JP2022091687A - Lcp extruded film, lcp stretched film, insulating material for circuit board, and metal foil-clad laminate - Google Patents

Lcp extruded film, lcp stretched film, insulating material for circuit board, and metal foil-clad laminate Download PDF

Info

Publication number
JP2022091687A
JP2022091687A JP2021182543A JP2021182543A JP2022091687A JP 2022091687 A JP2022091687 A JP 2022091687A JP 2021182543 A JP2021182543 A JP 2021182543A JP 2021182543 A JP2021182543 A JP 2021182543A JP 2022091687 A JP2022091687 A JP 2022091687A
Authority
JP
Japan
Prior art keywords
lcp
film
extruded film
liquid crystal
lcp extruded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021182543A
Other languages
Japanese (ja)
Inventor
直希 小川
Naoki Ogawa
優亮 升田
Yuryo Masuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denka Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denka Co Ltd filed Critical Denka Co Ltd
Priority to KR1020237043724A priority Critical patent/KR20240001268A/en
Priority to KR1020237043725A priority patent/KR20240001269A/en
Priority to US18/266,228 priority patent/US20240043635A1/en
Priority to KR1020237022786A priority patent/KR20230119162A/en
Priority to PCT/JP2021/044969 priority patent/WO2022124308A1/en
Priority to TW112137248A priority patent/TW202402503A/en
Priority to TW112137249A priority patent/TW202404809A/en
Priority to TW110146092A priority patent/TW202235286A/en
Publication of JP2022091687A publication Critical patent/JP2022091687A/en
Priority to US18/375,798 priority patent/US20240025102A1/en
Priority to US18/375,800 priority patent/US20240032191A1/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

To provide a novel LCP extruded film that is sufficiently suppressed in the molecular orientation, internal strain or the like of a thermoplastic liquid crystal polymer and is also significantly suppressed in the anisotropy of dimensional change rates, as compared to the conventional art, and provide an LCP stretched film, an insulating material for circuit boards, and a metal foil-clad laminate including the same.SOLUTION: Provided is an LCP extruded film containing a thermoplastic liquid crystal polymer, having a thickness of 15 to 300 μm, inclusive. A degree of alignment α1 (%) including an exposed film surface S1 and a degree of alignment α2 (%) including a film surface S2 located at a depth of 5 μm from the film surface S1, exposed by etching the film surface S1 in the thickness direction, satisfy the relationship of -4.0≤[(α2-α1)/α1]×100≤0.0. A coefficient of linear expansion in the MD direction and the TD direction at 23 to 200°C, measured by the TMA method compliant with JIS K7197, ranges from -30 to 55 ppm/K.SELECTED DRAWING: Figure 1

Description

本発明は、LCP押出フィルム、LCP延伸フィルム、回路基板用絶縁材料、及び金属箔張積層板等に関する。 The present invention relates to an LCP extruded film, an LCP stretched film, an insulating material for a circuit board, a metal foil-clad laminate, and the like.

従来、回路基板用絶縁材料として、エポキシ樹脂等の熱硬化性樹脂と無機フィラーと溶剤等を含むワニスをガラスクロスに含浸させた後、熱プレス成形した、ワニス含浸複合材が知られている。しかしながら、この製法は、例えばワニス含浸時の樹脂流れ性や熱プレス成形時の硬化性等の観点で、製造時のプロセス裕度が乏しく、生産性に劣る。また、熱硬化性樹脂は、吸湿し易く、その吸湿にともなって寸法が変化するため、得られるワニス含浸複合材の寸法精度(加熱寸法精度)に劣る。 Conventionally, as an insulating material for a circuit board, a varnish-impregnated composite material is known in which a glass cloth is impregnated with a thermosetting resin such as an epoxy resin and a varnish containing an inorganic filler and a solvent, and then heat-press molded. However, this manufacturing method is inferior in productivity due to poor process margin during manufacturing, for example, from the viewpoint of resin flowability during varnish impregnation and curability during hot press molding. Further, the thermosetting resin easily absorbs moisture, and its size changes with the moisture absorption, so that the dimensional accuracy (heating dimensional accuracy) of the obtained varnish-impregnated composite material is inferior.

一方、液晶ポリマー(LCP;Liquid Crystal Polymer)は、溶融状態或いは溶液状態で液晶性を示すポリマーである。とりわけ、溶融状態で液晶性を示すサーモトロピック液晶ポリマーは、押出成形が可能であり、高ガスバリア性、高フィルム強度、高耐熱、高絶縁、低吸水率、高周波域での低誘電特性等の優れた性質を有している。そのため、熱可塑性液晶ポリマーを用いたフィルムは、ガスバリア性フィルム材料用途、電子材料用途や電気絶縁性材料用途において、実用化が検討されている。 On the other hand, a liquid crystal polymer (LCP) is a polymer that exhibits liquid crystallinity in a molten state or a solution state. In particular, the thermotropic liquid crystal polymer, which exhibits liquid crystal properties in the molten state, can be extruded and has excellent properties such as high gas barrier properties, high film strength, high heat resistance, high insulation, low water absorption, and low dielectric properties in the high frequency range. It has the above-mentioned properties. Therefore, a film using a thermoplastic liquid crystal polymer is being studied for practical use in gas barrier film material applications, electronic material applications, and electrically insulating material applications.

しかしながら、単層押出成形を実際に行ってみると、熱可塑性液晶ポリマーが有する高度の液晶配向性に起因して、工業上の利用価値が高い熱可塑性液晶ポリマーフィルム、すなわち厚み精度に優れ外観や表面平坦性が良好な熱可塑性液晶ポリマーフィルムを得ることが困難であることが判明した。 However, when single-layer extrusion molding is actually performed, a thermoplastic liquid crystal polymer film having high industrial utility value due to the high degree of liquid crystal orientation of the thermoplastic liquid crystal polymer, that is, an excellent appearance and appearance. It has been found that it is difficult to obtain a thermoplastic liquid crystal polymer film having good surface flatness.

そこで、例えば特許文献1には、単層押出ダイスに代えて三層共押出ダイスを用いて、中間層として全芳香族ポリエステル系サーモトロピック液晶ポリマーを両外層としてポリオレフィン系樹脂又はポリカーボネート樹脂を同時押出して、中間層が熱可塑性液晶ポリマー層であり両外層が熱可塑性樹脂層である三層の積層フィルムを成形し、両外層の熱可塑性樹脂層を剥離して中間層をフィルムとして取り出すことで、厚み精度に優れ外観や表面平坦性が良好な熱可塑性液晶ポリマーフィルムが得られることが開示されている。 Therefore, for example, in Patent Document 1, a three-layer co-extruded die is used instead of the single-layer extruded die, and a total aromatic polyester-based thermoplastic liquid crystal polymer is used as an intermediate layer, and a polyolefin resin or a polycarbonate resin is simultaneously extruded as both outer layers. By forming a three-layer laminated film in which the intermediate layer is a thermoplastic liquid crystal polymer layer and both outer layers are thermoplastic resin layers, the thermoplastic resin layers of both outer layers are peeled off and the intermediate layer is taken out as a film. It is disclosed that a thermoplastic liquid crystal polymer film having excellent thickness accuracy and good appearance and surface flatness can be obtained.

また、例えば特許文献2には、特許文献1に記載の熱可塑性液晶ポリマーフィルムにおいてMD方向(Machine Direction;長手方向)に対してTD方向(Transverse Direction;横手方向)の強度が実用に耐えられないことを見出し、マルチマニホールド方式の共押出ダイスに代えてフィードブロック方式の三層共押出ダイスを用いることにより、得られる熱可塑性液晶ポリマーフィルムのTD方向及びMD方向(Machine Direction;長手方向)の強度の異方性が緩和されることが開示されている。 Further, for example, in Patent Document 2, in the thermoplastic liquid crystal polymer film described in Patent Document 1, the strength in the TD direction (Transverse Direction) with respect to the MD direction (Machine Direction) cannot withstand practical use. It was found that the strength of the thermoplastic liquid crystal polymer film obtained by using the feed block type three-layer co-extrusion die instead of the multi-manifold type co-extrusion die in the TD direction and the MD direction (longitudinal direction). It is disclosed that the anisotropy of is alleviated.

特開昭63-31729号公報Japanese Unexamined Patent Publication No. 63-31729 特開平2-178016号公報Japanese Unexamined Patent Publication No. 2-178016

液晶ポリマーを用いた回路基板用絶縁材料は、高周波特性及び低誘電性に優れることから、今後進展する第5世代移動通信システム(5G)やミリ波レーダー等におけるフレキシブルプリント配線板(FPC)、フレキシブルプリント配線板積層体、繊維強化フレキシブル積層体等の回路基板の絶縁材料として、近年、脚光を浴びている。 Insulation materials for circuit boards using liquid crystal polymers are excellent in high-frequency characteristics and low dielectric properties, so they are flexible printed wiring boards (FPCs) and flexible in the 5th generation mobile communication systems (5G) and millimeter-wave radars that will be developed in the future. In recent years, it has been in the limelight as an insulating material for circuit boards such as printed wiring board laminates and fiber-reinforced flexible laminates.

上述した特許文献1及び2に記載の技術では、厚み精度に優れ外観や表面平坦性が良好な熱可塑性液晶ポリマーフィルムを実現することができるとされている。しかしながら、実際には、熱可塑性液晶ポリマーがフィルム表面において高度に分子配向することで生じるスキン層の剥離やフィブリル化した繊維の剥離の発生は抑制できるものの、特許文献1及び2に記載の熱可塑性液晶ポリマーフィルムは、フィルム全体としては、依然として熱可塑性液晶ポリマーが高度に分子配向しており、回路基板の絶縁材料として実用に耐えられるものではなかった。 It is said that the techniques described in Patent Documents 1 and 2 described above can realize a thermoplastic liquid crystal polymer film having excellent thickness accuracy and good appearance and surface flatness. However, in reality, although the occurrence of peeling of the skin layer and peeling of fibrillated fibers caused by the highly molecular orientation of the thermoplastic liquid crystal polymer on the film surface can be suppressed, the thermoplasticity described in Patent Documents 1 and 2 can be suppressed. As for the liquid crystal polymer film, the thermoplastic liquid crystal polymer is still highly molecularly oriented as a whole film, and it is not practically usable as an insulating material for a circuit board.

具体的には、回路基板の絶縁材料用途において、熱可塑性液晶ポリマーフィルムは、その片面及び/又は両面に銅箔等の金属箔が熱圧着等されて、金属箔張積層板として用いられることがある。そして、この金属箔がパターンエッチングされる等して微細配線等とされることにより、例えば電子回路基板や多層基板等の回路基板の素材として金属箔張積層板を使用することができる。そのため、金属箔を支持する熱可塑性液晶ポリマーフィルムには、高度の寸法安定性が要求される。しかしながら、特許文献1及び2に記載の熱可塑性液晶ポリマーフィルムは、エッチング後のTD方向及びMD方向の寸法変化率の差が依然として大きく、近年の超微細加工への適用要請に応えることができなかった。 Specifically, in the use of insulating materials for circuit boards, a thermoplastic liquid crystal polymer film may be used as a metal foil-clad laminate by thermocompression bonding a metal foil such as copper foil on one side and / or both sides thereof. be. By pattern-etching the metal foil to form fine wiring or the like, a metal foil-clad laminate can be used as a material for a circuit board such as an electronic circuit board or a multilayer board. Therefore, the thermoplastic liquid crystal polymer film that supports the metal foil is required to have a high degree of dimensional stability. However, the thermoplastic liquid crystal polymer films described in Patent Documents 1 and 2 still have a large difference in the dimensional change rate in the TD direction and the MD direction after etching, and cannot meet the recent demand for application to ultrafine processing. rice field.

本発明は、上記課題に鑑みてなされたものである。本発明の目的は、熱可塑性液晶ポリマーの分子配向や内部歪み等が十分に低減され、従来に比して寸法変化率の異方性が大幅に低減された、新規なLCP押出フィルム、並びにこれを用いたLCP延伸フィルム、回路基板用絶縁材料や金属箔張積層板等を提供することにある。 The present invention has been made in view of the above problems. An object of the present invention is a novel LCP extruded film in which the molecular orientation, internal strain, etc. of the thermoplastic liquid crystal polymer are sufficiently reduced, and the anisotropy of the dimensional change rate is significantly reduced as compared with the conventional film. It is an object of the present invention to provide an LCP stretched film, an insulating material for a circuit board, a metal foil-clad laminate, and the like.

本発明者らは、上記課題を解決すべく鋭意検討した結果、フィルム表面のみならずフィルム内部においても熱可塑性液晶ポリマーの分子配向や内部歪み等が緩和された、露出しているフィルム表面S1を含む配向度α1と、フィルム表面S1を厚み方向にエッチング処理することで露出する、フィルム表面S1から深度5μmに位置するフィルム表面S2を含む配向度α2との差が小さく且つ線膨張係数が小さな、LCP押出フィルムを新たに作製し、さらに、このLCP押出フィルムが従来に比して寸法変化率の異方性が低減されたものであることを見出し、本発明を完成するに至った。 As a result of diligent studies to solve the above problems, the present inventors have obtained an exposed film surface S1 in which the molecular orientation and internal strain of the thermoplastic liquid crystal polymer are alleviated not only on the film surface but also inside the film. The difference between the included degree of orientation α1 and the degree of orientation α2 including the film surface S2 located at a depth of 5 μm from the film surface S1 exposed by etching the film surface S1 in the thickness direction is small and the linear expansion coefficient is small. A new LCP extruded film was produced, and further, it was found that the anisotropy of the dimensional change rate was reduced as compared with the conventional one, and the present invention was completed.

すなわち、本発明は、以下に示す種々の具体的態様を提供する。
(1)熱可塑性液晶ポリマーを含み15μm以上300μm以下の厚みを有するLCP押出フィルムであって、露出しているフィルム表面S1を含む配向度α1(%)と、前記フィルム表面S1を厚み方向にエッチング処理することで露出する、前記フィルム表面S1から深度5μmに位置するフィルム表面S2を含む配向度α2(%)とが、-4.0≦[(α2-α1)/α1]×100≦0.0の関係を満たし、且つ、JIS K7197に準拠したTMA法によって測定される23~200℃におけるMD方向及びTD方向の線膨張係数が-30~55ppm/Kの範囲内にある、LCP押出フィルム。
That is, the present invention provides various specific embodiments shown below.
(1) An LCP extruded film containing a thermoplastic liquid crystal polymer and having a thickness of 15 μm or more and 300 μm or less, the orientation degree α1 (%) including the exposed film surface S1 and the film surface S1 being etched in the thickness direction. The degree of orientation α2 (%) including the film surface S2 located at a depth of 5 μm from the film surface S1 exposed by the treatment is -4.0 ≦ [(α2-α1) / α1] × 100 ≦ 0. An LCP extruded film that satisfies the relationship of 0 and has a linear expansion coefficient in the MD direction and the TD direction at 23 to 200 ° C. measured by the TMA method conforming to JIS K7197 in the range of -30 to 55 ppm / K.

(2)前記TD方向の前記線膨張係数が、0~55ppm/Kである(1)に記載のLCP押出フィルム。
(3)外層、中間層、及び外層を有する積層押出フィルムから前記両外層を除いた、前記中間層である(1)又は(2)に記載のLCP押出フィルム。
(4)前記フィルム表面S1に、JIS K5600-5-6に準拠したクロスカット法による密着性試験で、テープ剥離可能なスキン層を有さない(1)~(3)のいずれか一項に記載のLCP押出フィルム。
(2) The LCP extruded film according to (1), wherein the linear expansion coefficient in the TD direction is 0 to 55 ppm / K.
(3) The LCP extruded film according to (1) or (2), which is the intermediate layer obtained by removing both outer layers from the outer layer, the intermediate layer, and the laminated extruded film having the outer layer.
(4) In the adhesion test by the cross-cut method based on JIS K5600-5-6, the film surface S1 does not have a skin layer on which the tape can be peeled off, according to any one of (1) to (3). The LCP extruded film of the description.

(5)前記表面S2の前記配向度α2が、37.7(%)以下である(1)~(4)のいずれか一項に記載のLCP押出フィルム。
(6)前記フィルム表面S1の前記配向度α1が、39.0(%)以下である(1)~(5)のいずれか一項に記載のLCP押出フィルム。
(7)無機フィラーをさらに含有する(1)~(6)のいずれか一項に記載のLCP押出フィルム。
(8)Tダイ押出フィルムである(1)~(7)のいずれか一項に記載のLCP押出フィルム。
(5) The LCP extruded film according to any one of (1) to (4), wherein the degree of orientation α2 of the surface S2 is 37.7 (%) or less.
(6) The LCP extruded film according to any one of (1) to (5), wherein the degree of orientation α1 of the film surface S1 is 39.0 (%) or less.
(7) The LCP extruded film according to any one of (1) to (6), which further contains an inorganic filler.
(8) The LCP extruded film according to any one of (1) to (7), which is a T-die extruded film.

(9)(1)~(8)のいずれか一項に記載のLCP押出フィルム及び前記LCP押出フィルムの片面及び/又は両面に設けられた織布を少なくとも有する積層体を備える、回路基板用絶縁材料。
(10)(1)~(8)のいずれか一項に記載のLCP押出フィルム及び前記LCP押出フィルムの片面及び/又は両面に設けられた金属箔を備える、金属箔張積層板。
(11)(1)~(8)のいずれか一項に記載のLCP押出フィルム及び織布を少なくとも有する積層体と、前記積層体の片面及び/又は両面に設けられた金属箔とを備える、金属箔張積層板。
(9) Insulation for a circuit board comprising the LCP extruded film according to any one of (1) to (8) and a laminate having at least one woven fabric provided on one side and / or both sides of the LCP extruded film. material.
(10) A metal foil-clad laminate comprising the LCP extruded film according to any one of (1) to (8) and metal foils provided on one side and / or both sides of the LCP extruded film.
(11) A laminate having at least the LCP extruded film and the woven fabric according to any one of (1) to (8), and metal foils provided on one side and / or both sides of the laminate are provided. Metal leaf-clad laminate.

(12)(1)~(8)のいずれか一項に記載のLCP押出フィルムの延伸体を備える、LCP延伸フィルム。
(13)前記延伸体は、前記LCP押出フィルムに対して1.3~2.5倍の総延伸倍率(MD方向×TD方向)を有する(12)に記載のLCP延伸フィルム。
(12) An LCP stretched film comprising the stretched body of the LCP extruded film according to any one of (1) to (8).
(13) The LCP stretched film according to (12), wherein the stretched body has a total stretch ratio (MD direction × TD direction) of 1.3 to 2.5 times that of the LCP extruded film.

