JP2023072380A - Joint structure between rectangular timbers - Google Patents

Joint structure between rectangular timbers Download PDF

Info

Publication number
JP2023072380A
JP2023072380A JP2021184905A JP2021184905A JP2023072380A JP 2023072380 A JP2023072380 A JP 2023072380A JP 2021184905 A JP2021184905 A JP 2021184905A JP 2021184905 A JP2021184905 A JP 2021184905A JP 2023072380 A JP2023072380 A JP 2023072380A
Authority
JP
Japan
Prior art keywords
screws
square
square timber
horizontal member
corner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021184905A
Other languages
Japanese (ja)
Inventor
明 田村
Akira Tamura
典之 笠原
Noriyuki Kasahara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AQURA HOME CO Ltd
Original Assignee
AQURA HOME CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AQURA HOME CO Ltd filed Critical AQURA HOME CO Ltd
Priority to JP2021184905A priority Critical patent/JP2023072380A/en
Publication of JP2023072380A publication Critical patent/JP2023072380A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Joining Of Building Structures In Genera (AREA)

Abstract

To provide a joint structure between rectangular timbers of a wooden building capable of withstanding a load in a drawing direction by a simple process.SOLUTION: Provided is a joining structure between rectangular timbers for joining one rectangular timber 3 and the other rectangular timber 2 orthogonal to the longitudinal end of the rectangular timber in a wooden building. A pair of screws 7 and 9 are driven obliquely from both sides of one rectangular timber 3. The pair of screws 7 and 9 pass through one rectangular timber 3 and have their tips inserted into the other rectangular timber 3. The pair of screws 7 and 9 intersect with the other within the other rectangular timber 2 .SELECTED DRAWING: Figure 1

Description

本発明は、木造建築の角材同士を接合させる接合構造に関する。 TECHNICAL FIELD The present invention relates to a joining structure for joining square timbers of a wooden building.

木造建築では角材である柱と横架材をそれぞれ接合させて組み上げられる。特に、梁または桁を構成する横架材と柱、梁と桁を構成する横架材同士、はそれぞれ直交して接合されることで複数の矩形状を形成し、立体的な建物躯体を構成している。ところで、他国と比較して台風や地震が多い日本においては、強風や地震による揺れが建物躯体に影響を与えることが多く、建物躯体に破損が生じた場合、建物が半壊・全壊するといった深刻な被害に繋がる。 In wooden architecture, square timber columns and horizontal timbers are joined together. In particular, the horizontal members and columns that make up beams or girders, and the horizontal members that make up beams and girders, are joined orthogonally to each other to form multiple rectangular shapes, forming a three-dimensional building framework. are doing. By the way, in Japan, which has more typhoons and earthquakes than other countries, the shaking caused by strong winds and earthquakes often affects the building frame. lead to damage.

建物躯体の破損としては、例えば接合された角材同士の離脱が挙げられる。離脱が生じる原因として、柱と横架材との接合箇所を例に取ると、強風や地震による揺れが生じた場合、柱が立設される位置や柱に掛かる建物の荷重に応じて、柱に引き抜き方向、すなわち柱と横架材との上下離間方向の荷重が過剰に掛かることにある。このことから、木造建築の柱と横架材とに引き抜き方向にかかる荷重に抗することができる基準を満たす構造計算を行うことが義務化されている(建設省告示1460号)。 Damage to the building frame includes, for example, detachment of jointed rectangular timbers. As an example of the cause of detachment, if we take the joints between columns and horizontal members as an example, when shaking due to strong winds or earthquakes occurs, depending on the position where the column is erected and the load of the building on the column, the column An excessive load is applied in the pull-out direction, that is, in the vertical separation direction between the column and the horizontal member. For this reason, it is obligatory to perform structural calculations that meet the standards for withstanding the load applied to the pillars and horizontal members of a wooden building in the pull-out direction (Ministry of Construction Notification No. 1460).

柱と横架材との接合部分については、建物躯体におけるその接合部分の位置や、柱に取り付けられる耐力壁の有無に応じて柱に掛かる引き抜き方向の荷重が異なり、特に、建物の基礎部分における角部に立設される柱については、揺れが生じた際、引き抜き方向に大きな荷重が掛かりやすくなっている。そのため、ホールダウン金具などを用いた補強が行われている。 Regarding the joints between columns and horizontal members, the pull-out load applied to the columns differs depending on the position of the joints in the building frame and the presence or absence of load-bearing walls attached to the columns. Columns erected at corners are likely to be subjected to a large load in the pull-out direction when shaking occurs. Therefore, it is reinforced using a hold-down metal fitting.

ホールダウン金具は、基礎コンクリートから横架材を貫通して突設させたアンカーボルトに柱の側面に配設した固定用の金具を結合させるものである(例えば、特許文献1参照)。このように、ホールダウン金具は、ホールダウン金具を介して柱そのものを基礎コンクリートに緊結する構造であるため、一般的な規格のホールダウン金具では、例えば対象の柱に対して約28kNの引き抜き方向の荷重が作用した場合であっても、柱と横架材との接合状態を保つことができる。 A hold-down metal fitting connects a fixing metal fitting provided on the side surface of a column to an anchor bolt protruding through a horizontal member from foundation concrete (see, for example, Patent Document 1). In this way, the hold-down metal fitting has a structure that binds the pillar itself to the foundation concrete via the hold-down metal fitting. Even if a load of 1000 is applied, the joint state between the column and the horizontal member can be maintained.

特開2010-19000号(第3~6頁、第3図)JP 2010-19000 (pages 3-6, Figure 3)

上述したように、特に建物の基礎部分における角部に立設される柱については、揺れが生じた際に引き抜き方向に大きな荷重が掛かるが、建物構造によって、例えば強固な耐力壁などを用いた場合には、建物の中央近傍に立設される柱などにも比較的大きな浮き上がりが生じやすくなってしまう場合があり、当該柱にかかる引き抜き方向の荷重に満足する接合部分の補強が必要となる。このような場合、該当する柱と横架部材との接合部分にも一般的な補強金具としてホールダウン金具を用いることができるが、ホールダウン金具は、強力な接合力を発揮させるべく基礎コンクリートから横架材を貫通して突設させたアンカーボルトに柱の側面に配設した固定用の金具を結合させる工程が必要になり、接合工程が大変煩雑となるという問題があった。 As mentioned above, especially for pillars set up at the corners of the foundation of a building, a large load is applied in the pull-out direction when shaking occurs. In some cases, pillars erected near the center of the building are likely to rise relatively large, and it is necessary to reinforce joints that satisfy the load in the pull-out direction applied to the pillars. . In such cases, hold-down metal fittings can be used as general reinforcing metal fittings for the joints between the relevant columns and horizontal members. There is a problem that the joining process becomes very complicated because it requires a process of joining the fixing metal fittings arranged on the side surface of the column to the anchor bolt protruding through the horizontal member.

本発明は、このような問題点に着目してなされたもので、簡単な工程で引き抜き方向の荷重に耐えられる木造建築の角材同士の接合構造を提供することを目的とする。 SUMMARY OF THE INVENTION It is an object of the present invention to provide a joining structure for square timbers of a wooden building that can withstand a load in the pull-out direction through a simple process.

