JP2023070392A - Lcp extruded film for stretching, heat-shrinkable lcp stretched film, insulating material for circuit board, and metal foil-clad laminate - Google Patents

Lcp extruded film for stretching, heat-shrinkable lcp stretched film, insulating material for circuit board, and metal foil-clad laminate Download PDF

Info

Publication number
JP2023070392A
JP2023070392A JP2021182534A JP2021182534A JP2023070392A JP 2023070392 A JP2023070392 A JP 2023070392A JP 2021182534 A JP2021182534 A JP 2021182534A JP 2021182534 A JP2021182534 A JP 2021182534A JP 2023070392 A JP2023070392 A JP 2023070392A
Authority
JP
Japan
Prior art keywords
lcp
film
extruded film
stretching
stretched
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021182534A
Other languages
Japanese (ja)
Inventor
優亮 升田
Yuryo Masuda
直希 小川
Naoki Ogawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denka Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denka Co Ltd filed Critical Denka Co Ltd
Priority to JP2021182534A priority Critical patent/JP2023070392A/en
Priority to CN202311289930.9A priority patent/CN117301463A/en
Priority to PCT/JP2021/044969 priority patent/WO2022124308A1/en
Priority to KR1020237022786A priority patent/KR20230119162A/en
Priority to CN202180082926.8A priority patent/CN116710278A/en
Priority to US18/266,228 priority patent/US20240043635A1/en
Priority to KR1020237043725A priority patent/KR20240001269A/en
Priority to CN202311289318.1A priority patent/CN117400571A/en
Priority to KR1020237043724A priority patent/KR20240001268A/en
Priority to TW110146092A priority patent/TW202235286A/en
Priority to TW112137249A priority patent/TW202404809A/en
Priority to TW112137248A priority patent/TW202402503A/en
Publication of JP2023070392A publication Critical patent/JP2023070392A/en
Priority to US18/375,798 priority patent/US20240025102A1/en
Priority to US18/375,800 priority patent/US20240032191A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D7/00Producing flat articles, e.g. films or sheets
    • B29D7/01Films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Laminated Bodies (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

To provide an LCP extruded film for stretching or the like that shows excellent stretchability during a stretching process, thereby providing a heat-shrinkable LCP stretched film that has small anisotropy in dimensional change rate and a small absolute value in dimensional change rate.SOLUTION: An LCP extruded film for stretching comprises a thermoplastic liquid crystal polymer. In a stress-strain curve as measured by a thermostat bath tensile test (in accordance with JIS K7161-1: 2014, at 200°C and tensile rate 200 mm/min), a yield point strength X (MPa) and a breaking point strength Y (MPa) of the LCP extruded film for stretching in a TD direction satisfy the following formula (1): 0.75≤breaking point strength Y/yield point strength X≤1.50 (1).SELECTED DRAWING: Figure 1

Description

本発明は、延伸処理用LCP押出フィルム、熱収縮性LCP延伸フィルム、回路基板用絶縁材料、及び金属箔張積層板等に関する。 TECHNICAL FIELD The present invention relates to an LCP extruded film for stretching treatment, a heat-shrinkable LCP stretched film, an insulating material for circuit boards, a metal foil-clad laminate, and the like.

従来、回路基板用絶縁材料として、エポキシ樹脂等の熱硬化性樹脂と無機フィラーと溶剤等を含むワニスをガラスクロスに含浸させた後、熱プレス成形した、ワニス含浸複合材が知られている。しかしながら、この製法は、例えばワニス含浸時の樹脂流れ性や熱プレス成形時の硬化性等の観点で、製造時のプロセス裕度が乏しく、生産性に劣る。また、熱硬化性樹脂は、吸湿し易く、その吸湿にともなって寸法が変化するため、得られるワニス含浸複合材の寸法精度(加熱寸法精度)に劣る。 Conventionally, as an insulating material for a circuit board, a varnish-impregnated composite material obtained by impregnating a glass cloth with a varnish containing a thermosetting resin such as an epoxy resin, an inorganic filler, a solvent, and the like and then heat-press molding is known. However, this manufacturing method has a poor process margin during manufacturing and is inferior in productivity from the viewpoint of, for example, resin flowability during varnish impregnation and curability during hot press molding. In addition, the thermosetting resin easily absorbs moisture, and its dimensions change as it absorbs moisture, so the resulting varnish-impregnated composite material is inferior in dimensional accuracy (heating dimensional accuracy).

一方、液晶ポリマー(LCP;Liquid Crystal Polymer)は、溶融状態或いは溶液状態で液晶性を示すポリマーである。とりわけ、溶融状態で液晶性を示すサーモトロピック液晶ポリマーは、押出成形が可能であり、高ガスバリア性、高フィルム強度、高耐熱、高絶縁、低吸水率、高周波域での低誘電特性等の優れた性質を有している。そのため、熱可塑性液晶ポリマーを用いたフィルムは、ガスバリア性フィルム材料用途、電子材料用途や電気絶縁性材料用途において、実用化が検討されている。 On the other hand, a liquid crystal polymer (LCP) is a polymer that exhibits liquid crystallinity in a molten state or a solution state. In particular, thermotropic liquid crystal polymers, which exhibit liquid crystallinity in a molten state, can be extruded and have excellent gas barrier properties, high film strength, high heat resistance, high insulation, low water absorption, and low dielectric properties in the high frequency range. It has the characteristic Therefore, films using thermoplastic liquid crystal polymers are being studied for practical use in gas barrier film material applications, electronic material applications, and electrical insulating material applications.

しかしながら、単層押出成形を実際に行ってみると、熱可塑性液晶ポリマーが有する高度の液晶配向性に起因して、工業上の利用価値が高い熱可塑性液晶ポリマーフィルム、すなわち厚み精度に優れ外観や表面平坦性が良好な熱可塑性液晶ポリマーフィルムを得ることが困難であることが判明した。 However, when single-layer extrusion molding is actually performed, due to the high degree of liquid crystal orientation of thermoplastic liquid crystal polymer, thermoplastic liquid crystal polymer films with high industrial value, that is, excellent thickness accuracy, appearance and appearance. It has been found difficult to obtain a thermoplastic liquid crystal polymer film with good surface flatness.

そこで、例えば特許文献1には、単層押出ダイスに代えて三層共押出ダイスを用いて、中間層として全芳香族ポリエステル系サーモトロピック液晶ポリマーを両外層としてポリオレフィン系樹脂又はポリカーボネート樹脂を同時押出して、中間層が熱可塑性液晶ポリマー層であり両外層が熱可塑性樹脂層である三層の積層フィルムを成形し、両外層の熱可塑性樹脂層を剥離して中間層をフィルムとして取り出すことで、厚み精度に優れ外観や表面平坦性が良好な熱可塑性液晶ポリマーフィルムが得られることが開示されている。 Therefore, for example, in Patent Document 1, a three-layer co-extrusion die is used instead of a single-layer extrusion die, and a wholly aromatic polyester thermotropic liquid crystal polymer is used as an intermediate layer to simultaneously extrude a polyolefin resin or a polycarbonate resin as both outer layers. Then, by molding a three-layer laminated film in which the intermediate layer is a thermoplastic liquid crystal polymer layer and both outer layers are thermoplastic resin layers, the thermoplastic resin layers of both outer layers are peeled off and the intermediate layer is taken out as a film, It is disclosed that a thermoplastic liquid crystal polymer film having excellent thickness precision and good appearance and surface flatness can be obtained.

また、例えば特許文献2には、特許文献1に記載の熱可塑性液晶ポリマーフィルムにおいてMD方向(Machine Direction;長手方向)に対してTD方向(Transverse Direction;横手方向)の強度が実用に耐えられないことを見出し、マルチマニホールド方式の共押出ダイスに代えてフィードブロック方式の三層共押出ダイスを用いることにより、得られる熱可塑性液晶ポリマーフィルムのTD方向及びMD方向(Machine Direction;長手方向)の強度の異方性が緩和されることが開示されている。 Further, for example, in Patent Document 2, in the thermoplastic liquid crystal polymer film described in Patent Document 1, the strength in the TD direction (Transverse Direction; transverse direction) relative to the MD direction (Machine Direction; longitudinal direction) is practically unbearable. By using a feed block type three-layer co-extrusion die instead of a multi-manifold type co-extrusion die, the strength in the TD direction and MD direction (machine direction; longitudinal direction) of the thermoplastic liquid crystal polymer film obtained It is disclosed that the anisotropy of is relaxed.

特開昭63-31729号公報JP-A-63-31729 特開平2-178016号公報JP-A-2-178016

液晶ポリマーを用いた回路基板用絶縁材料は、高周波特性及び低誘電性に優れることから、今後進展する第5世代移動通信システム(5G)やミリ波レーダー等におけるフレキシブルプリント配線板(FPC)、フレキシブルプリント配線板積層体、繊維強化フレキシブル積層体等の回路基板の絶縁材料として、近年、脚光を浴びている。 Insulating materials for circuit boards using liquid crystal polymer are excellent in high frequency characteristics and low dielectric properties. In recent years, it has been spotlighted as an insulating material for circuit boards such as printed wiring board laminates and fiber-reinforced flexible laminates.

上述した特許文献1及び2に記載の技術では、厚み精度に優れ外観や表面平坦性が良好な熱可塑性液晶ポリマーフィルムを実現することができるとされている。しかしながら、実際には、熱可塑性液晶ポリマーがフィルム表面において高度に分子配向することで生じるスキン層の剥離やフィブリル化した繊維の剥離の発生は抑制できるものの、特許文献1及び2に記載の熱可塑性液晶ポリマーフィルムは、フィルム全体としては、依然として熱可塑性液晶ポリマーが高度に分子配向しており、回路基板の絶縁材料として実用に耐えられるものではなかった。 The techniques described in Patent Literatures 1 and 2 described above are said to be capable of realizing a thermoplastic liquid crystal polymer film with excellent thickness accuracy and good appearance and surface flatness. However, in reality, although it is possible to suppress the peeling of the skin layer and the peeling of the fibrillated fibers caused by the highly molecular orientation of the thermoplastic liquid crystal polymer on the film surface, the thermoplastic liquid crystal polymer described in Patent Documents 1 and 2 can be suppressed. In the liquid crystal polymer film as a whole, the thermoplastic liquid crystal polymer is still highly molecularly oriented, and it was not practically durable as an insulating material for circuit boards.

具体的には、回路基板の絶縁材料用途において、熱可塑性液晶ポリマーフィルムは、その片面及び/又は両面に銅箔等の金属箔が熱圧着等されて、金属箔張積層板として用いられることがある。そして、この金属箔がパターンエッチングされる等して微細配線等とされることにより、例えば電子回路基板や多層基板等の回路基板の素材として金属箔張積層板を使用することができる。そのため、金属箔を支持する熱可塑性液晶ポリマーフィルムには、高度の寸法安定性が要求される。しかしながら、特許文献1及び2に記載の熱可塑性液晶ポリマーフィルムは、エッチング後のTD方向及びMD方向の寸法変化率の差が依然として大きく、近年の超微細加工への適用要請に応えることができなかった。 Specifically, in applications as an insulating material for circuit boards, a thermoplastic liquid crystal polymer film may be used as a metal foil-clad laminate by thermocompression bonding a metal foil such as a copper foil to one side and/or both sides of the film. be. By pattern-etching the metal foil to form fine wiring or the like, the metal foil-clad laminate can be used as a material for circuit boards such as electronic circuit boards and multilayer boards. Therefore, the thermoplastic liquid crystal polymer film that supports the metal foil is required to have high dimensional stability. However, the thermoplastic liquid crystal polymer films described in Patent Documents 1 and 2 still have a large difference in the dimensional change rate in the TD direction and the MD direction after etching, and cannot meet the recent demands for application to ultrafine processing. rice field.

本発明は、上記課題に鑑みてなされたものである。本発明の目的は、延伸処理時の延伸性に優れ、これにより寸法変化率の異方性及び寸法変化率の絶対値が小さな熱収縮性のLCP延伸フィルムを実現可能な、延伸処理用LCP押出フィルムを提供することにある。また、本発明の他の目的は、寸法変化率の異方性及び寸法変化率の絶対値が小さな熱収縮性のLCP延伸フィルム、並びにこれを用いた回路基板用絶縁材料や金属箔張積層板等を提供することにある。 The present invention has been made in view of the above problems. An object of the present invention is to provide a heat-shrinkable LCP stretched film having excellent stretchability during stretching and thus anisotropic dimensional change rate and a small absolute value of dimensional change rate. to provide the film. Another object of the present invention is to provide a heat-shrinkable stretched LCP film having an anisotropic dimensional change rate and a small absolute value of the dimensional change rate, and an insulating material for circuit boards and a metal foil-clad laminate using the same. etc. is to be provided.

本発明者らは、上記課題を解決すべく鋭意検討した結果、所定の引張特性を有するLCP押出フィルムが延伸処理時の延伸性に優れることを見出すとともに、これを延伸することで寸法変化率の異方性及び寸法変化率の絶対値が小さな熱収縮性LCP延伸フィルムを実現可能であることを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above problems, the present inventors found that an LCP extruded film having a predetermined tensile property is excellent in stretchability during stretching, and that the dimensional change rate is reduced by stretching. The inventors have found that a heat-shrinkable stretched LCP film with small absolute values of anisotropy and dimensional change can be realized, and have completed the present invention.

すなわち、本発明は、以下に示す種々の具体的態様を提供する。
(1)熱可塑性液晶ポリマーを含む延伸処理用LCP押出フィルムであり、恒温槽引張試験(JIS K7161-1:2014準拠、200℃、引張速度200mm/min)で測定される応力-ひずみ曲線において、前記延伸処理用LCP押出フィルムのTD方向の降伏点強度X(MPa)及び破壊点強度Y(MPa)が、下記式(1)を満たす、延伸処理用LCP押出フィルム。
0.75≦破壊点強度Y/降伏点強度X≦1.50・・・(1)
That is, the present invention provides various specific aspects shown below.
(1) It is an LCP extruded film for stretching treatment containing a thermoplastic liquid crystal polymer, and is measured by a constant temperature bath tensile test (JIS K7161-1: 2014 compliant, 200 ° C., tensile speed 200 mm / min) In the stress-strain curve, The LCP extruded film for stretching, wherein the yield point strength X (MPa) and breaking point strength Y (MPa) in the TD direction of the LCP extruded film for stretching satisfy the following formula (1).
0.75≦strength at breaking point Y/strength at yield point X≦1.50 (1)

(2)前記延伸処理用LCP押出フィルムは、TD方向の線膨張係数が5~55ppm/Kである(1)に記載の延伸処理用LCP押出フィルム。 (2) The LCP extruded film for stretching according to (1), wherein the LCP extruded film for stretching has a coefficient of linear expansion in the TD direction of 5 to 55 ppm/K.

(3)前記延伸処理用LCP押出フィルムは、Tダイ押出フィルムである(1)又は(2)に記載の延伸処理用LCP押出フィルム。 (3) The LCP extruded film for stretching according to (1) or (2), wherein the LCP extruded film for stretching is a T-die extruded film.

(4)前記延伸処理用LCP押出フィルムは、外層、中間層、及び外層を有する積層押出フィルムから前記両外層を除いた、前記中間層である(1)~(3)のいずれか一項に記載の延伸処理用LCP押出フィルム。 (4) The LCP extruded film for stretching treatment is the intermediate layer obtained by removing the outer layers from the laminated extruded film having the outer layer, the intermediate layer, and the outer layer. LCP extruded film for stretch processing as described.

(5)前記延伸処理用LCP押出フィルムは、JIS K5600-5-6に準拠したクロスカット法による密着性試験でフィルム表面にテープ剥離可能なスキン層を有さない(1)~(4)のいずれか一項に記載の延伸処理用LCP押出フィルム。 (5) The LCP extruded film for stretching treatment does not have a tape-peelable skin layer on the film surface in an adhesion test by a cross-cut method in accordance with JIS K5600-5-6 of (1) to (4). The LCP extruded film for stretch processing according to any one of claims 1 to 3.

(6)前記延伸処理用LCP押出フィルムは、15μm以上300μm以下の厚みを有する(1)~(5)のいずれか一項に記載の延伸処理用LCP押出フィルム。 (6) The LCP extruded film for stretching according to any one of (1) to (5), which has a thickness of 15 μm or more and 300 μm or less.

(7)前記延伸処理用LCP押出フィルムは、無機フィラーをさらに含有する(1)~(6)のいずれか一項に記載の延伸処理用LCP押出フィルム。 (7) The LCP extruded film for stretching according to any one of (1) to (6), further comprising an inorganic filler.

(8)(1)~(7)のいずれか一項に記載の延伸処理用LCP押出フィルムの延伸体を備え、前記延伸体のTD方向の線膨張係数が、-20ppm/K以上0ppm/K未満の範囲内にあり、前記延伸体のMD方向の線膨張係数が、-20ppm/K以上0ppm/K未満の範囲内にある、熱収縮性LCP延伸フィルム。 (8) A stretched body of the LCP extruded film for stretching treatment according to any one of (1) to (7), wherein the linear expansion coefficient in the TD direction of the stretched body is −20 ppm/K or more and 0 ppm/K. and the stretched body has a linear expansion coefficient in the MD direction of -20 ppm/K or more and less than 0 ppm/K.

(9)前記延伸体は、前記延伸処理用LCP押出フィルムに対してTD方向に1.3~2.5倍の延伸倍率を有する(8)に記載の熱収縮性LCP延伸フィルム。 (9) The heat-shrinkable LCP stretched film according to (8), wherein the stretched body has a stretch ratio of 1.3 to 2.5 times in the TD direction with respect to the LCP extruded film for stretching treatment.

(10)(8)又は(9)に記載の熱収縮性LCP延伸フィルム及び前記熱収縮性LCP延伸フィルムの少なくとも一方の面に設けられた織布を少なくとも有する積層体を備える、回路基板用絶縁材料。 (10) An insulation for a circuit board, comprising a laminate having at least the heat-shrinkable LCP stretched film according to (8) or (9) and a woven fabric provided on at least one surface of the heat-shrinkable LCP stretched film. material.

(11)(8)又は(9)に記載の熱収縮性LCP延伸フィルム及び前記熱収縮性LCP延伸フィルムの片面及び/又は両面に設けられた金属箔を備える、金属箔張積層板。 (11) A metal foil-clad laminate comprising the heat-shrinkable LCP stretched film according to (8) or (9) and a metal foil provided on one side and/or both sides of the heat-shrinkable LCP stretched film.

(14)(8)又は(9)に記載の熱収縮性LCP延伸フィルム及び織布を少なくとも有する積層体と、前記積層体の片面及び/又は両面に設けられた金属箔とを備える、金属箔張積層板。 (14) A metal foil comprising a laminate having at least the heat-shrinkable LCP stretched film and the woven fabric according to (8) or (9), and a metal foil provided on one side and/or both sides of the laminate. tension laminate.

本発明の一態様によれば、延伸処理時の延伸性に優れ、これにより寸法変化率の異方性及び寸法変化率の絶対値が小さな熱収縮性のLCP延伸フィルムを実現可能な、延伸処理用LCP押出フィルム等を実現することができる。また、本発明の一態様によれば、寸法変化率の異方性と寸法変化率の絶対値とが小さな、新規な熱収縮性のLCP延伸フィルム、並びにこれを用いた回路基板用絶縁材料や金属箔張積層板等を実現することができる。したがって、本発明の各種態様によれば、近年の超微細加工に適応した信頼性の高い製品を実現することができる。 According to one aspect of the present invention, the stretching process is excellent in stretchability during the stretching process, and thereby can realize a heat-shrinkable LCP stretched film with an anisotropic dimensional change rate and a small absolute value of the dimensional change rate. for LCP extruded films and the like can be realized. In addition, according to one aspect of the present invention, a novel heat-shrinkable LCP stretched film having a small anisotropy of dimensional change rate and a small absolute value of dimensional change rate, and an insulating material for circuit boards using the same, Metal foil clad laminates and the like can be realized. Therefore, according to various aspects of the present invention, it is possible to realize highly reliable products adapted to recent ultra-fine processing.

