquid junction at the tip of the outer cylinder 20 is preferably 0.7 mm or less, more preferably 0.5 mm or less. . As a result, the chloride ions (Cl ) in the internal liquid of the outer cylinder 20 are prevented from being excessively exuded and mixed into the solution y through the liquid junction, and the chloride ions (Cl ) in the solution y are prevented from Concentration can be kept low. Specifically, the concentration of chloride ions (Cl ) derived from the reference electrode internal solution in solution y can be less than 2.0 mgL −1 . On the other hand, although there is no particular lower limit for the wire diameter d1 of the ceramic porous body 23, if the wire diameter d1 is too small, the resistance of the ceramic porous body 23 increases and liquid clogging may occur. A lower limit is preferred.

コンタミとなる塩化物イオン(Cl)は、内筒21の内部液26の塩化物イオン(Cl)が外筒20の内部液25を経由して試験液中に極微量リークする。そのため、内筒21の先端部の液絡部を構成するセラミック多孔質体24については、その線径dが大きいと外筒20の内部液25の塩化物イオン(Cl)濃度が上がり、外筒20の液絡部から塩化物イオン(Cl)が過剰に滲出されやすくなる。このため、セラミック多孔質体24の線径dは2.0mm以下が好ましい。一方、線径dの下限は特にないが、線径が小さすぎるとセラミック多孔質体24の抵抗が増加し、液詰まりを起こすおそれがあるので、0.1mm程度を下限とすることが好ましい。
また、セラミック多孔質体23の空隙率は、大きすぎると塩化物イオン(Cl)漏れにより材料の腐食を加速しやすい。このため空隙率は34%以下が好ましく、31%以下がより好ましい。
Contaminant chloride ions (Cl ) leak from the inner liquid 26 of the inner cylinder 21 into the test liquid via the inner liquid 25 of the outer cylinder 20 in a very small amount. Therefore, if the wire diameter d2 of the porous ceramic body 24 constituting the liquid junction at the tip of the inner cylinder 21 is large, the concentration of chloride ions (Cl ) in the internal liquid 25 of the outer cylinder 20 increases. Chloride ions (Cl ) tend to exude excessively from the liquid junction of the outer cylinder 20 . Therefore, the wire diameter d2 of the ceramic porous body 24 is preferably 2.0 mm or less. On the other hand, there is no particular lower limit for the wire diameter d2 , but if the wire diameter is too small, the resistance of the ceramic porous body 24 increases and liquid clogging may occur, so the lower limit is preferably about 0.1 mm. .
Also, if the porosity of the ceramic porous body 23 is too large, chloride ion ( Cl.sup.- ) leakage tends to accelerate corrosion of the material. Therefore, the porosity is preferably 34% or less, more preferably 31% or less.

図6および図7は、本発明装置が参照電極2として備えるダブルジャンクション型参照電極の他の実施形態を示すものであり、図6は外筒および冷却筒を縦断面した状態で示す図面、図7は、図6中のVII-VII線に沿う断面図である。
一般に電気化学測定で使用するAg/AgClやカロメル電極などの参照電極の電極電位は、ネルンストの式より温度に依存していることが知られており、このため内筒21の内部液26の温度をコントロールできるようにすることが好ましい。内筒21の内部液26の温度は25℃が標準仕様温度であり、一般的に25℃の標準水素電極基準に換算し、データ整理することが行われている。したがって、汎用性の点から参照電極(内部液26)の温度を25℃にコントロールすることが好ましい。
6 and 7 show another embodiment of the double-junction reference electrode provided as the reference electrode 2 in the device of the present invention, and FIG. 7 is a cross-sectional view taken along line VII-VII in FIG.
It is known that the electrode potential of reference electrodes such as Ag/AgCl and calomel electrodes generally used in electrochemical measurements depends on the temperature according to the Nernst equation. should be controlled. The temperature of the internal liquid 26 of the inner cylinder 21 is a standard specification temperature of 25° C., and generally the temperature is converted to the standard hydrogen electrode standard of 25° C. and the data is organized. Therefore, from the viewpoint of versatility, it is preferable to control the temperature of the reference electrode (internal liquid 26) to 25°C.

