JP2006331731A - Film-electrode assembly and polymer electrolyte fuel cell using the same - Google Patents

Film-electrode assembly and polymer electrolyte fuel cell using the same Download PDF

Info

Publication number
JP2006331731A
JP2006331731A JP2005151142A JP2005151142A JP2006331731A JP 2006331731 A JP2006331731 A JP 2006331731A JP 2005151142 A JP2005151142 A JP 2005151142A JP 2005151142 A JP2005151142 A JP 2005151142A JP 2006331731 A JP2006331731 A JP 2006331731A
Authority
JP
Japan
Prior art keywords
membrane
electrode assembly
temperature
fuel cell
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005151142A
Other languages
Japanese (ja)
Inventor
Shinsuke Oyagi
晋輔 大八木
Yohei Izeki
洋平 井関
Taku Wakabayashi
卓 若林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Research Institute KRI Inc
Original Assignee
Kansai Research Institute KRI Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Research Institute KRI Inc filed Critical Kansai Research Institute KRI Inc
Priority to JP2005151142A priority Critical patent/JP2006331731A/en
Publication of JP2006331731A publication Critical patent/JP2006331731A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem of a film-electrode assembly that a calculation on simulation is carried out, a thermocouple is put on a gas flow passage, or temperature is measured by using a thermography for measuring in face temperature of the film electrode assembly of a polymer electrolyte fuel cell, but the temperature of the inside of the film-electrode assembly where actually the reaction is generated can not be measured accurately. <P>SOLUTION: A temperature measuring sensor is embedded in the film-electrode assembly of the solid electrode type fuel cell composed of an anode electrode and a cathode electrode arranged in opposition to each other through an electrolyte film, and a pair of catalyst layer containing electrolyte arranged on the anode electrode and the cathode electrode respectively. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は温度計測センサーを設置した固体高分子形燃料電池等に特に好適に用いられる膜−電極接合体及びこれを用いた固体高分子形燃料電池、それを用いた燃料電池評価方法、並びにそれを用いた燃料電池システムに関するものである。   The present invention relates to a membrane-electrode assembly particularly suitably used for a polymer electrolyte fuel cell or the like provided with a temperature measuring sensor, a polymer electrolyte fuel cell using the same, a fuel cell evaluation method using the same, and the same The present invention relates to a fuel cell system using

燃料電池は燃料が有するエネルギーを直接電気に変換する発電システムとして注目されており、国内外で急速に開発が進められている。燃料電池は、発電による生成物が水のみであることから、環境を汚染することがない利点を有し、例えば、家庭用コジェネレーション用、自動車の駆動電源用として使用する試みが行われている。   The fuel cell is attracting attention as a power generation system that directly converts the energy of the fuel into electricity, and has been rapidly developed both at home and abroad. The fuel cell has the advantage of not polluting the environment because the product of power generation is only water. For example, attempts are being made to use it for household cogeneration and automobile driving power. .

燃料電池の電極反応は、例えば固体高分子形燃料電池の場合、アノード極でH2→2H++2e、カソード極では1/2O2+2H++2e→H2Oとなる。水の生成反応のギブス自由エネルギーから求められる標準電位E0は1.23Vであるが、実際に発電させる電圧は、電流が増加するにつれ低下し、この電圧低下分を分極と称している。電気エネルギーに変換されない分極分は熱エネルギーとなる。 For example, in the case of a polymer electrolyte fuel cell, the electrode reaction of the fuel cell is H 2 → 2H + + 2e at the anode electrode and 1 / 2O 2 + 2H + + 2e → H 2 O at the cathode electrode. The standard potential E 0 obtained from the Gibbs free energy of the water production reaction is 1.23 V. The voltage actually generated decreases as the current increases, and this voltage decrease is called polarization. The polarization component that is not converted into electrical energy becomes thermal energy.

上述のように、燃料電池は運転中に発熱するので、燃料電池を良好な運転状態に維持するために冷却する必要がある。燃料電池スタックにおいては数セル毎に冷却媒体を流通させる冷却板を挿入する方法が一般的である。   As described above, since the fuel cell generates heat during operation, it needs to be cooled in order to maintain the fuel cell in a good operating state. In a fuel cell stack, a method of inserting a cooling plate for circulating a cooling medium every few cells is common.