本発明の延伸処理用LCP押出フィルムのTD方向の応力-ひずみ曲線の一例を示すグラフである。1 is a graph showing an example of a stress-strain curve in the TD direction of an LCP extruded film for stretching treatment of the present invention. 本発明の延伸処理用LCP押出フィルムのTD方向の応力-ひずみ曲線の一例を示すグラフである。1 is a graph showing an example of a stress-strain curve in the TD direction of an LCP extruded film for stretching treatment of the present invention. 従来技術の延伸処理用LCP押出フィルムのTD方向の応力-ひずみ曲線の一例を示すグラフである。1 is a graph showing an example of a stress-strain curve in the TD direction of a prior art LCP extruded film for stretching. 一実施形態の延伸処理用LCP押出フィルムの共押出法を示す図である。FIG. 4 is a diagram showing a co-extrusion method of an LCP extruded film for stretch processing in one embodiment. 一実施形態の延伸処理用LCP押出フィルムの共押出法を示す図である。FIG. 4 is a diagram showing a co-extrusion method of an LCP extruded film for stretch processing in one embodiment. 一実施形態の延伸処理用LCP押出フィルムの共押出法を示す図である。FIG. 4 is a diagram showing a co-extrusion method of an LCP extruded film for stretch processing in one embodiment. 一実施形態の回路基板用絶縁材料を示す模式断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic cross section which shows the insulating material for circuit boards of one Embodiment. 一実施形態の金属箔張積層板を示す模式断面図である。1 is a schematic cross-sectional view showing a metal foil-clad laminate of one embodiment; FIG. 一実施形態の金属箔張積層板を示す模式断面図である。1 is a schematic cross-sectional view showing a metal foil-clad laminate of one embodiment; FIG.

以下、本発明の実施の形態について、図面を参照して詳細に説明する。なお、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。また、図面の寸法比率は、図示の比率に限定されるものではない。但し、以下の実施の形態は、本発明を説明するための例示であり、本発明はこれらに限定されるものではない。すなわち本発明は、その要旨を逸脱しない範囲内で任意に変更して実施することができる。なお、本明細書において、例えば「1~100」との数値範囲の表記は、その下限値「1」及び上限値「100」の双方を包含するものとする。また、他の数値範囲の表記も同様である。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Unless otherwise specified, positional relationships such as up, down, left, and right are based on the positional relationships shown in the drawings. Also, the dimensional ratios in the drawings are not limited to the illustrated ratios. However, the following embodiments are examples for explaining the present invention, and the present invention is not limited to these. That is, the present invention can be arbitrarily modified and implemented without departing from the gist thereof. In this specification, the expression of a numerical range such as "1 to 100" includes both the lower limit "1" and the upper limit "100". The same applies to the notation of other numerical ranges.

(延伸処理用LCP押出フィルム)
本実施形態の延伸処理用LCP押出フィルムは、熱可塑性液晶ポリマーを含み、延伸処理時に均一延伸可能な、LCP押出フィルム(被延伸LCP押出フィルム)である。
(LCP extruded film for stretching treatment)
The LCP extruded film for stretching treatment of the present embodiment is an LCP extruded film (stretched LCP extruded film) that contains a thermoplastic liquid crystal polymer and can be uniformly stretched during the stretching treatment.

先にも述べたとおり、従来技術のLCP押出フィルムは、フィルム表面ではスキン層の剥離やフィブリル化した繊維の剥離が発生する等、熱可塑性液晶ポリマーがフィルム表面において極度に分子配向されたものであった。これは、押出時に装置側面からの剪断応力を受け、その結果、押出成形体の表面において熱可塑性液晶ポリマーが高配向しているためであると推察される。そして、このように熱可塑性液晶ポリマーが高配向した従来技術のLCP押出フィルムであっても、延伸処理を施すことにより、寸法変化率の異方性及び寸法変化率の絶対値が小さなLCP延伸フィルムを実現することができると期待されたものの、本発明者らの知見によれば、従来技術のLCP押出フィルムは、延伸処理時の延伸適性がほとんどなく、工業的に有用なLCP延伸フィルムを得ることは実質的に困難であることが判明した。具体的には、従来技術のLCP押出フィルムは、例えばTD方向に延伸倍率1.1倍の延伸処理をするだけでも不均一な延伸が生じたり、例えばTD方向への延伸倍率を1.2倍に高めるとフィルム破断が生じたりする等、延伸適性を実質的に有さないものであった。一方、特許文献1及び2のように改善することにより、熱可塑性液晶ポリマーのフィルム表面における極度の分子配向が緩和されることが確認されたが、それと同時に、フィルム表面における熱可塑性液晶ポリマーの分子配向の制御のみでは、回路基板の絶縁材料としての要求性能に耐え得るものを実現できないことが、本発明者らの知見により判明した。 As mentioned above, the LCP extruded film of the prior art is characterized by extreme molecular orientation of the thermoplastic liquid crystal polymer on the film surface, such as peeling of the skin layer and fibrillated fibers on the film surface. there were. It is presumed that this is because the thermoplastic liquid crystal polymer is highly oriented on the surface of the extruded body as a result of receiving shear stress from the side of the apparatus during extrusion. Even in the conventional LCP extruded film in which the thermoplastic liquid crystal polymer is highly oriented in this way, by applying a stretching treatment, the anisotropy of the dimensional change rate and the absolute value of the dimensional change rate are small. However, according to the findings of the present inventors, the LCP extruded film of the prior art has almost no stretching aptitude during the stretching process, and an industrially useful LCP stretched film is obtained. has proved to be practically difficult. Specifically, the LCP extruded film of the prior art, for example, is unevenly stretched even if it is stretched at a draw ratio of 1.1 times in the TD direction. , the film does not have aptitude for stretching, such as film breakage. On the other hand, it was confirmed that the extreme molecular orientation on the film surface of the thermoplastic liquid crystal polymer was alleviated by the improvement as in Patent Documents 1 and 2, but at the same time, the molecules of the thermoplastic liquid crystal polymer on the film surface The present inventors have found that it is not possible to achieve the required performance as an insulating material for a circuit board only by controlling the orientation.

本実施形態の延伸処理用LCP押出フィルム(被延伸LCP押出フィルム)は、かかる観点から検討されたものである。すなわち、本実施形態の延伸処理用LCP押出フィルム(被延伸LCP押出フィルム)は、所定の引張特性を有することで少なくともTD方向への良好な延伸適性を有し、そのため従来技術では困難であった均一延伸が可能とされている。そして、この被延伸LCP押出フィルムを延伸処理することにより、フィルム表面及び/又はフィルム内部で生じている熱可塑性液晶ポリマーの分子配向や内部歪み等を低減させ、これにより、寸法変化率の異方性及び寸法変化率の絶対値が小さな熱収縮性のLCP延伸フィルムを実現可能である。 The LCP extruded film for stretching treatment (stretched LCP extruded film) of the present embodiment has been studied from this point of view. That is, the LCP extruded film for stretching treatment (stretched LCP extruded film) of the present embodiment has a good stretchability at least in the TD direction by having a predetermined tensile property, and therefore it was difficult with the conventional technology. Uniform stretching is possible. Then, by stretching the LCP extruded film to be stretched, the molecular orientation and internal strain of the thermoplastic liquid crystal polymer occurring on the film surface and/or inside the film are reduced. It is possible to realize a heat-shrinkable stretched LCP film with small absolute values of elasticity and dimensional change rate.

延伸処理用LCP押出フィルムに含まれる熱可塑性の液晶ポリマーは、当業界で公知のものを用いることができ、その種類は特に限定されない。液晶ポリマーは、光学的に異方性の溶融相を形成するポリマーであり、代表的にはサーモトロピック液晶化合物が挙げられる。なお、異方性溶融相の性質は、直交偏光子を利用した偏光検査法等の公知の方法によって確認することができる。より具体的には、異方性溶融相の確認は、Leitz偏光顕微鏡を使用し、Leitzホットステージにのせた試料を窒素雰囲気下で40倍の倍率で観察することにより実施することができる。 The thermoplastic liquid crystal polymer contained in the LCP extruded film for stretching treatment can be one known in the art, and the type is not particularly limited. A liquid crystal polymer is a polymer that forms an optically anisotropic molten phase, and typically includes a thermotropic liquid crystal compound. The properties of the anisotropic molten phase can be confirmed by a known method such as polarization inspection using crossed polarizers. More specifically, confirmation of the anisotropic molten phase can be carried out by using a Leitz polarizing microscope and observing a sample placed on a Leitz hot stage under a nitrogen atmosphere at a magnification of 40 times.

熱可塑性液晶ポリマーの具体例としては、芳香族又は脂肪族ジヒドロキシ化合物、芳香族又は脂肪族ジカルボン酸、芳香族ヒドロキシカルボン酸、芳香族ジアミン、芳香族ヒドロキシアミン、芳香族アミノカルボン酸等の単量体を重縮合させたものが挙げられるが、これらに特に限定されない。熱可塑性の液晶ポリマーは、共重合体が好ましい。具体的には、芳香族ヒドロキシカルボン酸、芳香族ジアミン、芳香族ヒドロキシアミン等の単量体を重縮合させてなる芳香族ポリアミド樹脂;芳香族ジオール、芳香族カルボン酸、芳香族ヒドロキシカルボン酸等の単量体を重縮合させてなる(全)芳香族ポリエステル樹脂;等が挙げられるが、これらに特に限定されない。これらは、1種を単独で、又は2種以上を任意の組み合わせ及び比率で用いることができる。 Specific examples of thermoplastic liquid crystal polymers include monomers such as aromatic or aliphatic dihydroxy compounds, aromatic or aliphatic dicarboxylic acids, aromatic hydroxycarboxylic acids, aromatic diamines, aromatic hydroxylamines, and aromatic aminocarboxylic acids. Examples include, but are not limited to, those obtained by polycondensation. The thermoplastic liquid crystal polymer is preferably a copolymer. Specifically, aromatic polyamide resins obtained by polycondensation of monomers such as aromatic hydroxycarboxylic acids, aromatic diamines, aromatic hydroxyamines; aromatic diols, aromatic carboxylic acids, aromatic hydroxycarboxylic acids, etc. (Whole) aromatic polyester resin obtained by polycondensation of the monomers; but not limited to these. These can be used individually by 1 type or in arbitrary combinations and ratios of 2 or more types.

熱可塑性液晶ポリマーは、一般的に、熱変形温度(TDUL)の観点からI型、II型、III型等に分類されている。本実施形態の延伸処理用LCP押出フィルムは、いずれのタイプの熱可塑性液晶ポリマーであっても好適に用いることができ、適用用途に応じて適宜選択して用いればよい。例えば230~260℃程度の鉛フリーはんだへの適用が求められる電子回路基板用途においては、TDULが250~350℃程度の高耐熱なI型の熱可塑性液晶ポリマー、TDULが240~250℃程度の比較的に高耐熱なII型の熱可塑性液晶ポリマーが好適に用いられる。 Thermoplastic liquid crystal polymers are generally classified into type I, type II, type III, etc. in terms of heat distortion temperature (TDUL). Any type of thermoplastic liquid crystal polymer can be suitably used for the LCP extruded film for stretching treatment of the present embodiment, and may be appropriately selected according to the application. For example, in electronic circuit board applications that require application to lead-free solder of about 230 to 260 ° C., a highly heat-resistant I-type thermoplastic liquid crystal polymer with a TDUL of about 250 to 350 ° C. and a TDUL of about 240 to 250 ° C. A type II thermoplastic liquid crystal polymer having relatively high heat resistance is preferably used.

これらの中でも、サーモトロピック型の液晶様性質を示し、融点が250℃以上、好ましくは融点が280℃~380℃の、(全)芳香族ポリエステル樹脂が好ましく用いられる。このような(全)芳香族ポリエステル樹脂としては、例えば、芳香族ジオール、芳香族カルボン酸、ヒドロキシカルボン酸等のモノマーから合成される、溶融時に液晶性を示す(全)芳香族ポリエステル樹脂が知られている。その代表的なものとしては、エチレンテレフタレートとパラヒドロキシ安息香酸との重縮合体、フェノール及びフタル酸とパラヒドロキシ安息香酸との重縮合体、2,6-ヒドロキシナフトエ酸とパラヒドロキシ安息香酸との重縮合体等が挙げられるが、これらに特に限定されない。なお、(全)芳香族ポリエステル樹脂は、1種を単独で、又は2種以上を任意の組み合わせ及び比率で用いることができる。要求性能に応じて、比較的に高融点ないしは高熱変形温度を有し高耐熱な全芳香族ポリエステル樹脂を用いたり、比較的に低融点ないしは低熱変形温度を有し成形加工性に優れる芳香族ポリエステル樹脂を用いたりすることができる。 Among these, (wholly) aromatic polyester resins exhibiting thermotropic liquid crystal-like properties and having a melting point of 250° C. or higher, preferably 280° C. to 380° C., are preferably used. As such a (wholly) aromatic polyester resin, for example, a (wholly) aromatic polyester resin that exhibits liquid crystallinity when melted and synthesized from monomers such as aromatic diols, aromatic carboxylic acids, and hydroxycarboxylic acids is known. It is Typical examples include polycondensates of ethylene terephthalate and parahydroxybenzoic acid, polycondensates of phenol, phthalic acid and parahydroxybenzoic acid, and polycondensates of 2,6-hydroxynaphthoic acid and parahydroxybenzoic acid. Examples include polycondensates, but are not particularly limited thereto. In addition, the (totally) aromatic polyester resin can be used alone or in any combination and ratio of two or more. Depending on the required performance, a highly heat-resistant wholly aromatic polyester resin with a relatively high melting point or high heat distortion temperature is used, or an aromatic polyester resin with a relatively low melting point or low heat distortion temperature and excellent moldability is used. Resin can be used.

好ましい一態様としては、6-ヒドロキシ-2-ナフトエ酸及びその誘導体(以降において、単に「モノマー成分A」と称する場合がある。)を基本構造とし、パラヒドロキシ安息香酸、テレフタル酸、イソフタル酸、6-ナフタレンジカルボン酸、4,4'-ビフェノール、ビスフェノールA、ヒドロキノン、4,4-ジヒドロキシビフェノール、エチレンテレフタレート及びこれらの誘導体よりなる群から選択される1種以上をモノマー成分(以降において、単に「モノマー成分B」と称する場合がある。)として少なくとも有する(全)芳香族ポリエステル樹脂が挙げられる。このような(全)芳香族ポリエステル樹脂は、溶融状態で分子の直鎖が規則正しく並んで異方性溶融相を形成し、典型的にはサーモトロピック型の液晶様性質を示し、機械的特性、電気特性、高周波特性、耐熱性、吸湿性等において優れた基本性能を有するものとなる。 In a preferred embodiment, the basic structure is 6-hydroxy-2-naphthoic acid and its derivatives (hereinafter sometimes simply referred to as "monomer component A"), and parahydroxybenzoic acid, terephthalic acid, isophthalic acid, 6-naphthalenedicarboxylic acid, 4,4'-biphenol, bisphenol A, hydroquinone, 4,4-dihydroxybiphenol, ethylene terephthalate and one or more selected from the group consisting of derivatives thereof as a monomer component (hereinafter simply " may be referred to as "monomer component B"). Such a (totally) aromatic polyester resin forms an anisotropic melt phase in which linear chains of molecules are regularly arranged in a molten state, and typically exhibits thermotropic liquid crystal-like properties, mechanical properties, It has excellent basic performance in electrical properties, high frequency properties, heat resistance, hygroscopicity and the like.

また、上述した好ましい一態様の(全)芳香族ポリエステル樹脂は、必須単位としてモノマー成分A及びモノマー成分Bを有するものである限り、任意の構成を採ることができる。例えば2種以上のモノマー成分Aを有していても、3種以上のモノマー成分Aを有していてもよい。また、上述した好ましい一態様の(全)芳香族ポリエステル樹脂は、モノマー成分A及びモノマー成分B以外の、他のモノマー成分(以降において、単に「モノマー成分C」と称する場合がある。)を含有していてもよい。すなわち、上述した好ましい一態様の(全)芳香族ポリエステル樹脂は、モノマー成分A及びモノマー成分Bのみからなる2元系以上の重縮合体であっても、モノマー成分A、モノマー成分B及びモノマー成分Cからなる3元系以上のモノマー成分の重縮合体であってもよい。他のモノマー成分としては、上述したモノマー成分A及びモノマー成分B以外のもの、具体的には芳香族又は脂肪族ジヒドロキシ化合物及びその誘導体;芳香族又は脂肪族ジカルボン酸及びその誘導体;芳香族ヒドロキシカルボン酸及びその誘導体;香族ジアミン、芳香族ヒドロキシアミン又は芳香族アミノカルボン酸及びその誘導体;等が挙げられるが、これらに特に限定されない。他のモノマー成分は、1種を単独で、又は2種以上を任意の組み合わせ及び比率で用いることができる。 In addition, the (totally) aromatic polyester resin of one preferred embodiment described above can have any configuration as long as it has the monomer component A and the monomer component B as essential units. For example, it may have two or more monomer components A, or three or more monomer components A. In addition, the (totally) aromatic polyester resin of one preferred embodiment described above contains other monomer components (hereinafter sometimes simply referred to as "monomer component C") other than the monomer component A and the monomer component B. You may have That is, the (totally) aromatic polyester resin of one preferred embodiment described above is a binary or higher polycondensate consisting only of the monomer component A and the monomer component B, and the monomer component A, the monomer component B, and the monomer component Polycondensates of ternary or higher monomer components consisting of C may also be used. Other monomer components include those other than the monomer component A and monomer component B described above, specifically aromatic or aliphatic dihydroxy compounds and derivatives thereof; aromatic or aliphatic dicarboxylic acids and derivatives thereof; acids and their derivatives; aromatic diamines, aromatic hydroxylamines or aromatic aminocarboxylic acids and their derivatives; and the like, but are not particularly limited thereto. Other monomer components can be used singly or in any combination and ratio of two or more.

なお、本明細書において、「誘導体」とは、上述したモノマー成分の一部に、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)、炭素数1~5のアルキル基(例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基等)、フェニル基等のアリール基、水酸基、炭素数1~5のアルコキシ基(例えばメトキシ基、エトキシ基等)、カルボニル基、-O-、-S-、-CH2-等の修飾基が導入されているもの(以降において、「置換基を有するモノマー成分」と称する場合がある。)を意味する。ここで、「誘導体」は、上述した修飾基を有していてもよいモノマー成分A及びBのアシル化物、エステル誘導体、又は酸ハロゲン化物等のエステル形成性モノマーであってもよい。 In the present specification, the term "derivative" means that a part of the above-described monomer components includes a halogen atom (eg, fluorine atom, chlorine atom, bromine atom, iodine atom), an alkyl group having 1 to 5 carbon atoms (eg, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, s-butyl group, t-butyl group, etc.), aryl group such as phenyl group, hydroxyl group, alkoxy group having 1 to 5 carbon atoms (for example, methoxy group, ethoxy group, etc.), carbonyl group, -O-, -S-, -CH 2 -, etc. (hereinafter referred to as "monomer component having a substituent" There is.) means. Here, the "derivative" may be an ester-forming monomer such as an acylated product, an ester derivative, or an acid halide of the monomer components A and B which may have a modifying group as described above.