図6および図7の実施形態は、参照電極2に温度調整機能(冷却機能)を持たせることにより、そのような温度コントロールができるようにしたものであり、外筒20の長手方向の一部分を外囲する冷却筒29(冷却管)を設け、この冷却筒29内に冷却水を流すための冷却水導入口290と冷却水排出口291を設けたものである。
すなわち、外筒20のフッ素樹脂被覆層28が形成されていない上部側(基端部側)の部分の外側には、外筒20の長手方向に沿って冷却筒29が設けられており、この冷却筒29は外筒20の所定長さ部分を外囲し、その長手方向両端が外筒20の外面に接合されている。また、この冷却筒29の上部側(上端寄りの位置)には冷却水導入口290が、下部側(下端寄りの位置)には冷却水排出口291がそれぞれ設けられ、冷却水の冷却筒29への供給と冷却筒29からの排出を行えるようにしてある。
The embodiments of FIGS. 6 and 7 enable such temperature control by providing the reference electrode 2 with a temperature adjustment function (cooling function). A cooling cylinder 29 (cooling pipe) is provided to surround the cooling cylinder 29, and a cooling water inlet 290 and a cooling water outlet 291 for flowing cooling water are provided in the cooling cylinder 29. As shown in FIG.
That is, a cooling cylinder 29 is provided along the longitudinal direction of the outer cylinder 20 outside the upper portion (base end side) of the outer cylinder 20 where the fluororesin coating layer 28 is not formed. The cooling cylinder 29 surrounds a predetermined length of the outer cylinder 20 , and both longitudinal ends thereof are joined to the outer surface of the outer cylinder 20 . A cooling water inlet 290 is provided on the upper side (position near the upper end) of the cooling cylinder 29, and a cooling water outlet 291 is provided on the lower side (position near the lower end). supply to and discharge from the cooling cylinder 29 can be performed.

ここで、仮に、冷却筒29の下部側(下端寄りの位置)に冷却水導入口を設け、上部側(上端寄りの位置)に冷却水排出口を設けた場合には、内筒21の内部液26とともに冷却される外筒20の内部液25(溶液y)が過冷却となり、その結果、セル1内の試験液(溶液y)も過冷却となり、セル1内の試験液(溶液y)の温度が低下する。セル1内の試験液(溶液y)の温度低下を抑えるためには、セル1が入れられる恒温水槽中の純水の温度を高める必要が生じるが、恒温水槽中の純水の温度を高めると水蒸気が発生し、周辺部材が耐熱温度を超えてしまうおそれがあり、また、周辺部材の電気系統に結露が生じ、電気系統のショートが生じるおそれもある。このため、本実施形態のように、冷却筒29の上部側に冷却水導入口290を設け、下部側に冷却水排出口291を設けることが好ましい。 Here, if a cooling water inlet is provided on the lower side (position closer to the lower end) of the cooling cylinder 29 and a cooling water outlet is provided on the upper side (position closer to the upper end), the inside of the inner cylinder 21 The internal liquid 25 (solution y) of the outer cylinder 20 cooled together with the liquid 26 is supercooled, and as a result, the test liquid (solution y) in the cell 1 is also supercooled, and the test liquid (solution y) in the cell 1 is supercooled. temperature drops. In order to suppress the temperature drop of the test solution (solution y) in the cell 1, it is necessary to increase the temperature of the pure water in the constant temperature water bath in which the cell 1 is placed. There is a risk that water vapor will be generated and the temperature of the peripheral member will exceed the heat-resistant temperature, and dew condensation will occur in the electrical system of the peripheral member, causing a short circuit in the electrical system. Therefore, it is preferable to provide the cooling water inlet 290 on the upper side of the cooling cylinder 29 and provide the cooling water outlet 291 on the lower side as in the present embodiment.