冷却媒体の流れ方向によりセル面内には高温部(約85℃) 及び低温部(約75℃)が生じる課題に対しては、酸化ガス流れ方向をセル面内分布の高温側より低温側へ向かう方向に設置するなどの手段を用いる例が開示されている(特許文献1参照)。   For the problem that a high temperature part (about 85 ° C) and a low temperature part (about 75 ° C) are generated in the cell surface depending on the flow direction of the cooling medium, the oxidizing gas flow direction is changed from the high temperature side to the low temperature side of the distribution in the cell surface. An example using a means such as installing in a direction to go is disclosed (see Patent Document 1).

また、面内の温度分布を課題に挙げ、酸化剤ガス供給溝で発生する面方向での温度分布と冷却媒体流通溝で発生する面方向の温度分布が直交する構造の燃料電池も開示されている。これらの先行文献からも燃料電池のセル面内温度分布を正確に把握することは大変重要であると考えられる(特許文献2参照)。
特開2002−42844号公報 特開2002−289219号公報
Also, a fuel cell having a structure in which the temperature distribution in the surface direction generated in the oxidant gas supply groove and the temperature distribution in the surface direction generated in the cooling medium flow groove are orthogonal to each other is cited as an issue of in-plane temperature distribution. Yes. It is considered that it is very important to accurately grasp the in-plane temperature distribution of the fuel cell from these prior documents (see Patent Document 2).
JP 2002-42844 A JP 2002-289219 A

セル内部の温度分布を把握するために、ガス流量、ガス流路、電流値などをパラメータにしてシミュレーションを行うことが一般的である。また、ガス流路に熱電対を挿入したり、外部からサーモグラフィーなどで計測する手法も用いられている。   In order to grasp the temperature distribution inside the cell, it is common to perform a simulation using parameters such as gas flow rate, gas flow path, and current value. In addition, a method of inserting a thermocouple into the gas flow path or measuring from the outside by thermography is also used.

しかしながら、シミュレーションではセル内に起こる副反応や劣化現象などの影響により、計算で算出した熱量や温度は必ずしも実態と一致していない課題があった。また、ガス流路に挿入した熱電対やサーモグラフィーなどの外部からの温度計測方法は、電極そのものは損傷しないという利点はあるが、セル及びスタックを構成する部材による影響が大きく、セル内部の温度を計測するに至らないという課題があった。本発明は上記のような課題を解決すべくなされたものであり、その目的は、固体高分子形燃料電池の膜−電極接合体の面内温度分布を、実際に反応が起こる膜−電極接合体内部の温度として正確に把握することのできる膜−電極接合体およびそれを用いた燃料電池評価方法並びに燃料電池システムを提供することにある。   However, in the simulation, there is a problem that the amount of heat and temperature calculated by calculation do not necessarily match the actual conditions due to the influence of side reaction or deterioration phenomenon occurring in the cell. In addition, the external temperature measurement method such as thermocouple or thermography inserted into the gas flow path has the advantage that the electrode itself is not damaged, but it is greatly affected by the members that make up the cell and the stack, and the temperature inside the cell is reduced. There was a problem of not being able to measure. The present invention has been made to solve the above-described problems, and its object is to determine the in-plane temperature distribution of a membrane-electrode assembly of a polymer electrolyte fuel cell by using a membrane-electrode junction in which a reaction actually occurs. It is an object of the present invention to provide a membrane-electrode assembly that can be accurately grasped as the temperature inside the body, a fuel cell evaluation method using the membrane-electrode assembly, and a fuel cell system.