特に好ましい一態様としては、パラヒドロキシ安息香酸及びその誘導体と6-ヒドロキシ-2-ナフトエ酸及びその誘導体との二元系重縮合体;パラヒドロキシ安息香酸及びその誘導体と6-ヒドロキシ-2-ナフトエ酸及びその誘導体とモノマー成分Cとの三元系以上の重縮合体;パラヒドロキシ安息香酸及びその誘導体と6-ヒドロキシ-2-ナフトエ酸及びその誘導体とテレフタル酸、イソフタル酸、6-ナフタレンジカルボン酸、4,4'-ビフェノール、ビスフェノールA、ヒドロキノン、4,4-ジヒドロキシビフェノール、エチレンテレフタレート及びこれらの誘導体よりなる群から選択される1種以上とからなる三元系以上の重縮合体;パラヒドロキシ安息香酸及びその誘導体と6-ヒドロキシ-2-ナフトエ酸及びその誘導体とテレフタル酸、イソフタル酸、6-ナフタレンジカルボン酸、4,4'-ビフェノール、ビスフェノールA、ヒドロキノン、4,4-ジヒドロキシビフェノール、エチレンテレフタレート及びこれらの誘導体よりなる群から選択される1種以上と1種以上のモノマー成分Cとからなる四元系以上の重縮合体;が挙げられる。これらは、例えばパラヒドロキシ安息香酸のホモポリマー等に対して比較的に低融点を有するものとして得ることができ、そのため、これらを用いた熱可塑性液晶ポリマーは、被着体への熱圧着時の成形加工性に優れたものとなる。 A particularly preferred embodiment includes binary polycondensates of parahydroxybenzoic acid and its derivatives and 6-hydroxy-2-naphthoic acid and its derivatives; parahydroxybenzoic acid and its derivatives and 6-hydroxy-2-naphthoate Ternary or higher polycondensates of acids and derivatives thereof and monomer component C; , 4,4′-biphenol, bisphenol A, hydroquinone, 4,4-dihydroxybiphenol, ethylene terephthalate and derivatives thereof; Benzoic acid and its derivatives, 6-hydroxy-2-naphthoic acid and its derivatives, terephthalic acid, isophthalic acid, 6-naphthalenedicarboxylic acid, 4,4'-biphenol, bisphenol A, hydroquinone, 4,4-dihydroxybiphenol, ethylene quaternary or higher polycondensates consisting of one or more monomer components C and one or more selected from the group consisting of terephthalate and derivatives thereof; These can be obtained, for example, as those having a relatively low melting point compared to homopolymers of parahydroxybenzoic acid, etc. Therefore, the thermoplastic liquid crystal polymer using these can be used during thermocompression bonding to an adherend. It becomes excellent in moldability.

(全)芳香族ポリエステル樹脂の融点を低くし、延伸処理用LCP押出フィルムないしはその延伸体の被着体への熱圧着時の成形加工性を高め、或いは延伸処理用LCP押出フィルムないしはその延伸体を金属箔に熱圧着した際に高いピール強度を得る等の観点から、(全)芳香族ポリエステル樹脂に対するモノマー成分Aのモル比換算の含有割合は、10モル%以上90モル%以下が好ましく、30モル%以上85モル%以下がより好ましく、50モル%以上80モル%以下がさらに好ましい。同様に、(全)芳香族ポリエステル樹脂に対するモノマー成分Bのモル比換算の含有割合は、10モル%以上90モル%以下が好ましく、15モル%以上70モル%以下がより好ましく、20モル%以上50モル%以下がさらに好ましい。また、(全)芳香族ポリエステル樹脂に含まれていてもよいモノマー成分Cの含有割合は、モル比換算で10モル%以下が好ましく、より好ましくは8モル%以下、さらに好ましくは5モル%以下、特に好ましくは3モル%以下である。 The melting point of the (totally) aromatic polyester resin is lowered, the LCP extruded film for stretching treatment or its stretched body is enhanced in moldability at the time of thermocompression bonding to an adherend, or the LCP extruded film for stretching treatment or its stretched body is improved. From the viewpoint of obtaining a high peel strength when the is thermocompression bonded to a metal foil, the content ratio of the monomer component A in terms of the molar ratio with respect to the (totally) aromatic polyester resin is preferably 10 mol% or more and 90 mol% or less. 30 mol % or more and 85 mol % or less is more preferable, and 50 mol % or more and 80 mol % or less is even more preferable. Similarly, the content ratio of the monomer component B in terms of molar ratio to the (total) aromatic polyester resin is preferably 10 mol% or more and 90 mol% or less, more preferably 15 mol% or more and 70 mol% or less, and 20 mol% or more. 50 mol % or less is more preferable. In addition, the content of the monomer component C that may be contained in the (total) aromatic polyester resin is preferably 10 mol% or less, more preferably 8 mol% or less, still more preferably 5 mol% or less in terms of molar ratio. , and particularly preferably not more than 3 mol %.

なお、(全)芳香族ポリエステル樹脂の合成方法は、公知の方法を適用することができ、特に限定されない。上述したモノマー成分によるエステル結合を形成させる公知の重縮合法、例えば溶融重合、溶融アシドリシス法、スラリー重合法等を適用することができる。これらの重合法を適用する際、常法にしたがい、アシル化ないしはアセチル化工程を経てもよい。 The method for synthesizing the (totally) aromatic polyester resin is not particularly limited and a known method can be applied. A known polycondensation method for forming an ester bond by the monomer components described above, such as melt polymerization, melt acidolysis, slurry polymerization, or the like, can be applied. When applying these polymerization methods, an acylation or acetylation step may be performed according to a conventional method.

延伸処理用LCP押出フィルムは、無機フィラーをさらに含有していてもよい。無機フィラーを含有することで、線膨張係数が低減された延伸処理用LCP押出フィルムを実現でき、具体的には、MD方向、TD方向、及びZD方向(Z-axis Direction;フィルム厚み方向)の線膨張係数の異方性が低減された延伸処理用LCP押出フィルムが得られ易い。このような延伸処理用LCP押出フィルムは、例えば多層積層が要求されるリジッド基板用途等において特に有用となる。 The LCP extruded film for stretching treatment may further contain an inorganic filler. By containing an inorganic filler, it is possible to realize an LCP extruded film for stretching treatment with a reduced coefficient of linear expansion. It is easy to obtain an LCP extruded film for stretching treatment with reduced anisotropy of the coefficient of linear expansion. Such an LCP extruded film for stretching treatment is particularly useful for applications such as rigid substrates that require multi-layer lamination.

無機フィラーは、当業界で公知のものを用いることができ、その種類は特に限定されない。例えばカオリン、焼成カオリン、焼成クレー、未焼成クレー、シリカ(例えば天然シリカ、溶融シリカ、アモルファスシリカ、中空シリカ、湿式シリカ、合成シリカ、アエロジル等)、アルミニウム化合物(例えばベーマイト、水酸化アルミニウム、アルミナ、ハイドロタルサイト、ホウ酸アルミニウム、窒化アルミニウム等)、マグネシウム化合物(例えば、メタケイ酸アルミン酸マグネシウム、炭酸マグネシウム、酸化マグネシウム、水酸化マグネシウム等)、カルシウム化合物(例えば炭酸カルシウム、水酸化カルシウム、硫酸カルシウム、亜硫酸カルシウム、ホウ酸カルシウム等)、モリブデン化合物(例えば酸化モリブデン、モリブデン酸亜鉛等)、タルク(例えば天然タルク、焼成タルク等)、マイカ(雲母)、酸化チタン、酸化亜鉛、酸化ジルコニウム、硫酸バリウム、ホウ酸亜鉛、メタホウ酸バリウム、ホウ酸ナトリウム、窒化ホウ素、凝集窒化ホウ素、窒化ケイ素、窒化炭素、チタン酸ストロンチウム、チタン酸バリウム、錫酸亜鉛等の錫酸塩等が挙げられるが、これらに特に限定されない。これらは1種を単独で用いることができ、また2種以上を組み合わせて用いることもできる。これらの中でも、誘電特性等の観点から、シリカが好ましい。 Any inorganic filler known in the art can be used, and the type is not particularly limited. For example, kaolin, calcined kaolin, calcined clay, uncalcined clay, silica (e.g. natural silica, fused silica, amorphous silica, hollow silica, wet silica, synthetic silica, aerosil, etc.), aluminum compounds (e.g. boehmite, aluminum hydroxide, alumina, hydrotalcite, aluminum borate, aluminum nitride, etc.), magnesium compounds (e.g., magnesium aluminometasilicate, magnesium carbonate, magnesium oxide, magnesium hydroxide, etc.), calcium compounds (e.g., calcium carbonate, calcium hydroxide, calcium sulfate, calcium sulfite, calcium borate, etc.), molybdenum compounds (e.g., molybdenum oxide, zinc molybdate, etc.), talc (e.g., natural talc, calcined talc, etc.), mica (mica), titanium oxide, zinc oxide, zirconium oxide, barium sulfate, stannates such as zinc borate, barium metaborate, sodium borate, boron nitride, aggregated boron nitride, silicon nitride, carbon nitride, strontium titanate, barium titanate, and zinc stannate; Not limited. These can be used individually by 1 type, and can also be used in combination of 2 or more type. Among these, silica is preferable from the viewpoint of dielectric properties and the like.

また、ここで用いる無機フィラーは、当業界で公知の表面処理が施されたものであってもよい。表面処理により、耐湿性、接着強度、分散性等を向上させることができる。表面処理剤としては、シランカップリング剤、チタネートカップリング剤、スルホン酸エステル、カルボン酸エステル、リン酸エステル等が挙げられるが、これらに特に限定されない。 Moreover, the inorganic filler used here may be subjected to a surface treatment known in the art. Moisture resistance, adhesive strength, dispersibility, etc. can be improved by surface treatment. Examples of surface treatment agents include silane coupling agents, titanate coupling agents, sulfonic acid esters, carboxylic acid esters, and phosphoric acid esters, but are not particularly limited thereto.

無機フィラーのメディアン径(d50)は、要求性能に応じて適宜設定でき、特に限定されない。調製時の混練性や取扱性、線膨張係数の低減効果等の観点から、無機フィラーのd50は、0.01μm以上50μm以下が好ましく、より好ましくは0.03μm以上50μm以下、さらに好ましくは0.1μm以上50μm以下である。なお、本明細書において、無機フィラーのメディアン径(d50)は、レーザー回折/散乱式の粒度分布測定装置(堀場製作所社製LA-500)を用いて、レーザー回折・散乱法により体積基準で測定される値を意味する。 The median diameter (d50) of the inorganic filler can be appropriately set according to the required performance, and is not particularly limited. From the viewpoints of kneadability and handleability during preparation, effect of reducing the linear expansion coefficient, etc., the d50 of the inorganic filler is preferably 0.01 μm or more and 50 μm or less, more preferably 0.03 μm or more and 50 μm or less, further preferably 0.01 μm or more and 50 μm or less. It is 1 μm or more and 50 μm or less. In this specification, the median diameter (d50) of the inorganic filler is measured on a volume basis by a laser diffraction/scattering method using a laser diffraction/scattering particle size distribution analyzer (LA-500 manufactured by Horiba, Ltd.). value.

無機フィラーの含有量は、他の必須成分及び任意成分との配合バランスを考慮し、要求性能に応じて適宜設定でき、特に限定されない。調製時の混練性や取扱性、線膨張係数の低減効果等の観点から、延伸処理用LCP押出フィルムの総量に対する固形分換算で、無機フィラーの含有量は、合計で1質量%以上45質量%以下が好ましく、より好ましくは合計で3質量%以上40質量%以下、さらに好ましくは合計で5質量%以上35質量%以下である。 The content of the inorganic filler is not particularly limited, and can be appropriately set according to the required performance in consideration of the blending balance with other essential components and optional components. From the viewpoint of kneadability and handleability during preparation, the effect of reducing the coefficient of linear expansion, etc., the total content of the inorganic filler is 1% by mass or more and 45% by mass in terms of solid content with respect to the total amount of the LCP extruded film for stretching treatment. The following are preferable, more preferably 3% by mass or more and 40% by mass or less in total, and still more preferably 5% by mass or more and 35% by mass or less in total.

延伸処理用LCP押出フィルムは、本発明の効果を過度に損なわない範囲で、上述した熱可塑性液晶ポリマー以外の樹脂成分(以降において、単に「他の樹脂成分」と称する場合がある。)、例えば熱硬化性樹脂や熱可塑性樹脂等を含有していてもよい。また、延伸処理用LCP押出フィルムは、本発明の効果を過度に損なわない範囲で、当業界で公知の添加剤、例えば炭素数10~25の高級脂肪酸、高級脂肪酸エステル、高級脂肪酸アミド、高級脂肪酸金属塩、ポリシロキサン、フッ素樹脂等の離型改良剤;染料、顔料等の着色剤;有機充填剤;酸化防止剤;熱安定剤;光安定剤;紫外線吸収剤;難燃剤;帯電防止剤;界面活性剤;防錆剤;消泡剤;蛍光剤等を含んでいてもよい。これらの添加剤は、それぞれ1種を単独で、又は2種以上を組み合わせて用いることができる。これらの添加剤は、延伸処理用LCP押出フィルムの成形時に調製する溶融樹脂組成物に含ませることができる。これらの樹脂成分や添加剤の含有量は、特に限定されないが、成形加工性や熱安定等の観点から、延伸処理用LCP押出フィルムの総量に対して、それぞれ0.01~10質量%が好ましく、より好ましくはそれぞれ0.1~7質量%、さらに好ましくはそれぞれ0.5~5質量%である。 The LCP extruded film for stretching treatment includes resin components other than the above-described thermoplastic liquid crystal polymer (hereinafter sometimes simply referred to as "other resin components"), such as A thermosetting resin, a thermoplastic resin, or the like may be contained. In addition, the LCP extruded film for stretching treatment may contain additives known in the art, such as higher fatty acids having 10 to 25 carbon atoms, higher fatty acid esters, higher fatty acid amides, and higher fatty acids, as long as the effects of the present invention are not excessively impaired. Release improvers such as metal salts, polysiloxanes, and fluorine resins; coloring agents such as dyes and pigments; organic fillers; antioxidants; heat stabilizers; light stabilizers; Surfactants; antirust agents; antifoaming agents; fluorescent agents and the like may be included. These additives can be used singly or in combination of two or more. These additives can be included in the molten resin composition prepared during the molding of the LCP extruded film for stretching. The content of these resin components and additives is not particularly limited, but from the viewpoint of molding processability, thermal stability, etc., each is preferably 0.01 to 10% by mass relative to the total amount of the LCP extruded film for stretching treatment. , more preferably 0.1 to 7 mass % each, and still more preferably 0.5 to 5 mass % each.

本実施形態の延伸処理用LCP押出フィルムは、所定の引張特性を有するため、従来技術とは異なり、少なくともTD方向への良好な延伸適性を有し延伸処理時に均一延伸可能である。具体的には、本実施形態の延伸処理用LCP押出フィルムは、恒温槽引張試験(JIS K7161-1:2014準拠、200℃、引張速度200mm/min)で測定される応力-ひずみ曲線において、前記延伸処理用LCP押出フィルムのTD方向の降伏点強度X(MPa)及び破壊点強度Y(MPa)が、下記式(1)を満たす。
0.75≦破壊点強度Y/降伏点強度X≦1.50・・・(1)
Since the LCP extruded film for stretching treatment of the present embodiment has predetermined tensile properties, unlike the prior art, it has good stretching aptitude at least in the TD direction and can be uniformly stretched during the stretching treatment. Specifically, the LCP extruded film for stretching treatment of the present embodiment has a stress-strain curve measured by a constant temperature bath tensile test (JIS K7161-1: 2014 compliant, 200 ° C., tensile speed 200 mm / min). Yield point strength X (MPa) and breaking point strength Y (MPa) in the TD direction of the LCP extruded film for stretching satisfy the following formula (1).
0.75≦strength at breaking point Y/strength at yield point X≦1.50 (1)

ここで、JIS K7161-1:2014に準拠して行われる引張試験は、試験片が破壊に至るまで、試験片を主軸に沿って一定速度で(試験片の断面に対して垂直方向に一定速度で)引っ張る試験であり、試験片にかかる力及び伸びを測定するものである。降伏点強度X(MPa)は、上記引張試験で得られる応力-ひずみ曲線の降伏領域の中で最も高い点を意味し、この値が高いほど、材料を変形させるために強い力が必要である。また、破壊点強度Y(MPa)は、上記引張試験で試験片が破壊する直前の応力を意味し、この値が高いほど、材料を破壊するために強い力が必要である。一方、破壊点強度Y/降伏点強度Xは、引張試験で得られる応力-がひずみ曲線において、破壊点強度Yと降伏点強度Xの強度比を意味する。図1及び2は、0.75≦Y/X≦1.50を満たす本発明の延伸処理用LCP押出フィルムのTD方向の応力-ひずみ曲線の一例を示すグラフである。また、図3は、Y/X<0.75に相当する従来技術の延伸処理用LCP押出フィルムのTD方向の応力-ひずみ曲線の一例を示すグラフである。これら図1~図3の対比から理解されるように、本発明の延伸処理用LCP押出フィルムは、従来技術に対して、破壊点強度Y/降伏点強度Xの強度比が比較的に大きいため、一定荷重で均一な延伸性を有している。また、降伏点強度Xから破壊点強度Yの変位量(横軸)は、延伸倍率と相関しており、この変位量が大きいことは、高い延伸倍率の適用が可能であることを示している。すなわち、上記式(1)を満たす本実施形態の延伸処理用LCP押出フィルムは、従来技術とは異なり、比較的に均一延伸が可能であり、また比較的に高延伸倍率が適用可能であることが理解される。 Here, in the tensile test performed in accordance with JIS K7161-1:2014, the test piece is held at a constant speed along the main axis (a constant speed in the direction perpendicular to the cross section of the test piece) until the test piece breaks. d) is a tensile test that measures the force and elongation applied to a specimen. Yield point strength X (MPa) means the highest point in the yield region of the stress-strain curve obtained in the above tensile test, and the higher this value, the stronger the force required to deform the material. . The breaking point strength Y (MPa) means the stress immediately before the test piece breaks in the tensile test, and the higher this value, the stronger force is required to break the material. On the other hand, the breaking point strength Y/yield point strength X means the strength ratio of the breaking point strength Y and the yield point strength X in the stress-strain curve obtained in the tensile test. 1 and 2 are graphs showing an example of stress-strain curves in the TD direction of the LCP extruded film for stretching treatment of the present invention satisfying 0.75≦Y/X≦1.50. FIG. 3 is a graph showing an example of a stress-strain curve in the TD direction of a prior art LCP extruded film for stretch processing corresponding to Y/X<0.75. As can be understood from the comparison of FIGS. 1 to 3, the LCP extruded film for stretching treatment of the present invention has a relatively large strength ratio of breaking point strength Y/yield point strength X compared to the conventional technology. , and has uniform extensibility at a constant load. In addition, the amount of displacement from the yield point strength X to the breaking point strength Y (horizontal axis) correlates with the draw ratio, and a large displacement indicates that a high draw ratio can be applied. . That is, the LCP extruded film for stretching treatment of the present embodiment, which satisfies the above formula (1), can be stretched relatively uniformly and can be stretched at a relatively high draw ratio, unlike the conventional technique. is understood.