冷却筒29に流す冷却水はチラー(冷水循環装置)を介して循環させ、冷却水を温度管理することが好ましく、これにより内部液26の温度コントロールが容易になる。また、内部液26の温度を測定する熱電対(図示せず)を設け、この熱電対による測温に基づき冷却水の温度管理を行い、内部液26の温度コントロールを行うことが好ましい。
図8は、本実施形態の参照電極2をセル1に設置した状態を示しており、図1
と同様に、参照電極2はコネクタ5を介して蓋体4に支持され、その先端側の部分が取付孔40を通じてセル1内に挿し込まれている。
It is preferable that the cooling water flowing through the cooling cylinder 29 is circulated through a chiller (cold water circulation device) to control the temperature of the cooling water. Further, it is preferable to provide a thermocouple (not shown) for measuring the temperature of the internal liquid 26 and to control the temperature of the internal liquid 26 by controlling the temperature of the cooling water based on the temperature measurement by this thermocouple.
FIG. 8 shows a state in which the reference electrode 2 of this embodiment is installed in the cell 1, and FIG.
Similarly, the reference electrode 2 is supported by the cover 4 via the connector 5 and its tip end portion is inserted into the cell 1 through the mounting hole 40 .

後述する[実施例3]に示すように、恒温水槽中でセル1内の試験液(溶液y)の温度が80℃程度に維持される場合、参照電極2が温度調整機能(冷却機能)を持たない測定装置では、内筒21の内部液26の温度を一定にコントロールすることは難しく、また、その温度は50℃前後になる。これに対して、本実施形態のように参照電極2が温度調整機能(冷却機能)を持つ測定装置では、内筒21の内部液26の温度を一定にコントロールすることができ、内部液26の温度のばらつきの範囲が小さくなり、且つ内部液26の正確な温度を知ることができる。その結果、内部液26の温度により求まる電位の精度が高まり、本発明装置の測定精度をより高めることができる。さらに、内部液26を標準仕様温度である25℃程度に維持することができるめ、参照電極2の標準水素電極基準への換算が容易となる。 As shown in [Example 3] described later, when the temperature of the test solution (solution y) in the cell 1 is maintained at about 80°C in the constant temperature water bath, the reference electrode 2 has a temperature adjustment function (cooling function). Without a measuring device, it is difficult to control the temperature of the internal liquid 26 of the inner cylinder 21 to be constant, and the temperature is around 50.degree. On the other hand, in the measuring device in which the reference electrode 2 has a temperature adjusting function (cooling function) as in the present embodiment, the temperature of the internal liquid 26 in the inner cylinder 21 can be controlled to be constant. The temperature variation range is reduced, and the accurate temperature of the internal liquid 26 can be known. As a result, the accuracy of the potential obtained from the temperature of the internal liquid 26 is enhanced, and the measurement accuracy of the device of the present invention can be further enhanced. Furthermore, since the internal liquid 26 can be maintained at about 25° C., which is the standard specification temperature, conversion to the standard hydrogen electrode standard of the reference electrode 2 is facilitated.

本発明装置は、様々な金属材料の耐食性(腐食特性)を評価するための電気化学測定に使用することができるが、特に、固体高分子形燃料電池に用いる金属セパレータ材料の耐食性(腐食特性)を評価するための電気化学測定装置として好適である。この場合、溶液yをPEFC模擬環境、すなわち所定濃度のフッ化物イオン(F)を含む酸性水溶液として、金属セパレータ材料(候補材料)を試料xとする電気化学測定が行われ、その結果である腐食電流や溶液yの溶出金属の分析結果などにより、試験対象金属材料のPEFC環境での耐食性(腐食特性)が評価される。 The apparatus of the present invention can be used for electrochemical measurements for evaluating the corrosion resistance (corrosion properties) of various metal materials. It is suitable as an electrochemical measuring device for evaluating. In this case, the solution y is a PEFC-simulated environment, that is, an acidic aqueous solution containing a predetermined concentration of fluoride ions (F ), and an electrochemical measurement is performed using a metal separator material (candidate material) as a sample x. Corrosion resistance (corrosion characteristics) of the metal material to be tested in the PEFC environment is evaluated based on the corrosion current, analysis results of the eluted metals of the solution y, and the like.