(14)(12)又は(13)に記載のLCP延伸フィルム及び前記LCP延伸フィルムの少なくとも一方の面に設けられた織布を少なくとも有する積層体を備える、回路基板用絶縁材料。
(15)(12)又は(13)に記載のLCP延伸フィルム及び前記LCP延伸フィルムの片面及び/又は両面に設けられた金属箔を備える、金属箔張積層板。
(16)(12)又は(13)に記載のLCP延伸フィルム及び織布を少なくとも有する積層体と、前記積層体の片面及び/又は両面に設けられた金属箔とを備える、金属箔張積層板。
(14) An insulating material for a circuit board, comprising a laminate having at least the LCP stretched film according to (12) or (13) and a woven fabric provided on at least one surface of the LCP stretched film.
(15) A metal foil-clad laminate comprising the LCP stretched film according to (12) or (13) and metal foils provided on one side and / or both sides of the LCP stretched film.
(16) A metal foil-clad laminate comprising a laminate having at least the LCP stretched film and the woven fabric according to (12) or (13) and metal foils provided on one side and / or both sides of the laminate. ..

本発明の一態様によれば、従来に比して寸法変化率の異方性が低減された、新規なLCP押出フィルム、LCP延伸フィルム、回路基板用絶縁材料、及び金属箔張積層板等を実現することができる。また、本発明の一態様によれば、MD方向及びTD方向の寸法変化率そのものが小さい、新規なLCP押出フィルム、LCP延伸フィルム、回路基板用絶縁材料、及び金属箔張積層板等を実現することができる。したがって、本発明の各種態様によれば、近年の超微細加工に適応した信頼性の高い製品を実現することができる。 According to one aspect of the present invention, a novel LCP extruded film, an LCP stretched film, an insulating material for a circuit board, a metal leaf-clad laminate, etc. It can be realized. Further, according to one aspect of the present invention, a novel LCP extruded film, an LCP stretched film, an insulating material for a circuit board, a metal foil-clad laminate, and the like, which have a small dimensional change rate itself in the MD direction and the TD direction, are realized. be able to. Therefore, according to various aspects of the present invention, it is possible to realize a highly reliable product suitable for recent ultrafine processing.

一実施形態のLCP押出フィルムを示す模式断面図である。It is a schematic cross-sectional view which shows the LCP extruded film of one Embodiment. 配向性ピークの面積割合に基づく配向度の算出原理を示す概念図である。It is a conceptual diagram which shows the calculation principle of the degree of orientation based on the area ratio of the orientation peak. 一実施形態のLCP押出フィルムの共押出法を示す図である。It is a figure which shows the co-extrusion method of the LCP extrusion film of one Embodiment. 一実施形態のLCP押出フィルムの共押出法を示す図である。It is a figure which shows the co-extrusion method of the LCP extrusion film of one Embodiment. 一実施形態のLCP押出フィルムの共押出法を示す図である。It is a figure which shows the co-extrusion method of the LCP extrusion film of one Embodiment. 一実施形態の回路基板用絶縁材料を示す模式断面図である。It is a schematic cross-sectional view which shows the insulating material for a circuit board of one Embodiment. 一実施形態の金属箔張積層板を示す模式断面図である。It is a schematic cross-sectional view which shows the metal foil-covered laminated board of one Embodiment. 一実施形態の金属箔張積層板を示す模式断面図である。It is a schematic cross-sectional view which shows the metal foil-covered laminated board of one Embodiment.

以下、本発明の実施の形態について、図面を参照して詳細に説明する。なお、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。また、図面の寸法比率は、図示の比率に限定されるものではない。但し、以下の実施の形態は、本発明を説明するための例示であり、本発明はこれらに限定されるものではない。すなわち本発明は、その要旨を逸脱しない範囲内で任意に変更して実施することができる。なお、本明細書において、例えば「1~100」との数値範囲の表記は、その下限値「1」及び上限値「100」の双方を包含するものとする。また、他の数値範囲の表記も同様である。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Unless otherwise specified, the positional relationship such as up, down, left, and right shall be based on the positional relationship shown in the drawings. Further, the dimensional ratios in the drawings are not limited to the ratios shown in the drawings. However, the following embodiments are examples for explaining the present invention, and the present invention is not limited thereto. That is, the present invention can be arbitrarily modified and implemented without departing from the gist thereof. In this specification, for example, the notation of the numerical range of "1 to 100" includes both the lower limit value "1" and the upper limit value "100". The same applies to the notation of other numerical ranges.

(LCP押出フィルム)
図1は、本実施形態のLCP押出フィルム100の要部を示す模式断面図である。本実施形態のLCP押出フィルム100は、熱可塑性液晶ポリマーを含む樹脂組成物を厚み15μm以上300μm以下のフィルム状に押出成形したものである。
(LCP extruded film)
FIG. 1 is a schematic cross-sectional view showing a main part of the LCP extruded film 100 of the present embodiment. The LCP extruded film 100 of the present embodiment is obtained by extruding a resin composition containing a thermoplastic liquid crystal polymer into a film having a thickness of 15 μm or more and 300 μm or less.

先にも述べたとおり、従来技術のLCP押出フィルムは、フィルム表面(フィルム表面S1)ではスキン層の剥離やフィブリル化した繊維の剥離が発生する等、熱可塑性液晶ポリマーがフィルム表面において極度に分子配向されたものであった。これは、押出時に装置側面からの剪断応力を受け、その結果、押出成形体の表面において熱可塑性液晶ポリマーが高配向しているためであると推察される。そして、特許文献1及び2のように改善することにより、熱可塑性液晶ポリマーのフィルム表面における極度の分子配向が緩和されることが確認されたが、それと同時に、フィルム表面における熱可塑性液晶ポリマーの分子配向の制御のみでは、回路基板の絶縁材料としての要求性能に耐え得るものを実現できないことが、本発明者らの知見により判明した。すなわち、寸法変化率の異方性が低減されたLCP押出フィルムを実現するためには、フィルム表面S1における熱可塑性液晶ポリマーの分子配向の制御のみならず、フィルム内部(フィルム表面S2)で生じている熱可塑性液晶ポリマーの分子配向の制御や内部歪み等の低減も必要である。 As mentioned above, in the LCP extruded film of the prior art, the thermoplastic liquid crystal polymer is extremely molecular on the film surface, such as peeling of the skin layer and peeling of fibrillated fibers on the film surface (film surface S1). It was oriented. It is presumed that this is because the thermoplastic liquid crystal polymer is highly oriented on the surface of the extruded body as a result of receiving shear stress from the side surface of the device during extrusion. Then, it was confirmed that the extreme molecular orientation of the thermoplastic liquid crystal polymer on the film surface was relaxed by the improvement as in Patent Documents 1 and 2, but at the same time, the molecule of the thermoplastic liquid crystal polymer on the film surface was confirmed. It has been found from the findings of the present inventors that it is not possible to realize a material that can withstand the required performance as an insulating material for a circuit board only by controlling the orientation. That is, in order to realize an LCP extruded film in which the anisotropy of the dimensional change rate is reduced, it occurs not only in controlling the molecular orientation of the thermoplastic liquid crystal polymer on the film surface S1 but also inside the film (film surface S2). It is also necessary to control the molecular orientation of the thermoplastic liquid crystal polymer and reduce internal strain.

本実施形態のLCP押出フィルム100は、従来技術とは異なり、フィルム表面(フィルム表面S1)のみならずフィルム内部(フィルム表面S2)においても熱可塑性液晶ポリマーの分子配向や内部歪み等が緩和されており、これにより、従来に比して寸法変化率の異方性が格別に低減されている。すなわち、本実施形態のLCP押出フィルム100は、露出しているフィルム表面S1を含む配向度α1(%)と、フィルム表面S1を厚み方向にエッチング処理することで露出する、フィルム表面S1から深度5μmに位置するフィルム表面S2を含む配向度α2(%)とが、-4.0≦[(α2-α1)/α1]×100≦0.0の関係を満たし、且つ、JIS K7197に準拠したTMA法によって測定される23~200℃におけるMD方向及びTD方向の線膨張係数が-30~55ppm/Kの範囲内にあることを特徴とする。以下、さらに詳述する。 In the LCP extruded film 100 of the present embodiment, unlike the prior art, the molecular orientation and internal strain of the thermoplastic liquid crystal polymer are alleviated not only on the film surface (film surface S1) but also on the inside of the film (film surface S2). As a result, the anisotropy of the dimensional change rate is significantly reduced as compared with the conventional case. That is, the LCP extruded film 100 of the present embodiment has an orientation degree α1 (%) including the exposed film surface S1 and a depth of 5 μm from the film surface S1 exposed by etching the film surface S1 in the thickness direction. The degree of orientation α2 (%) including the film surface S2 located at is satisfied with the relationship of -4.0 ≦ [(α2-α1) / α1] × 100 ≦ 0.0, and TMA compliant with JIS K7197. It is characterized in that the linear expansion coefficient in the MD direction and the TD direction at 23 to 200 ° C. measured by the method is in the range of -30 to 55 ppm / K. Hereinafter, it will be described in more detail.

LCP押出フィルム100としては、Tダイ押出フィルム等の押出フィルムが好ましく用いられる。また、LCP押出フィルム100としては、熱可塑性樹脂層、熱可塑性液晶ポリマー層、及び熱可塑性樹脂層が少なくともこの順に配列された積層構造を有する三層共押出フィルムの中間層(芯層)である熱可塑性液晶ポリマー層も好ましく用いられる。この場合、三層共押出フィルムの両外層の熱可塑性樹脂層を除去することで、単層の熱可塑性液晶ポリマーフィルム(LCP押出フィルム100)として用いることができる。熱可塑性液晶ポリマーの押出フィルムは、熱可塑性液晶ポリマーの繊維からなる織布や不織布に比して、低コストで均質なものが製造可能である。 As the LCP extruded film 100, an extruded film such as a T-die extruded film is preferably used. The LCP extruded film 100 is an intermediate layer (core layer) of a three-layer coextruded film having a laminated structure in which a thermoplastic resin layer, a thermoplastic liquid crystal polymer layer, and a thermoplastic resin layer are arranged at least in this order. A thermoplastic liquid crystal polymer layer is also preferably used. In this case, by removing the thermoplastic resin layers of both outer layers of the three-layer coextruded film, it can be used as a single-layer thermoplastic liquid crystal polymer film (LCP extruded film 100). Extruded films of thermoplastic liquid crystal polymers can be manufactured at low cost and homogeneously as compared with woven fabrics and non-woven fabrics made of fibers of thermoplastic liquid crystal polymers.

LCP押出フィルム100に含まれる熱可塑性の液晶ポリマーは、当業界で公知のものを用いることができ、その種類は特に限定されない。液晶ポリマーは、光学的に異方性の溶融相を形成するポリマーであり、代表的にはサーモトロピック液晶化合物が挙げられる。なお、異方性溶融相の性質は、直交偏光子を利用した偏光検査法等の公知の方法によって確認することができる。より具体的には、異方性溶融相の確認は、Leitz偏光顕微鏡を使用し、Leitzホットステージにのせた試料を窒素雰囲気下で40倍の倍率で観察することにより実施することができる。 As the thermoplastic liquid crystal polymer contained in the LCP extruded film 100, those known in the art can be used, and the type thereof is not particularly limited. The liquid crystal polymer is a polymer that forms an optically anisotropic molten phase, and examples thereof include thermotropic liquid crystal compounds. The properties of the anisotropic molten phase can be confirmed by a known method such as a polarization inspection method using an orthogonal polarizing element. More specifically, the confirmation of the anisotropic molten phase can be carried out by observing the sample placed on the Leitz hot stage at a magnification of 40 times under a nitrogen atmosphere using a Leitz polarizing microscope.

熱可塑性液晶ポリマーの具体例としては、芳香族又は脂肪族ジヒドロキシ化合物、芳香族又は脂肪族ジカルボン酸、芳香族ヒドロキシカルボン酸、芳香族ジアミン、芳香族ヒドロキシアミン、芳香族アミノカルボン酸等の単量体を重縮合させたものが挙げられるが、これらに特に限定されない。熱可塑性の液晶ポリマーは、共重合体が好ましい。具体的には、芳香族ヒドロキシカルボン酸、芳香族ジアミン、芳香族ヒドロキシアミン等の単量体を重縮合させてなる芳香族ポリアミド樹脂;芳香族ジオール、芳香族カルボン酸、芳香族ヒドロキシカルボン酸等の単量体を重縮合させてなる(全)芳香族ポリエステル樹脂;等が挙げられるが、これらに特に限定されない。これらは、1種を単独で、又は2種以上を任意の組み合わせ及び比率で用いることができる。 Specific examples of the thermoplastic liquid crystal polymer include a single amount of an aromatic or aliphatic dihydroxy compound, an aromatic or aliphatic dicarboxylic acid, an aromatic hydroxycarboxylic acid, an aromatic diamine, an aromatic hydroxyamine, an aromatic aminocarboxylic acid and the like. Examples thereof include those obtained by polycondensing the body, but the present invention is not particularly limited thereto. The thermoplastic liquid crystal polymer is preferably a copolymer. Specifically, an aromatic polyamide resin obtained by polycondensing monomers such as aromatic hydroxycarboxylic acid, aromatic diamine, and aromatic hydroxyamine; aromatic diol, aromatic carboxylic acid, aromatic hydroxycarboxylic acid, and the like. (Whole) aromatic polyester resin obtained by polycondensing the monomers of the above; and the like; but are not particularly limited thereto. These can be used alone or in any combination and ratio of two or more.

熱可塑性液晶ポリマーは、一般的に、熱変形温度(TDUL)の観点からI型、II型、III型等に分類されている。本実施形態のLCP押出フィルム100は、いずれのタイプの熱可塑性液晶ポリマーであっても好適に用いることができ、適用用途に応じて適宜選択して用いればよい。例えば230~260℃程度の鉛フリーはんだへの適用が求められる電子回路基板用途においては、TDULが250~350℃程度の高耐熱なI型の熱可塑性液晶ポリマー、TDULが240~250℃程度の比較的に高耐熱なII型の熱可塑性液晶ポリマーが好適に用いられる。 Thermoplastic liquid crystal polymers are generally classified into type I, type II, type III and the like from the viewpoint of heat distortion temperature (TDUL). The LCP extruded film 100 of the present embodiment can be suitably used regardless of the type of thermoplastic liquid crystal polymer, and may be appropriately selected and used according to the application application. For example, in an electronic circuit board application that is required to be applied to lead-free solder at about 230 to 260 ° C., a highly heat-resistant type I thermoplastic liquid crystal polymer having a TDUL of about 250 to 350 ° C. and a TDUL of about 240 to 250 ° C. A type II thermoplastic liquid crystal polymer having a relatively high heat resistance is preferably used.

これらの中でも、サーモトロピック型の液晶様性質を示し、融点が250℃以上、好ましくは融点が280℃~380℃の、(全)芳香族ポリエステル樹脂が好ましく用いられる。このような(全)芳香族ポリエステル樹脂としては、例えば、芳香族ジオール、芳香族カルボン酸、ヒドロキシカルボン酸等のモノマーから合成される、溶融時に液晶性を示す(全)芳香族ポリエステル樹脂が知られている。その代表的なものとしては、エチレンテレフタレートとパラヒドロキシ安息香酸との重縮合体、フェノール及びフタル酸とパラヒドロキシ安息香酸との重縮合体、2,6-ヒドロキシナフトエ酸とパラヒドロキシ安息香酸との重縮合体等が挙げられるが、これらに特に限定されない。なお、(全)芳香族ポリエステル樹脂は、1種を単独で、又は2種以上を任意の組み合わせ及び比率で用いることができる。要求性能に応じて、比較的に高融点ないしは高熱変形温度を有し高耐熱な全芳香族ポリエステル樹脂を用いたり、比較的に低融点ないしは低熱変形温度を有し成形加工性に優れる芳香族ポリエステル樹脂を用いたりすることができる。 Among these, (all) aromatic polyester resins having a thermotropic-type liquid crystal-like property and a melting point of 250 ° C. or higher, preferably a melting point of 280 ° C. to 380 ° C. are preferably used. As such an (whole) aromatic polyester resin, for example, a (whole) aromatic polyester resin that exhibits liquidity when melted, which is synthesized from a monomer such as an aromatic diol, an aromatic carboxylic acid, or a hydroxycarboxylic acid, is known. Has been done. Typical examples are a polycondensate of ethylene terephthalate and parahydroxybenzoic acid, a polycondensate of phenol and phthalic acid with parahydroxybenzoic acid, and 2,6-hydroxynaphthoic acid and parahydroxybenzoic acid. Examples thereof include polycondensates, but the present invention is not particularly limited thereto. As the (all) aromatic polyester resin, one kind may be used alone, or two or more kinds may be used in any combination and ratio. Depending on the required performance, an all-aromatic polyester resin having a relatively high melting point or high thermal deformation temperature and high heat resistance may be used, or an aromatic polyester having a relatively low melting point or low thermal deformation temperature and excellent molding processability. Resin can be used.

好ましい一態様としては、6-ヒドロキシ-2-ナフトエ酸及びその誘導体(以降において、単に「モノマー成分A」と称する場合がある。)を基本構造とし、パラヒドロキシ安息香酸、テレフタル酸、イソフタル酸、6-ナフタレンジカルボン酸、4,4'-ビフェノール、ビスフェノールA、ヒドロキノン、4,4-ジヒドロキシビフェノール、エチレンテレフタレート及びこれらの誘導体よりなる群から選択される1種以上をモノマー成分(以降において、単に「モノマー成分B」と称する場合がある。)として少なくとも有する(全)芳香族ポリエステル樹脂が挙げられる。このような(全)芳香族ポリエステル樹脂は、溶融状態で分子の直鎖が規則正しく並んで異方性溶融相を形成し、典型的にはサーモトロピック型の液晶様性質を示し、機械的特性、電気特性、高周波特性、耐熱性、吸湿性等において優れた基本性能を有するものとなる。 In a preferred embodiment, 6-hydroxy-2-naphthoic acid and a derivative thereof (hereinafter, may be simply referred to as "monomer component A") are used as a basic structure, and parahydroxybenzoic acid, terephthalic acid, isophthalic acid, and the like. One or more selected from the group consisting of 6-naphthalenedicarboxylic acid, 4,4'-biphenol, bisphenol A, hydroquinone, 4,4-dihydroxybiphenol, ethylene terephthalate and derivatives thereof is a monomer component (hereinafter, simply " It may be referred to as "monomer component B"), and examples thereof include (all) aromatic polyester resins having at least. In such (whole) aromatic polyester resin, the linear lines of molecules are regularly arranged in a molten state to form an anisotropic molten phase, which typically exhibits thermotropic type liquid crystal-like properties, and has mechanical properties. It has excellent basic performance in electrical characteristics, high frequency characteristics, heat resistance, hygroscopicity, etc.