前記課題を解決するために、本発明の角材同士の接合構造は、
木造建築における一方の角材と該角材の長手方向端部に直交する他方の角材とを接合させる角材同士の接合構造であって、
前記一方の角材の両側面から一対のビスが斜め打ちされており、前記一対のビスは前記一方の角材を貫通して前記他方の角材内に先端部が挿入され、前記一対のビス同士は前記他方の角材内で交差していることを特徴としている。
この特徴によれば、一方の角材の両側面から他方の角材内にかけて斜め打ちされた一対のビスは、一方の角材と他方の角材との離間方向へ相対的な変位、離間方向と直交する方向へ相対的な変位に対してそれぞれ抵抗する力を発揮することができ、かつ、一方の角材の両側面から斜め打ちされた一対のビス同士は他方の角材内で交差されるため、交差されたビス同士の前後間において木材繊維の密度が高められ、これらビスの引抜耐力が向上するため、一方の角材と他方の角材との相対的な離脱方向の変位を抑制でき、簡単な工程で接合された角材同士の間にかかる引き抜き方向の荷重に耐えることができる。
In order to solve the above-mentioned problems, the joining structure of rectangular timbers according to the present invention includes:
A joining structure between square timbers for joining one square timber and the other square timber perpendicular to the longitudinal end of the square timber in a wooden building,
A pair of screws are driven obliquely from both sides of the one square timber. It is characterized by intersecting within the other square bar.
According to this feature, a pair of screws driven obliquely from both side surfaces of one square timber into the other square timber is relatively displaced in the separation direction between the one square timber and the other square timber, and in a direction orthogonal to the separation direction. A pair of screws driven diagonally from both sides of one square timber intersect within the other square timber, so that the crossed The density of wood fibers between the front and back of the screws is increased, and the pull-out strength of these screws is improved, so the relative displacement of one square timber and the other square timber in the detachment direction can be suppressed, and joining can be performed in a simple process. It can withstand the load in the pull-out direction applied between squared timbers.

前記一方の角材の長手方向端部に形成されたほぞが前記他方の角材に形成されたほぞ穴に圧入されており、前記一対のビスは前記ほぞを挟んでそれぞれ斜め打ちされていることを特徴としている。
この特徴によれば、斜め打ちされた一対のビスはほぞを挟んでそれぞれ配置されるため、ビスの進入により、ほぞ穴の前後近傍の木材繊維が圧縮され密度が高められ、ほぞ穴からほぞが抜けにくくなる、すなわち一方の角材と他方の角材との離間方向への相対的な変位、離間方向と直交する方向へ相対的な変位に対する抵抗力が向上する。
The tenon formed at the longitudinal end of one of the square timbers is press-fitted into a mortise hole formed in the other square timber, and the pair of screws are driven obliquely across the tenon. and
According to this feature, a pair of diagonally hammered screws are placed on both sides of the tenon, so when the screws enter, the wood fibers in the front and back of the mortise hole are compressed and the density is increased, and the tenon is removed from the mortise hole. It becomes difficult to come off, that is, resistance to relative displacement in the separation direction between one square timber and the other square timber and relative displacement in the direction perpendicular to the separation direction is improved.

前記金属製の板材を屈曲させて直交する2つの片を少なくとも有するコーナ金具が、少なくとも前記一方の角材の一方の側面側に配置され、前記コーナ金具における一方の前記片が前記一方の角材の側面に、他方の前記片が前記一方の角材の側面と直交する前記他方の角材の面に、それぞれ当接させた状態でネジ固定されており、
前記一対のビスは前記コーナ金具を前後に挟んでそれぞれ斜め打ちされていることを特徴としている。
この特徴によれば、斜め打ちされた一対のビスはコーナ金具を挟んで前後にそれぞれ配置されるため、一方の角材と他方の角材との離間方向へ相対的な変位に対する大きな抵抗力を得ることができ、一方の角材と他方の角材との間に固定されてこれらを接合可能なコーナ金具の歪が緩和され、降伏点に至り難くなるため、斜め方向のビス打ちと簡素な構造のコーナ金具を用いた簡単な工程のみで、接合構造全体として比較的大きな引き抜き方向の荷重に耐えることができる。
A corner fitting having at least two pieces orthogonal to each other by bending the metal plate is disposed on at least one side surface of the one square timber, and one of the pieces of the corner fitting is a side surface of the one square timber. and the other piece is screw-fixed in a state of being in contact with the surface of the other square timber perpendicular to the side surface of the one square timber,
The pair of screws are characterized in that they are obliquely driven with the corner metal fittings sandwiched therebetween.
According to this feature, since the pair of obliquely driven screws are arranged in front and behind the corner metal fitting, a large resistance against relative displacement in the separation direction between one square timber and the other square timber can be obtained. This reduces the distortion of the corner fitting that is fixed between one square timber and the other square timber and can join them, making it difficult to reach the yield point. With only a simple process using , the joint structure as a whole can withstand a relatively large load in the pulling direction.

前記一方の角材の各側面において、前記コーナ金具を挟んで打ち込まれた前記ビス同士の離間幅は、前記一方の角材の両側面で等間隔に配置されていることを特徴としている。
この特徴によれば、斜め打ちされた一対のビス同士の離間寸法が、コーナ金具を挟んでそれぞれ等間隔となり、これら一対のビスが交差する前後間において高められる木材繊維の密度が均一となり、ひいてはコーナ金具を挟んでビスの引抜耐力をそれぞれ均一にでき、一方の角材と他方の角材との離間方向へ相対的な変位、離間方向と直交する方向へ相対的な変位に対する抵抗力の偏りをなくし、接合構造における局所的な降伏を効果的に防止することができる。
On each side surface of the one square timber, the distance between the screws driven in with the corner metal fitting therebetween is arranged at equal intervals on both side surfaces of the one square timber.
According to this feature, the distance between the pair of obliquely hammered screws is equal to each other across the corner metal fitting, and the density of the wood fibers increased before and after the pair of screws intersect becomes uniform, which in turn results in uniformity. The pull-out resistance of the screws can be made uniform by sandwiching the corner metal fittings, and the resistance to the relative displacement in the separation direction between one square timber and the other square timber and in the direction orthogonal to the separation direction is eliminated. , can effectively prevent local breakdown in the junction structure.

前記ビスは、前記一方の角材の側面と直交する前記他方の角材の面に対して60°傾斜させて打ち込まれていることを特徴としている。
この特徴によれば、ビスを60°傾斜させて打ち込むと、一対のビスの交差箇所を挟んだ水平方向の左右の外角もそれぞれ60°となり、離間方向へ相対的な変位と、離間方向と直交する方向への相対的な変位に対して抵抗力のバランスが良い。加えてこの抵抗力のバランスを確保した上で、他方の角材内の深い位置で交差させ、揺れが生じた際の引き抜き方向の荷重をこの他方の角材内の深い位置にて作用させられ、離間方向へ相対的な変位を効果的に防止することができる。
The screw is driven in at an angle of 60° with respect to the surface of the other square timber perpendicular to the side surface of the one square timber.
According to this feature, when the screws are driven with an inclination of 60°, the left and right external angles in the horizontal direction sandwiching the intersection of the pair of screws are also 60°. Good balance of resistance against relative displacement in the direction of rotation. In addition, after ensuring the balance of this resistance force, they are crossed at a deep position in the other square timber, and a load in the pulling direction when shaking occurs is applied at a deep position in this other square timber, separating them. A relative displacement in the direction can be effectively prevented.

本発明の実施例1における角材である柱と横架材との接合構造を示す斜視図である。FIG. 2 is a perspective view showing a joint structure between a pillar, which is a square timber, and a horizontal member in Example 1 of the present invention. 柱と横架材とを示す一部拡大斜視図である。It is a partial expansion perspective view which shows a pillar and a horizontal member. (a)はコーナ金具を示す側面図であり、(b)は正面図である。(a) is a side view showing a corner fitting, and (b) is a front view. (a)はほぞ組工程を示す模式図であり、(b)はコーナ金具取付工程を示す模式図であり、(c)及び(d)はビス打ち工程を示す模式図である。(a) is a schematic diagram showing a mortise assembling process, (b) is a schematic diagram showing a corner fitting mounting process, and (c) and (d) are schematic diagrams showing a screw driving process. (a)は柱と横架材との接合構造を実施した柱と横架材の正面図であり、(b)はその側面図である。(a) is a front view of a pillar and a horizontal member in which a joint structure between the pillar and the horizontal member is implemented, and (b) is a side view thereof. (a)は、ほぞ組工程とビス打ち工程のみ行った接合構造の引張試験を行った試験結果を示し、(b)は本実施例の柱と横架材との接合構造を実施して引張試験を行った試験結果を示している。(a) shows the test results of a tensile test of the joint structure that was only performed in the tenon assembling process and the screw driving process, and (b) shows the tensile test results of the joint structure between the column and the horizontal member of this example. It shows the test results of the test. 領域C近傍の一部拡大側面図と、一部拡大模式図であるFIG. 10 is a partially enlarged side view and a partially enlarged schematic diagram of the vicinity of the region C; 領域C近傍の一部拡大正面図である。FIG. 11 is a partially enlarged front view of the vicinity of area C; 実施例2における角材である横架材同士の接合構造を示す斜視図である。FIG. 11 is a perspective view showing a joint structure between horizontal members which are rectangular timbers in Example 2; 変形例における角材である柱と横架材との接合構造を示す斜視図である。It is a perspective view which shows the joint structure of the column and horizontal member which are square lumbers in a modification.