[実施例1]
図1に示すような構造を有する本発明例と比較例(従来例)の電気化学測定装置を用い、セルおよび参照電極の構成成分の溶出試験を行った。発明例1,2と比較例の装置構成は以下の通りである。
・発明例1
セル1をフッ素樹脂(四フッ化エチレン・パーフルオロアルキルビニルエーテル共重合体;PFA)で構成するとともに、蓋体4およびコネクタ5もフッ素樹脂(ポリテトラフルオロエチレン;PTFE)で構成した。さらに、参照電極2であるダブルジャンクション型参照電極の外筒20は、基材であるガラス製の筒体27の外側に、図2~図4に示すようなフッ素樹脂被覆層28を設けた。このフッ素樹脂被覆層28は、ガラス製の筒体27にフッ素樹脂(PTFE)の熱収縮チューブを被せ、これを熱収縮させることで形成した。
[Example 1]
Elution tests of constituent components of a cell and a reference electrode were performed using the electrochemical measurement apparatus of the present invention example and the comparative example (conventional example) having the structure shown in FIG. The apparatus configurations of Invention Examples 1 and 2 and Comparative Example are as follows.
・Invention example 1
The cell 1 was made of fluororesin (tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer; PFA), and the lid 4 and connector 5 were also made of fluororesin (polytetrafluoroethylene; PTFE). Further, the external cylinder 20 of the double-junction reference electrode, which is the reference electrode 2, was provided with a fluororesin coating layer 28 as shown in FIGS. The fluororesin coating layer 28 is formed by covering the cylindrical member 27 made of glass with a heat-shrinkable tube of fluororesin (PTFE) and heat shrinking it.

・発明例2
セル1をフッ素樹脂(四フッ化エチレン・パーフルオロアルキルビニルエーテル共重合体;PFA)で構成するとともに、蓋体4およびコネクタ5もフッ素樹脂(ポリテトラフルオロエチレン;PTFE)で構成した。一方、参照電極2であるダブルジャンクション型参照電極の外筒は、発明例1のようなフッ素樹脂被覆層を設けず、ガラスのみで構成した。
・比較例(従来装置)
セルとその蓋体をガラスで構成し、ダブルジャンクション型参照電極の外筒もガラスのみで構成した。
・Invention Example 2
The cell 1 was made of fluororesin (tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer; PFA), and the lid 4 and connector 5 were also made of fluororesin (polytetrafluoroethylene; PTFE). On the other hand, the outer cylinder of the double-junction reference electrode, which is the reference electrode 2, was not provided with the fluororesin coating layer as in Example 1, but was made of glass only.
・Comparative example (conventional device)
The cell and its cover are made of glass, and the outer cylinder of the double-junction reference electrode is also made of glass.

本発明例および比較例ともに、ダブルジャンクション型参照電極は、外筒先端部の液絡部を構成するセラミック多孔質体の線径を0.4mm、内筒先端部の液絡部を構成するセラミック多孔質体の線径を0.9mmとした。
この溶出試験では、硫酸にフッ化物イオン(F)が2ppmなるようにNaF粉末を試薬の状態で添加し、pHを3に調整した試験液を用い、この試験液をセルに400mL注いだ後、恒温水槽中で試験液が80℃になるように昇温し、その温度で溶出試験を1週間行った。
In both the present invention example and the comparative example, the double-junction reference electrode has a wire diameter of 0.4 mm in the ceramic porous material that forms the liquid junction at the tip of the outer cylinder, and a ceramic material that forms the liquid junction at the tip of the inner cylinder. The wire diameter of the porous body was set to 0.9 mm.
In this elution test, NaF powder was added as a reagent to sulfuric acid so that the fluoride ion (F ) was 2 ppm, and a test solution adjusted to pH 3 was used. After pouring 400 mL of this test solution into the cell, , the temperature of the test solution was raised to 80°C in a constant temperature water bath, and the dissolution test was carried out at that temperature for one week.