TD方向の破壊点強度Y/降伏点強度Xの値は、特に限定されないが、好ましくは0.80以上1.50以下であり、より好ましくは0.85以上1.50以下であり、さらに好ましくは0.90以上1.35以下、特に好ましくは0.90以上1.20以下である。この値が大きい程、TD方向への均一延伸性が高められる傾向にある。なお、本明細書において、破壊点強度Y/降伏点強度Xの値は、測定精度を担保する観点から、後述する実施例に記載の条件下で引張試験を5回行ったときの平均値とする。 Although the value of breaking point strength Y in the TD direction/yield point strength X is not particularly limited, it is preferably 0.80 or more and 1.50 or less, more preferably 0.85 or more and 1.50 or less, and still more preferably. is 0.90 or more and 1.35 or less, particularly preferably 0.90 or more and 1.20 or less. As this value increases, the uniform drawability in the TD direction tends to be enhanced. In this specification, the value of breaking point strength Y/yield point strength X is the average value when the tensile test is performed five times under the conditions described in the examples described later, from the viewpoint of ensuring the measurement accuracy. do.

なお、MD方向の破壊点強度Y/降伏点強度Xの値は、特に限定されない。MD方向への均一延伸性が求められる場合には、MD方向の破壊点強度Y/降伏点強度Xの値は、0.75以上1.50以下が好ましく、より好ましくは0.80以上1.50以下であり、さらに好ましくは0.85以上1.50以下であり、特に好ましくは0.90以上1.50以下である。この値が大きい程、MD方向への均一延伸性が高められる傾向にある。 In addition, the value of breaking point strength Y/yield point strength X in the MD direction is not particularly limited. When uniform stretchability in the MD direction is required, the value of breaking point strength Y/yield point strength X in the MD direction is preferably 0.75 or more and 1.50 or less, more preferably 0.80 or more and 1.50. It is 50 or less, more preferably 0.85 or more and 1.50 or less, and particularly preferably 0.90 or more and 1.50 or less. As this value increases, the uniform stretchability in the MD direction tends to be enhanced.

延伸処理用LCP押出フィルムとしては、Tダイ押出フィルム等の溶融押出フィルムが好ましく用いられる。また、延伸処理用LCP押出フィルムとしては、熱可塑性樹脂層、熱可塑性液晶ポリマー層、及び熱可塑性樹脂層が少なくともこの順に配列された積層構造を有する三層共押出フィルムの中間層(芯層)である熱可塑性液晶ポリマー層も好ましく用いられる。この場合、三層共押出フィルムの両外層の熱可塑性樹脂層を除去することで、単層の熱可塑性液晶ポリマーフィルム(延伸処理用LCP押出フィルム)として用いることができる。熱可塑性液晶ポリマーの押出フィルムは、熱可塑性液晶ポリマーの繊維からなる織布や不織布に比して、低コストで均質なものが製造可能である。 As the LCP extruded film for stretching treatment, a melt extruded film such as a T-die extruded film is preferably used. Further, as the LCP extruded film for stretching treatment, an intermediate layer (core layer) of a three-layer coextruded film having a laminated structure in which at least a thermoplastic resin layer, a thermoplastic liquid crystal polymer layer, and a thermoplastic resin layer are arranged in this order. A thermoplastic liquid crystal polymer layer is also preferably used. In this case, by removing the thermoplastic resin layers of both outer layers of the three-layer coextruded film, it can be used as a single layer thermoplastic liquid crystal polymer film (LCP extruded film for stretching treatment). An extruded film of a thermoplastic liquid crystal polymer can be manufactured at a low cost and in a homogeneous manner as compared with a woven fabric or a nonwoven fabric made of fibers of a thermoplastic liquid crystal polymer.

延伸処理用LCP押出フィルムの厚みは、要求性に応じて適宜設定でき、特に限定されない。押出成形時の取扱性や生産性等を考慮すると、15μm以上300μm以下が好ましく、より好ましくは18μm以上250μm以下、さらに好ましくは20μm以上200μm以下である。 The thickness of the LCP extruded film for stretching treatment can be appropriately set according to requirements, and is not particularly limited. Considering the handleability and productivity during extrusion molding, the thickness is preferably 15 μm or more and 300 μm or less, more preferably 18 μm or more and 250 μm or less, and still more preferably 20 μm or more and 200 μm or less.

一方、本実施形態の延伸処理用LCP押出フィルムは、MD方向及びTD方向の線膨張係数で表される熱可塑性液晶ポリマーの分子配向が十分に低減されていることが好ましい。先にも述べたとおり、従来技術の特許文献1及び2に記載のLCP押出フィルムは、三層共押出時に両外層の熱可塑性樹脂層に保護されることによって熱可塑性液晶ポリマーの分子配向が若干緩和され、これにより、得られる熱可塑性液晶ポリマーフィルムのMD方向及びTD方向の強度の異方性が緩和されていることが伺える。とは言うものの、実際には、特許文献1及び2に記載のLCP押出フィルムは、MD方向の線膨張係数は-20ppm/K程度が安定して得られているのに対して、TD方向の線膨張係数は55ppmを超えており、ときには100ppm/K程度に達するものがある。このことからも明らかなように、従来技術の特許文献1及び2に記載のLCP押出フィルムは、フィルム全体としては、熱可塑性液晶ポリマーの分子配向が依然として大きく残っており、或いは内部歪み等が大きく残っていることが容易に理解される。 On the other hand, in the LCP extruded film for stretching treatment of the present embodiment, it is preferable that the molecular orientation of the thermoplastic liquid crystal polymer represented by the linear expansion coefficients in the MD direction and the TD direction is sufficiently reduced. As mentioned above, the LCP extruded films described in Patent Documents 1 and 2 of the prior art are protected by the thermoplastic resin layers of both outer layers during coextrusion of the three layers, so that the molecular orientation of the thermoplastic liquid crystal polymer is slightly oriented. It can be seen that the strength anisotropy in the MD and TD directions of the resulting thermoplastic liquid crystal polymer film is relaxed. However, in fact, the LCP extruded films described in Patent Documents 1 and 2 stably have a linear expansion coefficient of about -20 ppm / K in the MD direction, whereas in the TD direction The coefficient of linear expansion exceeds 55 ppm, and sometimes reaches about 100 ppm/K. As is clear from this, in the LCP extruded films described in Patent Documents 1 and 2 of the prior art, the molecular orientation of the thermoplastic liquid crystal polymer still remains large as a whole film, or the internal strain etc. is large. It is easy to see what remains.

本実施形態の延伸処理用LCP押出フィルムは、MD方向及びTD方向の線膨張係数(CTE,α2,23~200℃)は-30~55ppm/Kの範囲内にあることが好ましい。かかる範囲内に線膨張係数がある延伸処理用LCP押出フィルムは、内部歪み等が低減された状態にあり、そうでないものと比して、寸法変化率の異方性が小さく、また、寸法変化率の絶対値が十分に小さい延伸処理用LCP押出フィルムとなり得る。延伸処理用LCP押出フィルムのMD方向の線膨張係数(CTE,α2,23~200℃)は、金属箔への密着性を高める等の観点から、-30~10ppm/Kの範囲内にあることが好ましく、-25~5ppm/Kの範囲内にあることがより好ましく、-20~0ppm/Kの範囲内にあることがさらに好ましい。また、延伸処理用LCP押出フィルムのTD方向の線膨張係数(CTE,α2,23~200℃)は、金属箔への密着性を高める等の観点から、0~55ppm/Kの範囲内にあることが好ましく、5~55ppm/Kの範囲内にあることがより好ましく、5~50ppm/Kの範囲内にあることがさらに好ましい。なお、本明細書において、線膨張係数(CTE,α2,23~200℃)は、JIS K7197に準拠したTMA法で測定される温度区間23~200℃での値を意味する。また、その他の詳細な測定条件は、後述する実施例に記載した条件にしたがうものとする。 The LCP extruded film for stretching treatment of the present embodiment preferably has a coefficient of linear expansion (CTE, α2, 23 to 200° C.) in the MD and TD directions within the range of −30 to 55 ppm/K. The LCP extruded film for stretching, which has a coefficient of linear expansion within such a range, is in a state in which internal strain and the like are reduced, and has a smaller anisotropy in the rate of dimensional change than the film that does not. LCP extruded films for stretch processing with a sufficiently small absolute value of the modulus can be obtained. The coefficient of linear expansion in the MD direction of the LCP extruded film for stretching (CTE, α2, 23-200°C) should be in the range of -30-10 ppm/K from the viewpoint of enhancing the adhesion to the metal foil. is preferably in the range of -25 to 5 ppm/K, and more preferably in the range of -20 to 0 ppm/K. In addition, the coefficient of linear expansion in the TD direction (CTE, α2, 23-200° C.) of the LCP extruded film for stretching treatment is in the range of 0-55 ppm/K from the viewpoint of enhancing the adhesion to the metal foil. preferably in the range of 5 to 55 ppm/K, even more preferably in the range of 5 to 50 ppm/K. In this specification, the coefficient of linear expansion (CTE, α2, 23-200°C) means the value in the temperature range of 23-200°C measured by the TMA method according to JIS K7197. Further, other detailed measurement conditions are in accordance with the conditions described in Examples described later.

一方、本実施形態の延伸処理用LCP押出フィルムの誘電特性は、所望性能に応じて適宜設定でき、特に限定されない。より高い誘電特性を得る観点から、比誘電率εr(36GHz)は、3.0以上3.7以下が好ましく、より好ましくは3.0~3.5である。同様に、誘電正接tanδ(36GHz)は0.0010以上0.0050以下が好ましく、より好ましくは0.0010以上0.0045以下である。なお、本明細書において、比誘電率εr(36GHz)及び誘電正接tanδ(36GHz)は、JIS K6471に準拠した空洞共振器接動法で測定される36GHzにおける値を意味する。また、その他の詳細な測定条件は、後述する実施例に記載した条件にしたがうものとする。 On the other hand, the dielectric properties of the LCP extruded film for stretching treatment of the present embodiment can be appropriately set according to the desired performance, and are not particularly limited. From the viewpoint of obtaining higher dielectric properties, the dielectric constant ε r (36 GHz) is preferably 3.0 or more and 3.7 or less, more preferably 3.0 to 3.5. Similarly, the dielectric loss tangent tan δ (36 GHz) is preferably 0.0010 or more and 0.0050 or less, more preferably 0.0010 or more and 0.0045 or less. In the present specification, relative permittivity ε r (36 GHz) and dielectric loss tangent tan δ (36 GHz) mean values at 36 GHz measured by the cavity resonator contact motion method conforming to JIS K6471. Further, other detailed measurement conditions are in accordance with the conditions described in Examples described later.

(延伸処理用LCP押出フィルムの製造方法)
本実施形態の延伸処理用LCP押出フィルムは、上述した熱可塑性液晶ポリマー、及び必要に応じて無機フィラーや他の樹脂成分等の任意成分を含む樹脂組成物を、所定厚みに押出成形することにより得ることができる。押出法は、公知の各種方法を適用することができ、その種類は特に限定されない。例えばTダイ法やインフレーション法;例えばマルチマニホールド方式の共押出法やフィードブロック方式の共押出法;例えば二層共押出法や三層共押出法等の多層共押出法;を任意に組み合わせて適用することができる。
(Manufacturing method of LCP extruded film for stretching treatment)
The LCP extruded film for stretching treatment of the present embodiment is obtained by extruding a resin composition containing the above-mentioned thermoplastic liquid crystal polymer and optional components such as inorganic fillers and other resin components as necessary to a predetermined thickness. Obtainable. As the extrusion method, various known methods can be applied, and the type is not particularly limited. For example, T-die method or inflation method; for example, multi-manifold type co-extrusion method or feed block type co-extrusion method; for example, multilayer co-extrusion method such as two-layer co-extrusion method or three-layer co-extrusion method; can do.

これらの中でも、フィルム表面(フィルム表面S1)及びフィルム内部(フィルム表面S2)における熱可塑性液晶ポリマーの分子配向の制御の容易性の観点から、好ましい一態様としては、上述した樹脂組成物を、Tダイを用いた押出成形法(以降において、単に「Tダイ押出法」という場合がある。)によりTダイから押し出してフィルム状に成形し、その後に必要に応じて冷却処理、圧着処理、加圧加熱処理等をして、所定の延伸処理用LCP押出フィルムを得る方法が挙げられる。具体的には、熱可塑性樹脂を含む第一表層用の樹脂組成物Aを、熱可塑性液晶ポリマーを含む中間層用の樹脂組成物Bを、熱可塑性樹脂を含む第二表層の樹脂組成物Cを、それぞれ準備しておき、押出機の共押出ダイからこれらを共押出して、三層構成の共押出溶融物を押出して、中間層の熱可塑性液晶ポリマー層として延伸処理用LCP押出フィルムを成形する共押出法が好ましい。このような共押出成形によれば、両外層の熱可塑性樹脂層に保護されることにより、中間層の熱可塑性液晶ポリマー層における熱可塑性液晶ポリマーの分子配向が緩和される。以下、本実施形態の延伸処理用LCP押出フィルムの製造方法の好ましい一態様について詳述する。 Among these, from the viewpoint of ease of control of the molecular orientation of the thermoplastic liquid crystal polymer on the film surface (film surface S1) and inside the film (film surface S2), a preferable embodiment is the resin composition described above, Extruded from a T-die by an extrusion molding method using a die (hereinafter sometimes simply referred to as "T-die extrusion method") to form a film, and then cooled, crimped, and pressurized as necessary. A method of obtaining a predetermined LCP extruded film for stretching treatment by heat treatment or the like can be mentioned. Specifically, the first surface layer resin composition A containing a thermoplastic resin, the intermediate layer resin composition B containing a thermoplastic liquid crystal polymer, the second surface layer resin composition C containing a thermoplastic resin are prepared respectively, and these are coextruded from the coextrusion die of the extruder to extrude the coextruded melt of the three-layer structure to form an LCP extruded film for stretching treatment as the thermoplastic liquid crystal polymer layer of the intermediate layer. A coextrusion method is preferred. According to such co-extrusion molding, the thermoplastic liquid crystal polymer layer of the intermediate layer is protected by the thermoplastic resin layers of both outer layers, so that the molecular orientation of the thermoplastic liquid crystal polymer in the thermoplastic liquid crystal polymer layer of the intermediate layer is relaxed. A preferred aspect of the method for producing an LCP extruded film for stretching according to the present embodiment will be described in detail below.

図4~図6は、上述した本実施形態の延伸処理用LCP押出フィルムの製造方法の好ましい一態様を示す図である。ここでは、上述した熱可塑性液晶ポリマー、及び必要に応じて無機フィラーや他の樹脂成分等の任意成分を含む上記の樹脂組成物Bを、押出機のTダイからフィルム状に溶融押出する。このとき、上記のフィルム状の溶融押出物の両面に熱可塑性樹脂を含む樹脂組成物A,Cを共押出することで、熱可塑性樹脂を含む第一外層(剥離層)、熱可塑性液晶ポリマーを含む中間層(LCP層)、及び熱可塑性樹脂を含む第二外層(剥離層)を有する、所定厚みの共押出溶融物(3層積層フィルム)を作製する。この共押出溶融物は、引取ロールで引き出され、冷却ロール及び圧着ロールへと送られる。その後、第一外層及び第二外層を中間層から剥離して、両外層の熱可塑性樹脂層と、中間層の熱可塑性液晶ポリマー層(延伸処理用LCP押出フィルム)とが巻取ロールにそれぞれ巻き取られる。 4 to 6 are diagrams showing a preferred aspect of the method for producing the LCP extruded film for stretching according to the present embodiment described above. Here, the resin composition B containing the thermoplastic liquid crystal polymer described above and optional components such as an inorganic filler and other resin components as necessary is melt-extruded into a film from a T-die of an extruder. At this time, by co-extrusion of the resin compositions A and C containing a thermoplastic resin on both sides of the film-shaped melt extrudate, a first outer layer (peeling layer) containing a thermoplastic resin and a thermoplastic liquid crystal polymer are formed. A coextruded melt (three-layer laminate film) of a predetermined thickness is prepared, having an intermediate layer (LCP layer) containing a thermoplastic resin and a second outer layer (release layer) containing a thermoplastic resin. The coextrusion melt is withdrawn by a take-off roll and sent to a chill roll and a pressure roll. After that, the first outer layer and the second outer layer are peeled off from the intermediate layer, and the thermoplastic resin layers of both outer layers and the thermoplastic liquid crystal polymer layer of the intermediate layer (LCP extruded film for stretching treatment) are respectively wound on winding rolls. be taken.

上記の熱可塑性液晶ポリマーを含む樹脂組成物Bの調製は、常法にしたがって行えばよく、特に限定されない。上述した各成分を、例えば混練、溶融混錬、造粒、押出成形、プレス又は射出成形等の公知の方法によって製造及び加工することができる。なお、溶融混練を行う際には、一般に使用されている一軸式又は二軸式の押出機や各種ニーダー等の混練装置を用いることができる。これらの溶融混練装置に各成分を供給するに際し、液晶ポリマー、その他の樹脂成分、無機フィラー、添加剤等を予めタンブラーやヘンシェルミキサー等の混合装置を用いてドライブレンドしてもよい。溶融混練の際、混練装置のシリンダー設定温度は、適宜設定すればよく特に限定されないが、一般的に液晶ポリマーの融点以上360℃以下の範囲が好ましく、より好ましくは液晶ポリマーの融点+10℃以上360℃以下である。 The resin composition B containing the thermoplastic liquid crystal polymer may be prepared according to a conventional method, and is not particularly limited. Each of the components described above can be produced and processed by known methods such as kneading, melt-kneading, granulation, extrusion molding, pressing or injection molding. When performing melt-kneading, a kneading device such as a generally used single-screw or twin-screw extruder or various kneaders can be used. When supplying each component to these melt-kneading devices, the liquid crystal polymer, other resin components, inorganic fillers, additives, etc. may be dry-blended in advance using a mixing device such as a tumbler or a Henschel mixer. At the time of melt-kneading, the set temperature of the cylinder of the kneading device may be appropriately set and is not particularly limited, but generally the range is preferably from the melting point of the liquid crystal polymer to 360°C, more preferably from the melting point of the liquid crystal polymer + 10°C to 360°C. ℃ or less.