本発明に係る角材同士の接合構造を実施するための形態を実施例に基づいて以下に説明する。 A mode for carrying out the joining structure of rectangular timbers according to the present invention will be described below based on an embodiment.

実施例1に係る角材同士の接合構造につき、図1から図8を参照して説明する。以下、図1の紙面左下側を接合部の前面側、(正面側)とし、同紙面右上側を接合部の後面側、(背面側)とし、紙面左下側の前面側から見た左右を左右方向として説明する。 A joint structure of rectangular timbers according to Example 1 will be described with reference to FIGS. 1 to 8. FIG. Hereinafter, the lower left side of the paper surface of FIG. described as a direction.

図1(a)に示されるように、本実施例で説明する角材同士の接合構造1は、角材である柱3と横架材2との接合構造である。本実施例における接合構造1は、主に建物の基礎部分における角部に立設される柱よりも建物中央側に立設される柱と横架材との接合を行う場合を想定し、約16.8kNまでの引張耐力を備えるものである。尚、ここでは図示しないが、建物の基礎部分における角部に立設される柱には従前通りホールダウン金具が利用されるものとする。更に尚、本実施例では、建物最下部の横木である横架材2と柱3の柱脚との接合箇所を例に取り、要部のみを拡大して説明するが、上記したような引張耐力を要するその他箇所、例えば柱頭においても用いることができることは言うまでもない。 As shown in FIG. 1A, the joining structure 1 between square timbers described in this embodiment is a joining structure between a column 3 and a horizontal member 2, which are square timbers. The joint structure 1 in the present embodiment assumes the case of joining a pillar erected on the center side of the building from a pillar erected at a corner of a building foundation and a horizontal member. It has a tensile strength of up to 16.8 kN. Although not shown here, it is assumed that the conventional hold-down fittings are used for the pillars erected at the corners of the foundation of the building. Furthermore, in the present embodiment, the connection between the horizontal member 2, which is the crosspiece at the bottom of the building, and the column base of the column 3 will be taken as an example, and only the main part will be enlarged for explanation. It goes without saying that it can also be used in other places where bearing strength is required, such as the capital of a column.

図2に示されるように、横架材2は、例えば縦横の断面寸法が105mm角の角材であり、図示しない基礎上面に載置される。横架材2の上面2aには、略長方体状の有底の凹部としてのほぞ穴4が形成される。ほぞ穴4は、短寸の右側面4a,左側面4cと、長寸の前面4b,後面4dと、底面4eと、から構成されており、ほぞ穴4の深さはほぞ5の突出長よりも僅かに大きく形成されている。なお、ほぞ穴4は、凹溝や貫通穴として形成してもよく、横架材2の材質としては、例えばヒノキの類、べいまつの類、べいつがの類を用いることができる。 As shown in FIG. 2, the horizontal member 2 is, for example, a rectangular member with a vertical and horizontal cross-sectional dimension of 105 mm square, and is placed on the upper surface of the foundation (not shown). On the upper surface 2a of the horizontal member 2, a mortise 4 is formed as a substantially rectangular parallelepiped concave portion with a bottom. The mortise 4 is composed of a short right side 4a, a left side 4c, a long front 4b, a rear 4d, and a bottom 4e. is also made slightly larger. The mortise 4 may be formed as a recessed groove or a through hole, and the horizontal member 2 may be made of, for example, cypress, pine, or cedar.

柱3は、例えば縦横の断面寸法が105mm角の角材であり、長手方向上端、すなわち柱頭(図示省略)と長手方向下端、すなわち柱脚(図2参照)に、それぞれ略長方体状のほぞが形成されている。本実施例の柱3は、柱脚側で上述した横架材2とほぞ組され、柱頭側で図示しない建物躯体の上方側に横架される図示しない横架材とほぞ組される。柱3の下面3aには、短寸の右側面5a,左側面5cと、長寸の前面5b,後面5dと、底面5eと、から主に構成されるほぞ5が形成されている。ほぞ5の前後左右寸法は、上述した横架材2のほぞ穴4の前後左右寸法よりも僅かに大きく形成されている。また柱3の材質としては、例えばスギの類、ヒノキの類、べいつがの類を用いることができる。 The column 3 is, for example, a square timber with vertical and horizontal cross-sectional dimensions of 105 mm square. is formed. The column 3 of this embodiment is mortise-jointed with the above-described horizontal member 2 on the column base side, and tenon-joined with a horizontal member (not shown) that is horizontally spanned above the building skeleton (not shown) on the column head side. The lower surface 3a of the column 3 is formed with a tenon 5 mainly composed of a short right side 5a, a left side 5c, a long front surface 5b, a rear surface 5d, and a bottom surface 5e. The front, rear, left, and right dimensions of the tenon 5 are slightly larger than the front, rear, left, and right dimensions of the mortise hole 4 of the horizontal member 2 described above. As the material of the pillars 3, for example, cedar, cypress, or ebony can be used.

柱3のほぞ5は、柱3は下面3aが横架材2の上面2aに接するまで横架材2のほぞ穴4に圧入され、柱3の左側面3cと横架材2の上面2aとで直交する角部Lと、柱3の右側面3bと横架材2の上面2aとで直交する角部Rとがそれぞれ形成される(いわゆる、ほぞ組)。このように、横架材2と柱3とをほぞ組することによって、横架材2と柱3とが相対的なねじれ方向への変位及び、上下方向への変位がある程度抑制されているといえる。 The tenon 5 of the post 3 is press-fitted into the mortise 4 of the beam 2 until the bottom surface 3a of the post 3 contacts the top surface 2a of the beam 2, and the left side 3c of the post 3 and the top surface 2a of the beam 2 are pressed together. and a corner R that is perpendicular to the right side surface 3b of the pillar 3 and the upper surface 2a of the horizontal member 2 (so-called mortise joint). By mortising the horizontal member 2 and the column 3 in this way, the relative displacement of the horizontal member 2 and the column 3 in the torsional direction and in the vertical direction is suppressed to some extent. I can say.

図3(a),(b)に示されるように、コーナ金具6は、厚さ2.3mmほどの高張力鋼板に溶融亜鉛めっきが施された、側面視略L字状の金具である。コーナ金具6は、鋼板を屈曲させることで、主に略同厚の基部60と立ち上げ部61と傾斜部62とを有して構成されている。基部60には貫通孔6Aが複数形成され、立ち上げ部61には貫通孔6Bが複数形成されている。 As shown in FIGS. 3(a) and 3(b), the corner metal fitting 6 is a substantially L-shaped metal fitting in a side view, which is made by hot-dip galvanizing a high-strength steel plate having a thickness of about 2.3 mm. The corner metal fitting 6 is formed by bending a steel plate so as to mainly include a base portion 60, a raised portion 61, and an inclined portion 62 having approximately the same thickness. A plurality of through holes 6A are formed in the base portion 60, and a plurality of through holes 6B are formed in the rising portion 61. As shown in FIG.