このような課題を解決するために、本発明の固体高分子形燃料電池は、電解質膜を介して互いに対向配置された、アノード極及びカソード極と、前記アノード極及びカソード極にそれぞれ設けられ電解質を含む触媒層を備えた1対のガス拡散電極と、を配置した固体高分子形燃料電池の膜−電極接合体であって、膜−電極接合体内部に温度計測センサーが埋め込まれていることを特徴としている。   In order to solve such a problem, a polymer electrolyte fuel cell of the present invention includes an anode electrode and a cathode electrode, which are disposed to face each other via an electrolyte membrane, and an electrolyte provided on each of the anode electrode and the cathode electrode. A membrane-electrode assembly of a polymer electrolyte fuel cell having a pair of gas diffusion electrodes each including a catalyst layer containing a temperature measurement sensor embedded in the membrane-electrode assembly It is characterized by.

請求項2の膜−電極接合体は、前記温度計測センサーが、電解質膜内部に埋め込まれていることを特徴としている。   The membrane-electrode assembly according to claim 2 is characterized in that the temperature measurement sensor is embedded in the electrolyte membrane.

請求項3の膜−電極接合体は、上記の課題を解決するために、前記温度計測センサーが、触媒層、ガス拡散層、触媒層と電解質膜との間、触媒層と拡散層との間、からなる群より選ばれる少なくとも一の箇所に埋め込まれていることを特徴としている。   In the membrane-electrode assembly according to claim 3, in order to solve the above-described problem, the temperature measurement sensor is provided between the catalyst layer, the gas diffusion layer, the catalyst layer and the electrolyte membrane, and between the catalyst layer and the diffusion layer. Embedded in at least one location selected from the group consisting of:

上記の構成によれば、例えば触媒層に温度計測センサーを埋め込むことにより、触媒層内部で起こる反応による温度変化をより正確に検知することができる。   According to the above configuration, for example, by embedding a temperature measurement sensor in the catalyst layer, a temperature change due to a reaction occurring inside the catalyst layer can be detected more accurately.

請求項4の膜−電極接合体は、前記温度計測センサーが、熱電対、温度測定素子、測温体からなる群より選ばれる少なくとも1種の検出器であることを特徴としている。   The membrane-electrode assembly according to claim 4 is characterized in that the temperature measuring sensor is at least one detector selected from the group consisting of a thermocouple, a temperature measuring element, and a temperature measuring body.

上記の構成によれば、この群から選ばれることにより、温度計測を膜−電極接合体外部からではなく、膜−電極接合体内部の温度を直接計測することが可能となる。   According to said structure, by selecting from this group, it becomes possible to measure the temperature inside a membrane-electrode assembly directly rather than from the outside of a membrane-electrode assembly.

請求項5の膜−電極接合体は、上記の課題を解決するために、前記温度計測センサーの径及び厚みの少なくとも一方が、電解質膜厚よりも小さいことを特徴としている。   The membrane-electrode assembly according to claim 5 is characterized in that at least one of a diameter and a thickness of the temperature measurement sensor is smaller than an electrolyte film thickness in order to solve the above-described problem.

上記の構成において、温度計測センサーの径ないしは厚みは特に限定されないが、一般的に用いられる電解質膜厚を勘案した場合は、0を超え100μm以下、好ましくは0を超え50μm以下、更に好ましくは0を超え25μm以下である。   In the above configuration, the diameter or thickness of the temperature measurement sensor is not particularly limited, but when considering a commonly used electrolyte film thickness, it is more than 0 and 100 μm or less, preferably more than 0 and 50 μm or less, more preferably 0. And not more than 25 μm.

請求項6の膜−電解質接合体は、上記の課題を解決するために、温度計測センサーの表面が耐食性絶縁被覆されていることを特徴としている。   The membrane-electrolyte assembly according to claim 6 is characterized in that the surface of the temperature measurement sensor is covered with a corrosion-resistant insulating coating in order to solve the above-mentioned problems.