熱可塑性樹脂を含む樹脂組成物A,Cの調製も、常法にしたがって行えばよく、特に限定されない。熱可塑性樹脂としては、例えば、ポリエチレン、ポリプロピレン、ポリメチルペンテン、エチレン-α-オレフィン共重合体等のポリオレフィン系樹脂、PMMA等のアクリル系樹脂、ポリアミド樹脂、アクリロニトリル-ブタジエン-スチレン共重合体(ABS樹脂)、ポリスチレン(PS)、ポリ塩化ビニル、ポリブチレンテレフタレート(PBT)、ポリエチレンテレフタレート(PET)、ポリカーボネート(PC)、ポリエーテルエーテルケトン(PEEK)、ポリフェニルサルファイド(PPS)等が挙げられるが、これらに特に限定されない。共押出溶融物とされた際に、ポリカーボネート等の極性樹脂であっても、ポリメチルペンテン等の無極性樹脂であっても、剥離層として有効に機能する。これらの熱可塑性樹脂に、上述した延伸処理用LCP押出フィルムに含まれていてもよい他の樹脂成分や無機フィラー等の任意成分を配合してもよい。なお、樹脂組成物Aと樹脂組成物Cとは、同一の樹脂組成を有していても、異なる樹脂組成を有していてもよく、同一の熱可塑性樹脂を含んでいても、異なる熱可塑性樹脂を含んでいてもよい。そして、熱可塑性樹脂を含む樹脂組成物A,Cは、例えば混練、溶融混錬、造粒、押出成形、プレス又は射出成形等の公知の方法によって製造及び加工することができる。なお、溶融混練を行う際には、一般に使用されている一軸式又は二軸式の押出機や各種ニーダー等の混練装置を用いることができる。これらの溶融混練装置に各成分を供給するに際し、熱可塑性樹脂、その他の樹脂成分、無機フィラー、添加剤等を予めタンブラーやヘンシェルミキサー等の混合装置を用いてドライブレンドしてもよい。溶融混練の際、混練装置のシリンダー設定温度は、熱可塑性樹脂が熱分解で劣化しない温度以下で適宜設定すればよく特に限定されないが、一般的に熱可塑性樹脂の融点以上が好ましく、より好ましくは熱可塑性樹脂の融点+10℃以上である。 Resin compositions A and C containing a thermoplastic resin may also be prepared according to conventional methods, and are not particularly limited. Examples of thermoplastic resins include polyolefin resins such as polyethylene, polypropylene, polymethylpentene, and ethylene-α-olefin copolymers, acrylic resins such as PMMA, polyamide resins, acrylonitrile-butadiene-styrene copolymers (ABS resin), polystyrene (PS), polyvinyl chloride, polybutylene terephthalate (PBT), polyethylene terephthalate (PET), polycarbonate (PC), polyether ether ketone (PEEK), polyphenyl sulfide (PPS), etc. It is not particularly limited to these. Both a polar resin such as polycarbonate and a non-polar resin such as polymethylpentene function effectively as a release layer when co-extruded into a melt. These thermoplastic resins may be blended with optional components such as other resin components and inorganic fillers that may be contained in the LCP extruded film for stretching treatment. The resin composition A and the resin composition C may have the same resin composition or different resin compositions, and even if they contain the same thermoplastic resin, they may have different thermoplastic resins. It may contain a resin. Resin compositions A and C containing thermoplastic resins can be produced and processed by known methods such as kneading, melt-kneading, granulation, extrusion molding, pressing, and injection molding. When performing melt-kneading, a kneading device such as a generally used single-screw or twin-screw extruder or various kneaders can be used. When supplying each component to these melt-kneading devices, the thermoplastic resin, other resin components, inorganic fillers, additives, etc. may be dry-blended in advance using a mixing device such as a tumbler or Henschel mixer. At the time of melt-kneading, the set temperature of the cylinder of the kneading device is not particularly limited, and may be appropriately set at a temperature below the temperature at which the thermoplastic resin is not deteriorated by thermal decomposition. It is the melting point of the thermoplastic resin +10°C or more.

共押出の際の設定条件は、使用する樹脂組成物の種類や組成、目的とする押出フィルムの所望性能等に応じて適宜設定すればよく、特に限定されない。例えば押出機のシリンダーの設定温度は、使用する樹脂組成物の種類や組成、目的とする押出フィルムの所望性能等に応じて適宜設定すればよく、特に限定されないが、230~360℃が好ましく、より好ましくは280~350℃である。 The setting conditions for coextrusion are not particularly limited, and may be appropriately set according to the type and composition of the resin composition to be used, the desired performance of the extruded film, and the like. For example, the set temperature of the cylinder of the extruder may be appropriately set according to the type and composition of the resin composition to be used, the desired performance of the extruded film, etc., and is not particularly limited, but is preferably 230 to 360 ° C. More preferably, it is 280 to 350°C.

また、例えばTダイのダイ幅(mm)も同様に、使用する樹脂組成物の種類や組成、目的とする押出フィルムの所望性能等に応じて適宜設定すればよく、特に限定されないが、一般的には200~2000mmが好ましく、より好ましくは400~1500mmである。 In addition, for example, the die width (mm) of the T-die may also be set appropriately according to the type and composition of the resin composition to be used, the desired performance of the extruded film, etc., and is not particularly limited, but generally is preferably 200 to 2000 mm, more preferably 400 to 1500 mm.

さらに、例えばTダイのリップ開度(mm)も同様に、使用する樹脂組成物の種類や組成、目的とする押出フィルムの所望性能等に応じて適宜設定すればよく、特に限定されないが、一般的には0.1~3.0(mm)が好ましく、より好ましくは0.2~2.0(mm)である。 Furthermore, for example, the lip opening (mm) of the T-die may also be set appropriately according to the type and composition of the resin composition to be used, the desired performance of the extruded film, etc., and is not particularly limited, but generally Generally, it is preferably 0.1 to 3.0 (mm), more preferably 0.2 to 2.0 (mm).

そして、例えばTダイのリップ壁面の剪断速度(sec-1)も同様に、使用する樹脂組成物の種類や組成、目的とする押出フィルムの所望性能等に応じて適宜設定すればよく、特に限定されないが、一般的には100~1500(sec-1)が好ましく、より好ましくは150~1000(sec-1)である。 And, for example, the shear rate (sec −1 ) of the lip wall surface of the T-die may also be set as appropriate according to the type and composition of the resin composition used, the desired performance of the extruded film, etc., and is particularly limited. Although not required, it is generally preferably 100 to 1500 (sec -1 ), more preferably 150 to 1000 (sec -1 ).

また、Tダイの樹脂組成物の総吐出量(mm3/sec)も同様に、使用する樹脂組成物の種類や組成、目的とする押出フィルムの所望性能等に応じて適宜設定すればよく、特に限定されないが、一般的に500~15000(mm3/sec)が好ましく、より好ましくは1500~10000(mm3/sec)である。 Similarly, the total discharge rate (mm 3 /sec) of the resin composition from the T-die may be appropriately set according to the type and composition of the resin composition to be used, the desired performance of the desired extruded film, etc. Although not particularly limited, it is generally preferably 500 to 15000 (mm 3 /sec), more preferably 1500 to 10000 (mm 3 /sec).

一方、熱可塑性液晶ポリマーの溶融粘度(Pa・sec)も同様に、使用する樹脂組成物の種類や組成、目的とする押出フィルムの所望性能等に応じて適宜設定すればよく、特に限定されないが、一般的に10~300(Pa・sec)が好ましく、より好ましくは20~250(Pa・sec)である。なお、熱可塑性液晶ポリマーの溶融粘度(Pa・sec)は、JIS K7199に準拠し、キャピログラフ1D(東洋精機製作所社製)を用いて、シリンダー長10.00mm、シリンダー径1.00mm、及びバレル径9.55mmの条件下、延伸処理用LCP押出フィルムの製造時の条件下(ダイ温度、及びリップ壁面の剪断速度)で測定される値を意味する。 On the other hand, the melt viscosity (Pa·sec) of the thermoplastic liquid crystal polymer may also be appropriately set according to the type and composition of the resin composition to be used, the desired performance of the extruded film, etc., and is not particularly limited. , generally preferably 10 to 300 (Pa·sec), more preferably 20 to 250 (Pa·sec). In addition, the melt viscosity (Pa sec) of the thermoplastic liquid crystal polymer is measured in accordance with JIS K7199 using a Capillograph 1D (manufactured by Toyo Seiki Seisakusho Co., Ltd.) with a cylinder length of 10.00 mm, a cylinder diameter of 1.00 mm, and a barrel diameter of 1.00 mm. It means the value measured under the condition of 9.55 mm and the conditions (die temperature and shear rate of lip wall surface) in the production of the LCP extruded film for stretching treatment.

また、共押出フィルムの引取速度(mm/sec)も同様に、使用する樹脂組成物の種類や組成、目的とする押出フィルムの所望性能等に応じて適宜設定すればよく、特に限定されないが、一般的に15~1000(mm/sec)が好ましく、より好ましくは20~500(mm/sec)である。 Similarly, the take-up speed (mm/sec) of the coextruded film may be appropriately set according to the type and composition of the resin composition to be used, the desired performance of the extruded film, etc., and is not particularly limited. It is generally preferably 15 to 1000 (mm/sec), more preferably 20 to 500 (mm/sec).

ここで、共押出時の熱可塑性液晶ポリマーのMD方向への分子配向を低減する観点から、共押出時の剪断応力(kPa)は、低いことが望ましい。共押出時の剪断応力が大きいと、熱可塑性液晶ポリマーがMD方向へ高配向され易く、また、内部歪みが残存し易い傾向にあり、共押出時の剪断応力が小さいと、フィルム表面及びフィルム内部の双方において、熱可塑性液晶ポリマーの分子配向が低減され易く、また、内部歪みが残存し難い傾向にある。なお、共押出時の剪断応力(kPa)は、リップ壁面の剪断速度(sec-1)と熱可塑性液晶ポリマーの溶融粘度(Pa・sec)との積で表される値であり、剪断速度は、共押出時の樹脂組成物の総吐出量、ダイ幅、リップ開度に基づいて算出される値である。したがって、共押出時の剪断応力は、これらの各値を調整することにより制御可能である。そして具体的には、共押出時の剪断応力は、40kPa以下が好ましく、より好ましくは38kPa以下、さらに好ましくは36kPa以下である。なお、その下限値は、特に限定されないが、生産性等を考慮すれば5kPa以上が好ましく、より好ましくは10kPa以上である。 Here, from the viewpoint of reducing molecular orientation in the MD direction of the thermoplastic liquid crystal polymer during coextrusion, it is desirable that the shear stress (kPa) during coextrusion is low. When the shear stress during coextrusion is large, the thermoplastic liquid crystal polymer tends to be highly oriented in the MD direction, and internal strain tends to remain. In both cases, the molecular orientation of the thermoplastic liquid crystal polymer tends to be reduced, and the internal strain tends to be less likely to remain. The shear stress (kPa) during co-extrusion is a value represented by the product of the shear rate of the lip wall surface (sec −1 ) and the melt viscosity of the thermoplastic liquid crystal polymer (Pa·sec). , is a value calculated based on the total discharge amount of the resin composition during co-extrusion, the die width, and the lip opening. Therefore, the shear stress during coextrusion can be controlled by adjusting each of these values. Specifically, the shear stress during co-extrusion is preferably 40 kPa or less, more preferably 38 kPa or less, and even more preferably 36 kPa or less. Although the lower limit is not particularly limited, it is preferably 5 kPa or more, more preferably 10 kPa or more, in consideration of productivity and the like.

また、共押出時の熱可塑性液晶ポリマーのMD方向への分子配向を低減する観点から、共押出時のドローダウン比は、低いことが望ましい。共押出時のドローダウン比が大きいと、熱可塑性液晶ポリマーがMD方向へ高配向され易く、また、内部歪みが残存し易い傾向にあり、共押出時のドローダウン比が小さいと、フィルム表面及びフィルム内部の双方において、熱可塑性液晶ポリマーの分子配向が低減され易く、また、内部歪みが残存し難い傾向にある。なお、ドローダウン比は、引取速度(mm/sec)/熱可塑性液晶ポリマーの流速(mm/sec)で表される値であり、熱可塑性液晶ポリマーの流速は、共押出時の樹脂組成物の総吐出量、ダイ幅、リップ開度に基づいて算出される値である。したがって、共押出時のドローダウン比は、これらの各値を調整することにより制御可能である。そして具体的には、共押出時のドローダウン比は、3.5以下が好ましく、より好ましくは3.3以下、さらに好ましくは3.1以下である。なお、その下限値は、特に限定されないが、生産性等を考慮すれば1.0以上が好ましく、より好ましくは1.2以上である。 In addition, from the viewpoint of reducing the molecular orientation in the MD direction of the thermoplastic liquid crystal polymer during coextrusion, it is desirable that the drawdown ratio during coextrusion is low. When the drawdown ratio during coextrusion is large, the thermoplastic liquid crystal polymer tends to be highly oriented in the MD direction, and internal strain tends to remain. Both inside the film, the molecular orientation of the thermoplastic liquid crystal polymer tends to be reduced, and the internal strain tends to be less likely to remain. The drawdown ratio is a value represented by take-up speed (mm/sec)/flow speed of the thermoplastic liquid crystal polymer (mm/sec), and the flow speed of the thermoplastic liquid crystal polymer is the value of the resin composition during coextrusion. It is a value calculated based on the total discharge amount, die width, and lip opening. Therefore, the drawdown ratio during coextrusion can be controlled by adjusting each of these values. Specifically, the drawdown ratio during coextrusion is preferably 3.5 or less, more preferably 3.3 or less, and still more preferably 3.1 or less. Although the lower limit thereof is not particularly limited, it is preferably 1.0 or more, more preferably 1.2 or more, in consideration of productivity and the like.

得られる延伸処理用LCP押出フィルムの厚みは、要求性に応じて適宜設定でき、特に限定されない。押出成形時の取扱性や生産性等を考慮すると、15μm以上300μm以下が好ましく、より好ましくは18μm以上250μm以下、さらに好ましくは20μm以上200μm以下である。 The thickness of the obtained LCP extruded film for stretching treatment can be appropriately set according to requirements, and is not particularly limited. Considering the handleability and productivity during extrusion molding, the thickness is preferably 15 μm or more and 300 μm or less, more preferably 18 μm or more and 250 μm or less, and still more preferably 20 μm or more and 200 μm or less.

得られる延伸処理用LCP押出フィルムの融点(融解温度)は、特に限定されないが、フィルムの耐熱性や加工性等の観点から、融点(融解温度)が200~400℃であることが好ましく、とりわけ金属箔への熱圧着性を高める観点から、250~360℃が好ましく、より好ましくは260~355℃、さらに好ましくは270~350℃、特に好ましくは275~345℃である。なお、本明細書において、延伸処理用LCP押出フィルムの融点は、DSC8500(PerkinElmer社製)を用いて、熱履歴を解消した値を見るために、温度区間 30~400℃で押出フィルムを20℃/分の昇温速度で加熱(1st heating)した後に50℃/分の降温速度で冷却(1st cooling)し、その後に20℃/分の昇温速度で2回目の加熱(2nd heating)したときの示差走査熱量測定法(DSC)における融解ピーク温度を意味する。また、その他については、後述する実施例に記載の測定条件に従うものとする。 The melting point (melting temperature) of the obtained LCP extruded film for stretching treatment is not particularly limited, but from the viewpoint of the heat resistance and workability of the film, the melting point (melting temperature) is preferably 200 to 400° C., especially From the viewpoint of enhancing the thermocompression bonding property to metal foil, the temperature is preferably 250 to 360°C, more preferably 260 to 355°C, still more preferably 270 to 350°C, and particularly preferably 275 to 345°C. In this specification, the melting point of the LCP extruded film for stretching treatment is measured using a DSC8500 (manufactured by PerkinElmer), and the extruded film is measured at a temperature range of 30 to 400 ° C. and the extruded film is measured at 20 ° C. After heating (1st heating) at a temperature increase rate of /min, cooling (1st cooling) at a temperature decrease rate of 50 ° C./min, and then performing a second heating (2nd heating) at a temperature increase rate of 20 ° C./min means the melting peak temperature in differential scanning calorimetry (DSC) of Others shall follow the measurement conditions described in Examples described later.

なお、押出成形された延伸処理用LCP押出フィルムは、そのまま用いることができるが、さらに必要に応じて加圧加熱工程を行うことにより、その配向性(異方性)をさらに低減させ或いは内部歪みをさらに解放させることもでき、これにより、寸法変化率の異方性がより低減された延伸処理用LCP押出フィルムや寸法変化率の絶対値がより小さい延伸処理用LCP押出フィルムを実現することもできる。 The extruded LCP extruded film for stretching treatment can be used as it is, but if necessary, the orientation (anisotropy) can be further reduced or the internal strain can be reduced by performing a pressure heating step. can be further released, and as a result, an LCP extruded film for stretching processing in which the anisotropy of the dimensional change rate is further reduced and an LCP extruded film for stretching processing in which the absolute value of the dimensional change rate is smaller can be realized. can.

加熱加圧処理は、当業界で公知の方法、例えば接触式の熱処理、非接触性の熱処理等を用いて行えばよく、その種類は特に限定されない。例えば非接触式ヒーター、オーブン、ブロー装置、熱ロール、冷却ロール、熱プレス機、ダブルベルト熱プレス機等の公知の機器を用いて熱セットすることができる。このとき、必要に応じて、延伸処理用LCP押出フィルムの表面に、当業界で公知の剥離フィルムや多孔質フィルムを配して、熱処理を行うことができる。また、この熱処理を行う場合、配向性の制御の観点から、延伸処理用LCP押出フィルムの表裏に剥離フィルムや多孔質フィルムを配してダブルベルトプレス機のエンドレスベルト対の間に挟持しながら熱圧着し、その後に剥離フィルムや多孔質フィルムを除去する熱圧成形方法が好ましく用いられる。熱圧成形方法は、例えば特開2010-221694号等を参照して行えばよい。上記の樹脂組成物を用いた延伸処理用LCP押出フィルムをダブルベルトプレス機のエンドレスベルト対の間で熱圧成形する際の処理温度としては、延伸処理用LCP押出フィルムの結晶状態を制御するため、液晶ポリマーの融点より高い温度以上、融点より70℃高い温度以下で行うことが好ましく、より好ましくは融点より+5℃高い温度以上、融点より60℃高い温度以下、さらに好ましくは融点より+10℃高い温度以上、融点より50℃高い温度以下である。このときの熱圧着条件は、所望性能に応じて適宜設定することができ、特に限定されないが、面圧0.5~10MPaで加熱温度250~430℃の条件下で行うことが好ましく、より好ましくは面圧0.6~8MPaで加熱温度260~400℃の条件下、さらに好ましくは面圧0.7~6MPaで加熱温度270~370℃の条件下である。一方、非接触式ヒーターやオーブンを用いる場合には、例えば200~320℃で1~20時間の条件下で行うことが好ましい。 The heating and pressurizing treatment may be performed using a method known in the art, such as contact heat treatment, non-contact heat treatment, and the like, and the type is not particularly limited. For example, heat setting can be performed using known equipment such as a non-contact heater, an oven, a blower, a heat roll, a cooling roll, a heat press, and a double-belt heat press. At this time, if necessary, the surface of the LCP extruded film for stretching treatment can be heat-treated by disposing a release film or porous film known in the art. When performing this heat treatment, from the viewpoint of orientation control, a release film or a porous film is placed on the front and back of the LCP extruded film for stretching treatment, and heat is applied while sandwiching between endless belt pairs of a double belt press machine. A thermocompression molding method is preferably used in which pressure bonding is performed and then the release film or porous film is removed. The thermocompression molding method may be performed with reference to, for example, JP-A-2010-221694. When the LCP extruded film for stretching using the above resin composition is thermocompressed between the pair of endless belts of a double belt press, the processing temperature is set to control the crystalline state of the LCP extruded film for stretching. , preferably at a temperature higher than the melting point of the liquid crystal polymer and at a temperature higher than the melting point by 70°C, more preferably at a temperature higher than the melting point by 5°C or higher, and at a temperature higher than the melting point by 60°C or lower, further preferably at a temperature higher than the melting point by 10°C. above the temperature and below the temperature 50° C. higher than the melting point. The thermocompression bonding conditions at this time can be appropriately set according to the desired performance, and are not particularly limited. is under a surface pressure of 0.6 to 8 MPa and a heating temperature of 260 to 400°C, more preferably a surface pressure of 0.7 to 6 MPa and a heating temperature of 270 to 370°C. On the other hand, when a non-contact heater or oven is used, it is preferable to carry out the treatment under conditions of, for example, 200 to 320° C. for 1 to 20 hours.