基部60と立ち上げ部61とは、傾斜部62によって一体的に接続されている。傾斜部62は、水平に伸びる基部60の左側端部と、基部60に対して直行方向に延びる立ち上げ部61の下端部とに連続しており、基部60に対して約60度傾斜している。また、図3(a)に示されるように、コーナ金具6の基部60と傾斜部62とを合わせた短手方向寸法S1と、立ち上げ部61と傾斜部62とを合わせた長手方向寸法S2の比は、約1:3となっている。 The base portion 60 and the rising portion 61 are integrally connected by an inclined portion 62 . The inclined portion 62 is continuous with the left end portion of the horizontally extending base portion 60 and the lower end portion of the rising portion 61 extending in a direction perpendicular to the base portion 60, and is inclined at about 60 degrees with respect to the base portion 60. there is Also, as shown in FIG. 3(a), the widthwise dimension S1 of the base portion 60 and the inclined portion 62 of the corner fitting 6 is combined, and the longitudinal dimension S2 of the raised portion 61 and the inclined portion 62 is combined. ratio is about 1:3.

本実施例においてコーナ金具6は、柱3の右側面3bと横架材2の上面2aとで形成される角部Rに設置される。コーナ金具6を角部R設置する際には、立ち上げ部61を柱3の右側面3bに当接させ、複数のネジ6aを用いて貫通孔6Bを介し柱3にネジ留めし、基部60を横架材2の上面2aに載置し複数のネジ6aを用いて貫通孔6Aを介して横架材2にネジ留めすることで固定される。 In this embodiment, the corner fitting 6 is installed at the corner R formed by the right side surface 3b of the pillar 3 and the upper surface 2a of the horizontal member 2. As shown in FIG. When installing the corner fitting 6 at the corner R, the raised portion 61 is brought into contact with the right side surface 3b of the pillar 3, and screwed to the pillar 3 through the through holes 6B using a plurality of screws 6a. is placed on the upper surface 2a of the horizontal member 2 and screwed to the horizontal member 2 through the through holes 6A using a plurality of screws 6a.

図1に戻り、ビス7~10は、炭素鋼からなるいわゆる木ネジであり、主に頭部B1と胴部B2から構成され、胴部B2には雄ネジが形成され、胴部B2の径方向の寸法が約4mm、軸方向の寸法が約120mmに形成されている。 Returning to FIG. 1, the screws 7 to 10 are so-called wood screws made of carbon steel and mainly composed of a head portion B1 and a trunk portion B2. The directional dimension is about 4 mm and the axial dimension is about 120 mm.

ビス7~10は、コーナ金具6を角部Rに取り付けた後に、ビス打ち治具20(図4(c)参照)を用いて柱3の角部L,Rから横架材2内に向けて打ち込まれる。ビス打ち治具20は、金属材からなり、主に基台25と無底の2つの円筒体23,24とから構成されている。基台25は、平板状で平坦に形成された基部21と、基部21から連続して鋭角に屈曲され斜め上方向に立ち上がる傾斜部22とからなり、傾斜部22の外面側に円筒体23,24が取り付けられている。また、基部21の左右側における一方側端部には、基部21と連続して下方に向けて延びるリブVが形成されている。リブVは基部21に対して略直行して形成されている。 After attaching the corner metal fitting 6 to the corner R, the screws 7 to 10 are directed from the corners L and R of the pillar 3 into the horizontal member 2 using a screwing jig 20 (see FIG. 4(c)). is driven. The screw driving jig 20 is made of a metal material and mainly composed of a base 25 and two bottomless cylindrical bodies 23 and 24 . The base 25 is composed of a base portion 21 which is flat and flat, and an inclined portion 22 which is continuously bent at an acute angle from the base portion 21 and rises obliquely upward. 24 is attached. Further, ribs V extending downward continuously from the base portion 21 are formed at one end portions on the left and right sides of the base portion 21 . The rib V is formed substantially perpendicular to the base portion 21 .

円筒体23,24は、傾斜部22の幅方向において互いに所定間隔離間して取り付けられている。なお、所定間隔とは、ほぞ5の及びほぞ穴4前後方向の寸法と、コーナ金具6の前後方向の寸法H(図3(b)参照)よりも大きく、横架材2の前後方向の寸法よりも小さい間隔を指す。 The cylindrical bodies 23 and 24 are attached with a predetermined distance from each other in the width direction of the inclined portion 22 . The predetermined interval is larger than the dimension of the tenon 5 and the mortise 4 in the front-rear direction and the dimension H of the corner fitting 6 in the front-rear direction (see FIG. 3(b)), and the dimension of the horizontal member 2 in the front-rear direction. refers to intervals smaller than

次に、柱と横架材との接合構造1を実施する手順を図4(a)~(d)と図5(a),(b)を用いて説明する。まず、図4(a)に示されるように、柱3の下面3aに形成されたほぞ5を、横架材2の上面2aに形成されたほぞ穴4に位置合わせし、圧入させ、角部L,Rを形成させる(ほぞ組工程)。 Next, the procedure for implementing the joint structure 1 between the column and the horizontal member will be described with reference to FIGS. 4(a) to 4(d) and FIGS. First, as shown in FIG. 4(a), the tenon 5 formed on the lower surface 3a of the column 3 is aligned with the mortise hole 4 formed on the upper surface 2a of the horizontal member 2, press-fitted, and the corner portion L and R are formed (tenon assembling process).

次に、図4(b)に示されるように、ほぞ組工程を経ることで形成された角部Rにコーナ金具6を取り付ける。コーナ金具6を取り付ける際は、立ち上げ部61を柱3の右側面に当接させ、複数のネジ6aを用いて貫通孔6Bを介し柱3にネジ留めし、基部60を横架材2の上面2aに載置し複数のネジ6aを用いて貫通孔6Aを介して横架材2にネジ留めすることで固定できる(コーナ金具取付工程)。 Next, as shown in FIG. 4(b), the corner fitting 6 is attached to the corner portion R formed through the mortise and tenon assembling process. When attaching the corner fitting 6, the raised portion 61 is brought into contact with the right side surface of the pillar 3, and screwed to the pillar 3 through the through holes 6B using a plurality of screws 6a. It can be fixed by placing it on the upper surface 2a and screwing it to the horizontal member 2 through the through holes 6A using a plurality of screws 6a (corner fitting mounting step).

次に、図4(c)に示されるように、ビス打ち治具20の基部21を角部Rから手前側の横架材2の上面2aに載置させ、リブVを横架材2の側面2bに当接させ、円筒体23,24の先端部を柱3に当接する位置まで移動させて位置決めする。このとき、基部21の前後寸法が横架材2の上面2aよりも短いため、円筒体23,24は、基部21の幅方向における中央位置より側面2bに偏って配置される。 Next, as shown in FIG. 4(c), the base portion 21 of the screwing jig 20 is placed on the upper surface 2a of the horizontal member 2 on the near side from the corner R, and the rib V is placed on the horizontal member 2. The cylindrical bodies 23 and 24 are brought into contact with the side surface 2b, and the tip portions of the cylindrical bodies 23 and 24 are moved to a position where they contact the column 3 and are positioned. At this time, since the front-rear dimension of the base portion 21 is shorter than the upper surface 2a of the horizontal member 2, the cylindrical bodies 23 and 24 are arranged to be biased toward the side surface 2b from the central position in the width direction of the base portion 21. As shown in FIG.