試験後の試験液について、ICP-AESによりセルやダブルジャンクション型参照電極(外筒)からの溶出成分(ボロン(B)、アルミニウム(Al)、シリコン(Si))の定量分析を行った。また、比較のために、溶出試験前の試験液についても同様の分析を行った。それらの結果を表1に示す。
この試験では、溶液中のボロン(B)、アルミニウム(Al)、シリコン(Si)の各含有量の基準値を0.4mgL-1とし、総合評価として、ボロン(B)、アルミニウム(Al)、シリコン(Si)の各含有量がすべて基準値未満のものを「合格」、ボロン(B)、アルミニウム(Al)、シリコン(Si)の各含有量の1つ以上が基準値以上のものを「不合格」とした。
After the test, the test solution was subjected to quantitative analysis of eluted components (boron (B), aluminum (Al), silicon (Si)) from the cell and the double-junction reference electrode (outer cylinder) by ICP-AES. For comparison, the same analysis was performed on the test solution before the dissolution test. Those results are shown in Table 1.
In this test, the reference value for each content of boron (B), aluminum (Al), and silicon (Si) in the solution was set to 0.4 mgL -1 , and as a comprehensive evaluation, boron (B), aluminum (Al), Each content of silicon (Si) is all less than the standard value "pass", one or more of each content of boron (B), aluminum (Al), silicon (Si) is more than the standard value "pass"Failed."

Figure 2023073500000002
Figure 2023073500000002

表1によれば、比較例(従来装置)では、ガラス製のセルやダブルジャンクション型参照電極(外筒)などからの溶出成分であるシリコン(Si)の含有量が基準値を大幅に上回っており、同じく溶出成分であるボロン(B)、アルミニウム(Al)の含有量も本発明例に較べて多く、ガラス由来のコンタミが発生していることが判る。これに対して、本発明例ではボロン(B)、アルミニウム(Al)、シリコン(Si)の各含有量が基準値未満であり、ガラス由来のコンタミは検出されない。また、発明例1と発明例2を較べると、ダブルジャンクション型参照電極の外筒20について、基材であるガラス製の筒体27の外側にフッ素樹脂被覆層28を設けた発明例1では、発明例2に比べてシリコン(Si)含有量が大幅に低減しているのが判る。 According to Table 1, in the comparative example (conventional device), the content of silicon (Si), which is an elution component from the glass cell and the double-junction reference electrode (outer cylinder), etc., greatly exceeds the standard value. Also, the contents of boron (B) and aluminum (Al), which are similarly eluted components, are higher than those of the present invention example, and it can be seen that contamination derived from glass occurs. On the other hand, in the present invention example, each content of boron (B), aluminum (Al), and silicon (Si) is less than the reference value, and contamination derived from glass is not detected. Comparing Invention Example 1 and Invention Example 2, in Invention Example 1, in which the outer cylinder 20 of the double-junction reference electrode is provided with a fluororesin coating layer 28 on the outer side of the glass cylinder 27 that is the base material, It can be seen that the silicon (Si) content is significantly reduced as compared with Invention Example 2.

[実施例2]
上記[実施例1]の発明例1の装置において、ダブルジャンクション型参照電極として、表2に示すような外筒先端部および内筒先端部の各液絡部を構成するセラミック多孔質体の線径が異なるものを用い、セラミック多孔質体の線径が、試験液中の参照電極内部液由来のコンタミ(塩化物イオン(Cl)濃度)に及ぼす影響を調べた。
[Example 2]
In the apparatus of Invention Example 1 of [Example 1] above, as the double-junction reference electrode, a ceramic porous wire constituting each liquid junction at the tip of the outer cylinder and the tip of the inner cylinder as shown in Table 2 Using different diameters, the effect of the wire diameter of the ceramic porous body on contamination (chloride ion (Cl ) concentration) derived from the reference electrode internal solution in the test solution was investigated.