燃料電池の発電中に温度分布を計測するためには、温度計測センサーは電気的に絶縁されている必要がある。また、固体電解質形燃料電池の電解質はプロトン導電性を有することから酸強度が強く、腐食することが懸念される。以上の理由により、温度計測センサーは耐食性絶縁被覆されていることが望ましい。また、温度計測の精度を損なわないために耐食性絶縁被覆は極力薄く施されていることが望ましい。その耐食性絶縁被覆材料としては、具体的には、例えば、ポリイミド、PTFE(ポリテトラフルオロエチレン)、PFA(テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体)、PVdF(ポリビニリデンフルオライド)、FEP(テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体)、ETFE(テトラフルオロエチレン−エチレン共重合体)などが挙げられる。   In order to measure the temperature distribution during power generation of the fuel cell, the temperature measurement sensor needs to be electrically insulated. Further, since the electrolyte of the solid oxide fuel cell has proton conductivity, there is a concern that the acid strength is strong and corrodes. For the above reasons, it is desirable that the temperature measurement sensor is coated with a corrosion-resistant insulating coating. In order not to impair the accuracy of temperature measurement, it is desirable that the corrosion-resistant insulating coating is applied as thin as possible. Specifically, as the corrosion-resistant insulating coating material, for example, polyimide, PTFE (polytetrafluoroethylene), PFA (tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer), PVdF (polyvinylidene fluoride), FEP ( And tetrafluoroethylene-hexafluoropropylene copolymer) and ETFE (tetrafluoroethylene-ethylene copolymer).

請求項7の固体高分子形燃料電池は、上記の課題を解決するために、請求項1〜6のいずれか1項記載の膜−電極接合体を有することを特徴としている。固体高分子形燃料電池がスタックとして構成される場合は、本発明の温度計測センサーが埋め込まれた膜−電極接合体を少なくとも1枚有することが好ましい。   In order to solve the above problems, a polymer electrolyte fuel cell according to a seventh aspect has the membrane-electrode assembly according to any one of the first to sixth aspects. When the polymer electrolyte fuel cell is configured as a stack, it is preferable to have at least one membrane-electrode assembly in which the temperature measurement sensor of the present invention is embedded.

請求項8の燃料電池評価方法は、上記の課題を解決するために、請求項7記載の膜−電極接合体を用いたことを特徴としている。   A fuel cell evaluation method according to an eighth aspect is characterized in that the membrane-electrode assembly according to the seventh aspect is used in order to solve the above-described problems.

上記の構成によれば、初期の温度分布、耐久試験後の温度分布の変化、クロスリークなどの劣化現象による温度上昇箇所などの評価に適用可能である。   According to said structure, it is applicable to evaluation of the temperature rise part by deterioration phenomena, such as initial temperature distribution, the temperature distribution after an endurance test, and a cross leak.

請求項9の燃料電池システムは、上記の課題を解決するために、前記温度計測センサーにより燃料電池の温度分布を検知し、セル温度、ガス流量、ガス圧、冷却水流量、電流からなる群より選ばれる少なくとも1種のパラメータの調節を行うことを特徴としている。   In order to solve the above problems, the fuel cell system according to claim 9 detects a temperature distribution of the fuel cell by the temperature measurement sensor, and includes a cell temperature, a gas flow rate, a gas pressure, a cooling water flow rate, and a current. It is characterized by adjusting at least one selected parameter.

上記の構成によれば、燃料電池システムの運転制御を行うだけでなく、セル内の急激な温度上昇を検知することにより、燃料電池システムを緊急停止させることが可能である。   According to the above configuration, it is possible not only to control the operation of the fuel cell system but also to stop the fuel cell system urgently by detecting a rapid temperature rise in the cell.

本発明により、燃料電池内部で起こる反応の面内分布を、温度をパラメータとしてin-situで把握することが可能である。例えば、クロスリークや副生成物の生成、混入不純物の反応など、本来の燃料電池反応以外の現象による温度の変化がセル内部のどの箇所で起こっているかを検知することができ、劣化解析としても適用できる。また、温度計測センサーを触媒層、拡散層、触媒層と電解質膜との界面、触媒層と拡散層の界面などの部位に埋め込むことにより、より詳細な部位の温度計測が可能となり、燃料電池で起こる現象解明の推測が可能となる。更には、計測された温度を用いて燃料電池システムそのものを制御することができ、燃料電池システムの信頼性を向上させることができる。   According to the present invention, the in-plane distribution of reactions occurring inside the fuel cell can be grasped in-situ using temperature as a parameter. For example, it is possible to detect where in the cell a temperature change due to a phenomenon other than the original fuel cell reaction, such as cross-leakage, by-product generation, reaction of mixed impurities, etc. Applicable. In addition, by embedding a temperature measurement sensor in the catalyst layer, diffusion layer, interface between the catalyst layer and the electrolyte membrane, interface between the catalyst layer and the diffusion layer, more detailed temperature measurement is possible. It is possible to guess the phenomenon that will occur. Furthermore, the fuel cell system itself can be controlled using the measured temperature, and the reliability of the fuel cell system can be improved.