この状態で円筒体23,24の上方側開口からビス7,8を先端側からそれぞれ挿入させ、電動ドライバーを用いて打ち込む。ビス打ち治具20を用いて打ち込まれたビス7,8は、円筒体23,24に案内されて横架材2に対し約60度傾斜して等間隔に直線上打ち込まれる。頭部B1が柱3に当接するまで打ち込まれたビス7,8は、先端部が柱3の右側面から底面を通過し、横架材2の上面を通過して横架材2の軸芯近傍にまで達するようになっている。また、ビス打ち治具20の円筒体23,24は、所定間隔離間して配設されているので、コーナ金具6とほぞ5及びほぞ穴4を避けて横架材2内へ進入するようになっている。 In this state, the screws 7 and 8 are inserted from the tip side through the upper openings of the cylindrical bodies 23 and 24, respectively, and driven in using an electric screwdriver. The screws 7 and 8 driven by the screw driving jig 20 are guided by the cylindrical bodies 23 and 24 and driven linearly at equal intervals with an inclination of about 60 degrees with respect to the horizontal member 2 . The screws 7 and 8 driven until the head B1 abuts on the pillar 3 have their tips passed through the right side surface of the pillar 3, the bottom surface, the upper surface of the horizontal member 2, and the axial center of the horizontal member 2. It reaches up to the neighborhood. In addition, the cylindrical bodies 23 and 24 of the screw driving jig 20 are arranged at a predetermined interval, so that they enter the horizontal member 2 while avoiding the corner fitting 6, the tenon 5, and the tenon hole 4. It's becoming

図4(d)に示されるように、同様にビス打ち治具20を用いてビス9,10を角部Lから斜め下方向に打ち込む。このときには、リブVを横架材2の側面2cに当接させる。円筒体23,24は、基部21の幅方向における中央位置より側面2bに偏って配置されているので、ビス9,10は横架材2内において、角部Rから打ち込まれたビス7,8と接触しない(図5(b)参照)。 As shown in FIG. 4(d), screws 9 and 10 are similarly driven obliquely downward from the corner L using a screw driving jig 20. As shown in FIG. At this time, the rib V is brought into contact with the side surface 2 c of the horizontal member 2 . Since the cylindrical bodies 23 and 24 are arranged so as to deviate from the central position in the width direction of the base portion 21 toward the side surface 2b, the screws 9 and 10 are positioned within the horizontal member 2 so that the screws 7 and 8 driven from the corner portion R are located at the side surface 2b. (See FIG. 5(b)).

次に、図6(a),(b)を用いて、引張試験の試験結果について説明する。引張試験では、柱にスギ材、横架材にヒノキ材を使用し、接合構造を構成する柱に引き抜き方向への荷重をかけ、降伏により接合状態を維持できなくなった際の引き抜き方向への荷重と、柱の下面が横架材の上面から離間した距離の計測を行い、更にどの部材にどのような破壊が生じたことにより降伏が起こったのかを観察した。 Next, the test results of the tensile test will be described with reference to FIGS. 6(a) and 6(b). In the tensile test, cedar was used for the columns and cypress was used for the horizontal members. Then, we measured the distance that the lower surface of the column was separated from the upper surface of the horizontal member, and also observed which member had what kind of failure that caused yielding.

図6(a),(b)の試験結果では、降伏した際における柱の下面が横架材の上面から離間した距離を変位量として示している。表内の荷重Py(kN)と変位δy(mm)は、それぞれ降伏時の値を示し、降伏耐力(Py)または2/3Pmaxの平均値に、それぞれのばらつき係数を乗じて算出した値のうちの小さいほうとした値が短期基準引張耐力として算出されている。この短期基準引張耐力から、接合構造全体として、上下離間方向にかかる荷重に対して接合構造を維持できる荷重を判断することができる。 In the test results of FIGS. 6(a) and 6(b), the amount of displacement indicates the distance that the lower surface of the column separates from the upper surface of the horizontal member when it yields. The load Py (kN) and displacement δy (mm) in the table each show the value at yield, and among the values calculated by multiplying the average value of the yield strength (Py) or 2/3Pmax by the respective variation coefficient is calculated as the short-term standard tensile strength. From this short-term reference tensile strength, it is possible to determine the load that the joint structure as a whole can maintain with respect to the load applied in the vertical separation direction.

図6(a)は、ほぞ組と斜めビス打ち構造のみで構成された柱と横架材との接合構造に対して引張試験を行った試験結果を示している。これによると、降伏時の変位量が、いずれの荷重においても0.3mm程度と小さかった。そして、破壊の状況によると、ビスの頭部が柱にめり込んだことによる柱の割裂であった。このことから、柱にかかる引き抜き方向への荷重は、一対のビスに対しての頭部を柱の中央側に引き込むように作用し、一対のビスが交差する内角部分にて柱の木材繊維が挟圧され、ビスが柱と横架材内で粘り強くかかる荷重に耐え、変位を抑えていることが分かった。なお、この接合構造における短期基準引張耐力は7.1kNであった。 FIG. 6(a) shows the results of a tensile test performed on a joint structure between a column and a horizontal member, which is composed only of tenon joints and oblique screwing structures. According to this, the amount of displacement at yield was as small as about 0.3 mm at any load. According to the state of destruction, the pillar split due to the head of the screw getting into the pillar. From this, the load in the pull-out direction applied to the pillar acts to pull the head of the pair of screws toward the center of the pillar, and the wood fibers of the pillar are formed at the inner corners where the pair of screws intersect. It was found that the screws are pinched and withstand the load tenaciously applied between the columns and horizontal members, suppressing displacement. The short-term standard tensile strength of this joint structure was 7.1 kN.

ところで、ここでは図示しない引張試験において、コーナ金具単体での短期基準引張耐力は約10.0kNとなっている。また、コーナ金具単体での降伏時の変位量は平均4.1mmとなっている。このように、コーナ金具は、引き抜き方向の荷重に対して、上下方向に歪むことで、その荷重に対して柱と横架材との引き抜けを防止する構成であり、短期基準引張耐力をある程度有し、かつ柱と横架材との引き抜け方向の変位は大きいという特徴がある。 By the way, in a tensile test (not shown), the short-term standard tensile strength of the corner fitting alone is about 10.0 kN. In addition, the displacement amount at the time of yielding of the corner fitting alone is 4.1 mm on average. In this way, the corner metal fitting is configured to prevent the pull-out of the column and the horizontal member against the load by distorting in the vertical direction against the load in the pull-out direction. In addition, the displacement in the pull-out direction between the column and the horizontal member is large.

図6(b)は、本実施例のように、ほぞ組とコーナ金具と斜めビス打ち構造を有する柱と横架材との接合構造の引張試験を行った試験結果を示している。これによると、短期基準引張耐力は16.8kNと、コーナ金具単体に比べて大幅に向上した。また、降伏時の変位量は平均0.8mm程度と、なっており、コーナ金具単体に比べて上下方向の変位が大きく減少している。このことから、短期基準引張耐力が向上した要因としては、斜め打ちされたビスが荷重を受け上下方向の変位を抑えることでコーナ金具にかかる荷重が緩和され、コーナ金具が降伏点に至り難くなり、かつコーナ金具が若干歪むことで、ビスの頭部が柱の中央側に引き込まれにくくなり、柱の割裂を防いだと考えられる。 FIG. 6(b) shows the results of a tensile test of a joint structure of a column having a mortise joint, a corner metal fitting, an oblique screwing structure, and a horizontal member, as in this embodiment. According to this, the short-term standard tensile strength is 16.8 kN, which is greatly improved compared to the corner fitting alone. Moreover, the displacement amount at the time of yielding is about 0.8 mm on average, and the vertical displacement is greatly reduced compared to the single corner fitting. Based on this, the reason why the short-term standard tensile strength is improved is that the load applied to the corner metal fitting is reduced by suppressing the vertical displacement of the diagonally hammered screw, which makes it difficult for the corner metal fitting to reach the yield point. In addition, the slight distortion of the corner metal fittings made it difficult for the head of the screw to be pulled into the center of the pillar, which is thought to have prevented the pillar from splitting.

以上の試験結果から、柱3の右側面3bと左側面3cとから柱3と横架材2内にかけてそれぞれ斜め打ちされたビス7~10が、柱3と横架材2との上下離間方向への相対的な変位、左右方向への相対的な変位に対してそれぞれ抵抗する力を発揮することができ、柱3と横架材2との相対的な離脱方向の変位が抑制されることが分かった。そのため、例えば、横架材である梁と桁との接合箇所する場合のように、柱3と横架材2との接合箇所に比べて、引き抜き方向に大きな荷重が作用しないような箇所に合っては、このビス7,9またはビス8,10の斜め打ちの構成を採用することによって、コーナ金具などを省略しても、十分に引き抜き方向の荷重に耐えることができる。 From the above test results, it can be seen that the screws 7 to 10, which are driven diagonally from the right side 3b and left side 3c of the column 3 to the inside of the column 3 and the horizontal member 2, are aligned in the vertical separation direction between the column 3 and the horizontal member 2. It is possible to exert a force that resists the relative displacement to the left and right, respectively, and the relative displacement of the column 3 and the horizontal member 2 in the detachment direction is suppressed. I found out. For this reason, it is suitable for places where a large load does not act in the pull-out direction compared to the joints between the columns 3 and the horizontal members 2, such as the joints between the beams and girders, which are horizontal members. In addition, by adopting the configuration in which the screws 7 and 9 or the screws 8 and 10 are slanted, the load in the pull-out direction can be sufficiently withstood even if corner metal fittings are omitted.