試験条件は上記[実施例1]と同様であり、試験後の試験液中の塩化物イオン(Cl)濃度について、イオンクロマトグラフ(IC)で定量分析を行った。比較のために試験前の溶液についても同様の分析を行った。
試験液中の塩化物イオン(Cl)濃度の分析結果を、各装置が備えるダブルジャンクション型参照電極のセラミック多孔質体(内筒先端部および外筒先端部の各液絡部の構成するセラミック多孔質体)の線径とともに表2に示す。
The test conditions were the same as in [Example 1] above, and the chloride ion (Cl ) concentration in the test solution after the test was quantitatively analyzed by ion chromatography (IC). For comparison, the same analysis was performed on the solution before the test.
The chloride ion (Cl ) concentration analysis results in the test solution were analyzed using the ceramic porous body of the double-junction reference electrode provided in each device (the ceramic It is shown in Table 2 together with the wire diameter of the porous body).

Figure 2023073500000003
Figure 2023073500000003

この試験では、試験液中での参照電極内部液由来の塩化物イオン(Cl)濃度の好ましい範囲を<2.0mgL-1とした。表2によれば、外筒先端の液絡部を構成するセラミック多孔質体の線径dを0.7mm以下とすることで、塩化物イオン(Cl)の濃度を低く抑えられていることが判る。 In this test, the preferable range of chloride ion (Cl ) concentration derived from the reference electrode internal solution in the test solution was <2.0 mgL −1 . According to Table 2, the concentration of chloride ions (Cl ) can be kept low by setting the wire diameter d 1 of the ceramic porous body forming the liquid junction at the tip of the outer cylinder to 0.7 mm or less. It turns out.

[実施例3]
図6および図7に示すような参照電極が温度調整機能(冷却機能)を持つ測定装置(本発明装置)と、図2および図3に示すような参照電極が温度調整機能(冷却機能)を持たない測定装置(本発明装置)を用い、恒温水槽中で試験液が80℃になるようにして、実施例1と同様の電気化学測定(溶出試験)を行った。参照電極が温度調整機能(冷却機能)を持つ測定装置では、チラーで冷却水を20.5℃に温度管理して冷却筒29に流した。
[Example 3]
6 and 7, the reference electrode has a temperature adjustment function (cooling function), and the reference electrode as shown in FIGS. 2 and 3 has a temperature adjustment function (cooling function). The same electrochemical measurement (dissolution test) as in Example 1 was performed using a measuring device (the device of the present invention) that does not have a sample, and the test solution was kept at 80° C. in a constant temperature water bath. In the measurement device in which the reference electrode has a temperature control function (cooling function), the cooling water was flowed into the cooling cylinder 29 while controlling the temperature of the cooling water at 20.5° C. with a chiller.

試験中、参照電極(内部液)の温度を熱電対で計測した。その結果、参照電極が温度調整機能(冷却機能)を持たない測定装置の場合には、参照電極(内部液)の温度が48~53℃の範囲で推移した。これに対して、参照電極が温度調整機能(冷却機能)を持つ測定装置の場合には、参照電極(内部液)の温度を25℃で一定に維持することできた。
電気化学測定装置を用いた溶出試験は、参照電極(内部液)の温度に基づき基準電極電位換算を行った上で測定結果を得る。図6および図7に示すような参照電極が温度調整機能(冷却機能)を持つ測定装置(本発明装置)を用いた場合、参照電極(内部液)の温度のばらつきが少なく温度が一定に制御されるため、測定結果のばらつきが抑制され、測定精度をより一層高めることができる。
During the test, the temperature of the reference electrode (internal liquid) was measured with a thermocouple. As a result, the temperature of the reference electrode (internal liquid) changed in the range of 48 to 53°C in the case of the measuring device in which the reference electrode did not have a temperature control function (cooling function). On the other hand, in the case of a measuring device in which the reference electrode has a temperature adjusting function (cooling function), the temperature of the reference electrode (internal liquid) could be kept constant at 25°C.
In the dissolution test using an electrochemical measurement device, the measurement results are obtained after conversion to the reference electrode potential based on the temperature of the reference electrode (internal solution). When using a measuring device (device of the present invention) in which the reference electrode has a temperature adjustment function (cooling function) as shown in FIGS. Therefore, variations in measurement results are suppressed, and measurement accuracy can be further improved.