以下、本発明の温度計測センサーを埋め込んだ膜−電極接合体及びそれを用いた燃料電池評価方法について図面を参照しながら説明する。なお、本発明は以下の記述に限定されるものではなく、本発明の要旨を逸脱しない範囲において適宜変更可能である。   Hereinafter, a membrane-electrode assembly embedded with a temperature measurement sensor of the present invention and a fuel cell evaluation method using the same will be described with reference to the drawings. In addition, this invention is not limited to the following description, In the range which does not deviate from the summary of this invention, it can change suitably.

図1は本実施の形態に用いた膜−電極接合体を示す説明図である。膜−電極接合体4は、触媒層が塗布されたガス拡散電極2と、電解質膜3と、電解質膜3に埋め込まれた温度センサー1(温度計測センサー)で構成されている。本実施の形態で用いたガス拡散電極は50mm角のサイズの略正方形を用い、電解質膜としては、Du Pont社製のNafion(商品名)を使用した。温度センサー1は、径あるいは厚さ10〜40μmのものを用い、表面にはポリイミドの絶縁被覆が施されている。   FIG. 1 is an explanatory view showing the membrane-electrode assembly used in the present embodiment. The membrane-electrode assembly 4 includes a gas diffusion electrode 2 coated with a catalyst layer, an electrolyte membrane 3, and a temperature sensor 1 (temperature measurement sensor) embedded in the electrolyte membrane 3. The gas diffusion electrode used in the present embodiment was a substantially square with a size of 50 mm square, and Nafion (trade name) manufactured by Du Pont was used as the electrolyte membrane. The temperature sensor 1 has a diameter or thickness of 10 to 40 μm, and has a polyimide insulating coating on the surface.

図2は本実施の形態に用いた膜−電極接合体の温度測定点(計測点)を示す。図2中、(1)〜(9)の数字で示すように9点の温度計測点5を設けた。   FIG. 2 shows temperature measurement points (measurement points) of the membrane-electrode assembly used in the present embodiment. In FIG. 2, nine temperature measurement points 5 are provided as indicated by numerals (1) to (9).

図3には温度センサー1を埋め込んだ膜−電極接合体をセルホルダーに組み込んだときの外観図を示す。セルホルダー10は、表面にガス流路を設けたカーボン板6、締付け板7、ガス導入口8、ガス排出口9などから構成されている。温度センサー1を埋め込んだ膜−電極接合体4を、表面にガス流路を設けたカーボン板6で挟みこみ、更に締付け板7で挟持した構成となっている。ガス導入口8から反応ガスを導入し、ガス排出口9からガスを排出することでセル内にガスを流し、電流を取り出すことにより発電が可能となる。   FIG. 3 shows an external view when the membrane-electrode assembly in which the temperature sensor 1 is embedded is incorporated in the cell holder. The cell holder 10 includes a carbon plate 6, a clamping plate 7, a gas introduction port 8, a gas discharge port 9, and the like having a gas flow path on the surface. The membrane-electrode assembly 4 in which the temperature sensor 1 is embedded is sandwiched by a carbon plate 6 having a gas flow path on the surface, and is further sandwiched by a clamping plate 7. The reaction gas is introduced from the gas inlet 8 and the gas is discharged from the gas outlet 9, whereby the gas is allowed to flow through the cell and the electric current can be taken out to generate power.

本実施の形態では、表1にセル温度約60℃、H2利用率70%、Air利用率40%、200mA/cm2で発電試験を実施した時の温度測定結果を示す。9点の温度を計測することができた。 In the present embodiment, Table 1 shows the temperature measurement results when the power generation test was performed at a cell temperature of about 60 ° C., an H 2 utilization rate of 70%, an Air utilization rate of 40%, and 200 mA / cm 2 . Nine temperatures could be measured.