また、上述した好ましい一態様の(全)芳香族ポリエステル樹脂は、必須単位としてモノマー成分A及びモノマー成分Bを有するものである限り、任意の構成を採ることができる。例えば2種以上のモノマー成分Aを有していても、3種以上のモノマー成分Aを有していてもよい。また、上述した好ましい一態様の(全)芳香族ポリエステル樹脂は、モノマー成分A及びモノマー成分B以外の、他のモノマー成分(以降において、単に「モノマー成分C」と称する場合がある。)を含有していてもよい。すなわち、上述した好ましい一態様の(全)芳香族ポリエステル樹脂は、モノマー成分A及びモノマー成分Bのみからなる2元系以上の重縮合体であっても、モノマー成分A、モノマー成分B及びモノマー成分Cからなる3元系以上のモノマー成分の重縮合体であってもよい。他のモノマー成分としては、上述したモノマー成分A及びモノマー成分B以外のもの、具体的には芳香族又は脂肪族ジヒドロキシ化合物及びその誘導体;芳香族又は脂肪族ジカルボン酸及びその誘導体;芳香族ヒドロキシカルボン酸及びその誘導体;香族ジアミン、芳香族ヒドロキシアミン又は芳香族アミノカルボン酸及びその誘導体;等が挙げられるが、これらに特に限定されない。他のモノマー成分は、1種を単独で、又は2種以上を任意の組み合わせ及び比率で用いることができる。 Further, the (all) aromatic polyester resin of the preferred embodiment described above can have any configuration as long as it has a monomer component A and a monomer component B as essential units. For example, it may have two or more kinds of monomer components A or may have three or more kinds of monomer components A. Further, the (all) aromatic polyester resin of the preferred embodiment described above contains other monomer components (hereinafter, may be simply referred to as “monomer component C”) other than the monomer component A and the monomer component B. You may be doing it. That is, even if the (all) aromatic polyester resin of the above-mentioned preferred embodiment is a polycondensate having a binary system or more composed of only the monomer component A and the monomer component B, the monomer component A, the monomer component B, and the monomer component It may be a polycondensate of a monomer component of a ternary system or more composed of C. Other monomer components include those other than the above-mentioned monomer component A and monomer component B, specifically, aromatic or aliphatic dihydroxy compounds and derivatives thereof; aromatic or aliphatic dicarboxylic acids and derivatives thereof; aromatic hydroxycarboxylic acids. Acids and derivatives thereof; aromatic diamines, aromatic hydroxyamines or aromatic aminocarboxylic acids and derivatives thereof; and the like; but are not particularly limited thereto. As the other monomer components, one kind may be used alone, or two or more kinds may be used in any combination and ratio.

なお、本明細書において、「誘導体」とは、上述したモノマー成分の一部に、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)、炭素数1~5のアルキル基(例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基等)、フェニル基等のアリール基、水酸基、炭素数1~5のアルコキシ基(例えばメトキシ基、エトキシ基等)、カルボニル基、-O-、-S-、-CH2-等の修飾基が導入されているもの(以降において、「置換基を有するモノマー成分」と称する場合がある。)を意味する。ここで、「誘導体」は、上述した修飾基を有していてもよいモノマー成分A及びBのアシル化物、エステル誘導体、又は酸ハロゲン化物等のエステル形成性モノマーであってもよい。 In the present specification, the "derivative" is a halogen atom (for example, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom) and an alkyl group having 1 to 5 carbon atoms (for example, methyl) as a part of the above-mentioned monomer component. Group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, s-butyl group, t-butyl group, etc.), aryl group such as phenyl group, hydroxyl group, alkoxy group having 1 to 5 carbon atoms (For example, methoxy group, ethoxy group, etc.), carbonyl group, —O—, —S—, —CH 2- , or other modifying group introduced (hereinafter referred to as “monomer component having a substituent””. There is.). Here, the "derivative" may be an ester-forming monomer such as an acylated product, an ester derivative, or an acid halide of the monomer components A and B which may have the above-mentioned modifying group.

特に好ましい一態様としては、パラヒドロキシ安息香酸及びその誘導体と6-ヒドロキシ-2-ナフトエ酸及びその誘導体との二元系重縮合体;パラヒドロキシ安息香酸及びその誘導体と6-ヒドロキシ-2-ナフトエ酸及びその誘導体とモノマー成分Cとの三元系以上の重縮合体;パラヒドロキシ安息香酸及びその誘導体と6-ヒドロキシ-2-ナフトエ酸及びその誘導体とテレフタル酸、イソフタル酸、6-ナフタレンジカルボン酸、4,4'-ビフェノール、ビスフェノールA、ヒドロキノン、4,4-ジヒドロキシビフェノール、エチレンテレフタレート及びこれらの誘導体よりなる群から選択される1種以上とからなる三元系以上の重縮合体;パラヒドロキシ安息香酸及びその誘導体と6-ヒドロキシ-2-ナフトエ酸及びその誘導体とテレフタル酸、イソフタル酸、6-ナフタレンジカルボン酸、4,4'-ビフェノール、ビスフェノールA、ヒドロキノン、4,4-ジヒドロキシビフェノール、エチレンテレフタレート及びこれらの誘導体よりなる群から選択される1種以上と1種以上のモノマー成分Cとからなる四元系以上の重縮合体;が挙げられる。これらは、例えばパラヒドロキシ安息香酸のホモポリマー等に対して比較的に低融点を有するものとして得ることができ、そのため、これらを用いた熱可塑性液晶ポリマーは、被着体への熱圧着時の成形加工性に優れたものとなる。 In a particularly preferred embodiment, a binary polycondensate of parahydroxybenzoic acid and its derivative and 6-hydroxy-2-naphthoic acid and its derivative; parahydroxybenzoic acid and its derivative and 6-hydroxy-2-naphthoe A ternary or higher polycondensate of an acid and its derivative and monomer component C; parahydroxybenzoic acid and its derivative and 6-hydroxy-2-naphthoic acid and its derivative and terephthalic acid, isophthalic acid, 6-naphthalenedicarboxylic acid , 4,4'-Bisphenol A, Hydroquinone, 4,4-dihydroxybiphenol, ethylene terephthalate and one or more polycondensates of one or more selected from the group consisting of derivatives thereof; parahydroxy Saprophytic acid and its derivatives and 6-hydroxy-2-naphthoic acid and its derivatives and terephthalic acid, isophthalic acid, 6-naphthalenedicarboxylic acid, 4,4'-biphenol, bisphenol A, hydroquinone, 4,4-dihydroxybiphenol, ethylene Examples thereof include a quaternary or higher polycondensate composed of one or more selected from the group consisting of terephthalates and derivatives thereof and one or more monomer components C. These can be obtained as having a relatively low melting point with respect to, for example, a homopolymer of parahydroxybenzoic acid, and therefore, a thermoplastic liquid crystal polymer using these can be obtained at the time of thermocompression bonding to an adherend. It has excellent moldability.

(全)芳香族ポリエステル樹脂の融点を低くし、LCP押出フィルム100の被着体への熱圧着時の成形加工性を高め、或いはLCP押出フィルム100を金属箔に熱圧着した際に高いピール強度を得る等の観点から、(全)芳香族ポリエステル樹脂に対するモノマー成分Aのモル比換算の含有割合は、10モル%以上90モル%以下が好ましく、30モル%以上85モル%以下がより好ましく、50モル%以上80モル%以下がさらに好ましい。同様に、(全)芳香族ポリエステル樹脂に対するモノマー成分Bのモル比換算の含有割合は、10モル%以上90モル%以下が好ましく、15モル%以上70モル%以下がより好ましく、20モル%以上50モル%以下がさらに好ましい。また、(全)芳香族ポリエステル樹脂に含まれていてもよいモノマー成分Cの含有割合は、モル比換算で10モル%以下が好ましく、より好ましくは8モル%以下、さらに好ましくは5モル%以下、特に好ましくは3モル%以下である。 The melting point of the (all) aromatic polyester resin is lowered to improve the molding processability when the LCP extruded film 100 is heat-bonded to the adherend, or the peel strength is high when the LCP extruded film 100 is heat-bonded to the metal foil. The content ratio of the monomer component A to the (total) aromatic polyester resin in terms of molar ratio is preferably 10 mol% or more and 90 mol% or less, more preferably 30 mol% or more and 85 mol% or less. More preferably, it is 50 mol% or more and 80 mol% or less. Similarly, the content ratio of the monomer component B to the (total) aromatic polyester resin in terms of molar ratio is preferably 10 mol% or more and 90 mol% or less, more preferably 15 mol% or more and 70 mol% or less, and more preferably 20 mol% or more. More preferably, it is 50 mol% or less. Further, the content ratio of the monomer component C which may be contained in the (total) aromatic polyester resin is preferably 10 mol% or less, more preferably 8 mol% or less, still more preferably 5 mol% or less in terms of molar ratio. Particularly preferably, it is 3 mol% or less.

なお、(全)芳香族ポリエステル樹脂の合成方法は、公知の方法を適用することができ、特に限定されない。上述したモノマー成分によるエステル結合を形成させる公知の重縮合法、例えば溶融重合、溶融アシドリシス法、スラリー重合法等を適用することができる。これらの重合法を適用する際、常法にしたがい、アシル化ないしはアセチル化工程を経てもよい。 A known method can be applied to the method for synthesizing the (all) aromatic polyester resin, and the method is not particularly limited. A known polycondensation method for forming an ester bond with the above-mentioned monomer components, for example, a melt polymerization method, a melt acidlysis method, a slurry polymerization method, or the like can be applied. When applying these polymerization methods, an acylation or acetylation step may be performed according to a conventional method.

LCP押出フィルム100は、無機フィラーをさらに含有していてもよい。無機フィラーを含有することで、線膨張係数が低減されたLCP押出フィルム100を実現でき、具体的には、MD方向、TD方向、及びZD方向(Z-axis Direction;フィルム厚み方向)の線膨張係数の異方性が低減されたLCP押出フィルム100が得られ易い。このようなLCP押出フィルム100は、例えば多層積層が要求されるリジッド基板用途等において特に有用となる。 The LCP extruded film 100 may further contain an inorganic filler. By containing an inorganic filler, an LCP extruded film 100 having a reduced coefficient of linear expansion can be realized. Specifically, linear expansion in the MD direction, the TD direction, and the ZD direction (Z-axis Direction). It is easy to obtain an LCP extruded film 100 having reduced coefficient anisotropy. Such an LCP extruded film 100 is particularly useful, for example, in rigid substrate applications where multi-layer lamination is required.

無機フィラーは、当業界で公知のものを用いることができ、その種類は特に限定されない。例えばカオリン、焼成カオリン、焼成クレー、未焼成クレー、シリカ(例えば天然シリカ、溶融シリカ、アモルファスシリカ、中空シリカ、湿式シリカ、合成シリカ、アエロジル等)、アルミニウム化合物(例えばベーマイト、水酸化アルミニウム、アルミナ、ハイドロタルサイト、ホウ酸アルミニウム、窒化アルミニウム等)、マグネシウム化合物(例えば、メタケイ酸アルミン酸マグネシウム、炭酸マグネシウム、酸化マグネシウム、水酸化マグネシウム等)、カルシウム化合物(例えば炭酸カルシウム、水酸化カルシウム、硫酸カルシウム、亜硫酸カルシウム、ホウ酸カルシウム等)、モリブデン化合物(例えば酸化モリブデン、モリブデン酸亜鉛等)、タルク(例えば天然タルク、焼成タルク等)、マイカ(雲母)、酸化チタン、酸化亜鉛、酸化ジルコニウム、硫酸バリウム、ホウ酸亜鉛、メタホウ酸バリウム、ホウ酸ナトリウム、窒化ホウ素、凝集窒化ホウ素、窒化ケイ素、窒化炭素、チタン酸ストロンチウム、チタン酸バリウム、錫酸亜鉛等の錫酸塩等が挙げられるが、これらに特に限定されない。これらは1種を単独で用いることができ、また2種以上を組み合わせて用いることもできる。これらの中でも、誘電特性等の観点から、シリカが好ましい。 As the inorganic filler, those known in the art can be used, and the type thereof is not particularly limited. For example, kaolin, calcined kaolin, calcined clay, unfired clay, silica (eg natural silica, molten silica, amorphous silica, hollow silica, wet silica, synthetic silica, aerodil, etc.), aluminum compounds (eg boehmite, aluminum hydroxide, alumina, etc.) Hydrotalcite, aluminum borate, aluminum nitride, etc.), magnesium compounds (eg, magnesium aluminometasilicate, magnesium carbonate, magnesium oxide, magnesium hydroxide, etc.), calcium compounds (eg, calcium carbonate, calcium hydroxide, calcium sulfate, etc.) Calcium sulfite, calcium borate, etc.), molybdenum compounds (eg, molybdenum oxide, zinc molybdate, etc.), talc (eg, natural talc, calcined talc, etc.), mica (mica), titanium oxide, zinc oxide, zirconium oxide, barium sulfate, Examples thereof include zinc borate, barium metaborate, sodium borate, boron nitride, aggregated boron nitride, silicon nitride, carbon nitride, strontium titanate, barium titanate, and sulfates such as zinc tintate. Not limited. These can be used alone or in combination of two or more. Among these, silica is preferable from the viewpoint of dielectric properties and the like.

また、ここで用いる無機フィラーは、当業界で公知の表面処理が施されたものであってもよい。表面処理により、耐湿性、接着強度、分散性等を向上させることができる。表面処理剤としては、シランカップリング剤、チタネートカップリング剤、スルホン酸エステル、カルボン酸エステル、リン酸エステル等が挙げられるが、これらに特に限定されない。 Further, the inorganic filler used here may be one that has been subjected to a surface treatment known in the art. The surface treatment can improve moisture resistance, adhesive strength, dispersibility and the like. Examples of the surface treatment agent include, but are not limited to, a silane coupling agent, a titanate coupling agent, a sulfonic acid ester, a carboxylic acid ester, and a phosphoric acid ester.

無機フィラーのメディアン径(d50)は、要求性能に応じて適宜設定でき、特に限定されない。調製時の混練性や取扱性、線膨張係数の低減効果等の観点から、無機フィラーのd50は、0.01μm以上50μm以下が好ましく、より好ましくは0.03μm以上50μm以下、さらに好ましくは0.1μm以上50μm以下である。なお、本明細書において、無機フィラーのメディアン径(d50)は、レーザー回折/散乱式の粒度分布測定装置(堀場製作所社製LA-500)を用いて、レーザー回折・散乱法により体積基準で測定される値を意味する。 The median diameter (d50) of the inorganic filler can be appropriately set according to the required performance and is not particularly limited. The d50 of the inorganic filler is preferably 0.01 μm or more and 50 μm or less, more preferably 0.03 μm or more and 50 μm or less, and further preferably 0. It is 1 μm or more and 50 μm or less. In the present specification, the median diameter (d50) of the inorganic filler is measured on a volume basis by a laser diffraction / scattering method using a laser diffraction / scattering type particle size distribution measuring device (LA-500 manufactured by HORIBA, Ltd.). Means the value to be.

無機フィラーの含有量は、他の必須成分及び任意成分との配合バランスを考慮し、要求性能に応じて適宜設定でき、特に限定されない。調製時の混練性や取扱性、線膨張係数の低減効果等の観点から、LCP押出フィルム100の総量に対する固形分換算で、無機フィラーの含有量は、合計で1質量%以上45質量%以下が好ましく、より好ましくは合計で3質量%以上40質量%以下、さらに好ましくは合計で5質量%以上35質量%以下である。 The content of the inorganic filler can be appropriately set according to the required performance in consideration of the blending balance with other essential components and optional components, and is not particularly limited. From the viewpoint of kneadability and handleability at the time of preparation, the effect of reducing the coefficient of linear expansion, etc., the content of the inorganic filler is 1% by mass or more and 45% by mass or less in total in terms of solid content with respect to the total amount of the LCP extruded film 100. It is preferable, more preferably 3% by mass or more and 40% by mass or less in total, and further preferably 5% by mass or more and 35% by mass or less in total.

LCP押出フィルム100は、本発明の効果を過度に損なわない範囲で、上述した熱可塑性液晶ポリマー以外の樹脂成分(以降において、単に「他の樹脂成分」と称する場合がある。)、例えば熱硬化性樹脂や熱可塑性樹脂等を含有していてもよい。また、LCP押出フィルム100は、本発明の効果を過度に損なわない範囲で、当業界で公知の添加剤、例えば炭素数10~25の高級脂肪酸、高級脂肪酸エステル、高級脂肪酸アミド、高級脂肪酸金属塩、ポリシロキサン、フッ素樹脂等の離型改良剤;染料、顔料等の着色剤;有機充填剤;酸化防止剤;熱安定剤;光安定剤;紫外線吸収剤;難燃剤;帯電防止剤;界面活性剤;防錆剤;消泡剤;蛍光剤等を含んでいてもよい。これらの添加剤は、それぞれ1種を単独で、又は2種以上を組み合わせて用いることができる。これらの添加剤は、LCP押出フィルム100の成形時に調製する溶融樹脂組成物に含ませることができる。これらの樹脂成分や添加剤の含有量は、特に限定されないが、成形加工性や熱安定等の観点から、LCP押出フィルム100の総量に対して、それぞれ0.01~10質量%が好ましく、より好ましくはそれぞれ0.1~7質量%、さらに好ましくはそれぞれ0.5~5質量%である。 The LCP extruded film 100 is a resin component other than the above-mentioned thermoplastic liquid crystal polymer (hereinafter, may be simply referred to as “other resin component”), for example, thermosetting, as long as the effect of the present invention is not excessively impaired. It may contain a sex resin, a thermoplastic resin, or the like. Further, the LCP extruded film 100 is an additive known in the art, for example, a higher fatty acid having 10 to 25 carbon atoms, a higher fatty acid ester, a higher fatty acid amide, or a higher fatty acid metal salt, as long as the effect of the present invention is not excessively impaired. , Polysiloxane, Fluororesin and other mold release improvers; Dyes, pigments and other colorants; Organic fillers; Antioxidants; Heat stabilizers; Light stabilizers; UV absorbers; Flame retardants; Antistatic agents; Surfactants Agent; rust preventive agent; antifoaming agent; fluorescent agent and the like may be contained. Each of these additives may be used alone or in combination of two or more. These additives can be included in the molten resin composition prepared at the time of molding the LCP extruded film 100. The contents of these resin components and additives are not particularly limited, but are preferably 0.01 to 10% by mass, respectively, with respect to the total amount of the LCP extruded film 100 from the viewpoint of moldability, thermal stability, and the like. It is preferably 0.1 to 7% by mass, more preferably 0.5 to 5% by mass, respectively.

LCP押出フィルム100の厚みは、要求性に応じて適宜設定でき、特に限定されない。押出成形時の取扱性や生産性等を考慮すると、15μm以上300μm以下が好ましく、より好ましくは18μm以上250μm以下、さらに好ましくは20μm以上200μm以下である。 The thickness of the LCP extruded film 100 can be appropriately set according to the requirements and is not particularly limited. Considering the handleability and productivity at the time of extrusion molding, it is preferably 15 μm or more and 300 μm or less, more preferably 18 μm or more and 250 μm or less, and further preferably 20 μm or more and 200 μm or less.