(LCP延伸フィルム)
上述した延伸処理用LCP押出フィルムは、1軸及び/又は2軸の延伸処理を施してLCP延伸フィルム100(延伸処理用LCP押出フィルムの延伸体)の形態で用いることができる。このとき、LCP延伸フィルム100は、TD方向に熱収縮性であっても熱膨張性であっても構わないが、TD方向に熱収縮性であることが好ましい。また、LCP延伸フィルム100は、MD方向に熱収縮性であっても熱膨張性であっても構わないが、MD方向に熱収縮性であることが好ましい。なお、本明細書において、熱収縮性LCP延伸フィルムとは、TD方向及びMD方向に熱収縮性を有するLCP延伸フィルムであることを意味し、熱収縮性であることは後述する線膨張係数(ppm/K)が負の値を示すことにより裏付けられる。
(LCP stretched film)
The LCP extruded film for stretching treatment described above can be used in the form of LCP stretched film 100 (stretched body of LCP extruded film for stretching treatment) by applying uniaxial and/or biaxial stretching treatment. At this time, the LCP stretched film 100 may be heat-shrinkable or heat-expandable in the TD direction, but is preferably heat-shrinkable in the TD direction. Further, the LCP stretched film 100 may be heat-shrinkable or heat-expandable in the MD direction, but it is preferably heat-shrinkable in the MD direction. In this specification, the heat-shrinkable LCP stretched film means an LCP stretched film having heat-shrinkability in the TD and MD directions. ppm/K) shows a negative value.

延伸処理の際の設定条件は、使用する樹脂組成物の種類や組成、目的とするLCP延伸フィルム100の所望性能等に応じて適宜設定すればよく、特に限定されない。1軸延伸する場合には、例えば、上述した延伸処理用LCP押出フィルムをTD方向(Transverse Direction;横手方向)に90~180℃で1.3~2.5倍に延伸することができ、その後に例えば100~240℃で1~600秒間の熱処理(熱セット)を行うことが好ましい。TD方向への延伸倍率は、1.4~2.4倍が好ましく、1.5~2.3倍がより好ましく、1.6~2.3倍がさらに好ましい。2軸延伸する場合には、例えば、上述した延伸処理用LCP押出フィルムを好ましくはMD方向(Machine Direction;長手方向)に70~180℃で1.3~2.5倍に延伸して1軸延伸フィルムとした後、さらにTD方向(Transverse Direction;横手方向)に90~180℃で1.1~2.5倍に延伸することができ、その後に例えば100~240℃で1~600秒間の熱処理(熱セット)を行うことが好ましい。このとき、逐次延伸ではなく同時二軸延伸をすることもできる。延伸倍率は、特に限定されないが、フィルム搬送性、離型性の向上、厚みムラや皺の発生等を抑制等の観点から、MD方向×TD方向の総延伸倍率(MD方向の延伸倍率をmとし、TD方向の延伸倍率をnとしたとき、m×nで表される延伸倍率)で1.3倍以上が好ましく、より好ましくは1.4倍以上、さらに好ましくは1.5倍以上、特に好ましくは1.6倍以上である。なお、その上限は特に限定されないが、6.0倍以下が目安とされ、好ましくは5.0倍以下、さらに好ましくは4.0倍未満、さらに好ましくは3.0倍未満である。また、熱セットの際には、当業界で公知の方法、例えば接触式の熱処理、非接触性の熱処理等を行うことができ、その種類は特に限定されない。例えば非接触式ヒーター、オーブン、ブロー装置、熱ロール、冷却ロール、熱プレス機、ダブルベルト熱プレス機等の公知の機器を用いて熱セットすることができる。このとき、必要に応じて、LCP延伸フィルム100の表面に、当業界で公知の剥離フィルムや多孔質フィルムを配して、熱圧処理を行うことができる。 The setting conditions for the stretching process may be appropriately set according to the type and composition of the resin composition to be used, the desired performance of the target LCP stretched film 100, etc., and are not particularly limited. In the case of uniaxial stretching, for example, the above LCP extruded film for stretching treatment can be stretched 1.3 to 2.5 times at 90 to 180 ° C. in the TD direction (transverse direction), and then For example, it is preferable to perform heat treatment (heat setting) at 100 to 240° C. for 1 to 600 seconds. The draw ratio in the TD direction is preferably 1.4 to 2.4 times, more preferably 1.5 to 2.3 times, even more preferably 1.6 to 2.3 times. In the case of biaxial stretching, for example, the above-mentioned LCP extruded film for stretching treatment is preferably stretched 1.3 to 2.5 times in the MD direction (machine direction; longitudinal direction) at 70 to 180 ° C. to stretch uniaxially. After making a stretched film, it can be further stretched in the TD direction (Transverse Direction) at 90 to 180 ° C. to 1.1 to 2.5 times, and then, for example, at 100 to 240 ° C. for 1 to 600 seconds. Heat treatment (heat setting) is preferably performed. At this time, simultaneous biaxial stretching can be carried out instead of sequential stretching. The draw ratio is not particularly limited, but from the viewpoint of improving film transportability, releasability, suppressing unevenness in thickness, wrinkles, etc., the total draw ratio in the MD direction × TD direction (the draw ratio in the MD direction is m When the draw ratio in the TD direction is n, the draw ratio represented by m × n) is preferably 1.3 times or more, more preferably 1.4 times or more, further preferably 1.5 times or more, Especially preferably, it is 1.6 times or more. Although the upper limit thereof is not particularly limited, a guideline is 6.0 times or less, preferably 5.0 times or less, more preferably less than 4.0 times, and still more preferably less than 3.0 times. Moreover, in the case of heat setting, methods known in the art, such as contact heat treatment, non-contact heat treatment, etc., can be performed, and the type thereof is not particularly limited. For example, heat setting can be performed using known equipment such as a non-contact heater, an oven, a blower, a heat roll, a cooling roll, a heat press, and a double-belt heat press. At this time, if necessary, a release film or a porous film known in the art can be placed on the surface of the stretched LCP film 100, and heat and pressure treatment can be performed.

LCP延伸フィルム100(延伸処理用LCP押出フィルムの延伸体)のMD方向及びTD方向の線膨張係数(CTE,α2,23~200℃)は、所望性能に応じて適宜設定することができ、特に限定されないが、寸法変化率の異方性及び寸法変化率の絶対値を小さくし、金属箔への密着性を高める等の観点から、それぞれ-20~0ppm/Kの範囲内にあることが好ましく、それぞれ-15~0ppm/Kの範囲内にあることがより好ましく、それぞれ-13~0ppm/Kの範囲内にあることがさらに好ましく、それぞれ-10~0ppm/Kの範囲内にあることが特に好ましい。 The coefficient of linear expansion (CTE, α2, 23 to 200° C.) in the MD direction and the TD direction of the LCP stretched film 100 (stretched LCP extruded film for stretching treatment) can be appropriately set according to the desired performance. Although not limited, from the viewpoint of reducing the anisotropy of the dimensional change rate and the absolute value of the dimensional change rate and improving the adhesion to the metal foil, each is preferably in the range of -20 to 0 ppm / K. , Each is more preferably in the range of -15 to 0 ppm/K, more preferably in the range of -13 to 0 ppm/K, and particularly in the range of -10 to 0 ppm/K. preferable.

(回路基板用絶縁材料)
図7は、本実施形態の回路基板用絶縁材料200の要部を示す模式断面図である。本実施形態の回路基板用絶縁材料200は、上記のLCP延伸フィルム100(延伸処理用LCP押出フィルムの延伸体)の片面及び/又は両面に設けられた織布WFを少なくとも有する積層体を備えるものである。
(Insulating material for circuit boards)
FIG. 7 is a schematic cross-sectional view showing a main part of the insulating material 200 for circuit boards of this embodiment. The circuit board insulating material 200 of the present embodiment comprises a laminate having at least a woven fabric WF provided on one side and/or both sides of the LCP stretched film 100 (stretched LCP extruded film for stretching treatment). is.

具体的には、回路基板用絶縁材料200は、LCP延伸フィルム100、織布WF、及びLCP延伸フィルム100が、少なくともこの順に配列された積層構造(3層構造)を有する積層体を備えている。この積層体において、一方のLCP延伸フィルム100は織布WFの表面側に設けられ、他方のLCP延伸フィルム100は、織布WFの裏面側に設けられている。これら3層は熱圧着され、これにより、3層構造の積層体が形成されている。なお、ここでは3層構造の積層体を例示するが、本発明は、一方のLCP延伸フィルム100を省略した2層構造の積層体であっても、LCP延伸フィルム100や織布WFをさらに積層させた4層以上の積層構造の積層体であっても実施可能なことは言うまでもない。 Specifically, the circuit board insulating material 200 includes a laminate having a laminate structure (three-layer structure) in which the stretched LCP film 100, the woven fabric WF, and the stretched LCP film 100 are arranged in at least this order. . In this laminate, one LCP stretched film 100 is provided on the surface side of the woven fabric WF, and the other LCP stretched film 100 is provided on the back side of the woven fabric WF. These three layers are thermo-compressed to form a laminate having a three-layer structure. Although a laminate having a three-layer structure is exemplified here, the present invention can be applied even to a laminate having a two-layer structure in which one LCP stretched film 100 is omitted. Needless to say, a laminated body having a laminated structure of four or more layers can be implemented.

ここで本明細書において、「LCP延伸フィルム100の片面及び/又は両面に織布WFが設けられた」とは、本実施形態のように織布WFの表面にLCP延伸フィルム100が直接載置された態様のみならず、LCP延伸フィルム100と織布WFとの間に図示しない任意の層(例えばプライマー層、接着層等)が介在して、LCP延伸フィルム100が織布WFから離間して配置された態様を包含する意味である。 Here, in this specification, "a woven fabric WF is provided on one side and/or both sides of the LCP stretched film 100" means that the LCP stretched film 100 is directly placed on the surface of the woven fabric WF as in the present embodiment. In addition to the above embodiment, an arbitrary layer (for example, a primer layer, an adhesive layer, etc.) not shown is interposed between the LCP stretched film 100 and the woven fabric WF, and the LCP stretched film 100 is separated from the woven fabric WF. It is meant to include arranged aspects.

織布WFは、繊維を織った布である。織布WFの繊維の種類としては、特に限定されず、無機繊維、有機繊維、有機無機ハイブリッド繊維のいずれであっても用いることができる。とりわけ、無機繊維の織布WFが好ましく用いられる。無機繊維の織布WFをLCP延伸フィルム100と熱圧着させることで、MD方向及びTD方向の寸法変化率の異方性を小さく維持でき、さらに好適な態様ではMD方向及びTD方向の寸法変化率そのものを小さくすることができる。織布WFとしては、市販品を用いることができ、また、当業界で公知の方法で製造することができる。 The woven fabric WF is a fabric in which fibers are woven. The type of fibers of the woven fabric WF is not particularly limited, and any of inorganic fibers, organic fibers, and organic-inorganic hybrid fibers can be used. In particular, inorganic fiber woven fabric WF is preferably used. By thermocompression bonding the inorganic fiber woven fabric WF to the LCP stretched film 100, the anisotropy of the dimensional change rate in the MD direction and the TD direction can be kept small, and in a further preferred embodiment, the dimensional change rate in the MD direction and the TD direction can be kept small. You can make it smaller. A commercially available product can be used as the woven fabric WF, and it can be produced by a method known in the art.

無機繊維としては、例えば、Eガラス、Dガラス、Lガラス、Mガラス、Sガラス、Tガラス、Qガラス、UNガラス、NEガラス、球状ガラス等のガラス繊維、クォーツ等のガラス以外の無機繊維、シリカなどのセラミック繊維等が挙げられるが、これらに特に限定されない。無機繊維の織布WFは、開繊処理や目詰め処理を施した織布が、寸法安定性の観点から好適である。これらの中でも、機械的強度、寸法安定性、吸水性等の観点から、ガラスクロスが好ましい。LCP延伸フィルム100との熱圧着性を高める観点から、開繊処理や目詰め処理が施されたガラスクロスが好ましい。また、エポキシシラン処理、アミノシラン処理等のシランカップリング剤等で表面処理されたガラスクロスも好適に用いることができる。なお、織布WFは、1種を単独で又は2種以上を適宜組み合わせて用いることができる。 Examples of inorganic fibers include glass fibers such as E glass, D glass, L glass, M glass, S glass, T glass, Q glass, UN glass, NE glass, spherical glass, inorganic fibers other than glass such as quartz, Examples include, but are not limited to, ceramic fibers such as silica. As the inorganic fiber woven fabric WF, a woven fabric subjected to opening treatment or stuffing treatment is suitable from the viewpoint of dimensional stability. Among these, glass cloth is preferable from the viewpoint of mechanical strength, dimensional stability, water absorption, and the like. From the viewpoint of improving the thermocompression bondability with the stretched LCP film 100, a glass cloth subjected to fiber opening treatment or clogging treatment is preferable. A glass cloth surface-treated with a silane coupling agent such as epoxysilane treatment or aminosilane treatment can also be preferably used. The woven fabric WF can be used singly or in combination of two or more.

織布WFの厚さは、要求性能に応じて適宜設定でき、特に限定されない。積層性や加工性、機械的強度等の観点から、10~300μmが好ましく、より好ましくは10~200μm、さらに好ましくは15~180μmである。 The thickness of the woven fabric WF can be appropriately set according to the required performance, and is not particularly limited. It is preferably 10 to 300 μm, more preferably 10 to 200 μm, still more preferably 15 to 180 μm, from the viewpoint of lamination property, workability, mechanical strength, and the like.

回路基板用絶縁材料200の総厚みは、要求性能に応じて適宜設定でき、特に限定されない。積層性や加工性、機械的強度等の観点から、30~500μmが好ましく、より好ましくは50~400μm、さらに好ましくは70~300μm、特に好ましくは90~250μmである。 The total thickness of the circuit board insulating material 200 can be appropriately set according to the required performance, and is not particularly limited. It is preferably 30 to 500 μm, more preferably 50 to 400 μm, even more preferably 70 to 300 μm, particularly preferably 90 to 250 μm, from the viewpoint of lamination property, workability, mechanical strength, and the like.

本実施形態の回路基板用絶縁材料200は、上述した構成を採用することで、MD方向及びTD方向の寸法変化率の異方性が小さく、さらに好適な態様ではMD方向及びTD方向の寸法変化率そのものを小さくすることができ、しかも、高周波域での誘電特性に優れ、製造容易で生産性に優れるという顕著な効果を有している。 By adopting the above-described configuration, the insulating material 200 for a circuit board of the present embodiment has small anisotropy in the rate of dimensional change in the MD and TD directions. It has remarkable effects of being able to reduce the modulus itself, being excellent in dielectric properties in a high frequency range, being easy to manufacture, and being excellent in productivity.

上述した回路基板用絶縁材料200は、公知の製法を適宜適用して製造することができ、その製造方法は特に限定されない。一例を挙げると、例えば、LCP延伸フィルム100と織布WFとを積層し、加熱及び加圧して、LCP延伸フィルム100と織布WFとが熱圧着することで回路基板用絶縁材料200を得ることができる。また、LCP延伸フィルム100と織布WFとLCP延伸フィルム100とをこの順に重ね合わせて積層体とし、プレス機やダブルベルトプレス機等を用いてこの積層体を挟持しながら加熱及び加圧して、回路基板用絶縁材料200を熱圧成形する方法も好ましい。なお、熱圧着時の加工温度は、要求性能に応じて適宜設定することができ、特に限定されないが、200~400℃が好ましく、より好ましくは250~360℃、さらに好ましくは270~350℃である。なお、熱圧着時の加工温度は、前述した積層体のLCP延伸フィルム100の表面温度で測定した値とする。また、このときの加圧条件は、所望性能に応じて適宜設定することができ、特に限定されないが、例えば面圧0.5~10MPaで1~240分、より好ましくは面圧0.8~8MPaで1~120分である。 The circuit board insulating material 200 described above can be manufactured by appropriately applying a known manufacturing method, and the manufacturing method is not particularly limited. To give an example, for example, the LCP stretched film 100 and the woven fabric WF are laminated, heated and pressed, and the LCP stretched film 100 and the woven fabric WF are thermocompressed to obtain the circuit board insulating material 200. can be done. In addition, the LCP stretched film 100, the woven fabric WF, and the LCP stretched film 100 are laminated in this order to form a laminate, and the laminate is sandwiched using a press machine, a double belt press machine, or the like, and heated and pressurized, A method of hot-pressing the circuit board insulating material 200 is also preferred. The processing temperature during thermocompression bonding can be appropriately set according to the required performance, and is not particularly limited, but is preferably 200 to 400 ° C., more preferably 250 to 360 ° C., and still more preferably 270 to 350 ° C. be. The processing temperature during thermocompression bonding is the value measured at the surface temperature of the LCP stretched film 100 of the laminate described above. In addition, the pressurization conditions at this time can be appropriately set according to the desired performance, and are not particularly limited. 1 to 120 minutes at 8 MPa.

(金属箔張積層板)
図8は、本実施形態の金属箔張積層板300の要部を示す模式断面図である。本実施形態の金属箔張積層板300は、上記のLCP延伸フィルム100及びこのLCP延伸フィルム100の一方の片面及び/又は両面に設けられた金属箔MFを備えるものである。
(metal foil clad laminate)
FIG. 8 is a schematic cross-sectional view showing the main part of the metal foil-clad laminate 300 of this embodiment. The metal foil-clad laminate 300 of this embodiment comprises the LCP stretched film 100 and the metal foil MF provided on one side and/or both sides of the LCP stretched film 100 .

具体的には、金属箔張積層板300は、金属箔MF、LCP延伸フィルム100、及び金属箔MFが、少なくともこの順に配列された積層構造(3層構造)を有する両面金属箔張積層板である。これら3層は熱圧着され、これにより、3層構造の積層体が形成されている。なお、本実施形態においては、両面金属箔張積層板を示したが、LCP延伸フィルム100の一方の表面のみに金属箔MFが設けられた態様としても、本発明は実施可能である。すなわち、ここでは3層構造の積層体を例示するが、本発明は、一方の金属箔MFを省略した2層構造の積層体であっても、LCP延伸フィルム100や織布WFをさらに積層させた4層以上の積層構造の積層体であっても実施可能なことは言うまでもない。 Specifically, the metal foil-clad laminate 300 is a double-sided metal foil-clad laminate having a laminated structure (three-layer structure) in which at least the metal foil MF, the LCP stretched film 100, and the metal foil MF are arranged in this order. be. These three layers are thermo-compressed to form a laminate having a three-layer structure. In this embodiment, a double-sided metal foil-clad laminate is shown, but the present invention can also be implemented in a mode in which only one surface of the stretched LCP film 100 is provided with the metal foil MF. That is, although a laminate having a three-layer structure is exemplified here, the present invention further laminates the LCP stretched film 100 and the woven fabric WF even in a laminate having a two-layer structure in which one of the metal foils MF is omitted. Needless to say, a laminate having a laminate structure of four or more layers can also be implemented.

図9は、本実施形態の金属箔張積層板400の要部を示す模式断面図である。本実施形態の金属箔張積層板400は、上記のLCP延伸フィルム100及びこのLCP延伸フィルム100の片面及び/又は両面に設けられた上述した織布WFを少なくとも有する積層体と、この積層体の片面及び/又は両面に設けられた金属箔MFとを備えるものである。 FIG. 9 is a schematic cross-sectional view showing the main part of the metal foil-clad laminate 400 of this embodiment. The metal foil-clad laminate 400 of the present embodiment includes a laminate having at least the LCP stretched film 100 and the above-described woven fabric WF provided on one side and/or both sides of the LCP stretched film 100, and this laminate and a metal foil MF provided on one side and/or both sides.