図4に同条件で発電試験を実施したときの面内温度分布を示す。セル平面内の温度分布を可視化することができた。   Fig. 4 shows the in-plane temperature distribution when the power generation test was conducted under the same conditions. The temperature distribution in the cell plane could be visualized.

図5に、セル温度約60℃、H2利用率70%、Air利用率40%でのIV特性試験結果とその時の温度変化を示す。温度計測点はガス入口(計測点(2))、中央(計測点(5))、空気出口(計測点(8))の3点とした。電流密度の増加とともに中央及び空気入口の温度上昇が顕著で、空気出口との差が大きくなっていることがわかる。計測点の数や配置位置は特に限定されず、用いられる燃料電池の規模により適宜定めればよく、1個であっても複数であってもよいが、計測対象となる電極表面積当たりの計測点数は、より好ましくは、0.01個/cm〜1個/cmであり、さらに好ましくは、0.04個/cm〜1個/cmである。 Fig. 5 shows the IV characteristic test results at a cell temperature of about 60 ° C, an H 2 utilization rate of 70%, and an Air utilization rate of 40%, and the temperature change at that time. The temperature measurement points were three points: gas inlet (measurement point (2)), center (measurement point (5)), and air outlet (measurement point (8)). It can be seen that as the current density increases, the temperature rise at the center and the air inlet is remarkable, and the difference from the air outlet is increased. The number of measurement points and the arrangement position are not particularly limited, and may be appropriately determined depending on the scale of the fuel cell used, and may be one or more, but the number of measurement points per electrode surface area to be measured. Is more preferably 0.01 / cm 2 to 1 / cm 2 , and still more preferably 0.04 / cm 2 to 1 / cm 2 .

以上のように、温度計測センサーを膜−電極接合体内に埋め込みことにより、セル面内の温度分布及び、電流密度などの燃料電池運転パラメータによる温度の変化を計測することが可能となった。   As described above, by embedding the temperature measurement sensor in the membrane-electrode assembly, it has become possible to measure the temperature distribution in the cell surface and the temperature change due to the fuel cell operation parameters such as the current density.

本実施の形態に用いた膜−接合体を示す説明図である。It is explanatory drawing which shows the membrane-zygote used for this Embodiment. 本実施の形態に用いた膜−電極接合体の温度測定点を示す図である。It is a figure which shows the temperature measurement point of the membrane-electrode assembly used for this Embodiment. 温度計測センサーを埋め込んだ膜−電極接合体をセルホルダーに組み込んだときの外観図である。It is an external view when the membrane-electrode assembly in which the temperature measurement sensor is embedded is assembled in the cell holder. セル温度約60℃、H2利用率70%、Air利用率40%、200mA/cm2で発電試験を実施した時のセル面内温度分布を示す図である。It is a figure which shows cell surface temperature distribution when a power generation test is implemented at a cell temperature of about 60 ° C., an H 2 utilization rate of 70%, an Air utilization rate of 40%, and 200 mA / cm 2 . セル温度約60℃、H2利用率70%、Air利用率40%でのIV特性試験結果とその時の温度変化を示すグラフである。Cell temperature of about 60 ° C., H 2 utilization rate of 70% is a graph showing the IV characteristics test results and the temperature change at that time in the Air utilization of 40%.

符号の説明Explanation of symbols

1 温度センサー
2 ガス拡散電極
3 電解質膜
4 膜−電極接合体
5 温度計測点
6 カーボン板(表面にガス流路を設けたカーボン板)
7 締付け板
8 ガス導入口
9 ガス排出口
10 セルホルダー
DESCRIPTION OF SYMBOLS 1 Temperature sensor 2 Gas diffusion electrode 3 Electrolyte membrane 4 Membrane-electrode assembly 5 Temperature measurement point 6 Carbon plate (carbon plate provided with a gas channel on the surface)
7 Clamping plate 8 Gas inlet 9 Gas outlet 10 Cell holder