そして、本実施形態のLCP押出フィルム100は、フィルム表面(フィルム表面S1)のみならずフィルム内部(フィルム表面S2)においても熱可塑性液晶ポリマーの分子配向や内部歪み等を緩和し、目的とする寸法変化率の異方性を低減する観点から、フィルム表面S1を含む配向度α1とフィルム表面S2を含む配向度α2とが、以下に示す関係を満たすように調整されている。
好ましくは -4.0≦[(α2-α1)/α1]×100≦0.0である。
より好ましくは -3.0≦[(α2-α1)/α1]×100≦0.0である。
さらに好ましくは -2.0≦[(α2-α1)/α1]×100≦0.0である。
The LCP extruded film 100 of the present embodiment has the desired dimensions by alleviating the molecular orientation and internal strain of the thermoplastic liquid crystal polymer not only on the film surface (film surface S1) but also on the inside of the film (film surface S2). From the viewpoint of reducing the anisotropy of the rate of change, the degree of orientation α1 including the film surface S1 and the degree of orientation α2 including the film surface S2 are adjusted so as to satisfy the following relationship.
It is preferably -4.0 ≦ [(α2-α1) / α1] × 100 ≦ 0.0.
More preferably, −3.0 ≦ [(α2-α1) / α1] × 100 ≦ 0.0.
More preferably, −2.0 ≦ [(α2-α1) / α1] × 100 ≦ 0.0.

ここで、フィルム表面S1は、本実施形態のLCP押出フィルム100の最表面であって、外方へ向けて露出している露出面である。フィルム表面S1を含む配向度(配向度α1)は、好ましくは39.0%以下、より好ましくは38.5%以下、さらに好ましくは38.0%以下である。一方、フィルム表面S2は、本実施形態のLCP押出フィルム100のフィルム表面S1を厚み方向にエッチング処理することで新たに露出する面であり、図1では、フィルム表面S1から深度5μmに位置する仮想面として破線で表す。このフィルム表面S2を含む配向度(配向度α2)は、好ましくは37.7%以下、より好ましくは37.5%以下、さらに好ましくは37.3%以下である。また、フィルム表面S2が位置する深度は、エッチング時の溶解誤差等を考慮して、フィルム表面S1から厳密に5μmである必要はなく、フィルム表面S1から5.0μm以上であればよい。また、フィルム表面S2の作製のためのエッチング処理条件は、特に限定されないが、測定データ間の客観性を担保する観点から、後述する実施例に記載の条件にしたがうものとする。 Here, the film surface S1 is the outermost surface of the LCP extruded film 100 of the present embodiment, and is an exposed surface exposed outward. The degree of orientation including the film surface S1 (degree of orientation α1) is preferably 39.0% or less, more preferably 38.5% or less, still more preferably 38.0% or less. On the other hand, the film surface S2 is a surface newly exposed by etching the film surface S1 of the LCP extruded film 100 of the present embodiment in the thickness direction, and in FIG. 1, a virtual surface located at a depth of 5 μm from the film surface S1. It is represented by a broken line as a surface. The degree of orientation including the film surface S2 (degree of orientation α2) is preferably 37.7% or less, more preferably 37.5% or less, still more preferably 37.3% or less. Further, the depth at which the film surface S2 is located does not have to be exactly 5 μm from the film surface S1 in consideration of dissolution error during etching, and may be 5.0 μm or more from the film surface S1. Further, the etching treatment conditions for producing the film surface S2 are not particularly limited, but from the viewpoint of ensuring the objectivity between the measurement data, the conditions described in Examples described later shall be followed.

なお、本明細書において、LCP押出フィルム100のフィルム表面S1,S2を含む配向度α1,α2(%)は、X線回折装置を用いて透過法でX線回折測定を行い、得られた回折強度分布曲線において配向性ピークの面積割合に基づいて下記式から算出される値を意味する。一般的に、配向度(%)が小さい測定対象の場合、X線回折測定ではピーク強度が小さくブロードな回折ピークが観察されるため、配向性ピークの半値幅に基づく算出方法では、高い測定精度を担保できない。そのため、本明細書では、配向性ピークの半値幅ではなく、配向性ピークの面積割合に基づく算出方法で、フィルム表面S1,S2を含む配向度α1,α2(%)をそれぞれ算出している。具体的には、図2及び数式1に示すとおり、配向性ピークの面積割合に基づく算出方法として、2θ/θスキャンでピーク強度(配向性成分)を測定するとともに、βスキャンで方位角方向に0°から360°までの強度を測定して方位角方向の強度分布(ベース強度(等方性成分))を得て、ベースとなる等方性成分の面積を除いた配向性成分が占める面積が、全体面積(配向性成分の面積+等方性成分の面積)に占める割合を、配向度(%)として算出する。

Figure 2022091687000002
In the present specification, the orientation degrees α1 and α2 (%) including the film surfaces S1 and S2 of the LCP extruded film 100 are subjected to X-ray diffraction measurement by a transmission method using an X-ray diffractometer, and the obtained diffraction is obtained. It means a value calculated from the following formula based on the area ratio of the orientation peak in the intensity distribution curve. Generally, in the case of a measurement target with a small degree of orientation (%), a broad diffraction peak with a small peak intensity is observed in X-ray diffraction measurement, so a calculation method based on the half-value width of the orientation peak has high measurement accuracy. Cannot be guaranteed. Therefore, in the present specification, the degree of orientation α1 and α2 (%) including the film surfaces S1 and S2 are calculated by a calculation method based on the area ratio of the orientation peak instead of the half width of the orientation peak. Specifically, as shown in FIG. 2 and Equation 1, as a calculation method based on the area ratio of the orientation peak, the peak intensity (orientation component) is measured by the 2θ / θ scan, and the orientation angle direction is measured by the β scan. The intensity from 0 ° to 360 ° is measured to obtain the intensity distribution in the azimuth angle direction (base strength (isotropic component)), and the area occupied by the orientation component excluding the area of the base isotropic component. Is calculated as the degree of orientation (%) as a percentage of the total area (area of the orientation component + area of the isotropic component).
Figure 2022091687000002

一方、本実施形態のLCP押出フィルム100は、上述した配向度で表される熱可塑性液晶ポリマーの分子配向のみならず、MD方向及びTD方向の線膨張係数で表される熱可塑性液晶ポリマーの分子配向も十分に低減されている。先にも述べたとおり、従来技術の特許文献1及び2に記載のLCP押出フィルムは、三層共押出時に両外層の熱可塑性樹脂層に保護されることによって熱可塑性液晶ポリマーの分子配向が若干緩和され、これにより、得られる熱可塑性液晶ポリマーフィルムのMD方向及びTD方向の強度の異方性が緩和されていることが伺える。とは言うものの、実際には、特許文献1及び2に記載のLCP押出フィルムは、MD方向の線膨張係数は-20ppm/K程度が安定して得られているのに対して、TD方向の線膨張係数は55ppmを超えており、ときには100ppm/K程度に達するものがある。このことからも明らかなように、従来技術の特許文献1及び2に記載のLCP押出フィルムは、フィルム全体としては、熱可塑性液晶ポリマーの分子配向が依然として大きく残っており、或いは内部歪み等が大きく残っていることが容易に理解される。したがって、LCP押出フィルム100のフィルム全体としての熱可塑性液晶ポリマーの分子配向や内部歪み等は、上述したフィルム表面を含む配向度と線膨張係数との組み合わせで制御する必要がある。 On the other hand, in the LCP extruded film 100 of the present embodiment, not only the molecular orientation of the thermoplastic liquid crystal polymer represented by the above-mentioned degree of orientation but also the molecules of the thermoplastic liquid crystal polymer represented by the linear expansion coefficients in the MD direction and the TD direction. The orientation is also sufficiently reduced. As described above, in the LCP extruded films described in Patent Documents 1 and 2 of the prior art, the molecular orientation of the thermoplastic liquid crystal polymer is slightly aligned by being protected by the thermoplastic resin layers of both outer layers at the time of coextrusion of the three layers. It can be seen that the anisotropy of the strength of the obtained thermoplastic liquid crystal polymer film in the MD direction and the TD direction is relaxed. However, in reality, the LCP extruded films described in Patent Documents 1 and 2 have a stable linear expansion coefficient of about -20 ppm / K in the MD direction, whereas they are in the TD direction. The coefficient of linear expansion exceeds 55 ppm, and sometimes reaches about 100 ppm / K. As is clear from this, in the LCP extruded films described in Patent Documents 1 and 2 of the prior art, the molecular orientation of the thermoplastic liquid crystal polymer still remains largely in the film as a whole, or the internal strain and the like are large. It is easy to understand that it remains. Therefore, it is necessary to control the molecular orientation, internal strain, and the like of the thermoplastic liquid crystal polymer of the LCP extruded film 100 as a whole film by the combination of the degree of orientation including the film surface and the coefficient of linear expansion described above.

本実施形態のLCP押出フィルム100は、MD方向及びTD方向の線膨張係数(CTE,α2,23~200℃)は-30~55ppm/Kの範囲内にある。かかる範囲内に線膨張係数があるLCP押出フィルム100は、内部歪み等が十分に低減された状態にあり、そうでないものと比して、寸法変化率の異方性が小さく、また、寸法変化率の絶対値が十分に小さいLCP押出フィルムとなり得る。本実施形態のLCP押出フィルム100のMD方向の線膨張係数(CTE,α2,23~200℃)は、さらに、金属箔への密着性を高める等の観点から、-30~10ppm/Kの範囲内にあることが好ましく、-25~5ppm/Kの範囲内にあることがより好ましく、-20~0ppm/Kの範囲内にあることがさらに好ましい。また、本実施形態のLCP押出フィルム100のTD方向の線膨張係数(CTE,α2,23~200℃)は、さらに、金属箔への密着性を高める等の観点から、0~55ppm/Kの範囲内にあることが好ましく、0~50ppm/Kの範囲内にあることがより好ましく、0~45ppm/Kの範囲内にあることがさらに好ましい。なお、本明細書において、線膨張係数(CTE,α2,23~200℃)は、JIS K7197に準拠したTMA法で測定される温度区間23~200℃での値を意味する。また、その他の詳細な測定条件は、後述する実施例に記載した条件にしたがうものとする。 The LCP extruded film 100 of the present embodiment has a linear expansion coefficient (CTE, α2, 23 to 200 ° C.) in the MD direction and the TD direction in the range of −30 to 55 ppm / K. The LCP extruded film 100 having a linear expansion coefficient within such a range is in a state where internal strain and the like are sufficiently reduced, and the anisotropy of the dimensional change rate is smaller than that in the case where it is not, and the dimensional change is small. It can be an LCP extruded film with a sufficiently small absolute value of rate. The linear expansion coefficient (CTE, α2, 23 to 200 ° C.) of the LCP extruded film 100 of the present embodiment in the MD direction is in the range of -30 to 10 ppm / K from the viewpoint of further improving the adhesion to the metal foil. It is preferably in the range of -25 to 5 ppm / K, more preferably in the range of -20 to 0 ppm / K, and even more preferably in the range of -20 to 0 ppm / K. Further, the linear expansion coefficient (CTE, α2, 23 to 200 ° C.) of the LCP extruded film 100 of the present embodiment in the TD direction is 0 to 55 ppm / K from the viewpoint of further improving the adhesion to the metal foil. It is preferably in the range, more preferably in the range of 0 to 50 ppm / K, and even more preferably in the range of 0 to 45 ppm / K. In the present specification, the coefficient of linear expansion (CTE, α2, 23 to 200 ° C.) means a value in a temperature interval of 23 to 200 ° C. measured by the TMA method based on JIS K7197. In addition, other detailed measurement conditions shall be in accordance with the conditions described in Examples described later.

なお、本明細書において、線膨張係数の測定は、JIS K7197に準拠したTMA法で行い、平均線膨張係数は、同法において測定される23~200℃の線膨張係数の平均値を意味する。ここで測定する線膨張係数は、熱履歴を解消した値を見るために、LCP押出フィルム100を5℃/分の昇温速度で加熱(1st heating)した後に測定環境温度(23℃)まで冷却(1st cooling)し、その後に5℃/分の昇温速度で2回目の加熱(2nd heating)したときの値を意味する。また、その他の詳細な測定条件は、後述する実施例に記載した条件にしたがうものとする。 In the present specification, the coefficient of linear expansion is measured by the TMA method based on JIS K7197, and the average coefficient of linear expansion means the average value of the coefficient of linear expansion at 23 to 200 ° C. measured by the same method. .. The coefficient of linear expansion measured here is such that the LCP extruded film 100 is heated at a heating rate of 5 ° C./min (1st heating) and then cooled to the measured ambient temperature (23 ° C.) in order to see the value obtained by eliminating the thermal history. It means the value when (1st cooling) is performed and then the second heating (2nd heating) is performed at a heating rate of 5 ° C./min. In addition, other detailed measurement conditions shall be in accordance with the conditions described in Examples described later.

一方、本実施形態のLCP押出フィルム100の誘電特性は、所望性能に応じて適宜設定でき、特に限定されない。より高い誘電特性を得る観点から、比誘電率εr(36GHz)は、3.0以上3.7以下が好ましく、より好ましくは3.0~3.5である。同様に、誘電正接tanδ(36GHz)は0.0010以上0.0050以下が好ましく、より好ましくは0.0010以上0.0045以下である。なお、本明細書において、比誘電率εr(36GHz)及び誘電正接tanδ(36GHz)は、JIS K6471に準拠した空洞共振器接動法で測定される36GHzにおける値を意味する。また、その他の詳細な測定条件は、後述する実施例に記載した条件にしたがうものとする。 On the other hand, the dielectric property of the LCP extruded film 100 of the present embodiment can be appropriately set according to the desired performance and is not particularly limited. From the viewpoint of obtaining higher dielectric properties, the relative permittivity ε r (36 GHz) is preferably 3.0 or more and 3.7 or less, and more preferably 3.0 to 3.5. Similarly, the dielectric loss tangent tan δ (36 GHz) is preferably 0.0010 or more and 0.0050 or less, and more preferably 0.0010 or more and 0.0045 or less. In the present specification, the relative permittivity ε r (36 GHz) and the dielectric loss tangent tan δ (36 GHz) mean the values at 36 GHz measured by the cavity resonator contact method according to JIS K6471. In addition, other detailed measurement conditions shall be in accordance with the conditions described in Examples described later.

(LCP押出フィルムの製造方法)
本実施形態のLCP押出フィルム100は、上述した熱可塑性液晶ポリマー、及び必要に応じて無機フィラーや他の樹脂成分等の任意成分を含む樹脂組成物を、所定厚みに押出成形することにより得ることができる。押出法は、公知の各種方法を適用することができ、その種類は特に限定されない。例えばTダイ法やインフレーション法;例えばマルチマニホールド方式の共押出法やフィードブロック方式の共押出法;例えば二層共押出法や三層共押出法等の多層共押出法;を任意に組み合わせて適用することができる。
(Manufacturing method of LCP extruded film)
The LCP extruded film 100 of the present embodiment can be obtained by extruding a resin composition containing the above-mentioned thermoplastic liquid crystal polymer and optional components such as an inorganic filler and other resin components to a predetermined thickness. Can be done. As the extrusion method, various known methods can be applied, and the type thereof is not particularly limited. For example, a T-die method or an inflation method; for example, a multi-manifold co-extrusion method or a feed block co-extrusion method; for example, a multi-layer co-extrusion method such as a two-layer co-extrusion method or a three-layer co-extrusion method; can do.

これらの中でも、フィルム表面(フィルム表面S1)及びフィルム内部(フィルム表面S2)における熱可塑性液晶ポリマーの分子配向の制御の容易性の観点から、好ましい一態様としては、上述した樹脂組成物を、Tダイを用いた押出成形法(以降において、単に「Tダイ押出法」という場合がある。)によりTダイから押し出してフィルム状に成形し、その後に必要に応じて冷却処理、圧着処理、加圧加熱処理等をして、所定のLCP押出フィルム100を得る方法が挙げられる。具体的には、熱可塑性樹脂を含む第一表層用の樹脂組成物Aを、熱可塑性液晶ポリマーを含む中間層用の樹脂組成物Bを、熱可塑性樹脂を含む第二表層の樹脂組成物Cを、それぞれ準備しておき、押出機の共押出ダイからこれらを共押出して、三層構成の共押出溶融物を押出して、中間層の熱可塑性液晶ポリマー層としてLCP押出フィルム100を成形する共押出法が好ましい。このような共押出成形によれば、両外層の熱可塑性樹脂層に保護されることにより、中間層の熱可塑性液晶ポリマー層における熱可塑性液晶ポリマーの分子配向が緩和される。以下、本実施形態のLCP押出フィルム100の製造方法の好ましい一態様について詳述する。 Among these, from the viewpoint of ease of controlling the molecular orientation of the thermoplastic liquid crystal polymer on the film surface (film surface S1) and inside the film (film surface S2), as a preferred embodiment, the above-mentioned resin composition is used as T. It is extruded from the T-die by an extrusion molding method using a die (hereinafter, may be simply referred to as "T-die extrusion method") to form a film, and then cooled, crimped, and pressed as necessary. A method of obtaining a predetermined LCP extruded film 100 by heat treatment or the like can be mentioned. Specifically, the resin composition A for the first surface layer containing the thermoplastic resin, the resin composition B for the intermediate layer containing the thermoplastic liquid crystal polymer, and the resin composition C for the second surface layer containing the thermoplastic resin. Are prepared, and these are co-extruded from the co-extrusion die of the extruder to extrude the co-extruded melt having a three-layer structure to form the LCP extruded film 100 as the thermoplastic liquid crystal polymer layer of the intermediate layer. The extrusion method is preferable. According to such coextrusion molding, the molecular orientation of the thermoplastic liquid crystal polymer in the thermoplastic liquid crystal polymer layer of the intermediate layer is relaxed by being protected by the thermoplastic resin layers of both outer layers. Hereinafter, a preferred embodiment of the method for producing the LCP extruded film 100 of the present embodiment will be described in detail.