具体的には、金属箔張積層板400は、金属箔MF、LCP延伸フィルム100、織布WF、LCP延伸フィルム100、及び金属箔MFが、少なくともこの順に配列された積層構造(5層構造)を有する両面金属箔張積層板である。これら5層は熱圧着され、これにより、5層構造の積層体が形成されている。なお、本実施形態においては、両面金属箔張積層板を示したが、金属箔MFが一方の表面のみに設けられた態様としても、本発明は実施可能である。すなわち、ここでは5層構造の積層体を例示するが、本発明は、一方の金属箔MFを省略した4層構造の積層体であっても、LCP延伸フィルム100や回路基板用絶縁材料200や織布WFをさらに積層させた6層以上の積層構造の積層体であっても実施可能なことは言うまでもない。 Specifically, the metal foil-clad laminate 400 has a laminated structure (five-layer structure) in which at least the metal foil MF, the LCP stretched film 100, the woven fabric WF, the LCP stretched film 100, and the metal foil MF are arranged in this order. It is a double-sided metal foil clad laminate having These five layers are thermo-compressed to form a laminate having a five-layer structure. Although the double-sided metal foil-clad laminate is shown in this embodiment, the present invention can also be implemented as a mode in which the metal foil MF is provided only on one surface. That is, although a laminate having a five-layer structure is exemplified here, the present invention can be applied to a laminate having a four-layer structure in which one metal foil MF is omitted. Needless to say, a laminate having a laminate structure of six or more layers in which woven fabrics WF are further laminated can be implemented.

金属箔MFの材質としては、特に限定されないが、金、銀、銅、銅合金、ニッケル、ニッケル合金、アルミニウム、アルミニウム合金、鉄、鉄合金等が挙げられる。これらの中でも、銅箔、アルミニウム箔、ステンレス箔、及び銅とアルミニウムとの合金箔が好ましく、銅箔がより好ましい。かかる銅箔としては、圧延法或いは電気分解法等によって製造されるいずれのものでも使用できるが、表面粗さが比較的に大きい電解銅箔や圧延銅箔が好ましい。 The material of the metal foil MF is not particularly limited, but gold, silver, copper, copper alloys, nickel, nickel alloys, aluminum, aluminum alloys, iron, iron alloys, and the like can be mentioned. Among these, copper foil, aluminum foil, stainless steel foil, and copper-aluminum alloy foil are preferable, and copper foil is more preferable. As such a copper foil, any one manufactured by a rolling method, an electrolysis method, or the like can be used, but an electrolytic copper foil or a rolled copper foil, which has a relatively large surface roughness, is preferable.

金属箔MFの厚さは、所望性能に応じて適宜設定でき、特に限定されない。通常は1.5~1000μmが好ましく、より好ましくは2~500μm、さらに好ましくは5~150μm、特に好ましくは7~100μmである。なお、本発明の作用効果が損なわれない限り、金属箔MFは、酸洗浄等の化学的表面処理等の表面処理が施されていてもよい。なお、金属箔MFの種類や厚みは、同一であっても異なっていてもよい。 The thickness of the metal foil MF can be appropriately set according to the desired performance, and is not particularly limited. It is usually preferably 1.5 to 1000 μm, more preferably 2 to 500 μm, still more preferably 5 to 150 μm, particularly preferably 7 to 100 μm. In addition, the metal foil MF may be subjected to surface treatment such as chemical surface treatment such as acid cleaning as long as the effects of the present invention are not impaired. The type and thickness of the metal foil MF may be the same or different.

LCP延伸フィルム100や回路基板用絶縁材料200の表面に金属箔MFを設ける方法は、常法にしたがって行うことができ、特に限定されない。LCP延伸フィルム100や回路基板用絶縁材料200の上に金属箔MFを積層して両層を接着ないしは圧着させる方法、スパッタリングや蒸着等の物理法(乾式法)、無電解めっきや無電解めっき後の電解めっき等の化学法(湿式法)、金属ペーストを塗布する方法等のいずれであってもよい。また、LCP延伸フィルム100や回路基板用絶縁材料200と1以上の金属箔MFとを積層した積層体を、例えば多段プレス機、多段真空プレス機、連続成形機、オートクレーブ成形機等を用いて熱プレスすることにより、金属箔張積層板300,400を得ることもできる。 The method of providing the metal foil MF on the surface of the stretched LCP film 100 or the insulating material for circuit board 200 can be carried out according to a conventional method, and is not particularly limited. A method of laminating a metal foil MF on the stretched LCP film 100 or the insulating material 200 for a circuit board and bonding or crimping both layers, a physical method (dry method) such as sputtering or vapor deposition, electroless plating or after electroless plating A chemical method (wet method) such as electrolytic plating, a method of applying a metal paste, or the like may be used. In addition, a laminate obtained by laminating the LCP stretched film 100 or the insulating material for circuit board 200 and one or more metal foils MF is heated using, for example, a multistage press machine, a multistage vacuum press machine, a continuous molding machine, an autoclave molding machine, or the like. Metal foil-clad laminates 300 and 400 can also be obtained by pressing.

上述した金属箔張積層板300,400は、公知の製法を適宜適用して製造することができ、その製造方法は特に限定されない。一例を挙げると、例えば、LCP延伸フィルム100や回路基板用絶縁材料200と金属箔MFとを重ね合わせ、LCP延伸フィルム100上に金属箔MFが載置された積層体とし、この積層体をダブルベルトプレス機のエンドレスベルト対の間に挟持しながら熱圧成形する方法が挙げられる。上述したとおり、本実施形態で用いるLCP延伸フィルム100は、MD方向及びTD方向の寸法変化率の異方性が小さく、さらに好適な態様ではMD方向及びTD方向の寸法変化率そのものが小さいので、金属箔MFへの高いピール強度が得られる。 The metal foil-clad laminates 300 and 400 described above can be manufactured by appropriately applying a known manufacturing method, and the manufacturing method is not particularly limited. To give an example, for example, the LCP stretched film 100 or the insulating material 200 for circuit boards and the metal foil MF are superimposed to form a laminate in which the metal foil MF is placed on the LCP stretched film 100, and this laminate is doubled. A method of thermocompression molding while sandwiching between a pair of endless belts of a belt press can be used. As described above, the LCP stretched film 100 used in the present embodiment has small anisotropy in the dimensional change rates in the MD and TD directions, and in a more preferred embodiment, the dimensional change rates in the MD and TD directions are small. A high peel strength to the metal foil MF is obtained.

金属箔MFの熱圧着時の温度は、要求性能に応じて適宜設定することができ、特に限定されないが、液晶ポリマーの融点より50℃低い温度以上であり融点より50℃高い温度以下が好ましく、同融点より40℃低い温度以上であり融点より40℃高い温度以下より好ましく、同融点より30℃低い温度以上であり融点より30℃高い温度以下がさらに好ましく、同融点より20℃低い温度以上であり融点より20℃高い温度以下が特に好ましい。なお、金属箔MFの熱圧着時の温度は、前述したLCP延伸フィルム100の表面温度で測定した値とする。また、このときの圧着条件は、所望性能に応じて適宜設定することができ、特に限定されないが、例えばダブルベルトプレス機を用いる場合、面圧0.5~10MPaで加熱温度200~360℃の条件下で行うことが好ましい。 The temperature during thermocompression bonding of the metal foil MF can be appropriately set according to the required performance, and is not particularly limited, but is preferably at least 50° C. lower than the melting point of the liquid crystal polymer and at most 50° C. higher than the melting point. It is preferably 40°C lower than the melting point and 40°C higher than the melting point, more preferably 30°C lower than the melting point and 30°C higher than the melting point, and 20°C lower than the melting point. A temperature not higher than 20° C. above the melting point is particularly preferred. Note that the temperature during thermocompression bonding of the metal foil MF is the value measured at the surface temperature of the LCP stretched film 100 described above. In addition, the crimping conditions at this time can be appropriately set according to the desired performance, and are not particularly limited. conditions are preferred.

本実施形態の金属箔張積層板300,400は、LCP延伸フィルム100と金属箔MFとの二層構造の熱圧着体を備える限り、別の積層構造ないしはさらなる積層構造を有していてもよい。例えば金属箔MF/LCP延伸フィルム100の2層構造;金属箔MF/LCP延伸フィルム100/金属箔MF、LCP延伸フィルム100/金属箔MF/LCP延伸フィルム100のような3層構造;金属箔MF/LCP延伸フィルム100/織布WF/LCP延伸フィルム100のような4層構造;金属箔MF/LCP延伸フィルム100/金属箔MF/LCP延伸フィルム100/金属箔MF、金属箔MF/LCP延伸フィルム100/織布WF/LCP延伸フィルム100/金属箔MFのような5層構造;等、の多層構造とすることができる。また、複数(例えば2~50個)の金属箔張積層板300,400を、積層熱圧着させることもできる。 The metal foil-clad laminates 300 and 400 of the present embodiment may have another laminated structure or a further laminated structure as long as they are provided with a two-layer thermocompression bonded body of the stretched LCP film 100 and the metal foil MF. . For example, a two-layer structure of metal foil MF/LCP stretched film 100; a three-layer structure such as metal foil MF/LCP stretched film 100/metal foil MF, LCP stretched film 100/metal foil MF/LCP stretched film 100; metal foil MF /LCP stretched film 100/woven fabric WF/4-layer structure such as LCP stretched film 100; metal foil MF/LCP stretched film 100/metal foil MF/LCP stretched film 100/metal foil MF, metal foil MF/LCP stretched film 100/woven fabric WF/LCP stretched film 100/five-layer structure such as metal foil MF; Also, a plurality of (for example, 2 to 50) metal foil-clad laminates 300 and 400 can be laminated and thermocompressed.

本実施形態の金属箔張積層板300,400において、LCP延伸フィルム100と金属箔MFとのピール強度は、特に限定されないが、より高いピール強度を具備させる観点から、0.8(N/mm)以上であることが好ましく、より好ましくは1.0(N/mm)以上、さらに好ましくは1.2(N/mm)以上である。上述したとおり、本実施形態の金属箔張積層板300,400では、高いピール強度を実現できるため、例えば基板製造の加熱工程でLCP延伸フィルム100と金属箔MFとの剥離を抑制できる。また、従来技術と同等のピール強度を得るにあたってプロセス裕度や生産性に優れる製造条件を適用することができるため、従来と同程度のピール強度を維持したまま、液晶ポリマーが有する基本性能の劣化を抑制することができる。 In the metal foil clad laminates 300 and 400 of the present embodiment, the peel strength between the stretched LCP film 100 and the metal foil MF is not particularly limited, but from the viewpoint of providing higher peel strength, it is 0.8 (N/mm ) or more, more preferably 1.0 (N/mm) or more, and still more preferably 1.2 (N/mm) or more. As described above, the metal foil-clad laminates 300 and 400 of the present embodiment can achieve high peel strength, so that peeling between the LCP stretched film 100 and the metal foil MF can be suppressed during the heating process of manufacturing the substrate, for example. In addition, since it is possible to apply manufacturing conditions with excellent process tolerance and productivity in obtaining peel strength equivalent to that of conventional technology, the basic performance of liquid crystal polymer is deteriorated while maintaining peel strength at the same level as conventional technology. can be suppressed.

そして、本実施形態の金属箔張積層板300,400は、金属箔MFの少なくとも一部をパターンエッチングする等して、電子回路基板や多層基板等の回路基板の素材として使用することができる。また、本実施形態の金属箔張積層板300,400は、高周波域での誘電特性に優れ、MD方向及びTD方向の寸法変化率の異方性が小さく、さらに好適な態様ではMD方向及びTD方向の寸法変化率そのものが小さく、寸法安定性に優れ、製造容易で生産性に優れるため、第5世代移動通信システム(5G)やミリ波レーダー等におけるフレキシブルプリント配線板(FPC)等の絶縁材料として殊に有用な素材となる。 Then, the metal foil-clad laminates 300 and 400 of the present embodiment can be used as materials for circuit boards such as electronic circuit boards and multilayer boards by pattern-etching at least part of the metal foil MF. In addition, the metal foil-clad laminates 300 and 400 of the present embodiment are excellent in dielectric properties in a high frequency range, have small anisotropy in the rate of dimensional change in the MD direction and the TD direction, and Insulating materials such as flexible printed wiring boards (FPC) for 5th generation mobile communication systems (5G) and millimeter wave radars, etc. It is a particularly useful material as

以下に実施例及び比較例を挙げて本発明の特徴をさらに具体的に説明するが、本発明は、これらによりなんら限定されるものではない。すなわち、以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜変更することができる。また、以下の実施例における各種の製造条件や評価結果の値は、本発明の実施態様における好ましい上限値又は好ましい下限値としての意味をもつものであり、好ましい数値範囲は前記の上限値又は下限値と、下記実施例の値又は実施例同士の値との組み合わせで規定される範囲であってもよい。 EXAMPLES The features of the present invention will be described in more detail with reference to Examples and Comparative Examples below, but the present invention is not limited to them in any way. That is, materials, usage amounts, ratios, processing details, processing procedures, etc. shown in the following examples can be changed as appropriate without departing from the gist of the present invention. In addition, various production conditions and values of evaluation results in the following examples have the meaning of preferable upper limits or preferable lower limits in the embodiments of the present invention, and preferable numerical ranges are the above upper limits or lower limits. A range defined by a combination of a value and a value in the following example or values between examples may be used.

[溶融粘度]
以下の条件で、延伸処理用LCP押出フィルムの溶融粘度[Pa・sec]をそれぞれ測定した。
測定機器:キャピログラフ1D(東洋精機製作所社製)
使用装置:シリンダー長10.00mm、シリンダー径1.00mm、バレル径9.55mm
測定条件:延伸処理用LCP押出フィルムの押出成形時の温度[℃]と剪断速度[sec-1]
[Melt viscosity]
The melt viscosities [Pa·sec] of the LCP extruded films for stretching were measured under the following conditions.
Measuring instrument: Capilograph 1D (manufactured by Toyo Seiki Seisakusho)
Equipment used: Cylinder length 10.00mm, cylinder diameter 1.00mm, barrel diameter 9.55mm
Measurement conditions: Temperature [°C] and shear rate [sec -1 ] during extrusion molding of LCP extruded film for stretching treatment

[降伏点強度X及び破壊点強度Y]
以下の条件で、延伸処理用LCP押出フィルムの引張試験を行い、降伏点強度X及び破壊点強度Yを求めた。
JIS K7161-1:2014準拠
引張試験機:ストログラフVE1D(東洋精機製作所社製)
サンプルサイズ:ダンベル型
試験前の状態調整:23℃、50RH%で24時間
測定温度:200℃
引張速度:200mm/min
標線間距離:50mm
測定結果:5回測定の平均値
[Yield point strength X and breaking point strength Y]
A tensile test was performed on the LCP extruded film for stretching treatment under the following conditions, and the yield point strength X and breaking point strength Y were determined.
JIS K7161-1: 2014 compliant Tensile tester: Strograph VE1D (manufactured by Toyo Seiki Seisakusho)
Sample size: Dumbbell type Conditioning before test: 23°C, 50RH% for 24 hours Measurement temperature: 200°C
Tensile speed: 200mm/min
Gauge distance: 50mm
Measurement result: Average value of 5 measurements

[線膨張係数]
JIS K7197に準拠したTMA法で、延伸処理用LCP押出フィルム及びLCP延伸フィルムの線膨張係数をそれぞれ測定した。
測定機器: TMA 4000SE(NETZSCH社製)
測定方法: 引張モード
測定条件: サンプルサイズ 25mm×4mm×厚み50μm
チャック間距離 20mm
温度区間 23~200℃(2ndRUN)
昇温速度 5℃/min
雰囲気 窒素(流量50ml/min)
試験荷重 5gf
※熱履歴を解消した値をみるため、2ndRUNの値を採用
[Linear expansion coefficient]
The linear expansion coefficients of the LCP extruded film for stretching treatment and the LCP stretched film were measured by the TMA method according to JIS K7197.
Measuring instrument: TMA 4000SE (manufactured by NETZSCH)
Measurement method: Tensile mode Measurement conditions: Sample size 25 mm × 4 mm × thickness 50 μm
Distance between chucks 20mm
Temperature range 23-200°C (2nd RUN)
Heating rate 5°C/min
Atmosphere nitrogen (flow rate 50 ml/min)
Test load 5gf
* Adopt the value of 2nd RUN in order to see the value with the thermal history eliminated.

[テープ剥離試験]
延伸処理用LCP押出フィルムのフィルム表面について、JIS K5600-5-6に準拠したクロスカット法による密着性試験を行い、スキン層の有無をそれぞれ確認した。このとき、幅24mm×長さ50mmのニチバン社製セロテープ(登録商標)を使用し、テープを剥離した後に格子の目に剥がれがない場合を「スキン層なし」、剥がれがある場合を「スキン層あり」とした。
○ スキン層なし
× スキン層あり
[Tape peeling test]
The film surface of the LCP extruded film for stretching treatment was subjected to an adhesion test by a cross-cut method according to JIS K5600-5-6 to confirm the presence or absence of a skin layer. At this time, Nichiban's Cellotape (registered trademark) with a width of 24 mm and a length of 50 mm was used. Yes."
○ No skin layer × With skin layer

(実施例1~3)
中間層としてI型熱可塑性液晶ポリマー(モノマー組成がp-ヒドロキシ安息香酸79mol%、6-ヒドロキシ-2-ナフトエ酸20mol%、テレフタル酸1mol%の共重合体、温度330℃及び剪断速度500sec-1の溶融粘度は70Pa・sec)を、中間層の両面の表層としてポリカーボネートPC(帝人社製パンライトL-1225L)をそれぞれ用いて、剪断応力40kPa及びドローダウン比2.0の条件下で、ダイ幅600mm及びリップ開度0.2~1.0mmのTダイを備える二種三層押出機からTダイキャスティング法で各樹脂を330℃で共押出して、中間層が表1に記載の厚みを有する二種三層フィルムを成形した。成形した二種三層フィルムから両表層のポリカーボネートフィルムを巻取ラインでそれぞれ剥離し、融点315℃を有する実施例1~3の延伸処理用LCP押出フィルムをそれぞれ得た。
(Examples 1-3)
As an intermediate layer, a type I thermoplastic liquid crystal polymer (monomer composition: 79 mol% p-hydroxybenzoic acid, 20 mol% 6-hydroxy-2-naphthoic acid, 1 mol% terephthalic acid copolymer, temperature 330°C, shear rate 500 sec -1 The melt viscosity of 70 Pa sec), using polycarbonate PC (Teijin Panlite L-1225L) as the surface layer on both sides of the intermediate layer, under the conditions of a shear stress of 40 kPa and a drawdown ratio of 2.0, the die Each resin is coextruded at 330 ° C. by a T die casting method from a two-kind three-layer extruder equipped with a T die with a width of 600 mm and a lip opening of 0.2 to 1.0 mm, and the intermediate layer has a thickness shown in Table 1. A two-kind three-layer film was molded. Both surface polycarbonate films were peeled off from the molded two-kind three-layer film on a winding line to obtain LCP extruded films for stretching treatment of Examples 1 to 3 having a melting point of 315°C.

得られた実施例1~3の延伸処理用LCP押出フィルムを、1軸延伸機にて130℃でTD方向に2.0倍(総延伸倍率:2.0倍)にそれぞれ延伸し、130℃で30秒間熱セットすることで、実施例1~3のLCP延伸フィルムをそれぞれ得た。その後、各々一対の実施例1~3のLCP延伸フィルム間にガラスクロス(IPC No.#1037)をそれぞれ挟み込んだ状態で、熱プレス機を用いて300℃で5分間の熱圧着処理を行うことで、実施例1~3の回路基板用絶縁材料を得た。 The obtained LCP extruded films for stretching treatment of Examples 1 to 3 were each stretched at 130°C in the TD direction by 2.0 times (total stretch ratio: 2.0 times) with a uniaxial stretching machine, and stretched at 130°C. The LCP stretched films of Examples 1 to 3 were obtained by heat setting for 30 seconds at . After that, a glass cloth (IPC No. #1037) is sandwiched between each pair of LCP stretched films of Examples 1 to 3, and a heat press is used to perform thermocompression bonding at 300 ° C. for 5 minutes. Thus, insulating materials for circuit boards of Examples 1 to 3 were obtained.