また、柱3のいずれかの側面と横架材2の上面2aまたは下面とにそれぞれコーナ金具6をネジ固定することで、コーナ金具6による柱3と横架材2との引き抜き方向の荷重への引張耐力を追加できるとともに、斜め打ちされたビス7~10が発揮する相対的な離脱方向の変位の抑制効果によりコーナ金具6の歪が緩和され、コーナ金具6は降伏点に至り難くなるため、斜め方向のビス打ちと簡素な構造のコーナ金具を用いた簡単な工程のみで、接合構造全体として比較的大きな引き抜き方向の荷重に耐えることができる。 In addition, by screwing the corner fittings 6 to either side surface of the pillar 3 and the upper surface 2a or the lower surface of the horizontal member 2, respectively, the load in the pulling direction of the pillar 3 and the horizontal member 2 due to the corner fittings 6 can be reduced. In addition, the distortion of the corner metal fitting 6 is alleviated by the effect of suppressing the displacement in the relative detachment direction exerted by the obliquely hammered screws 7 to 10, making it difficult for the corner metal fitting 6 to reach the yield point. The joint structure as a whole can withstand a relatively large load in the pull-out direction only by a simple process using oblique screw driving and corner metal fittings of a simple structure.

なお、ここでは図示しないが、ほぞ組と、斜めビス打ちに加え、柱の左右両側面にそれぞれコーナ金物を取り付けた柱と横架材の接合構造の引張試験を行った試験結果によると、短期基準引張耐力が17.4kNと微増した。このように、コーナ金具は柱の左右両側面に取り付けてもよいが、左右両側面のいずれか一方に取り付けた場合との差は0.6kNとなっていることから、構造計算上必要な引張耐力や、コーナ金物本体の材料価格及びコーナ金物の取付工賃を鑑みて、コーナ金具の個数を適宜選択することができる。 Although not shown here, according to the results of a tensile test of the joint structure of the pillar and horizontal members, in which corner metal fittings are attached to the left and right sides of the pillar in addition to the mortise and mortise joints and diagonal screw driving, short-term The standard tensile strength increased slightly to 17.4 kN. In this way, the corner fittings may be attached to both the left and right sides of the pillar, but since the difference from the case where they are attached to either the left or right side is 0.6 kN, the tension required for structural calculations is The number of corner metal fittings can be appropriately selected in view of the yield strength, the material price of the corner metal fitting main body, and the installation cost of the corner metal fittings.

また、ビス7~10は、木ネジであることから横架材2内に斜め打ちされることによって、横架材2内の木材繊維の密度が高める効果がある。次に、図7を用いて、手前側のビス7,9が斜め打ちされる横架材2のほぞ穴4近傍の態様について説明する。 Further, since the screws 7 to 10 are wood screws, they have the effect of increasing the density of the wood fibers in the horizontal member 2 by being obliquely driven into the horizontal member 2 . Next, with reference to FIG. 7, an aspect near the mortise hole 4 of the horizontal member 2 to which the screws 7 and 9 on the near side are obliquely driven will be described.

柱3の下面3aに形成されたほぞ5を、横架材2の上面2aに形成されたほぞ穴4に位置合わせし、圧入させるほぞ組工程において、ほぞ5の圧入によってほぞ穴4の前後近傍は木材繊維が圧縮され密な状態となっている。 Tenon 5 formed on the lower surface 3a of the pillar 3 is aligned with the mortise 4 formed on the upper surface 2a of the horizontal member 2 and press-fitted in the mortise assembling process. The wood fibers are compressed and dense.

ビス打ち工程時には、横架材2の木材繊維を押し退けてそれぞれ進入し、ビス7,9とが横架材2内で前後方向に交差する領域Cでは、木材繊維が圧縮され密な状態となっており、ビス7,9の引抜耐力が向上されている。 During the screw driving process, the wood fibers of the horizontal member 2 are pushed aside and entered, and in the region C where the screws 7 and 9 intersect in the horizontal member 2 in the front-rear direction, the wood fibers are compressed and become dense. , and the pull-out strength of the screws 7 and 9 is improved.

また、ビス7の進入とほぞ5の圧入により、ビス7とほぞ穴4の前面4bとの前後間の領域Dでも、木材繊維が圧縮され密な状態となっており、ビス7の引抜耐力が更に向上されているとともに、ほぞ5とほぞ穴4によるほぞ組の引抜耐力が向上されている。 In addition, due to the entry of the screw 7 and the press-fitting of the tenon 5, the wood fibers are also compressed and dense in the area D between the front surface 4b of the screw 7 and the front surface 4b of the mortise hole 4, and the pull-out resistance of the screw 7 is increased. Furthermore, the pull-out resistance of the tenon set by the tenon 5 and the tenon hole 4 is improved.

次に図8を用いて、領域C近傍の態様について説明する。なおここでは、横架材2の手前側で領域Cを形成するビス7,9について説明する。図8に示されるように、ビス打ち工程時に、ビス7,9が横架材2の上面から60度傾斜して打ち込まれることにより、横架材2の上面とビス7,9によって、60度の略正三角形が形成される。言い換えると、一対のビス7,9の交差箇所を挟んだ水平方向の左右の外角もそれぞれ60°となり、上下離間方向へ相対的な変位と、左右方向への相対的な変位に対して抵抗力のバランスが良い。加えて、この抵抗力のバランスを確保した上で、横架材2内の深い位置で一対のビス7,9を交差させ、揺れが生じた際の引き抜き方向の荷重をこの横架材2内の深い位置にて作用させられ、上下離間方向へ相対的な変位を効果的に防止することができる。 Next, with reference to FIG. 8, a mode near the area C will be described. Here, the screws 7 and 9 forming the region C on the front side of the horizontal member 2 will be described. As shown in FIG. 8, during the screw driving process, the screws 7 and 9 are driven at an angle of 60 degrees from the upper surface of the horizontal member 2, so that the upper surface of the horizontal member 2 and the screws 7 and 9 form a 60-degree angle. A substantially equilateral triangle is formed. In other words, the left and right outer angles in the horizontal direction sandwiching the intersection of the pair of screws 7 and 9 are also 60°, and the resistance force against the relative displacement in the vertical separation direction and the relative displacement in the horizontal direction. good balance. In addition, after securing the balance of this resistance force, a pair of screws 7 and 9 are crossed at a deep position in the horizontal member 2, and the load in the pull-out direction when shaking occurs is applied to the horizontal member 2. , and can effectively prevent relative displacement in the vertical separation direction.

また、柱3と横架材2との縦横の断面寸法が105mm角の場合、ビス7~10の胴部B2の軸方向の寸法は上述した約120mmであり、柱と横架材との縦横の断面寸法に対してビスの胴部B2の軸方向の寸法が1.14倍の寸法となっており、これによると、横架材2内にビスの胴部B2の先端から約2割~4割進入させ交差させることができる。このように、ビスの胴部B2の先端から約2割~4割が横架材2内に進入させる状況とすると、引き抜き方向の荷重によって柱の割裂が生じにくく、かつ横架材へのビスの食いつきを十分に確保することができ、最良といえる。 Further, when the vertical and horizontal cross-sectional dimensions of the column 3 and the horizontal member 2 are 105 mm square, the axial dimension of the body portion B2 of the screws 7 to 10 is about 120 mm as described above, and the vertical and horizontal dimensions of the column and the horizontal member are approximately 120 mm. The axial dimension of the screw body B2 is 1.14 times the cross-sectional dimension of . It can be crossed by entering 40%. In this way, when about 20% to 40% of the tip of the body portion B2 of the screw enters into the horizontal member 2, it is difficult for the column to split due to the load in the pulling direction, and the screw to the horizontal member does not easily break. It can be said that it is the best because it can sufficiently secure the bite of the.