図3~図5は、上述した本実施形態のLCP押出フィルム100の製造方法の好ましい一態様を示す図である。ここでは、上述した熱可塑性液晶ポリマー、及び必要に応じて無機フィラーや他の樹脂成分等の任意成分を含む上記の樹脂組成物Bを、押出機のTダイからフィルム状に溶融押出する。このとき、上記のフィルム状の溶融押出物の両面に熱可塑性樹脂を含む樹脂組成物A,Cを共押出することで、熱可塑性樹脂を含む第一外層(剥離層)、熱可塑性液晶ポリマーを含む中間層(LCP層)、及び熱可塑性樹脂を含む第二外層(剥離層)を有する、所定厚みの共押出溶融物(3層積層フィルム)を作製する。この共押出溶融物は、引取ロールで引き出され、冷却ロール及び圧着ロールへと送られる。その後、第一外層及び第二外層を中間層から剥離して、両外層の熱可塑性樹脂層と、中間層の熱可塑性液晶ポリマー層(LCP押出フィルム100)とが巻取ロールにそれぞれ巻き取られる。 3 to 5 are views showing a preferred embodiment of the method for producing the LCP extruded film 100 of the present embodiment described above. Here, the above-mentioned resin composition B containing the above-mentioned thermoplastic liquid crystal polymer and, if necessary, an optional component such as an inorganic filler and other resin components is melt-extruded into a film from the T-die of the extruder. At this time, by co-extruding the resin compositions A and C containing the thermoplastic resin on both sides of the film-shaped molten extruded product, the first outer layer (peeling layer) containing the thermoplastic resin and the thermoplastic liquid crystal polymer can be obtained. A coextruded melt (three-layer laminated film) having a predetermined thickness and having an intermediate layer (LCP layer) containing the mixture and a second outer layer (release layer) containing the thermoplastic resin is produced. The coextruded melt is drawn out on a take-up roll and sent to a cooling roll and a crimping roll. After that, the first outer layer and the second outer layer are peeled off from the intermediate layer, and the thermoplastic resin layer of both outer layers and the thermoplastic liquid crystal polymer layer (LCP extruded film 100) of the intermediate layer are respectively wound on the take-up roll. ..

上記の熱可塑性液晶ポリマーを含む樹脂組成物Bの調製は、常法にしたがって行えばよく、特に限定されない。上述した各成分を、例えば混練、溶融混錬、造粒、押出成形、プレス又は射出成形等の公知の方法によって製造及び加工することができる。なお、溶融混練を行う際には、一般に使用されている一軸式又は二軸式の押出機や各種ニーダー等の混練装置を用いることができる。これらの溶融混練装置に各成分を供給するに際し、液晶ポリマー、その他の樹脂成分、無機フィラー、添加剤等を予めタンブラーやヘンシェルミキサー等の混合装置を用いてドライブレンドしてもよい。溶融混練の際、混練装置のシリンダー設定温度は、適宜設定すればよく特に限定されないが、一般的に液晶ポリマーの融点以上360℃以下の範囲が好ましく、より好ましくは液晶ポリマーの融点+10℃以上360℃以下である。 The preparation of the resin composition B containing the above-mentioned thermoplastic liquid crystal polymer may be carried out according to a conventional method, and is not particularly limited. Each of the above-mentioned components can be manufactured and processed by a known method such as kneading, melt kneading, granulation, extrusion molding, pressing or injection molding. When performing melt kneading, a kneading device such as a generally used uniaxial or biaxial extruder or various kneaders can be used. When supplying each component to these melt-kneading devices, a liquid crystal polymer, other resin components, inorganic fillers, additives and the like may be dry-blended in advance using a mixing device such as a tumbler or a Henschel mixer. At the time of melt-kneading, the cylinder set temperature of the kneading device may be appropriately set and is not particularly limited, but is generally preferably in the range of the melting point of the liquid crystal polymer or higher and 360 ° C. or lower, and more preferably the melting point of the liquid crystal polymer + 10 ° C. or higher and 360 ° C. or higher. It is below ° C.

熱可塑性樹脂を含む樹脂組成物A,Cの調製も、常法にしたがって行えばよく、特に限定されない。熱可塑性樹脂としては、例えば、ポリエチレン、ポリプロピレン、ポリメチルペンテン、エチレン-α-オレフィン共重合体等のポリオレフィン系樹脂、PMMA等のアクリル系樹脂、ポリアミド樹脂、アクリロニトリル-ブタジエン-スチレン共重合体(ABS樹脂)、ポリスチレン(PS)、ポリ塩化ビニル、ポリブチレンテレフタレート(PBT)、ポリエチレンテレフタレート(PET)、ポリカーボネート(PC)、ポリエーテルエーテルケトン(PEEK)、ポリフェニルサルファイド(PPS)等が挙げられるが、これらに特に限定されない。共押出溶融物とされた際に、ポリカーボネート等の極性樹脂であっても、ポリメチルペンテン等の無極性樹脂であっても、剥離層として有効に機能する。これらの熱可塑性樹脂に、上述したLCP押出フィルム100に含まれていてもよい他の樹脂成分や無機フィラー等の任意成分を配合してもよい。なお、樹脂組成物Aと樹脂組成物Cとは、同一の樹脂組成を有していても、異なる樹脂組成を有していてもよく、同一の熱可塑性樹脂を含んでいても、異なる熱可塑性樹脂を含んでいてもよい。そして、熱可塑性樹脂を含む樹脂組成物は、例えば混練、溶融混錬、造粒、押出成形、プレス又は射出成形等の公知の方法によって製造及び加工することができる。なお、溶融混練を行う際には、一般に使用されている一軸式又は二軸式の押出機や各種ニーダー等の混練装置を用いることができる。これらの溶融混練装置に各成分を供給するに際し、熱可塑性樹脂、その他の樹脂成分、無機フィラー、添加剤等を予めタンブラーやヘンシェルミキサー等の混合装置を用いてドライブレンドしてもよい。溶融混練の際、混練装置のシリンダー設定温度は、熱可塑性樹脂が熱分解で劣化しない温度以下で適宜設定すればよく特に限定されないが、一般的に熱可塑性樹脂の融点以上が好ましく、より好ましくは熱可塑性樹脂の融点+10℃以上である。 The resin compositions A and C containing the thermoplastic resin may also be prepared according to a conventional method, and are not particularly limited. Examples of the thermoplastic resin include polyethylene, polypropylene, polymethylpentene, polyolefin resins such as ethylene-α-olefin copolymers, acrylic resins such as PMMA, polyamide resins, and acrylonitrile-butadiene-styrene copolymers (ABS). Resin), polystyrene (PS), polyvinyl chloride, polybutylene terephthalate (PBT), polyethylene terephthalate (PET), polycarbonate (PC), polyether ether ketone (PEEK), polyphenyl sulfide (PPS) and the like. It is not particularly limited to these. When it is made into a coextruded melt, it functions effectively as a release layer regardless of whether it is a polar resin such as polycarbonate or a non-polar resin such as polymethylpentene. These thermoplastic resins may be blended with other resin components which may be contained in the above-mentioned LCP extruded film 100 or optional components such as an inorganic filler. The resin composition A and the resin composition C may have the same resin composition or different resin compositions, and may have different thermoplastic properties even if they contain the same thermoplastic resin. It may contain a resin. The resin composition containing the thermoplastic resin can be produced and processed by a known method such as kneading, melt kneading, granulation, extrusion molding, pressing or injection molding. When performing melt kneading, a kneading device such as a generally used uniaxial or biaxial extruder or various kneaders can be used. When supplying each component to these melt-kneading devices, the thermoplastic resin, other resin components, inorganic fillers, additives and the like may be dry-blended in advance using a mixing device such as a tumbler or a Henshell mixer. At the time of melt-kneading, the cylinder set temperature of the kneading device may be appropriately set at a temperature or lower at which the thermoplastic resin does not deteriorate due to thermal decomposition, and is not particularly limited. The melting point of the thermoplastic resin is + 10 ° C or higher.

共押出の際の設定条件は、使用する樹脂組成物の種類や組成、目的とする押出フィルムの所望性能等に応じて適宜設定すればよく、特に限定されない。例えば押出機のシリンダーの設定温度は、使用する樹脂組成物の種類や組成、目的とする押出フィルムの所望性能等に応じて適宜設定すればよく、特に限定されないが、230~360℃が好ましく、より好ましくは280~350℃である。 The setting conditions for coextrusion may be appropriately set according to the type and composition of the resin composition to be used, the desired performance of the target extruded film, and the like, and are not particularly limited. For example, the set temperature of the cylinder of the extruder may be appropriately set according to the type and composition of the resin composition to be used, the desired performance of the desired extruded film, and the like, and is not particularly limited, but is preferably 230 to 360 ° C. More preferably, it is 280 to 350 ° C.

また、例えばTダイのダイ幅(mm)も同様に、使用する樹脂組成物の種類や組成、目的とする押出フィルムの所望性能等に応じて適宜設定すればよく、特に限定されないが、一般的には200~2000mmが好ましく、より好ましくは400~1500mmである。 Further, for example, the die width (mm) of the T die may be appropriately set according to the type and composition of the resin composition to be used, the desired performance of the desired extruded film, and the like, and is not particularly limited, but is general. The thickness is preferably 200 to 2000 mm, more preferably 400 to 1500 mm.

さらに、例えばTダイのリップ開度(mm)も同様に、使用する樹脂組成物の種類や組成、目的とする押出フィルムの所望性能等に応じて適宜設定すればよく、特に限定されないが、一般的には0.1~3.0(mm)が好ましく、より好ましくは0.2~2.0(mm)である。 Further, for example, the lip opening (mm) of the T-die may be appropriately set according to the type and composition of the resin composition to be used, the desired performance of the desired extruded film, and the like, and is not particularly limited, but is generally used. It is preferably 0.1 to 3.0 (mm), more preferably 0.2 to 2.0 (mm).

そして、例えばTダイのリップ壁面の剪断速度(sec-1)も同様に、使用する樹脂組成物の種類や組成、目的とする押出フィルムの所望性能等に応じて適宜設定すればよく、特に限定されないが、一般的には100~1500(sec-1)が好ましく、より好ましくは150~1000(sec-1)である。 Then, for example, the shear rate (sec -1 ) of the lip wall surface of the T-die may be appropriately set according to the type and composition of the resin composition to be used, the desired performance of the desired extruded film, and the like, and is particularly limited. However, it is generally preferably 100 to 1500 (sec -1 ), more preferably 150 to 1000 (sec -1 ).

また、Tダイの樹脂組成物の総吐出量(mm3/sec)も同様に、使用する樹脂組成物の種類や組成、目的とする押出フィルムの所望性能等に応じて適宜設定すればよく、特に限定されないが、一般的に500~15000(mm3/sec)が好ましく、より好ましくは1500~10000(mm3/sec)である。 Similarly, the total discharge amount (mm 3 / sec) of the resin composition of the T-die may be appropriately set according to the type and composition of the resin composition to be used, the desired performance of the target extruded film, and the like. Although not particularly limited, it is generally preferably 500 to 15000 (mm 3 / sec), more preferably 1500 to 10000 (mm 3 / sec).

一方、熱可塑性液晶ポリマーの溶融粘度(Pa・sec)も同様に、使用する樹脂組成物の種類や組成、目的とする押出フィルムの所望性能等に応じて適宜設定すればよく、特に限定されないが、一般的に10~300(Pa・sec)が好ましく、より好ましくは20~250(Pa・sec)である。なお、熱可塑性液晶ポリマーの溶融粘度(Pa・sec)は、JIS K7199に準拠し、キャピログラフ1D(東洋精機製作所社製)を用いて、シリンダー長10.00mm、シリンダー径1.00mm、及びバレル径9.55mmの条件下、LCP押出フィルム100の製造時の条件下(ダイ温度、及びリップ壁面の剪断速度)で測定される値を意味する。 On the other hand, the melt viscosity (Pa · sec) of the thermoplastic liquid crystal polymer may also be appropriately set according to the type and composition of the resin composition to be used, the desired performance of the desired extruded film, and the like, and is not particularly limited. Generally, it is preferably 10 to 300 (Pa · sec), more preferably 20 to 250 (Pa · sec). The melt viscosity (Pa · sec) of the thermoplastic liquid crystal polymer conforms to JIS K7199, and uses Capillograph 1D (manufactured by Toyo Seiki Seisakusho Co., Ltd.) to have a cylinder length of 10.00 mm, a cylinder diameter of 1.00 mm, and a barrel diameter. It means a value measured under the condition of 9.55 mm and the condition at the time of manufacturing the LCP extruded film 100 (die temperature and shear rate of the lip wall surface).

また、共押出フィルムの引取速度(mm/sec)も同様に、使用する樹脂組成物の種類や組成、目的とする押出フィルムの所望性能等に応じて適宜設定すればよく、特に限定されないが、一般的に15~1000(mm/sec)が好ましく、より好ましくは20~500(mm/sec)である。 Similarly, the take-up speed (mm / sec) of the co-extruded film may be appropriately set according to the type and composition of the resin composition to be used, the desired performance of the target extruded film, and the like, and is not particularly limited. Generally, it is preferably 15 to 1000 (mm / sec), more preferably 20 to 500 (mm / sec).

ここで、共押出時の熱可塑性液晶ポリマーのMD方向への分子配向を低減する観点から、共押出時の剪断応力(kPa)は、低いことが望ましい。共押出時の剪断応力が大きいと、熱可塑性液晶ポリマーがMD方向へ高配向され易く、また、内部歪みが残存し易い傾向にあり、共押出時の剪断応力が小さいと、フィルム表面(フィルム表面S1)及びフィルム内部(フィルム表面S2)の双方において、熱可塑性液晶ポリマーの分子配向が低減され易く、また、内部歪みが残存し難い傾向にある。なお、共押出時の剪断応力(kPa)は、リップ壁面の剪断速度(sec-1)と熱可塑性液晶ポリマーの溶融粘度(Pa・sec)との積で表される値であり、剪断速度は、共押出時の樹脂組成物の総吐出量、ダイ幅、リップ開度に基づいて算出される値である。したがって、共押出時の剪断応力は、これらの各値を調整することにより制御可能である。そして具体的には、共押出時の剪断応力は、40kPa以下が好ましく、より好ましくは38kPa以下、さらに好ましくは36kPa以下である。なお、その下限値は、特に限定されないが、生産性等を考慮すれば5kPa以上が好ましく、より好ましくは10kPa以上である。 Here, from the viewpoint of reducing the molecular orientation of the thermoplastic liquid crystal polymer during coextrusion in the MD direction, it is desirable that the shear stress (kPa) during coextrusion is low. When the shear stress during coextrusion is large, the thermoplastic liquid crystal polymer tends to be highly oriented in the MD direction, and internal strain tends to remain. When the shear stress during coextrusion is small, the film surface (film surface) tends to be high. In both S1) and the inside of the film (film surface S2), the molecular orientation of the thermoplastic liquid crystal polymer tends to be reduced, and internal strain tends to be difficult to remain. The shear stress (kPa) during coextrusion is a value expressed by the product of the shear rate (sec -1 ) of the lip wall surface and the melt viscosity (Pa · sec) of the thermoplastic liquid crystal polymer, and the shear rate is , A value calculated based on the total discharge amount of the resin composition at the time of coextrusion, the die width, and the lip opening degree. Therefore, the shear stress during coextrusion can be controlled by adjusting each of these values. Specifically, the shear stress at the time of coextrusion is preferably 40 kPa or less, more preferably 38 kPa or less, and further preferably 36 kPa or less. The lower limit is not particularly limited, but is preferably 5 kPa or more, more preferably 10 kPa or more, in consideration of productivity and the like.

また、共押出時の熱可塑性液晶ポリマーのMD方向への分子配向を低減する観点から、共押出時のドローダウン比は、低いことが望ましい。共押出時のドローダウン比が大きいと、熱可塑性液晶ポリマーがMD方向へ高配向され易く、また、内部歪みが残存し易い傾向にあり、共押出時のドローダウン比が小さいと、フィルム表面(フィルム表面S1)及びフィルム内部(フィルム表面S2)の双方において、熱可塑性液晶ポリマーの分子配向が低減され易く、また、内部歪みが残存し難い傾向にある。なお、ドローダウン比は、引取速度(mm/sec)/熱可塑性液晶ポリマーの流速(mm/sec)で表される値であり、熱可塑性液晶ポリマーの流速は、共押出時の樹脂組成物の総吐出量、ダイ幅、リップ開度に基づいて算出される値である。したがって、共押出時のドローダウン比は、これらの各値を調整することにより制御可能である。そして具体的には、共押出時のドローダウン比は、3.5以下が好ましく、より好ましくは3.3以下、さらに好ましくは3.1以下である。なお、その下限値は、特に限定されないが、生産性等を考慮すれば1.0以上が好ましく、より好ましくは1.2以上である。 Further, from the viewpoint of reducing the molecular orientation of the thermoplastic liquid crystal polymer in the MD direction during coextrusion, it is desirable that the drawdown ratio during coextrusion is low. When the drawdown ratio during coextrusion is large, the thermoplastic liquid crystal polymer tends to be highly oriented in the MD direction, and internal strain tends to remain. When the drawdown ratio during coextrusion is small, the film surface ( The molecular orientation of the thermoplastic liquid crystal polymer is likely to be reduced and internal strain is unlikely to remain on both the film surface S1) and the film interior (film surface S2). The drawdown ratio is a value expressed by the take-up speed (mm / sec) / the flow rate of the thermoplastic liquid crystal polymer (mm / sec), and the flow rate of the thermoplastic liquid crystal polymer is the flow rate of the resin composition at the time of coextrusion. It is a value calculated based on the total discharge amount, the die width, and the lip opening. Therefore, the drawdown ratio during coextrusion can be controlled by adjusting each of these values. Specifically, the drawdown ratio at the time of coextrusion is preferably 3.5 or less, more preferably 3.3 or less, still more preferably 3.1 or less. The lower limit is not particularly limited, but is preferably 1.0 or more, more preferably 1.2 or more, in consideration of productivity and the like.

得られるLCP押出フィルム100の厚みは、要求性に応じて適宜設定でき、特に限定されない。押出成形時の取扱性や生産性等を考慮すると、15μm以上300μm以下が好ましく、より好ましくは18μm以上250μm以下、さらに好ましくは20μm以上200μm以下である。 The thickness of the obtained LCP extruded film 100 can be appropriately set according to the requirements and is not particularly limited. Considering the handleability and productivity at the time of extrusion molding, it is preferably 15 μm or more and 300 μm or less, more preferably 18 μm or more and 250 μm or less, and further preferably 20 μm or more and 200 μm or less.