1 セル
2 参照電極
3 対極
4 蓋体
5 コネクタ
20 外筒
21 内筒
22 Ag/AgCl電極
23,24 セラミック多孔質体
25 外筒の内部液
26 内筒の内部液
27 筒体
28 フッ素樹脂被覆層
29 冷却筒
40 取付孔
290 冷却水導入口
291 冷却水排出口
x 試料
y 溶液
REFERENCE SIGNS LIST 1 cell 2 reference electrode 3 counter electrode 4 lid 5 connector 20 outer cylinder 21 inner cylinder 22 Ag/AgCl electrode 23, 24 ceramic porous body 25 inner liquid of outer cylinder 26 inner liquid of inner cylinder 27 cylinder 28 fluororesin coating layer 29 cooling cylinder 40 mounting hole 290 cooling water inlet 291 cooling water outlet x sample y solution

Claims (5)

フッ化物イオン(F)を含む溶液中で金属材料の電気化学測定を行う装置であって、
溶液を収容するセル(1)と、該セル(1)内の溶液に浸漬される参照電極(2)および対極(3)を備え、セル(1)がフッ素樹脂で構成されることを特徴とする電気化学測定装置。
A device for electrochemical measurement of a metal material in a solution containing fluoride ions (F ),
It comprises a cell (1) containing a solution, a reference electrode (2) and a counter electrode (3) immersed in the solution in the cell (1), and the cell (1) is made of fluororesin. electrochemical measurement device.
参照電極(2)がダブルジャンクション型参照電極からなり、その外筒は、基材であるガラス製の筒体の外側がフッ素樹脂で被覆されていることを特徴とする請求項1に記載の電気化学測定装置。 2. An electric electrode according to claim 1, characterized in that the reference electrode (2) is a double-junction reference electrode, the outer cylinder of which is a base material made of glass and the outer surface of which is coated with a fluororesin. Chemical measurement device. 参照電極(2)がダブルジャンクション型参照電極からなり、その外筒の先端部の液絡部がセラミック多孔質体で構成され、該セラミック多孔質体の線径が0.7mm以下であることを特徴とする請求項1または2に記載の電気化学測定装置。 The reference electrode (2) is a double-junction reference electrode, the liquid junction at the tip of the outer cylinder is made of a ceramic porous body, and the wire diameter of the ceramic porous body is 0.7 mm or less. 3. The electrochemical measurement device according to claim 1 or 2. セル(1)に付属する蓋体(4)およびコネクタ(5)がフッ素樹脂で構成されることを特徴とする請求項1~3のいずれかに記載の電気化学測定装置。 4. The electrochemical measuring apparatus according to any one of claims 1 to 3, wherein the lid (4) and the connector (5) attached to the cell (1) are made of fluororesin. 請求項1~4のいずれかに記載の電気化学測定装置を用い、固体高分子形燃料電池に用いる金属セパレータ材料の電気化学測定を行うことを特徴とする金属材料の電気化学測定方法。 5. A method for electrochemical measurement of a metal material, comprising performing an electrochemical measurement of a metal separator material used in a polymer electrolyte fuel cell, using the electrochemical measurement device according to any one of claims 1 to 4.
JP2023059983A 2020-07-22 2023-04-03 Electrochemical measurement device and electrochemical measurement method for metal material Pending JP2023073500A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2020125346 2020-07-22
JP2020125346 2020-07-22
JP2021072341A JP7257439B2 (en) 2020-07-22 2021-04-22 Electrochemical measuring device and electrochemical measuring method for metal material