Claims (9)

電解質膜を介して互いに対向配置された、アノード極及びカソード極と、前記アノード極及びカソード極にそれぞれ設けられ電解質を含む触媒層を備えた1対のガス拡散電極と、を配置した固体高分子形燃料電池の膜−電極接合体であって、膜−電極接合体内部に温度計測センサーが埋め込まれていることを特徴とする膜−電極接合体。   A solid polymer comprising an anode electrode and a cathode electrode arranged opposite to each other via an electrolyte membrane, and a pair of gas diffusion electrodes provided on the anode electrode and the cathode electrode, each having a catalyst layer containing an electrolyte. A membrane-electrode assembly of a fuel cell, wherein a temperature measurement sensor is embedded in the membrane-electrode assembly. 前記温度計測センサーが、電解質膜内部に埋め込まれていることを特徴とする請求項1記載の膜−電極接合体。   The membrane-electrode assembly according to claim 1, wherein the temperature measurement sensor is embedded in the electrolyte membrane. 前記温度計測センサーが、触媒層、ガス拡散層、触媒層と電解質膜との間、触媒層と拡散層との間、からなる群より選ばれる少なくとも一の箇所に埋め込まれていることを特徴とする請求項1記載の膜−電極接合体。   The temperature measurement sensor is embedded in at least one location selected from the group consisting of a catalyst layer, a gas diffusion layer, a catalyst layer and an electrolyte membrane, and a catalyst layer and a diffusion layer. The membrane-electrode assembly according to claim 1. 前記温度計測センサーが、熱電対、温度測定素子、測温体からなる群より選ばれる少なくとも1種の検出器であることを特徴とする請求項1〜3のいずれか1項記載の膜−電極接合体。 4. The membrane-electrode according to claim 1, wherein the temperature measuring sensor is at least one detector selected from the group consisting of a thermocouple, a temperature measuring element, and a temperature measuring body. Joined body. 前記温度計測センサーの径及び厚みの少なくとも一方が、電解質膜厚よりも小さいことを特徴とする請求項1〜4のいずれか1項記載の膜−電極接合体。 5. The membrane-electrode assembly according to claim 1, wherein at least one of a diameter and a thickness of the temperature measurement sensor is smaller than an electrolyte film thickness. 前記温度計測センサーの表面が、耐食性絶縁被覆されていることを特徴とする請求項1〜5のいずれか1項記載の膜−電極接合体。   6. The membrane-electrode assembly according to claim 1, wherein the surface of the temperature measurement sensor is coated with a corrosion-resistant insulating coating. 請求項1〜6記載のいずれか1項記載の膜−電極接合体を備えたことを特徴とする固体高分子形燃料電池。   A polymer electrolyte fuel cell comprising the membrane-electrode assembly according to any one of claims 1 to 6. 請求項1〜6のいずれか1項記載の膜−電極接合体を用いたことを特徴とする燃料電池評価方法。   A fuel cell evaluation method using the membrane-electrode assembly according to any one of claims 1 to 6. 請求項1〜6のいずれか1項記載の膜−電極接合体を用いて燃料電池の温度分布を検知し、セル温度、ガス流量、ガス圧、冷却水流量、電流からなる群より選ばれる少なくとも1種のパラメータの調節を行うことを特徴とする燃料電池システム。   A temperature distribution of the fuel cell is detected using the membrane-electrode assembly according to any one of claims 1 to 6, and at least selected from the group consisting of cell temperature, gas flow rate, gas pressure, cooling water flow rate, and current. A fuel cell system which adjusts one kind of parameter.
JP2005151142A 2005-05-24 2005-05-24 Film-electrode assembly and polymer electrolyte fuel cell using the same Pending JP2006331731A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005151142A JP2006331731A (en) 2005-05-24 2005-05-24 Film-electrode assembly and polymer electrolyte fuel cell using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005151142A JP2006331731A (en) 2005-05-24 2005-05-24 Film-electrode assembly and polymer electrolyte fuel cell using the same

Publications (1)

Publication Number Publication Date
JP2006331731A true JP2006331731A (en) 2006-12-07