得られるLCP押出フィルム100の融点(融解温度)は、特に限定されないが、フィルムの耐熱性や加工性等の観点から、融点(融解温度)が200~400℃であることが好ましく、とりわけ金属箔への熱圧着性を高める観点から、250~360℃が好ましく、より好ましくは260~355℃、さらに好ましくは270~350℃、特に好ましくは275~345℃である。なお、本明細書において、LCP押出フィルム100の融点は、DSC8500(PerkinElmer社製)を用いて、熱履歴を解消した値を見るために、温度区間 30~400℃で押出フィルムを20℃/分の昇温速度で加熱(1st heating)した後に50℃/分の降温速度で冷却(1st cooling)し、その後に20℃/分の昇温速度で2回目の加熱(2nd heating)したときの示差走査熱量測定法(DSC)における融解ピーク温度を意味する。また、その他については、後述する実施例に記載の測定条件に従うものとする。 The melting point (melting temperature) of the obtained LCP extruded film 100 is not particularly limited, but from the viewpoint of heat resistance and processability of the film, the melting point (melting temperature) is preferably 200 to 400 ° C., particularly a metal foil. From the viewpoint of enhancing the heat pressure-bonding property to the metal, the temperature is preferably 250 to 360 ° C, more preferably 260 to 355 ° C, still more preferably 270 to 350 ° C, and particularly preferably 275 to 345 ° C. In the present specification, the melting point of the LCP extruded film 100 is a DSC8500 (manufactured by PerkinElmer), and the extruded film is heated at 20 ° C./min in a temperature interval of 30 to 400 ° C. in order to see the value obtained by eliminating the thermal history. Differences when heating (1st heating) at the heating rate of 1st heating, cooling at a temperature lowering rate of 50 ° C./min (1st cooling), and then heating at a heating rate of 20 ° C./min for the second time (2nd heating). It means the melting peak temperature in the scanning calorimetry (DSC). For others, the measurement conditions described in Examples described later shall be followed.

なお、押出成形されたLCP押出フィルム100は、そのまま用いることができるが、さらに必要に応じて加圧加熱工程を行うことにより、その配向性(異方性)をさらに低減させ或いは内部歪みをさらに解放させることもでき、これにより、寸法変化率の異方性がより低減されたLCP押出フィルム100や寸法変化率の絶対値がより小さいLCP押出フィルム100を実現することもできる。 The extruded LCP extruded film 100 can be used as it is, but the orientation (anisotropic) can be further reduced or the internal strain can be further reduced by further performing a pressure heating step as necessary. It can also be released, whereby the LCP extruded film 100 in which the anisotropy of the dimensional change rate is further reduced and the LCP extruded film 100 in which the absolute value of the dimensional change rate is smaller can be realized.

加熱加圧処理は、当業界で公知の方法、例えば接触式の熱処理、非接触性の熱処理等を用いて行えばよく、その種類は特に限定されない。例えば非接触式ヒーター、オーブン、ブロー装置、熱ロール、冷却ロール、熱プレス機、ダブルベルト熱プレス機等の公知の機器を用いて熱セットすることができる。このとき、必要に応じて、LCP押出フィルム100の表面に、当業界で公知の剥離フィルムや多孔質フィルムを配して、熱処理を行うことができる。また、この熱処理を行う場合、配向性の制御の観点から、LCP押出フィルム100の表裏に剥離フィルムや多孔質フィルムを配してダブルベルトプレス機のエンドレスベルト対の間に挟持しながら熱圧着し、その後に剥離フィルムや多孔質フィルムを除去する熱圧成形方法が好ましく用いられる。熱圧成形方法は、例えば特開2010-221694号等を参照して行えばよい。上記の樹脂組成物を用いたLCP押出フィルム100をダブルベルトプレス機のエンドレスベルト対の間で熱圧成形する際の処理温度としては、LCP押出フィルム100の結晶状態を制御するため、液晶ポリマーの融点より高い温度以上、融点より70℃高い温度以下で行うことが好ましく、より好ましくは融点より+5℃高い温度以上、融点より60℃高い温度以下、さらに好ましくは融点より+10℃高い温度以上、融点より50℃高い温度以下である。このときの熱圧着条件は、所望性能に応じて適宜設定することができ、特に限定されないが、面圧0.5~10MPaで加熱温度250~430℃の条件下で行うことが好ましく、より好ましくは面圧0.6~8MPaで加熱温度260~400℃の条件下、さらに好ましくは面圧0.7~6MPaで加熱温度270~370℃の条件下である。一方、非接触式ヒーターやオーブンを用いる場合には、例えば200~320℃で1~20時間の条件下で行うことが好ましい。 The heat-pressurizing treatment may be performed by a method known in the art, for example, a contact type heat treatment, a non-contact heat treatment, or the like, and the type thereof is not particularly limited. For example, heat can be set by using known equipment such as a non-contact heater, an oven, a blow device, a heat roll, a cooling roll, a heat press machine, and a double belt heat press machine. At this time, if necessary, a release film or a porous film known in the art can be arranged on the surface of the LCP extruded film 100 to perform heat treatment. Further, when this heat treatment is performed, from the viewpoint of controlling the orientation, a release film or a porous film is arranged on the front and back of the LCP extruded film 100, and thermocompression bonding is performed while sandwiching it between endless belt pairs of a double belt press machine. After that, a thermocompression forming method for removing the release film or the porous film is preferably used. The thermal pressure molding method may be performed with reference to, for example, Japanese Patent Application Laid-Open No. 2010-2216994. The processing temperature when the LCP extrusion film 100 using the above resin composition is hot-press formed between the endless belt pairs of the double belt press machine is a liquid crystal polymer in order to control the crystal state of the LCP extrusion film 100. The temperature is preferably higher than the melting point and 70 ° C. higher than the melting point, more preferably + 5 ° C. higher than the melting point, 60 ° C. higher than the melting point, still more preferably + 10 ° C. higher than the melting point, and the melting point. The temperature is 50 ° C. higher or lower. The thermocompression bonding conditions at this time can be appropriately set according to the desired performance, and are not particularly limited, but are preferably performed under the conditions of a surface pressure of 0.5 to 10 MPa and a heating temperature of 250 to 430 ° C., more preferably. Is a surface pressure of 0.6 to 8 MPa and a heating temperature of 260 to 400 ° C., more preferably a surface pressure of 0.7 to 6 MPa and a heating temperature of 270 to 370 ° C. On the other hand, when a non-contact heater or an oven is used, it is preferable to carry out the operation at 200 to 320 ° C. for 1 to 20 hours, for example.

(回路基板用絶縁材料)
図6は、本実施形態の回路基板用絶縁材料200の要部を示す模式断面図である。本実施形態の回路基板用絶縁材料200は、上記のLCP押出フィルム100及びこのLCP押出フィルム100の片面及び/又は両面に設けられた織布WFを少なくとも有する積層体を備えるものである。
(Insulation material for circuit boards)
FIG. 6 is a schematic cross-sectional view showing a main part of the insulating material 200 for a circuit board of the present embodiment. The insulating material 200 for a circuit board of the present embodiment includes the above-mentioned LCP extruded film 100 and a laminate having at least a woven fabric WF provided on one side and / or both sides of the LCP extruded film 100.

具体的には、回路基板用絶縁材料200は、LCP押出フィルム100、織布WF、及びLCP押出フィルム100が、少なくともこの順に配列された積層構造(3層構造)を有する積層体を備えている。この積層体において、一方のLCP押出フィルム100は織布WFの表面側に設けられ、他方のLCP押出フィルム100は、織布WFの裏面側に設けられている。これら3層は熱圧着され、これにより、3層構造の積層体が形成されている。なお、ここでは3層構造の積層体を例示するが、本発明は、一方のLCP押出フィルム100を省略した2層構造の積層体であっても、LCP押出フィルム100や織布WFをさらに積層させた4層以上の積層構造の積層体であっても実施可能なことは言うまでもない。 Specifically, the insulating material 200 for a circuit board includes a laminated body having a laminated structure (three-layer structure) in which the LCP extruded film 100, the woven fabric WF, and the LCP extruded film 100 are arranged at least in this order. .. In this laminated body, one LCP extruded film 100 is provided on the front surface side of the woven fabric WF, and the other LCP extruded film 100 is provided on the back surface side of the woven fabric WF. These three layers are thermocompression bonded to form a three-layer structure laminate. Although a three-layer structure laminate is exemplified here, the present invention further laminates the LCP extrusion film 100 and the woven cloth WF even if the two-layer structure laminate omits one of the LCP extrusion films 100. Needless to say, it is possible to carry out even a laminated body having a laminated structure of four or more layers.

ここで本明細書において、「LCP押出フィルム100の片面及び/又は両面に織布WFが設けられた」とは、本実施形態のように織布WFの表面にLCP押出フィルム100が直接載置された態様のみならず、LCP押出フィルム100と織布WFとの間に図示しない任意の層(例えばプライマー層、接着層等)が介在して、LCP押出フィルム100が織布WFから離間して配置された態様を包含する意味である。 Here, in the present specification, "the woven fabric WF is provided on one side and / or both sides of the LCP extruded film 100" means that the LCP extruded film 100 is directly placed on the surface of the woven fabric WF as in the present embodiment. The LCP extruded film 100 is separated from the woven fabric WF by an arbitrary layer (for example, a primer layer, an adhesive layer, etc.) (for example, a primer layer, an adhesive layer, etc.) not shown between the LCP extruded film 100 and the woven fabric WF. It is meant to include the arranged aspects.

織布WFは、繊維を織った布である。織布WFの繊維の種類としては、特に限定されず、無機繊維、有機繊維、有機無機ハイブリッド繊維のいずれであっても用いることができる。とりわけ、無機繊維の織布WFが好ましく用いられる。無機繊維の織布WFをLCP押出フィルム100と熱圧着させることで、MD方向及びTD方向の寸法変化率の異方性を小さく維持でき、さらに好適な態様ではMD方向及びTD方向の寸法変化率そのものを小さくすることができる。織布WFとしては、市販品を用いることができ、また、当業界で公知の方法で製造することができる。 The woven cloth WF is a cloth woven with fibers. The type of fiber of the woven fabric WF is not particularly limited, and any of inorganic fiber, organic fiber, and organic-inorganic hybrid fiber can be used. In particular, an inorganic fiber woven fabric WF is preferably used. By thermocompression bonding the woven fabric WF of the inorganic fiber to the LCP extruded film 100, the anisotropy of the dimensional change rate in the MD direction and the TD direction can be kept small, and in a more preferable embodiment, the dimensional change rate in the MD direction and the TD direction. It can be made smaller. As the woven fabric WF, a commercially available product can be used, and the woven fabric WF can be manufactured by a method known in the art.

無機繊維としては、例えば、Eガラス、Dガラス、Lガラス、Mガラス、Sガラス、Tガラス、Qガラス、UNガラス、NEガラス、球状ガラス等のガラス繊維、クォーツ等のガラス以外の無機繊維、シリカなどのセラミック繊維等が挙げられるが、これらに特に限定されない。無機繊維の織布WFは、開繊処理や目詰め処理を施した織布が、寸法安定性の観点から好適である。これらの中でも、機械的強度、寸法安定性、吸水性等の観点から、ガラスクロスが好ましい。LCP押出フィルム100との熱圧着性を高める観点から、開繊処理や目詰め処理が施されたガラスクロスが好ましい。また、エポキシシラン処理、アミノシラン処理等のシランカップリング剤等で表面処理されたガラスクロスも好適に用いることができる。なお、織布WFは、1種を単独で又は2種以上を適宜組み合わせて用いることができる。 Examples of the inorganic fiber include glass fibers such as E glass, D glass, L glass, M glass, S glass, T glass, Q glass, UN glass, NE glass and spherical glass, and inorganic fibers other than glass such as quartz. Examples thereof include ceramic fibers such as silica, but the present invention is not particularly limited thereto. As the woven fabric of inorganic fibers, a woven fabric that has been subjected to a fiber opening treatment or a filling treatment is suitable from the viewpoint of dimensional stability. Among these, glass cloth is preferable from the viewpoint of mechanical strength, dimensional stability, water absorption and the like. From the viewpoint of enhancing the thermocompression bonding property with the LCP extruded film 100, a glass cloth that has been subjected to a fiber opening treatment or a filling treatment is preferable. Further, glass cloth surface-treated with a silane coupling agent such as epoxy silane treatment and amino silane treatment can also be preferably used. The woven fabric WF may be used alone or in combination of two or more.

織布WFの厚さは、要求性能に応じて適宜設定でき、特に限定されない。積層性や加工性、機械的強度等の観点から、10~300μmが好ましく、より好ましくは10~200μm、さらに好ましくは15~180μmである。 The thickness of the woven fabric WF can be appropriately set according to the required performance and is not particularly limited. From the viewpoint of stackability, processability, mechanical strength, etc., it is preferably 10 to 300 μm, more preferably 10 to 200 μm, and even more preferably 15 to 180 μm.

回路基板用絶縁材料200の総厚みは、要求性能に応じて適宜設定でき、特に限定されない。積層性や加工性、機械的強度等の観点から、30~500μmが好ましく、より好ましくは50~400μm、さらに好ましくは70~300μm、特に好ましくは90~250μmである。 The total thickness of the insulating material 200 for a circuit board can be appropriately set according to the required performance, and is not particularly limited. From the viewpoint of stackability, processability, mechanical strength, etc., it is preferably 30 to 500 μm, more preferably 50 to 400 μm, still more preferably 70 to 300 μm, and particularly preferably 90 to 250 μm.

本実施形態の回路基板用絶縁材料200は、上述した構成を採用することで、MD方向及びTD方向の寸法変化率の異方性が小さく、さらに好適な態様ではMD方向及びTD方向の寸法変化率そのものを小さくすることができ、しかも、高周波域での誘電特性に優れ、製造容易で生産性に優れるという顕著な効果を有している。 By adopting the above-described configuration, the circuit board insulating material 200 of the present embodiment has a small anisotropy of the dimensional change rate in the MD direction and the TD direction, and more preferably, the dimensional change in the MD direction and the TD direction. The rate itself can be reduced, and the dielectric properties in the high frequency range are excellent, and it has a remarkable effect of being easy to manufacture and excellent in productivity.

上述した回路基板用絶縁材料200は、公知の製法を適宜適用して製造することができ、その製造方法は特に限定されない。一例を挙げると、例えば、LCP押出フィルム100と織布WFとを積層し、加熱及び加圧して、LCP押出フィルム100と織布WFとが熱圧着することで回路基板用絶縁材料200を得ることができる。また、LCP押出フィルム100と織布WFとLCP押出フィルム100とをこの順に重ね合わせて積層体とし、プレス機やダブルベルトプレス機等を用いてこの積層体を挟持しながら加熱及び加圧して、回路基板用絶縁材料200を熱圧成形する方法も好ましい。なお、熱圧着時の加工温度は、要求性能に応じて適宜設定することができ、特に限定されないが、200~400℃が好ましく、より好ましくは250~360℃、さらに好ましくは270~350℃である。なお、熱圧着時の加工温度は、前述した積層体のLCP押出フィルム100の表面温度で測定した値とする。また、このときの加圧条件は、所望性能に応じて適宜設定することができ、特に限定されないが、例えば面圧0.5~10MPaで1~240分、より好ましくは面圧0.8~8MPaで1~120分である。 The above-mentioned insulating material 200 for a circuit board can be manufactured by appropriately applying a known manufacturing method, and the manufacturing method is not particularly limited. As an example, for example, the LCP extruded film 100 and the woven fabric WF are laminated, heated and pressurized, and the LCP extruded film 100 and the woven fabric WF are thermocompression bonded to obtain an insulating material 200 for a circuit board. Can be done. Further, the LCP extruded film 100, the woven fabric WF, and the LCP extruded film 100 are laminated in this order to form a laminated body, and the laminated body is heated and pressed while being sandwiched by a press machine, a double belt press machine, or the like. A method of hot-pressing the insulating material 200 for a circuit board is also preferable. The processing temperature during thermocompression bonding can be appropriately set according to the required performance and is not particularly limited, but is preferably 200 to 400 ° C, more preferably 250 to 360 ° C, and further preferably 270 to 350 ° C. be. The processing temperature at the time of thermocompression bonding is a value measured by the surface temperature of the LCP extruded film 100 of the above-mentioned laminated body. The pressurizing conditions at this time can be appropriately set according to the desired performance, and are not particularly limited, but are, for example, at a surface pressure of 0.5 to 10 MPa for 1 to 240 minutes, more preferably a surface pressure of 0.8 to. It takes 1 to 120 minutes at 8 MPa.

(金属箔張積層板)
図7は、本実施形態の金属箔張積層板300の要部を示す模式断面図である。本実施形態の金属箔張積層板300は、上記のLCP押出フィルム100及びこのLCP押出フィルム100の一方の片面及び/又は両面に設けられた金属箔MFを備えるものである。
(Metal leaf-clad laminate)
FIG. 7 is a schematic cross-sectional view showing a main part of the metal leaf-covered laminated plate 300 of the present embodiment. The metal foil-clad laminate 300 of the present embodiment includes the above-mentioned LCP extruded film 100 and a metal foil MF provided on one side and / or both sides of the LCP extruded film 100.

具体的には、金属箔張積層板300は、金属箔MF、LCP押出フィルム100、及び金属箔MFが、少なくともこの順に配列された積層構造(3層構造)を有する両面金属箔張積層板である。これら3層は熱圧着され、これにより、3層構造の積層体が形成されている。なお、本実施形態においては、両面金属箔張積層板を示したが、LCP押出フィルム100の一方の表面のみに金属箔MFが設けられた態様としても、本発明は実施可能である。すなわち、ここでは3層構造の積層体を例示するが、本発明は、一方の金属箔MFを省略した2層構造の積層体であっても、LCP押出フィルム100や織布WFをさらに積層させた4層以上の積層構造の積層体であっても実施可能なことは言うまでもない。 Specifically, the metal foil-clad laminate 300 is a double-sided metal foil-clad laminate having a laminated structure (three-layer structure) in which the metal foil MF, the LCP extruded film 100, and the metal foil MF are arranged in at least this order. be. These three layers are thermocompression bonded to form a three-layer structure laminate. Although the double-sided metal foil-clad laminate is shown in the present embodiment, the present invention can also be implemented in an embodiment in which the metal leaf MF is provided only on one surface of the LCP extruded film 100. That is, although a three-layer structure laminate is exemplified here, in the present invention, the LCP extruded film 100 and the woven fabric WF are further laminated even in the two-layer structure laminate in which one of the metal foil MFs is omitted. Needless to say, it is possible to carry out even a laminated body having a laminated structure of four or more layers.

図8は、本実施形態の金属箔張積層板400の要部を示す模式断面図である。本実施形態の金属箔張積層板400は、上記のLCP押出フィルム100及びこのLCP押出フィルム100の片面及び/又は両面に設けられた上述した織布WFを少なくとも有する積層体と、この積層体の片面及び/又は両面に設けられた金属箔MFとを備えるものである。 FIG. 8 is a schematic cross-sectional view showing a main part of the metal leaf-covered laminated plate 400 of the present embodiment. The metal leaf-clad laminate 400 of the present embodiment is a laminate having at least the above-mentioned woven cloth WF provided on one side and / or both sides of the above-mentioned LCP extruded film 100 and the above-mentioned LCP extruded film 100, and the laminate. It is provided with a metal foil MF provided on one side and / or both sides.