また、コーナ金具6は、基部60と立ち上げ部61との間に傾斜部62を有しており、傾斜部62は角部Rから離間しているため、柱3と横架材2との相対的な回動を伴う上下方向の変位時に応力の集中する角部Rとの接触による互いの破損を防止できる。特に角部Rを構成する柱3の右側面3bと横架材2の上面2aとの接触に寄る直接的な破損を防止することで、ビス7~10の引抜耐力を維持することができる。また、柱3と横架材2との相対的な回動を伴う上下方向の変位時において、傾斜部62と傾斜部62との境界である屈曲部分の内角、傾斜部62と立ち上げ部61との境界である屈曲部分の内角が常に鈍角となり、歪による金属疲労が少なく耐久性に優れる。 In addition, the corner fitting 6 has an inclined portion 62 between the base portion 60 and the raised portion 61. Since the inclined portion 62 is spaced from the corner portion R, the column 3 and the horizontal member 2 are Mutual breakage due to contact with corners R where stress concentrates can be prevented during vertical displacement accompanied by relative rotation. In particular, by preventing direct damage due to contact between the right side surface 3b of the column 3 and the upper surface 2a of the horizontal member 2, which constitutes the corner R, the pull-out strength of the screws 7-10 can be maintained. Further, when the column 3 and the horizontal member 2 are displaced in the vertical direction with relative rotation, the internal angle of the bent portion which is the boundary between the inclined portion 62 and the rising portion 61 The internal angle of the bent portion, which is the boundary between and, is always an obtuse angle, so metal fatigue due to strain is small and durability is excellent.

なお、横架材2のほぞ穴4と柱3のほぞ5によるほぞ組み、コーナ金具6の固定、ビス7~10の斜め打ちをすべて用いる接合構造を採用すると、引張試験の試験結果により短期基準引張耐力を約16.8kN有することから、建物の構造計算上、約16.8kNまでの引張耐力を要する柱に適応可能である。このことから、上述したように、主に建物の基礎部分における角部に立設される柱よりも建物中央側に立設される柱と横架材とに適応可能である。よって、従来、主に建物の基礎部分における角部に立設される柱と横架材との接合と、該角部の柱よりも建物中央側に立設される柱と横架材との接合と、に短期基準引張耐力を約28kN有するホールダウン金具を合計19本用いていたが、角部の柱よりも建物中央側に立設される柱と横架材との接合と、に本発明の柱と横架材との接合構造1を適用することで、一軒当たりに使用するホールダウン金具の数を14本減らすことができた。 In addition, if a joint structure that uses all of the mortise 4 of the horizontal member 2 and the tenon 5 of the column 3, the fixing of the corner metal fitting 6, and the diagonal driving of the screws 7 to 10 is adopted, the short-term standard Since it has a tensile strength of about 16.8 kN, it can be applied to columns that require a tensile strength of up to about 16.8 kN in terms of building structural calculations. For this reason, as described above, it is applicable mainly to columns and horizontal members erected on the central side of the building rather than columns erected at the corners of the base portion of the building. Therefore, in the past, the joint between the pillar and the horizontal member, which are mainly installed in the corner of the building foundation, and the pillar and the horizontal member, which are erected on the center side of the building from the pillar in the corner. A total of 19 hold-down metal fittings with a short-term standard tensile strength of about 28 kN were used for joining, but this By applying the joint structure 1 of the invention between a column and a horizontal member, the number of hold-down metal fittings used per house could be reduced by 14.

次に、実施例2に係る角材同士の接合構造につき、図9を参照して説明する。尚、前記実施例に示される構成部分と同一構成部分については同一符号を付して重複する説明を省略する。 Next, a joint structure of rectangular timbers according to Example 2 will be described with reference to FIG. 9 . The same components as those shown in the above embodiments are denoted by the same reference numerals, and overlapping descriptions are omitted.

接合構造31は、角材であり横架材である梁33と桁32との接合構造である。本実施例では、大入れ蟻掛け34と、梁33の両側面からビス7~10の斜め打ちにより構成されている。大入れ蟻掛け34はここでは詳細を図示しないが、桁32の側面に大入れ欠きと蟻穴を設け、直角に取り合う梁33の長手方向の先端に蟻ほぞを形成し、これらを嵌合させたものである。 The joint structure 31 is a joint structure between a beam 33 and a girder 32, which are rectangular beams and horizontal members. In this embodiment, the dovetail hook 34 and the screws 7 to 10 are diagonally driven from both sides of the beam 33 . Although the details of the dovetail hook 34 are not shown here, a notch and a dovetail hole are provided on the side surface of the girder 32, and a dovetail tenon is formed at the longitudinal end of the beam 33 that engages at right angles, and these are fitted. It is a thing.

ビス7,9とビス8,10とは、梁33の上下に離間してそれぞれ対となっている。これによれば、先端が桁32内で交差するように斜め打ちされたビス7~10による引抜耐力と、大入れ蟻掛け34による引抜耐力とが協働することで、それぞれ単体に比べて接合構造全体として比較的大きな引き抜き方向の荷重に耐えることができる。 The screws 7, 9 and the screws 8, 10 are spaced apart above and below the beam 33 and form pairs. According to this, the pull-out resistance of the screws 7 to 10 whose tips are slanted so as to intersect in the girder 32 and the pull-out resistance of the large dovetail hook 34 work together, so that each joint is compared to a single unit. The structure as a whole can withstand relatively large pull-out loads.

以上、本発明の実施例と変形例を図面により説明してきたが、具体的な構成はこれら実施例に限られるものではなく、本発明の要旨を逸脱しない範囲における変更や追加があっても本発明に含まれる。 Although the embodiments and modifications of the present invention have been described above with reference to the drawings, the specific configuration is not limited to these embodiments, and the present invention may be modified or added without departing from the gist of the present invention. Included in the invention.

また、前記実施例では、ビス打ち工程時において、ビス打ち治具を用いる例を説明したが、これに限られず、ビス打ち治具を使用せずビスを斜め打ちすることとしてもよいし、分度器等を用いて斜め打ちすることとしてもよい。 Further, in the above-described embodiment, an example in which a screw driving jig is used during the screw driving process has been described. However, the present invention is not limited to this. It is also possible to obliquely strike using the like.

また、前記実施例1では、コーナ金具取付工程時において、角部Rにコーナ金具を取り付ける例を説明したが、これに限られず、角部Lにコーナ金具を取り付けることとしてもよいし、角部L,Rにそれぞれコーナ金具を取り付けることとしてもよい。 In addition, in the first embodiment, an example of attaching the corner fitting to the corner R during the step of attaching the corner fitting has been described, but the present invention is not limited to this. Corner fittings may be attached to L and R, respectively.

また、前記実施例1において、柱3と横架材2の縦横の断面寸法が105mm角、ビス7~10の胴部の径方向の寸法が約4mm、軸方向の寸法が約120mmに形成されるのが望ましいとして説明した。これは、横架材2内にビスの胴部の先端から約2割~4割進入させ交差させるためである。この条件を満たすためには、柱と横架材との縦横の断面寸法に対してビスの軸方向の寸法を1.14倍から1.2倍程度の寸法とすればよく、上記実施例の寸法の数値に限られず、柱と横架材との縦横の断面寸に応じて適宜変更可能である。 In the first embodiment, the vertical and horizontal cross-sectional dimensions of the column 3 and the horizontal member 2 are 105 mm square, the radial dimension of the body of the screws 7 to 10 is about 4 mm, and the axial dimension is about 120 mm. explained that it is desirable to This is because about 20% to 40% of the tip of the body portion of the screw enters into the horizontal member 2 to cross it. In order to satisfy this condition, the axial dimension of the screw should be about 1.14 to 1.2 times the vertical and horizontal cross-sectional dimensions of the column and the horizontal member. The dimensions are not limited to numerical values, and can be changed as appropriate according to the vertical and horizontal cross-sectional dimensions of the pillars and the horizontal members.