Family

ID=37553218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005151142A Pending JP2006331731A (en) 2005-05-24 2005-05-24 Film-electrode assembly and polymer electrolyte fuel cell using the same

Country Status (1)

Country Link
JP (1) JP2006331731A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009119766A1 (en) * 2008-03-27 2009-10-01 株式会社 東芝 Fuel cell
JP2010021096A (en) * 2008-07-14 2010-01-28 Espec Corp Temperature distribution measuring device, fuel cell system, and fuel cell evaluation device
CN110243488A (en) * 2019-06-25 2019-09-17 西安交通大学 The plug-in type film thermocouple and preparation method thereof of real-time measurement hydrogen fuel cell internal temperature
CN112670542A (en) * 2020-12-30 2021-04-16 同济大学 Proton exchange membrane electrode with temperature monitoring function and fuel cell

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09223512A (en) * 1996-02-16 1997-08-26 Fuji Electric Co Ltd Abnormality monitoring method of fuel cell and device therefor
JP2004502282A (en) * 2000-06-26 2004-01-22 シーメンス アクチエンゲゼルシヤフト Polymer electrolyte membrane fuel cell, fuel cell system and method of operation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09223512A (en) * 1996-02-16 1997-08-26 Fuji Electric Co Ltd Abnormality monitoring method of fuel cell and device therefor
JP2004502282A (en) * 2000-06-26 2004-01-22 シーメンス アクチエンゲゼルシヤフト Polymer electrolyte membrane fuel cell, fuel cell system and method of operation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009119766A1 (en) * 2008-03-27 2009-10-01 株式会社 東芝 Fuel cell
JP2010021096A (en) * 2008-07-14 2010-01-28 Espec Corp Temperature distribution measuring device, fuel cell system, and fuel cell evaluation device
CN110243488A (en) * 2019-06-25 2019-09-17 西安交通大学 The plug-in type film thermocouple and preparation method thereof of real-time measurement hydrogen fuel cell internal temperature
CN112670542A (en) * 2020-12-30 2021-04-16 同济大学 Proton exchange membrane electrode with temperature monitoring function and fuel cell

Similar Documents

Publication Publication Date Title
EP2269257B1 (en) Fuel cell system and operating method of a fuel cell
JP5326423B2 (en) FUEL CELL SYSTEM AND FUEL CELL STATE DETECTION METHOD
US20040095127A1 (en) Apparatus for measuring current density of fuel cell
US20130084510A1 (en) Fuel cell system, control method for fuel cell system, and degradation determining method for fuel cell stack
JP5491787B2 (en) Inspection method of fuel cell stack
JP2010108645A (en) Fuel cell system and state detection method of fuel cell
US20110269035A1 (en) Fuel cell system and operating method thereof
JP2017130449A (en) Electrochemical cell and method of operation
JP2004127548A (en) Operation method and operation system of solid polymer type fuel cell
Hakenjos et al. Characterising PEM fuel cell performance using a current distribution measurement in comparison with a CFD model
JP2006331731A (en) Film-electrode assembly and polymer electrolyte fuel cell using the same
US7955748B2 (en) Cell or stack for evaluating performance of fuel cell and method of evaluating performance of fuel cell using the same
KR101362740B1 (en) Method for monitoring of fuel cell stack status
US20120270124A1 (en) Fuel cell system and operating method for fuel cell system
Mench et al. In situ temperature distribution measurement in an operating polymer electrolyte fuel cell
JP2014209416A (en) Fuel cell system and method for controlling fuel cell system
JP2008181868A (en) Fuel cell
KR101283022B1 (en) Fuel cell stack
US20090208781A1 (en) Method for operating a fuel cell system
KR102673722B1 (en) Fuel cell cooling performance measurement test apparatus and method
JP2006310152A (en) Evaluation cell for solid polymer fuel cell and manufacturing method for separator for the cell
JP2005302320A (en) Inspection method of fuel cell
JP2004127550A (en) Operation method of fuel cell system, and fuel cell system
JP2008177003A (en) Fuel cell system
JP2010015933A (en) Fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080523

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20081015

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120515