具体的には、金属箔張積層板400は、金属箔MF、LCP押出フィルム100、織布WF、LCP押出フィルム100、及び金属箔MFが、少なくともこの順に配列された積層構造(5層構造)を有する両面金属箔張積層板である。これら5層は熱圧着され、これにより、5層構造の積層体が形成されている。なお、本実施形態においては、両面金属箔張積層板を示したが、金属箔MFが一方の表面のみに設けられた態様としても、本発明は実施可能である。すなわち、ここでは5層構造の積層体を例示するが、本発明は、一方の金属箔MFを省略した4層構造の積層体であっても、LCP押出フィルム100や回路基板用絶縁材料200や織布WFをさらに積層させた6層以上の積層構造の積層体であっても実施可能なことは言うまでもない。 Specifically, the metal foil-clad laminate 400 has a laminated structure (five-layer structure) in which a metal foil MF, an LCP extruded film 100, a woven cloth WF, an LCP extruded film 100, and a metal foil MF are arranged at least in this order. It is a double-sided metal leaf-covered laminated board having. These five layers are thermocompression bonded to form a five-layer structure laminate. Although the double-sided metal leaf-clad laminate is shown in the present embodiment, the present invention can also be implemented in an embodiment in which the metal leaf MF is provided on only one surface. That is, although a five-layer structure laminate is exemplified here, in the present invention, even if one of the four-layer structure laminates omits the metal foil MF, the LCP extruded film 100, the insulating material 200 for the circuit board, and the like are used. Needless to say, it is possible to carry out even a laminated body having a laminated structure of 6 or more layers in which the woven fabric WF is further laminated.

金属箔MFの材質としては、特に限定されないが、金、銀、銅、銅合金、ニッケル、ニッケル合金、アルミニウム、アルミニウム合金、鉄、鉄合金等が挙げられる。これらの中でも、銅箔、アルミニウム箔、ステンレス箔、及び銅とアルミニウムとの合金箔が好ましく、銅箔がより好ましい。かかる銅箔としては、圧延法或いは電気分解法等によって製造されるいずれのものでも使用できるが、表面粗さが比較的に大きい電解銅箔や圧延銅箔が好ましい。 The material of the metal foil MF is not particularly limited, and examples thereof include gold, silver, copper, copper alloys, nickel, nickel alloys, aluminum, aluminum alloys, iron, and iron alloys. Among these, copper foil, aluminum foil, stainless steel foil, and alloy foil of copper and aluminum are preferable, and copper foil is more preferable. As the copper foil, any one produced by a rolling method, an electrolysis method or the like can be used, but an electrolytic copper foil or a rolled copper foil having a relatively large surface roughness is preferable.

金属箔MFの厚さは、所望性能に応じて適宜設定でき、特に限定されない。通常は1.5~1000μmが好ましく、より好ましくは2~500μm、さらに好ましくは5~150μm、特に好ましくは7~100μmである。なお、本発明の作用効果が損なわれない限り、金属箔MFは、酸洗浄等の化学的表面処理等の表面処理が施されていてもよい。なお、金属箔MFの種類や厚みは、同一であっても異なっていてもよい。 The thickness of the metal foil MF can be appropriately set according to the desired performance and is not particularly limited. Usually, it is preferably 1.5 to 1000 μm, more preferably 2 to 500 μm, still more preferably 5 to 150 μm, and particularly preferably 7 to 100 μm. The metal leaf MF may be subjected to surface treatment such as chemical surface treatment such as pickling as long as the action and effect of the present invention are not impaired. The type and thickness of the metal foil MF may be the same or different.

LCP押出フィルム100やや回路基板用絶縁材料200の表面に金属箔MFを設ける方法は、常法にしたがって行うことができ、特に限定されない。LCP押出フィルム100や回路基板用絶縁材料200の上に金属箔MFを積層して両層を接着ないしは圧着させる方法、スパッタリングや蒸着等の物理法(乾式法)、無電解めっきや無電解めっき後の電解めっき等の化学法(湿式法)、金属ペーストを塗布する方法等のいずれであってもよい。また、LCP押出フィルム100や回路基板用絶縁材料200と1以上の金属箔MFとを積層した積層体を、例えば多段プレス機、多段真空プレス機、連続成形機、オートクレーブ成形機等を用いて熱プレスすることにより、金属箔張積層板300,400を得ることもできる。 The method of providing the metal foil MF on the surface of the LCP extruded film 100 or the insulating material 200 for a circuit board can be performed according to a conventional method, and is not particularly limited. A method of laminating a metal foil MF on an LCP extruded film 100 or an insulating material 200 for a circuit board to bond or crimp both layers, a physical method such as sputtering or vapor deposition (dry method), after electroless plating or electroplating. It may be either a chemical method (wet method) such as electrolytic plating, or a method of applying a metal paste. Further, a laminate obtained by laminating an LCP extruded film 100 or an insulating material 200 for a circuit board and one or more metal foil MFs is heated by using, for example, a multi-stage press machine, a multi-stage vacuum press machine, a continuous molding machine, an autoclave molding machine, or the like. By pressing, metal foil-clad laminates 300, 400 can also be obtained.

上述した金属箔張積層板300,400は、公知の製法を適宜適用して製造することができ、その製造方法は特に限定されない。一例を挙げると、例えば、LCP押出フィルム100や回路基板用絶縁材料200と金属箔MFとを重ね合わせ、LCP押出フィルム100上に金属箔MFが載置された積層体とし、この積層体をダブルベルトプレス機のエンドレスベルト対の間に挟持しながら熱圧成形する方法が挙げられる。上述したとおり、本実施形態で用いるLCP押出フィルム100は、MD方向及びTD方向の寸法変化率の異方性が小さく、さらに好適な態様ではMD方向及びTD方向の寸法変化率そのものが小さいので、金属箔MFへの高いピール強度が得られる。 The above-mentioned metal foil-clad laminates 300 and 400 can be manufactured by appropriately applying a known manufacturing method, and the manufacturing method is not particularly limited. As an example, for example, the LCP extruded film 100 or the insulating material 200 for a circuit board and the metal leaf MF are superposed to form a laminated body in which the metal foil MF is placed on the LCP extruded film 100, and this laminated body is doubled. A method of hot pressure forming while sandwiching between endless belt pairs of a belt press machine can be mentioned. As described above, the LCP extruded film 100 used in the present embodiment has a small anisotropy of the dimensional change rate in the MD direction and the TD direction, and more preferably, the dimensional change rate itself in the MD direction and the TD direction is small. High peel strength to the metal foil MF can be obtained.

金属箔MFの熱圧着時の温度は、要求性能に応じて適宜設定することができ、特に限定されないが、液晶ポリマーの融点より50℃低い温度以上であり融点より50℃高い温度以下が好ましく、同融点より40℃低い温度以上であり融点より40℃高い温度以下より好ましく、同融点より30℃低い温度以上であり融点より30℃高い温度以下がさらに好ましく、同融点より20℃低い温度以上であり融点より20℃高い温度以下が特に好ましい。なお、金属箔MFの熱圧着時の温度は、前述したLCP押出フィルム100の表面温度で測定した値とする。また、このときの圧着条件は、所望性能に応じて適宜設定することができ、特に限定されないが、例えばダブルベルトプレス機を用いる場合、面圧0.5~10MPaで加熱温度200~360℃の条件下で行うことが好ましい。 The temperature at the time of thermal pressure bonding of the metal foil MF can be appropriately set according to the required performance, and is not particularly limited, but is preferably a temperature 50 ° C. lower than the melting point of the liquid crystal polymer and 50 ° C. higher than the melting point. It is preferable that the temperature is 40 ° C. lower than the melting point and 40 ° C. higher than the melting point, more preferably 30 ° C. lower than the melting point and 30 ° C. higher than the melting point, and 20 ° C. or higher than the melting point. It is particularly preferable that the temperature is 20 ° C. higher than the melting point. The temperature at the time of thermocompression bonding of the metal foil MF is a value measured by the surface temperature of the LCP extruded film 100 described above. The crimping conditions at this time can be appropriately set according to the desired performance and are not particularly limited. For example, when a double belt press machine is used, the surface pressure is 0.5 to 10 MPa and the heating temperature is 200 to 360 ° C. It is preferable to carry out under the conditions.

本実施形態の金属箔張積層板300,400は、LCP押出フィルム100と金属箔MFとの二層構造の熱圧着体を備える限り、別の積層構造ないしはさらなる積層構造を有していてもよい。例えば金属箔MF/LCP押出フィルム100の2層構造;金属箔MF/LCP押出フィルム100/金属箔MF、LCP押出フィルム100/金属箔MF/LCP押出フィルム100のような3層構造;金属箔MF/LCP押出フィルム100/織布WF/LCP押出フィルム100のような4層構造;金属箔MF/LCP押出フィルム100/金属箔MF/LCP押出フィルム100/金属箔MF、金属箔MF/LCP押出フィルム100/織布WF/LCP押出フィルム100/金属箔MFのような5層構造;等、の多層構造とすることができる。また、複数(例えば2~50個)の金属箔張積層板300,400を、積層熱圧着させることもできる。 The metal foil-clad laminates 300 and 400 of the present embodiment may have another laminated structure or a further laminated structure as long as the thermocompression bonding body having a two-layer structure of the LCP extruded film 100 and the metal foil MF is provided. .. For example, a two-layer structure of a metal foil MF / LCP extruded film 100; a three-layer structure such as a metal foil MF / LCP extruded film 100 / metal foil MF, an LCP extruded film 100 / metal foil MF / LCP extruded film 100; / LCP Extruded Film 100 / Woven WF / LCP Extruded Film 100-like 4-layer structure; Metal Foil MF / LCP Extruded Film 100 / Metal Foil MF / LCP Extruded Film 100 / Metal Foil MF, Metal Foil MF / LCP Extruded Film It can have a multi-layer structure such as 100 / woven cloth WF / LCP extruded film 100 / metal foil MF-like five-layer structure; Further, a plurality of (for example, 2 to 50) metal foil-clad laminated plates 300 and 400 can be thermocompression-bonded.

本実施形態の金属箔張積層板300,400において、LCP押出フィルム100と金属箔MFとのピール強度は、特に限定されないが、より高いピール強度を具備させる観点から、0.8(N/mm)以上であることが好ましく、より好ましくは1.0(N/mm)以上、さらに好ましくは1.2(N/mm)以上である。上述したとおり、本実施形態の金属箔張積層板300,400では、高いピール強度を実現できるため、例えば基板製造の加熱工程でLCP押出フィルム100と金属箔MFとの剥離を抑制できる。また、従来技術と同等のピール強度を得るにあたってプロセス裕度や生産性に優れる製造条件を適用することができるため、従来と同程度のピール強度を維持したまま、液晶ポリマーが有する基本性能の劣化を抑制することができる。 In the metal foil-clad laminates 300 and 400 of the present embodiment, the peel strength of the LCP extruded film 100 and the metal foil MF is not particularly limited, but is 0.8 (N / mm) from the viewpoint of providing higher peel strength. ) Or more, more preferably 1.0 (N / mm) or more, still more preferably 1.2 (N / mm) or more. As described above, in the metal foil-clad laminates 300 and 400 of the present embodiment, high peel strength can be realized, so that peeling between the LCP extruded film 100 and the metal leaf MF can be suppressed, for example, in the heating process of substrate manufacturing. In addition, since manufacturing conditions with excellent process margin and productivity can be applied to obtain the same peel strength as the conventional technique, the basic performance of the liquid crystal polymer deteriorates while maintaining the same level of peel strength as the conventional technique. Can be suppressed.

そして、本実施形態の金属箔張積層板300,400は、金属箔MFの少なくとも一部をパターンエッチングする等して、電子回路基板や多層基板等の回路基板の素材として使用することができる。また、本実施形態の金属箔張積層板300,400は、高周波域での誘電特性に優れ、MD方向及びTD方向の寸法変化率の異方性が小さく、さらに好適な態様ではMD方向及びTD方向の寸法変化率そのものが小さく、寸法安定性に優れ、製造容易で生産性に優れるため、第5世代移動通信システム(5G)やミリ波レーダー等におけるフレキシブルプリント配線板(FPC)等の絶縁材料として殊に有用な素材となる。 The metal foil-clad laminates 300, 400 of the present embodiment can be used as a material for a circuit board such as an electronic circuit board or a multilayer board by pattern-etching at least a part of the metal foil MF. Further, the metal foil-clad laminates 300 and 400 of the present embodiment are excellent in dielectric properties in the high frequency region, have small dimensional change rate anisotropy in the MD direction and the TD direction, and in a more preferable embodiment, the MD direction and the TD. Insulation material such as flexible printed wiring board (FPC) in 5th generation mobile communication system (5G) and millimeter wave radar because the dimensional change rate itself in the direction is small, dimensional stability is excellent, manufacturing is easy and productivity is excellent. It is a particularly useful material.

(LCP延伸フィルム)
なお、上述した各実施形態においては、熱可塑性液晶ポリマーを含む樹脂組成物をフィルム状に押出成形したLCP押出フィルム100を用いているが、必要に応じて、このLCP押出フィルム100に、さらに1軸及び/又は2軸の延伸処理を施してLCP延伸フィルム(LCP押出フィルム100の延伸体)の形態で用いることもできる。そして、このLCP延伸フィルムを用いて、上記の回路基板用絶縁材料200、金属箔張積層板300,400等を構成することができる。
(LCP stretched film)
In each of the above-described embodiments, the LCP extruded film 100 obtained by extruding a resin composition containing a thermoplastic liquid crystal polymer into a film is used, but if necessary, the LCP extruded film 100 is further added with 1 It can also be used in the form of an LCP stretched film (stretched body of the LCP extruded film 100) after undergoing a shaft and / or biaxial stretching treatment. Then, using this LCP stretched film, the above-mentioned insulating material 200 for a circuit board, metal leaf-clad laminates 300, 400 and the like can be constructed.

延伸処理の際の設定条件は、使用する樹脂組成物の種類や組成、目的とするLCP延伸フィルムの所望性能等に応じて適宜設定すればよく、特に限定されない。1軸延伸する場合には、例えば、LCP押出フィルム100をTD方向(Transverse Direction;横手方向)に90~180℃で1.1~2.5倍に延伸することができ、その後に例えば100~240℃で1~600秒間の熱処理(熱セット)を行うことが好ましい。2軸延伸する場合には、例えば、LCP押出フィルム100を好ましくはMD方向(Machine Direction;長手方向)に70~180℃で1.1~2.5倍に延伸して1軸延伸フィルムとした後、さらにTD方向(Transverse Direction;横手方向)に90~180℃で1.1~2.5倍に延伸することができ、その後に例えば100~240℃で1~600秒間の熱処理(熱セット)を行うことが好ましい。このとき、逐次延伸ではなく同時二軸延伸をすることもできる。延伸倍率は、特に限定されないが、フィルム搬送性、離型性の向上、厚みムラや皺の発生等を抑制等の観点から、MD方向×TD方向の総延伸倍率(MD方向の延伸倍率をmとし、TD方向の延伸倍率をnとしたとき、m×nで表される延伸倍率)で1.1倍以上が好ましく、より好ましくは1.2倍以上、さらに好ましくは1.3倍以上、特に好ましくは1.5倍以上である。なお、その上限は特に限定されないが、3.0倍以下が目安とされ、好ましくは2.7倍以下、さらに好ましくは2.5倍未満、らに好ましくは2.3倍未満である。また、熱セットの際には、当業界で公知の方法、例えば接触式の熱処理、非接触性の熱処理等を行うことができ、その種類は特に限定されない。例えば非接触式ヒーター、オーブン、ブロー装置、熱ロール、冷却ロール、熱プレス機、ダブルベルト熱プレス機等の公知の機器を用いて熱セットすることができる。このとき、必要に応じて、LCP延伸フィルムの表面に、当業界で公知の剥離フィルムや多孔質フィルムを配して、熱圧処理を行うことができる。 The setting conditions for the stretching treatment may be appropriately set according to the type and composition of the resin composition to be used, the desired performance of the target LCP stretched film, and the like, and are not particularly limited. In the case of uniaxial stretching, for example, the LCP extruded film 100 can be stretched 1.1 to 2.5 times in the TD direction (Transverse Direction) at 90 to 180 ° C., and then 100 to, for example. It is preferable to perform heat treatment (heat setting) at 240 ° C. for 1 to 600 seconds. In the case of biaxial stretching, for example, the LCP extruded film 100 is preferably stretched 1.1 to 2.5 times at 70 to 180 ° C. in the MD direction (longitudinal direction) to obtain a uniaxially stretched film. After that, it can be further stretched 1.1 to 2.5 times in the TD direction (Transverse Direction) at 90 to 180 ° C., and then heat-treated at 100 to 240 ° C. for 1 to 600 seconds (heat set). ) Is preferable. At this time, simultaneous biaxial stretching may be performed instead of sequential stretching. The draw ratio is not particularly limited, but from the viewpoints of improving film transportability, releasability, suppressing thickness unevenness, wrinkles, etc., the total draw ratio in the MD direction × TD direction (the draw ratio in the MD direction is m). When the stretching ratio in the TD direction is n, the stretching ratio expressed in m × n) is preferably 1.1 times or more, more preferably 1.2 times or more, still more preferably 1.3 times or more. Particularly preferably, it is 1.5 times or more. The upper limit thereof is not particularly limited, but is 3.0 times or less as a guideline, preferably 2.7 times or less, more preferably less than 2.5 times, and more preferably less than 2.3 times. Further, in the case of heat setting, a method known in the art, for example, a contact type heat treatment, a non-contact heat treatment, or the like can be performed, and the type thereof is not particularly limited. For example, heat can be set by using known equipment such as a non-contact heater, an oven, a blow device, a heat roll, a cooling roll, a heat press machine, and a double belt heat press machine. At this time, if necessary, a release film or a porous film known in the art can be arranged on the surface of the LCP stretched film to perform thermal pressure treatment.

LCP延伸フィルム(LCP押出フィルム100の延伸体)のLCP押出フィルム100のMD方向及びTD方向の線膨張係数(CTE,α2,23~200℃)は、所望性能に応じて適宜設定することができ、特に限定されないが、寸法変化率の異方性及び寸法変化率の絶対値を小さくし、金属箔への密着性を高める等の観点から、それぞれ-20~15ppm/Kの範囲内にあることが好ましく、それぞれ-15~10ppm/Kの範囲内にあることがより好ましく、それぞれ-10~5ppm/Kの範囲内にあることがさらに好ましく、それぞれ-10~0ppm/Kの範囲内にあることが特に好ましい。 The linear expansion coefficient (CTE, α2, 23 to 200 ° C.) of the LCP extruded film 100 in the MD direction and the TD direction of the LCP stretched film (stretched body of the LCP extruded film 100) can be appropriately set according to the desired performance. Although not particularly limited, each of them should be in the range of -20 to 15 ppm / K from the viewpoint of reducing the anisotropy of the dimensional change rate and the absolute value of the dimensional change rate and improving the adhesion to the metal foil. Is preferable, each is in the range of -15 to 10 ppm / K, more preferably in the range of -10 to 5 ppm / K, and each in the range of -10 to 0 ppm / K. Is particularly preferable.