(比較例1)
剪断応力50kPa及びドローダウン比6.0の条件下で、ダイ幅600mm及びリップ開度0.2~1.0mmのTダイを備える単層押出機からTダイキャスティング法で液晶ポリマーを330℃で押出する以外は、実施例1と同様に行い、融点315℃を有する比較例1の延伸処理用LCP押出フィルムを得た。
(Comparative example 1)
Under the conditions of shear stress of 50 kPa and drawdown ratio of 6.0, a liquid crystal polymer is cast at 330° C. from a single layer extruder equipped with a T die with a die width of 600 mm and a lip opening of 0.2 to 1.0 mm. An LCP extruded film for stretching treatment of Comparative Example 1 having a melting point of 315° C. was obtained in the same manner as in Example 1 except for the extrusion.

得られた比較例1の延伸処理用LCP押出フィルムを用いる以外は、実施例1と同様に行い、LCP延伸フィルムを得ようと試みたが、均一延伸を行うことができなかった。 An attempt was made to obtain an LCP stretched film in the same manner as in Example 1 except that the obtained LCP extruded film for stretching treatment of Comparative Example 1 was used, but uniform stretching could not be carried out.

表1に結果を示す。 Table 1 shows the results.

Figure 2023070392000002
Figure 2023070392000002

(実施例4~6)
中間層としてII型熱可塑性液晶ポリマー(モノマー組成がp-ヒドロキシ安息香酸74mol%、6-ヒドロキシ-2-ナフトエ酸26mol%の共重合体、温度300℃及び剪断速度500sec-1の溶融粘度は80Pa・sec)を、中間層の両面の表層としてポリカーボネートPC(帝人社製パンライトL-1225L)をそれぞれ用いて、剪断応力40kPa及びドローダウン比2.0の条件下で、ダイ幅600mm及びリップ開度0.2~1.0mmのTダイを備える二種三層押出機からTダイキャスティング法で各樹脂を300℃で共押出して、中間層が表2に記載の厚みを有する二種三層フィルムを成形した。成形した二種三層フィルムから両表層のポリカーボネートフィルムを巻取ラインでそれぞれ剥離し、融点280℃を有する実施例4~6の延伸処理用LCP押出フィルムをそれぞれ得た。
(Examples 4-6)
Type II thermoplastic liquid crystal polymer (monomer composition: 74 mol% p-hydroxybenzoic acid, 26 mol% 6-hydroxy-2-naphthoic acid, copolymer, melt viscosity at 300°C and shear rate of 500 sec -1 : 80 Pa) was used as the intermediate layer. · sec), using polycarbonate PC (Panlite L-1225L manufactured by Teijin) as the surface layers on both sides of the intermediate layer, under the conditions of a shear stress of 40 kPa and a drawdown ratio of 2.0, a die width of 600 mm and a lip opening. Each resin is co-extruded at 300 ° C. by a T-die casting method from a two-kind three-layer extruder equipped with a T die of 0.2 to 1.0 mm, and the intermediate layer has a thickness shown in Table 2 Two-kind three-layer having a thickness A film was cast. Both surface layer polycarbonate films were peeled from the molded two-kind three-layer film on a winding line to obtain LCP extruded films for stretching of Examples 4 to 6 having a melting point of 280°C.

得られた実施例4~6の延伸処理用LCP押出フィルムを、1軸延伸機にて130℃でTD方向に2.0倍(総延伸倍率:2.0倍)にそれぞれ延伸し、130℃で30秒間熱セットすることで、実施例4~6のLCP延伸フィルムをそれぞれ得た。その後、各々一対の実施例4~6のLCP延伸フィルム間にガラスクロス(IPC No.#1037)をそれぞれ挟み込んだ状態で、熱プレス機を用いて300s℃で5分間の熱圧着処理を行うことで、実施例4~6の回路基板用絶縁材料を得た。 The obtained LCP extruded films for stretching treatment of Examples 4 to 6 were each stretched at 130°C in the TD direction at 130°C to 2.0 times (total stretch ratio: 2.0 times), and stretched at 130°C. The LCP stretched films of Examples 4 to 6 were obtained by heat setting for 30 seconds at . After that, a glass cloth (IPC No. #1037) is sandwiched between each pair of LCP stretched films of Examples 4 to 6, and a heat press is used to perform thermocompression bonding at 300 s ° C. for 5 minutes. Thus, insulating materials for circuit boards of Examples 4 to 6 were obtained.

(比較例2)
剪断応力60kPa及びドローダウン比6.0の条件下で、ダイ幅600mm及びリップ開度0.2~1.0mmのTダイを備える単層押出機からTダイキャスティング法で液晶ポリマーを300℃で押出する以外は、実施例4と同様に行い、融点280℃を有する比較例2の延伸処理用LCP押出フィルムを得た。
(Comparative example 2)
Under the conditions of shear stress of 60 kPa and drawdown ratio of 6.0, a liquid crystal polymer is cast at 300° C. from a single layer extruder equipped with a T die with a die width of 600 mm and a lip opening of 0.2 to 1.0 mm. An LCP extruded film for stretching treatment of Comparative Example 2 having a melting point of 280° C. was obtained in the same manner as in Example 4 except for extrusion.

得られた比較例2の延伸処理用LCP押出フィルムを用いる以外は、実施例4と同様に行い、LCP延伸フィルムを得ようと試みたが、均一延伸を行うことができなかった。 An attempt was made to obtain an LCP stretched film in the same manner as in Example 4 except that the obtained LCP extruded film for stretching treatment of Comparative Example 2 was used, but uniform stretching could not be carried out.

表2に結果を示す。 Table 2 shows the results.

Figure 2023070392000003
Figure 2023070392000003

本発明のLCP押出フィルムは、電子回路基板、多層基板、高放熱基板、フレキシブルプリント配線板、アンテナ基板、光電子混載基板、ICバッケージ等の用途において広く且つ有効に利用可能であり、とりわけ超微細加工に適応し信頼性が高いため、第5世代移動通信システム(5G)やミリ波レーダー等におけるフレキシブルプリント配線板(FPC)等の絶縁材料や金属箔張積層板等として殊に広く且つ有効に利用可能である。 The LCP extruded film of the present invention can be widely and effectively used in applications such as electronic circuit boards, multilayer boards, high heat dissipation boards, flexible printed wiring boards, antenna boards, optoelectronic hybrid boards, IC packages, etc. Because it is highly reliable, it is widely and effectively used as an insulating material such as flexible printed circuit boards (FPC) and metal foil clad laminates in fifth-generation mobile communication systems (5G) and millimeter wave radars. It is possible.

X ・・・降伏点強度
Y ・・・破壊点強度
100 ・・・LCP延伸フィルム
200 ・・・回路基板用絶縁材料
300 ・・・金属箔張積層板
400 ・・・金属箔張積層板
WF ・・・織布
MF ・・・金属箔
X... Yield point strength Y... Breaking point strength 100... LCP stretched film 200... Insulating material for circuit board 300... Metal foil clad laminate 400... Metal foil clad laminate WF・・・ Woven fabric MF ・・・ Metal foil

Claims (12)

熱可塑性液晶ポリマーを含む延伸処理用LCP押出フィルムであり、
恒温槽引張試験(JIS K7161-1:2014準拠、200℃、引張速度200mm/min)で測定される応力-ひずみ曲線において、前記延伸処理用LCP押出フィルムのTD方向の降伏点強度X(MPa)及び破壊点強度Y(MPa)が、下記式(1);
0.75≦破壊点強度Y/降伏点強度X≦1.50・・・(1)
を満たす、
延伸処理用LCP押出フィルム
An LCP extruded film for stretch processing comprising a thermoplastic liquid crystal polymer,
Stress measured by constant temperature bath tensile test (JIS K7161-1: 2014 compliant, 200 ° C., tensile speed 200 mm / min) - In the strain curve, the yield point strength X (MPa) in the TD direction of the LCP extruded film for stretching treatment And the breaking point strength Y (MPa) is the following formula (1);
0.75≦strength at breaking point Y/strength at yield point X≦1.50 (1)
satisfy the
LCP extruded film for stretching
前記延伸処理用LCP押出フィルムは、TD方向の線膨張係数が5~55ppm/Kである
請求項1に記載の延伸処理用LCP押出フィルム。
2. The LCP extruded film for stretching according to claim 1, wherein the LCP extruded film for stretching has a coefficient of linear expansion in the TD direction of 5 to 55 ppm/K.
前記延伸処理用LCP押出フィルムは、Tダイ押出フィルムである
請求項1又は2に記載の延伸処理用LCP押出フィルム。
The LCP extruded film for stretching according to claim 1 or 2, wherein the LCP extruded film for stretching is a T-die extruded film.
前記延伸処理用LCP押出フィルムは、外層、中間層、及び外層を有する積層押出フィルムから前記両外層を除いた、前記中間層である
請求項1~3のいずれか一項に記載の延伸処理用LCP押出フィルム。
The LCP extruded film for stretching treatment according to any one of claims 1 to 3, wherein the LCP extruded film is an outer layer, an intermediate layer, and the intermediate layer obtained by removing the both outer layers from a laminated extruded film having the outer layer. LCP extruded film.
前記延伸処理用LCP押出フィルムは、JIS K5600-5-6に準拠したクロスカット法による密着性試験でフィルム表面にテープ剥離可能なスキン層を有さない
請求項1~4のいずれか一項に記載の延伸処理用LCP押出フィルム。
According to any one of claims 1 to 4, the LCP extruded film for stretching treatment does not have a tape-peelable skin layer on the film surface in an adhesion test by a cross-cut method according to JIS K5600-5-6. LCP extruded film for stretch processing as described.
前記延伸処理用LCP押出フィルムは、15μm以上300μm以下の厚みを有する
請求項1~5のいずれか一項に記載の延伸処理用LCP押出フィルム。
The LCP extruded film for stretching according to any one of claims 1 to 5, wherein the LCP extruded film for stretching has a thickness of 15 µm or more and 300 µm or less.
前記延伸処理用LCP押出フィルムは、無機フィラーをさらに含有する
請求項1~6のいずれか一項に記載の延伸処理用LCP押出フィルム。
The LCP extruded film for stretching according to any one of claims 1 to 6, further comprising an inorganic filler.
請求項1~7のいずれか一項に記載の延伸処理用LCP押出フィルムの延伸体を備え、
前記延伸体のTD方向の線膨張係数が、-20ppm/K以上0ppm/K未満の範囲内にあり、
前記延伸体のMD方向の線膨張係数が、-20ppm/K以上0ppm/K未満の範囲内にある、
熱収縮性LCP延伸フィルム。
A stretched body of the LCP extruded film for stretching treatment according to any one of claims 1 to 7,
The linear expansion coefficient in the TD direction of the elongated body is in the range of -20 ppm/K or more and less than 0 ppm/K,
The linear expansion coefficient in the MD direction of the elongated body is in the range of -20 ppm/K or more and less than 0 ppm/K.
Heat-shrinkable LCP stretched film.
前記延伸体は、前記延伸処理用LCP押出フィルムに対してTD方向に1.3~2.5倍の延伸倍率を有する
請求項8に記載の熱収縮性LCP延伸フィルム。
9. The stretched heat-shrinkable LCP film according to claim 8, wherein the stretched body has a stretch ratio of 1.3 to 2.5 times in the TD direction with respect to the LCP extruded film for stretching treatment.
請求項8又は9に記載の熱収縮性LCP延伸フィルム及び前記熱収縮性LCP延伸フィルムの少なくとも一方の面に設けられた織布を少なくとも有する積層体を備える、
回路基板用絶縁材料。
A laminate comprising at least the heat-shrinkable LCP stretched film according to claim 8 or 9 and a woven fabric provided on at least one surface of the heat-shrinkable LCP stretched film,
Insulating material for circuit boards.
請求項8又は9に記載の熱収縮性LCP延伸フィルム及び前記熱収縮性LCP延伸フィルムの片面及び/又は両面に設けられた金属箔を備える、
金属箔張積層板。
The heat-shrinkable LCP stretched film according to claim 8 or 9 and a metal foil provided on one side and/or both sides of the heat-shrinkable LCP stretched film,
Metal foil clad laminate.
請求項8又は9に記載の熱収縮性LCP延伸フィルム及び織布を少なくとも有する積層体と、前記積層体の片面及び/又は両面に設けられた金属箔とを備える、
金属箔張積層板。
A laminate having at least the heat-shrinkable LCP stretched film and the woven fabric according to claim 8 or 9, and a metal foil provided on one side and / or both sides of the laminate,
Metal foil clad laminate.
JP2021182534A 2020-12-09 2021-11-09 Lcp extruded film for stretching, heat-shrinkable lcp stretched film, insulating material for circuit board, and metal foil-clad laminate Pending JP2023070392A (en)

Priority Applications (14)

Application Number Priority Date Filing Date Title
JP2021182534A JP2023070392A (en) 2021-11-09 2021-11-09 Lcp extruded film for stretching, heat-shrinkable lcp stretched film, insulating material for circuit board, and metal foil-clad laminate
CN202311289318.1A CN117400571A (en) 2020-12-09 2021-12-07 LCP extruded film, process for producing the same, LCP extruded film for stretching treatment, LCP stretched film, heat-shrinkable LCP stretched film, insulating material for circuit board, and metal foil-clad laminate
KR1020237043724A KR20240001268A (en) 2020-12-09 2021-12-07 Lcp extruded film and manufacturing method therefor, lcp extruded film for stretching, lcp stretched film, heat shrinking lcp stretched film, insulating material for circuit board, and metal foil-clad laminate
KR1020237022786A KR20230119162A (en) 2020-12-09 2021-12-07 LCP extruded film and its manufacturing method, LCP extruded film for stretching treatment, LCP stretched film, heat-shrinkable LCP stretched film, insulating material for circuit board, and metal foil-clad laminate
CN202180082926.8A CN116710278A (en) 2020-12-09 2021-12-07 LCP extruded film, process for producing the same, LCP extruded film for stretching treatment, LCP stretched film, heat-shrinkable LCP stretched film, insulating material for circuit board, and metal foil-clad laminate
US18/266,228 US20240043635A1 (en) 2020-12-09 2021-12-07 Lcp extruded film and method for manufacturing the same, lcp extruded film for stretch treatment, lcp stretched film, heat-shrinkable lcp stretched film, insulating material for circuit substrate, and metal foil-clad laminate
KR1020237043725A KR20240001269A (en) 2020-12-09 2021-12-07 Lcp extruded film and manufacturing method therefor, lcp extruded film for stretching, lcp stretched film, heat shrinking lcp stretched film, insulating material for circuit board, and metal foil-clad laminate
CN202311289930.9A CN117301463A (en) 2020-12-09 2021-12-07 LCP extruded film, process for producing the same, LCP extruded film for stretching treatment, LCP stretched film, heat-shrinkable LCP stretched film, insulating material for circuit board, and metal foil-clad laminate
PCT/JP2021/044969 WO2022124308A1 (en) 2020-12-09 2021-12-07 Lcp extruded film and manufacturing method therefor, lcp extruded film for stretching, lcp stretched film, heat shrinking lcp stretched film, insulating material for circuit board, and metal foil-clad laminate
TW110146092A TW202235286A (en) 2020-12-09 2021-12-09 LCP extruded film and manufacturing method therefor, LCP extruded film for stretching, LCP stretched film, heat shrinking LCP stretched film, insulating material for circuit board, and metal foil-clad laminate
TW112137249A TW202404809A (en) 2020-12-09 2021-12-09 LCP extruded film and manufacturing method therefor, LCP extruded film for stretching, LCP stretched film, heat shrinking LCP stretched film, insulating material for circuit board, and metal foil-clad laminate
TW112137248A TW202402503A (en) 2020-12-09 2021-12-09 LCP extruded film and manufacturing method therefor, LCP extruded film for stretching, LCP stretched film, heat shrinking LCP stretched film, insulating material for circuit board, and metal foil-clad laminate
US18/375,798 US20240025102A1 (en) 2020-12-09 2023-10-02 Lcp extruded film and method for manufacturing the same, lcp extruded film for stretch treatment, lcp stretched film, heat-shrinkable lcp stretched film, insulating material for circuit substrate, and metal foil-clad laminate
US18/375,800 US20240032191A1 (en) 2020-12-09 2023-10-02 Lcp extruded film and method for manufacturing the same, lcp extruded film for stretch treatment, lcp stretched film, heat-shrinkable lcp stretched film, insulating material for circuit substrate, and metal foil-clad laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021182534A JP2023070392A (en) 2021-11-09 2021-11-09 Lcp extruded film for stretching, heat-shrinkable lcp stretched film, insulating material for circuit board, and metal foil-clad laminate

Publications (1)

Publication Number Publication Date
JP2023070392A true JP2023070392A (en) 2023-05-19

Family

ID=86331485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021182534A Pending JP2023070392A (en) 2020-12-09 2021-11-09 Lcp extruded film for stretching, heat-shrinkable lcp stretched film, insulating material for circuit board, and metal foil-clad laminate

Country Status (2)

Country Link
JP (1) JP2023070392A (en)
CN (3) CN116710278A (en)

Also Published As

Publication number Publication date
CN117301463A (en) 2023-12-29
CN117400571A (en) 2024-01-16
CN116710278A (en) 2023-09-05

Similar Documents

Publication Publication Date Title
KR20220027936A (en) LCP extruded film, flexible laminate using same, and manufacturing method thereof
JP6930046B1 (en) Manufacturing method of LCP film for circuit board and T-die melt extrusion LCP film for circuit board
WO2021106768A1 (en) Lcp resin composition for circuit boards, lcp film for circuit boards and method for producing same
US20240032191A1 (en) Lcp extruded film and method for manufacturing the same, lcp extruded film for stretch treatment, lcp stretched film, heat-shrinkable lcp stretched film, insulating material for circuit substrate, and metal foil-clad laminate
WO2022065285A1 (en) Insulating material for circuit boards, method for producing same and metal foil-clad laminate
WO2022065270A1 (en) Insulating material for circuit substrate, and metal foil-clad laminate
JP2022085734A (en) Liquid crystal polymer film, and laminate
JPWO2020153391A1 (en) Double-sided metal-clad laminate and its manufacturing method, insulating film and electronic circuit board
JP2023070392A (en) Lcp extruded film for stretching, heat-shrinkable lcp stretched film, insulating material for circuit board, and metal foil-clad laminate
WO2023033102A1 (en) Lcp extruded film, insulating material for circuit board, and metal foil clad laminate
JP2011157533A (en) Liquid crystalline polyester composition and film of the same
WO2023140187A1 (en) Liquid crystal polymer film, and circuit board insulating material and metal foil-clad laminate using same
JP2022091687A (en) Lcp extruded film, lcp stretched film, insulating material for circuit board, and metal foil-clad laminate
JP2022091688A (en) Lcp extruded film, lcp stretched film, insulating material for circuit board, and metal foil-clad laminate
JP2022091493A (en) Method for manufacturing lcp extrusion film
JP2023106957A (en) Winding roll of thermocompression bonding laminated film
JP2022091469A (en) Method for manufacturing lcp extrusion film
JP2023106954A (en) Manufacturing method of thermoplastic polymer film, and orientation control method of thermoplastic polymer film
JP2020193244A (en) Liquid crystalline resin composition, liquid crystalline resin film, method for producing liquid crystalline resin film, liquid crystalline resin film with conductor, and flexible printed wiring board