また、床を水平荷重に対して強い抵抗力を備える剛床とするために、横架材2の上面2aに直接床合板を釘打ちすることがあるが、本実施例においては床合板の構成を省略している。なお、床合板を適用する際においては、ほぞ組工程の後、床合板取付工程を経て、コーナ金具取付工程を行う。その際、コーナ金具を、柱の側面と床合板とに取り付け、ビス打ち工程を行うことで、本発明の接合構造を実施できる。 In addition, floor plywood may be directly nailed to the upper surface 2a of the horizontal member 2 in order to make the floor rigid with strong resistance to horizontal loads. are omitted. When using floor plywood, the step of attaching corner brackets is performed after the step of attaching floor plywood after the step of mortise assembling. At that time, the joint structure of the present invention can be implemented by attaching the corner metal fittings to the side surface of the column and the floor plywood and performing the screw driving process.

また、接合構造としては、前記実施例1のように建物最下部の横木である横架材2と柱3の柱脚との接合箇所に用いられる構成に限らず、例えば図10に示される変形例の接合構造41のように、柱43の側面に横架材42の長手方向端部を接合する場合に用いられてもよい。尚、この図では傾ぎ大入れ44が併用され、先端が柱3内で交差するように斜め打ちされたビス7~10による引抜耐力と、斜め打ちされたビス7~10が発揮する相対的な離脱方向の変位の抑制効果によるコーナ金具6の歪の緩和と、傾ぎ大入れ44による引抜耐力とが協働することで、それぞれ単体に比べて接合構造全体として比較的大きな引き抜き方向の荷重に耐えることができる。 Moreover, the joint structure is not limited to the structure used at the joint between the horizontal member 2, which is the crosspiece at the bottom of the building, and the column base of the column 3 as in the first embodiment. As in the joint structure 41 of the example, it may be used when joining the longitudinal ends of the horizontal members 42 to the side surfaces of the pillars 43 . In addition, in this figure, the tilted large insertion 44 is also used, and the pull-out strength of the screws 7 to 10 whose tips are slanted so that they intersect in the column 3 and the relative strength exerted by the slanted screws 7 to 10 The relaxation of the distortion of the corner fitting 6 due to the effect of suppressing the displacement in the detachment direction and the pull-out resistance due to the tilted large insertion 44 work together, so that the joint structure as a whole has a relatively large load in the pull-out direction compared to the single unit. can withstand.

1 接合構造
2 横架材
3 柱
4 ほぞ穴
5 ほぞ
6 コーナ金具
7~10 ビス
20 ビス打ち治具
23,24 円筒体
31 接合構造
34 大入れ蟻掛け
41 接合構造
44 傾ぎ大入れ
60 基部
61 立ち上げ部
C 領域
L 角部
R 角部
M 領域
1 Joint structure 2 Horizontal member 3 Column 4 Mortise hole 5 Tenon 6 Corner metal fittings 7 to 10 Screw 20 Screw driving jig 23, 24 Cylindrical body 31 Joint structure 34 Large dovetail hook 41 Joint structure 44 Tilt large insert 60 Base 61 Rising portion C Area L Corner R Corner M Area

Claims (5)

木造建築における一方の角材と該角材の長手方向端部に直交する他方の角材とを接合させる角材同士の接合構造であって、
前記一方の角材の両側面から一対のビスが斜め打ちされており、前記一対のビスは前記一方の角材を貫通して前記他方の角材内に先端部が挿入され、前記一対のビス同士は前記他方の角材内で交差していることを特徴とする角材同士の接合構造。
A joining structure between square timbers for joining one square timber and the other square timber perpendicular to the longitudinal end of the square timber in a wooden building,
A pair of screws are driven obliquely from both sides of the one square timber. A joint structure of square timbers, characterized in that the square timbers intersect within the other square timber.
前記一方の角材の長手方向端部に形成されたほぞが前記他方の角材に形成されたほぞ穴に圧入されており、前記一対のビスは前記ほぞを挟んでそれぞれ斜め打ちされていることを特徴とする請求項1に記載の角材同士の接合構造。 A tenon formed at the longitudinal end of one of the square timbers is press-fitted into a mortise hole formed in the other square timber, and the pair of screws are driven obliquely across the tenon. The joining structure of rectangular timbers according to claim 1. 前記金属製の板材を屈曲させて直交する2つの片を少なくとも有するコーナ金具が、少なくとも前記一方の角材の一方の側面側に配置され、前記コーナ金具における一方の前記片が前記一方の角材の側面に、他方の前記片が前記一方の角材の側面と直交する前記他方の角材の面に、それぞれ当接させた状態でネジ固定されており、
前記一対のビスは前記コーナ金具を前後に挟んでそれぞれ斜め打ちされていることを特徴とする請求項1または2に記載の角材同士の接合構造。
A corner fitting having at least two pieces orthogonal to each other by bending the metal plate is disposed on at least one side surface of the one square timber, and one of the pieces of the corner fitting is a side surface of the one square timber. and the other piece is screw-fixed in a state of being in contact with the surface of the other square timber perpendicular to the side surface of the one square timber,
3. The joint structure of square timbers according to claim 1, wherein said pair of screws are obliquely driven with said corner metal fittings sandwiched therebetween.
前記一方の角材の各側面において、前記コーナ金具を挟んで打ち込まれた前記ビス同士の離間幅は、前記一方の角材の両側面で等間隔に配置されていることを特徴とする請求項3に記載の角材同士の接合構造。 4. In each side surface of said one square timber, the distance between said screws driven in with said corner fitting sandwiched therebetween is arranged at equal intervals on both side surfaces of said one square timber. A joint structure between rectangular timbers described. 前記ビスは、前記一方の角材の側面と直交する前記他方の角材の面に対して60°傾斜させて打ち込まれていることを特徴とする請求項1ないし4のいずれかに記載の横架材と柱の接合構造。 5. The horizontal member according to any one of claims 1 to 4, characterized in that said screws are driven at an angle of 60[deg.] with respect to a surface of said other square timber orthogonal to a side surface of said one square timber. and pillar joint structure.
JP2021184905A 2021-11-12 2021-11-12 Joint structure between rectangular timbers Pending JP2023072380A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021184905A JP2023072380A (en) 2021-11-12 2021-11-12 Joint structure between rectangular timbers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021184905A JP2023072380A (en) 2021-11-12 2021-11-12 Joint structure between rectangular timbers

Publications (1)

Publication Number Publication Date
JP2023072380A true JP2023072380A (en) 2023-05-24

Family

ID=86424353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021184905A Pending JP2023072380A (en) 2021-11-12 2021-11-12 Joint structure between rectangular timbers

Country Status (1)

Country Link
JP (1) JP2023072380A (en)

Similar Documents

Publication Publication Date Title
US6532713B2 (en) Joint structure for joining composite beam and column
JP5142574B2 (en) Wooden building
JP2023072380A (en) Joint structure between rectangular timbers
JP2008014123A (en) Vertical lumber member installation hardware
JP3209111U (en) Vertical frame material and steel house
JP2022047466A (en) Building structure
JP6089241B2 (en) Reinforcing member of wood joint and wood joint structure
JP6406382B1 (en) Wooden bi-directional ramen structure
JP5147552B2 (en) Junction structure used for portal wood frame
JP5142575B2 (en) Seismic reinforcement method for wooden buildings and wooden buildings
JP3787140B2 (en) Wall structure
JP2024035048A (en) building
JP2019143336A (en) Connection structure
JP7082099B2 (en) Building structure
JP7383195B1 (en) load-bearing wall structure
JPH10338968A (en) Joint metal for woody framework member
JP6814498B1 (en) Building structure
WO2022153848A1 (en) Bearing panel and skeleton structure
JP4315100B2 (en) Composite receiving member
WO2022029990A1 (en) Building
JP7298157B2 (en) Lower end structure of bearing wall
JP7475639B2 (en) Mounting structure of surface material
JP7298158B2 (en) Lower end structure of bearing wall
JP6931558B2 (en) Roof frame
JP3739372B2 (en) Bracing structure in wooden buildings