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2021072341A Division JP7257439B2 (en) 2020-07-22 2021-04-22 Electrochemical measuring device and electrochemical measuring method for metal material

Publications (2)

Publication Number Publication Date
JP2023073500A true JP2023073500A (en) 2023-05-25
JP2023073500A5 JP2023073500A5 (en) 2024-04-16

Family

ID=80220749

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2021072341A Active JP7257439B2 (en) 2020-07-22 2021-04-22 Electrochemical measuring device and electrochemical measuring method for metal material
JP2023059983A Pending JP2023073500A (en) 2020-07-22 2023-04-03 Electrochemical measurement device and electrochemical measurement method for metal material

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2021072341A Active JP7257439B2 (en) 2020-07-22 2021-04-22 Electrochemical measuring device and electrochemical measuring method for metal material

Country Status (1)

Country Link
JP (2) JP7257439B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0616860U (en) * 1992-08-06 1994-03-04 大阪瓦斯株式会社 Matching electrode device
JP2004031256A (en) * 2002-06-28 2004-01-29 Toyota Motor Corp Inspection method for polymer electrolyte fuel cell, and polymer electrolyte fuel cell by the method
JP2005172539A (en) * 2003-12-10 2005-06-30 Horiba Ltd Dipping type ion electrode
JP4280168B2 (en) * 2004-01-20 2009-06-17 新日本製鐵株式会社 Method for evaluating corrosion resistance of metal materials for fuel cell separators
PL2106625T3 (en) * 2007-01-22 2012-07-31 Commissariat Energie Atomique Reference electrode, manufacturing method and battery comprising same

Also Published As

Publication number Publication date
JP2022022086A (en) 2022-02-03
JP7257439B2 (en) 2023-04-13

Similar Documents

Publication Publication Date Title
Banerjee et al. Transient liquid water distributions in polymer electrolyte membrane fuel cell gas diffusion layers observed through in-operando synchrotron X-ray radiography
JP4801099B2 (en) Method and apparatus for providing an electrochemical sensor operable at high temperatures
Shen et al. A double‐mode cell to measure pitting and crevice corrosion
JP2019158866A (en) Sensor and method for manufacturing the same
CN104634837B (en) Electrochemical sensor and preparation method thereof
JP7257439B2 (en) Electrochemical measuring device and electrochemical measuring method for metal material
JP2002289243A (en) Permeable hydrogen gas quantity measuring method and its device
Rasmussen et al. Study of Internal and External Leaks in Tests of Anode‐Supported SOFCs
EP0096417B1 (en) Apparatus for measuring dissolved hydrogen concentration
JPS5912348A (en) Measuring device for concentration of hydrogen gas in molten metal
Schröder et al. Neutron radiography and current distribution measurements for studying cathode flow field properties of direct methanol fuel cells
JP4280168B2 (en) Method for evaluating corrosion resistance of metal materials for fuel cell separators
JP6667844B2 (en) Probe for temperature measurement
Adhi et al. Electrochemical impedance analysis on solid electrolyte oxygen sensor with gas and liquid reference electrodes for liquid LBE
JP2006331731A (en) Film-electrode assembly and polymer electrolyte fuel cell using the same
US8888987B2 (en) Gas sensor testing device
KR100823319B1 (en) Hybrid oxygen gas sensor
Lee et al. Chemical treatment method for the aluminum bipolar plates of PEM fuel cells
US7300564B2 (en) Interdigitated electrochemical gas generator
Antepara et al. Electrochemical behavior of metal-supported SOFCs under high fuel utilization and their durability
JP3855010B2 (en) Equipment for measuring oxygen concentration in metal fluids
US20060254908A1 (en) Electrochemical solid electrolyte sensor for the detection of oxygen, hydrocarbons and moisture in vacuum environments
Antonacci et al. Identifying Water Thickness in Various Layers in PEMFCs through EIS and X-ray Radiography
JP2017063025A (en) Fuel battery stack
JP2002267628A (en) Electrochemical measuring method and instrument therefor

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240408

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240408