以下に実施例及び比較例を挙げて本発明の特徴をさらに具体的に説明するが、本発明は、これらによりなんら限定されるものではない。すなわち、以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜変更することができる。また、以下の実施例における各種の製造条件や評価結果の値は、本発明の実施態様における好ましい上限値又は好ましい下限値としての意味をもつものであり、好ましい数値範囲は前記の上限値又は下限値と、下記実施例の値又は実施例同士の値との組み合わせで規定される範囲であってもよい。 The features of the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto. That is, the materials, amounts used, ratios, treatment contents, treatment procedures, etc. shown in the following examples can be appropriately changed as long as they do not deviate from the gist of the present invention. Further, the values of various manufacturing conditions and evaluation results in the following examples have meanings as a preferable upper limit value or a preferable lower limit value in the embodiment of the present invention, and the preferable numerical range is the above-mentioned upper limit value or the lower limit value. It may be in the range specified by the combination of the value and the value of the following examples or the values of the examples.

[溶融粘度]
以下の条件で、各LCP押出フィルムの溶融粘度[Pa・sec]をそれぞれ測定した。
測定機器:キャピログラフ1D(東洋精機製作所社製)
使用装置:シリンダー長10.00mm、シリンダー径1.00mm、バレル径9.55mm
測定条件:各LCP押出フィルムの押出成形時の温度[℃]と剪断速度[sec-1]
[Melting viscosity]
The melt viscosity [Pa · sec] of each LCP extruded film was measured under the following conditions.
Measuring equipment: Capillograph 1D (manufactured by Toyo Seiki Seisakusho Co., Ltd.)
Equipment used: Cylinder length 10.00 mm, cylinder diameter 1.00 mm, barrel diameter 9.55 mm
Measurement conditions: Temperature [° C] and shear rate [sec -1 ] during extrusion molding of each LCP extruded film

[配向度]
X線回折装置Smartlab(リガク社製)を用いて透過法でフィルム表面S1あるいはフィルム表面S2を含む各LCP押出フィルムのX線回折測定を行い、配向度をそれぞれ測定した。ここでは、X線源にCu封入管を用い、平行ビーム光学系、透過法でX線回折測定(2θ/θスキャン、βスキャン)を行い、まず、2θ/θスキャンで2θ=19.5°にピークトップがあることを確認した。次に、βスキャンにて2θ=19.5の回折ピークに対し、方位角方向に0°から360°までの強度を測定することにより、方位角方向の強度分布を得た。得られたβプロファイルのベース強度(等方性成分)とピーク強度(配向性成分)から、配向性ピークの面積割合に基づいて、上記式から配向度を算出した。
なお、各LCP押出フィルムのフィルム表面S2は、各LCP押出フィルムを23℃及び50%RH環境下でモノエチルアミン70%水溶液(ダイセル社製)に168時間浸漬し、各LCP押出フィルムの両表面を5μmエッチングし、その後、流水で5分間水洗いし、さらに蒸留水で洗浄し、80℃で1時間乾燥し、23℃及び50%RH環境下で24時間冷却することにより、それぞれ調整した。
[Orientation]
Using an X-ray diffractometer Smartlab (manufactured by Rigaku Co., Ltd.), X-ray diffraction measurement of each LCP extruded film including the film surface S1 or the film surface S2 was performed by a transmission method, and the degree of orientation was measured. Here, a Cu-encapsulated tube is used as the X-ray source, and X-ray diffraction measurement (2θ / θ scan, β scan) is performed by a parallel beam optical system and a transmission method. First, 2θ = 19.5 ° in a 2θ / θ scan. It was confirmed that there is a peak top in. Next, the intensity distribution in the azimuth direction was obtained by measuring the intensity from 0 ° to 360 ° in the azimuth direction with respect to the diffraction peak of 2θ = 19.5 by β scan. From the base intensity (isotropic component) and peak intensity (orientation component) of the obtained β profile, the degree of orientation was calculated from the above formula based on the area ratio of the orientation peak.
For the film surface S2 of each LCP extruded film, each LCP extruded film was immersed in a 70% monoethylamine aqueous solution (manufactured by Daicel) under a 23 ° C. and 50% RH environment for 168 hours, and both surfaces of each LCP extruded film were exposed. It was adjusted by etching 5 μm, then washing with running water for 5 minutes, further washing with distilled water, drying at 80 ° C. for 1 hour, and cooling at 23 ° C. and 50% RH environment for 24 hours, respectively.

[線膨張係数]
JIS K7197に準拠したTMA法で、各LCP押出フィルム及びLCP延伸フィルムの線膨張係数を測定した。
測定機器: TMA 4000SE(NETZSCH社製)
測定方法: 引張モード
測定条件: サンプルサイズ 25mm×4mm×厚み50μm
チャック間距離 20mm
温度区間 23~200℃(2ndRUN)
昇温速度 5℃/min
雰囲気 窒素(流量50ml/min)
試験荷重 5gf
※熱履歴を解消した値をみるため、2ndRUNの値を採用
[Coefficient of linear expansion]
The linear expansion coefficient of each LCP extruded film and LCP stretched film was measured by the TMA method according to JIS K7197.
Measuring equipment: TMA 4000SE (manufactured by NETZSCH)
Measurement method: Tensile mode Measurement conditions: Sample size 25 mm x 4 mm x thickness 50 μm
Distance between chucks 20 mm
Temperature interval 23-200 ° C (2ndRUN)
Heating rate 5 ° C / min
Atmosphere Nitrogen (flow rate 50 ml / min)
Test load 5gf
* The 2ndRUN value is used to see the value after eliminating the heat history.

[テープ剥離試験]
各LCP押出フィルムのフィルム表面S1に、JIS K5600-5-6に準拠したクロスカット法による密着性試験を行い、スキン層の有無をそれぞれ確認した。このとき、幅24mm×長さ50mmのニチバン社製セロテープ(登録商標)を使用し、テープを剥離した後に格子の目に剥がれがない場合を「スキン層なし」、剥がれがある場合を「スキン層あり」とした。
○ スキン層なし
× スキン層あり
[Tape peeling test]
Adhesion test was performed on the film surface S1 of each LCP extruded film by a cross-cut method based on JIS K5600-5-6, and the presence or absence of a skin layer was confirmed. At this time, a cellophane tape (registered trademark) manufactured by Nichiban Co., Ltd. having a width of 24 mm and a length of 50 mm is used. Yes. "
○ No skin layer × With skin layer

[金属箔エッチング後の寸法変化率及びその異方性]
各LCP押出フィルムの両面に厚み12μmの電解銅箔(三井金属社製TQ-M7VSP)を積層させて、温度条件320℃且つ面圧1MPaで1分間熱圧着することで、銅箔/LCP押出フィルム/銅箔の3層構成を有する、両面金属箔張積層板をそれぞれ作製した。そして、JPCA-UB01(2017)に準拠し、同規格の「16.4.4-18 寸法変化率」及び「16.4.4-2-2 銅はく除去による試料作製」にしたがって、得られた両面金属箔張積層板から試料をそれぞれ調製し、測定顕微鏡(ミツトヨ社製MF-A4020C)を用いて各試料の銅箔エッチング後の寸法変化率を測定し、寸法変化率の異方性を評価した。ここで、β1はMD方向の寸法変化率を示し、β2はTD方向の寸法変化率を表す。
◎ 寸法変化率の異方性が非常に小さい(|β2-β1|≦0.3%)
〇 寸法変化率の異方性が小さい (0.3%<|β2-β1|<0.4%)
× 寸法変化率の異方性が大きい (0.4%≦|β2-β1|)
[Dimensional change rate after metal leaf etching and its anisotropy]
Copper foil / LCP extruded film by laminating an electrolytic copper foil (TQ-M7VSP manufactured by Mitsui Metal Co., Ltd.) with a thickness of 12 μm on both sides of each LCP extruded film and heat-pressing at a temperature condition of 320 ° C. and a surface pressure of 1 MPa for 1 minute. / A double-sided metal foil-clad laminate having a three-layer structure of copper foil was produced. Then, the double-sided metal obtained in accordance with JPCA-UB01 (2017) and in accordance with "16.4.4-18 Dimensional change rate" and "16.4.4-2-2 Sample preparation by removing copper foil" of the same standard. Samples were prepared from the foil-clad laminates, and the dimensional change rate of each sample after copper foil etching was measured using a measuring microscope (MF-A4020C manufactured by Mitutoyo Co., Ltd.) to evaluate the anisotropy of the dimensional change rate. Here, β 1 represents the dimensional change rate in the MD direction, and β 2 represents the dimensional change rate in the TD direction.
◎ The anisotropy of the dimensional change rate is very small (| β 21 | ≦ 0.3%)
〇 The anisotropy of the dimensional change rate is small (0.3% <| β 21 | <0.4%)
× The anisotropy of the dimensional change rate is large (0.4% ≤ | β 21 |)

(実施例1~3)
中間層としてII型熱可塑性液晶ポリマー(モノマー組成がp-ヒドロキシ安息香酸74mol%、6-ヒドロキシ-2-ナフトエ酸26mol%の共重合体、温度300℃及び剪断速度500sec-1の溶融粘度は80Pa・sec)を、中間層の両面の表層としてポリカーボネートPC(帝人社製パンライトL-1225L)をそれぞれ用いて、表1に示す成形条件で、ダイ幅600mm及びリップ開度0.2~1.0mmのTダイを備える二種三層押出機からTダイキャスティング法で各樹脂を300℃で共押出して、中間層が50μmの二種三層フィルムを成形した。成形した二種三層フィルムから両表層のポリカーボネートフィルムを巻取ラインでそれぞれ剥離し、融点280℃及び厚み50μmを有する実施例1~3のLCP押出フィルムをそれぞれ得た。
また、得られた一対の実施例1~3の熱可塑性液晶ポリマーフィルム間にガラスクロス(IPC No.#1037)を挟み込んだ状態で、熱プレス機を用いて300℃で5分間の熱圧着処理を行うことで、融点280℃及び総厚み100μmを有する実施例1~3の回路基板用絶縁材料を得た。
(Examples 1 to 3)
As an intermediate layer, a type II thermoplastic liquid crystal polymer (a copolymer having a monomer composition of 74 mol% p-hydroxybenzoic acid and 26 mol% 6-hydroxy-2-naphthoic acid, a temperature of 300 ° C. and a shear rate of 500 sec -1 has a melt viscosity of 80 Pa. For sec), a polycarbonate PC (Panlite L-1225L manufactured by Teijin Co., Ltd.) was used as the surface layer on both sides of the intermediate layer, and the die width was 600 mm and the lip opening was 0.2 to 1 under the molding conditions shown in Table 1. Each resin was co-extruded at 300 ° C. from a two-kind three-layer extruder equipped with a 0 mm T-die by a T-die casting method to form a two-kind three-layer film having an intermediate layer of 50 μm. The polycarbonate films on both surface layers were peeled off from the molded two-kind three-layer film by a take-up line to obtain LCP extruded films of Examples 1 to 3 having a melting point of 280 ° C. and a thickness of 50 μm, respectively.
Further, a thermocompression bonding treatment at 300 ° C. for 5 minutes with a glass cloth (IPC No. # 1037) sandwiched between the obtained pair of thermoplastic liquid crystal polymer films of Examples 1 to 3 at 300 ° C. To obtain an insulating material for a circuit board of Examples 1 to 3 having a melting point of 280 ° C. and a total thickness of 100 μm.

(比較例1)
II型熱可塑性液晶ポリマー(モノマー組成がp-ヒドロキシ安息香酸74mol%、6-ヒドロキシ-2-ナフトエ酸26mol%の共重合体、温度300℃及び剪断速度500sec-1の溶融粘度は80Pa・sec)を用いて、表1に示す成形条件で、ダイ幅600mm及びリップ開度0.3mmのTダイを備える単層押出機からTダイキャスティング法で液晶ポリマーを300℃で押出して、融点280℃及び厚み50μmを有する比較例1のLCP押出フィルムを得た。
(Comparative Example 1)
Type II thermoplastic liquid crystal polymer (monomer composition: 74 mol% p-hydroxybenzoic acid, 26 mol% 6-hydroxy-2-naphthoic acid, temperature 300 ° C. and shear rate 500 sec -1 melt viscosity 80 Pa · sec) The liquid crystal polymer is extruded at 300 ° C. by the T-die casting method from a single-layer extruder equipped with a T-die having a die width of 600 mm and a lip opening of 0.3 mm under the molding conditions shown in Table 1, and has a melting point of 280 ° C. and An LCP extruded film of Comparative Example 1 having a thickness of 50 μm was obtained.

(比較例2~4)
成形条件を表1に記載のとおりに変更する以外は、実施例1と同様の方法で、融点280℃及び厚み50μmを有する比較例2~4のLCP押出フィルムをそれぞれ得た。
(Comparative Examples 2 to 4)
The LCP extruded films of Comparative Examples 2 to 4 having a melting point of 280 ° C. and a thickness of 50 μm were obtained in the same manner as in Example 1 except that the molding conditions were changed as shown in Table 1.

Figure 2022091687000003
Figure 2022091687000003

(実施例4~6)
II型熱可塑性液晶ポリマーに代えてI型熱可塑性液晶ポリマー(モノマー組成がp-ヒドロキシ安息香酸79mol%、6-ヒドロキシ-2-ナフトエ酸20mol%、テレフタル酸1mol%の共重合体、温度330℃及び剪断速度500sec-1の溶融粘度は70Pa・sec)を中間層に用い、各樹脂を330℃で共押出した以外は、実施例1と同様の方法で、融点315℃及び厚み50μmを有する実施例4~6のLCP押出フィルムをそれぞれ得た。
また、得られた一対の実施例4~6の熱可塑性液晶ポリマーフィルム間にガラスクロス(IPC No.#1037)を挟み込んだ状態で、熱プレス機を用いて330℃で5分間の熱圧着処理を行うことで、融点315℃及び総厚み100μmを有する実施例4~6の回路基板用絶縁材料を得た。
(Examples 4 to 6)
Type I thermoplastic liquid crystal polymer instead of type II thermoplastic liquid crystal polymer (monomer composition of 79 mol% p-hydroxybenzoic acid, 20 mol% 6-hydroxy-2-naphthoic acid, 1 mol% terephthalic acid, temperature 330 ° C. And the melt viscosity of a shear rate of 500 sec -1 is 70 Pa · sec), and each resin is co-extruded at 330 ° C. in the same manner as in Example 1 with a melting point of 315 ° C. and a thickness of 50 μm. The LCP extruded films of Examples 4 to 6 were obtained, respectively.
Further, a thermocompression bonding treatment at 330 ° C. for 5 minutes using a heat press machine with a glass cloth (IPC No. # 1037) sandwiched between the obtained pair of thermoplastic liquid crystal polymer films of Examples 4 to 6. To obtain an insulating material for a circuit board of Examples 4 to 6 having a melting point of 315 ° C. and a total thickness of 100 μm.

(比較例5)
II型熱可塑性液晶ポリマーに代えてI型熱可塑性液晶ポリマー(モノマー組成がp-ヒドロキシ安息香酸79mol%、6-ヒドロキシ-2-ナフトエ酸20mol%、テレフタル酸1mol%の共重合体、温度330℃及び剪断速度500sec-1の溶融粘度は70Pa・sec)を用い、液晶ポリマーを330℃で押出した以外は、比較例1と同様の方法で、融点315℃及び厚み50μmを有する比較例2のLCP押出フィルムを得た。
(Comparative Example 5)
Type I thermoplastic liquid crystal polymer instead of type II thermoplastic liquid crystal polymer (monomer composition of 79 mol% p-hydroxybenzoic acid, 20 mol% 6-hydroxy-2-naphthoic acid, 1 mol% terephthalic acid, temperature 330 ° C. The LCP of Comparative Example 2 having a melting point of 315 ° C. and a thickness of 50 μm in the same manner as in Comparative Example 1 except that the liquid crystal polymer was extruded at 330 ° C. using a melt viscosity of 500 sec -1 and a melt viscosity of 70 Pa · sec). An extruded film was obtained.

(比較例6~8)
成形条件を表2に記載のとおりに変更する以外は、実施例4と同様の方法で、融点315℃及び厚み50μmを有する比較例6~8のLCP押出フィルムをそれぞれ得た。
(Comparative Examples 6 to 8)
The LCP extruded films of Comparative Examples 6 to 8 having a melting point of 315 ° C. and a thickness of 50 μm were obtained by the same method as in Example 4 except that the molding conditions were changed as shown in Table 2.

Figure 2022091687000004
Figure 2022091687000004

(実施例7~9)
ポリカーボネートに代えて両面の表層にポリメチルペンテンPMP(三井化学社製TPX MX004)を用いる以外は、実施例1と同様の方法で、融点280℃及び厚み50μmを有する実施例7~9のLCP押出フィルムを得た。
また、得られた一対の実施例7~9の熱可塑性液晶ポリマーフィルム間にガラスクロス(IPC No.#1037)を挟み込んだ状態で、熱プレス機を用いて300℃で5分間の熱圧着処理を行うことで、融点280℃及び総厚み100μmを有する実施例7~9の回路基板用絶縁材料を得た。
(Examples 7 to 9)
LCP extrusion of Examples 7 to 9 having a melting point of 280 ° C. and a thickness of 50 μm by the same method as in Example 1 except that polymethylpentene PMP (TPX MX004 manufactured by Mitsui Chemicals, Inc.) is used for the surface layers on both sides instead of polycarbonate. I got a film.
Further, a thermocompression bonding treatment at 300 ° C. for 5 minutes using a heat press machine with a glass cloth (IPC No. # 1037) sandwiched between the obtained pair of thermoplastic liquid crystal polymer films of Examples 7 to 9. To obtain an insulating material for a circuit board of Examples 7 to 9 having a melting point of 280 ° C. and a total thickness of 100 μm.

(比較例9~11)
成形条件を表3に記載のとおりに変更する以外は、実施例7と同様の方法で、融点280℃及び厚み50μmを有する比較例9~11のLCP押出フィルムをそれぞれ得た。
(Comparative Examples 9 to 11)
The LCP extruded films of Comparative Examples 9 to 11 having a melting point of 280 ° C. and a thickness of 50 μm were obtained by the same method as in Example 7 except that the molding conditions were changed as shown in Table 3.

Figure 2022091687000005
Figure 2022091687000005

表4~6に、測定結果を示す。 Tables 4 to 6 show the measurement results.

Figure 2022091687000006
Figure 2022091687000006

Figure 2022091687000007
Figure 2022091687000007

Figure 2022091687000008
Figure 2022091687000008

得られた実施例1,4,7のLCP押出フィルムを、1軸延伸機にて130℃でTD方向に1.5倍(総延伸倍率:1.5倍)に延伸し、130℃で2分間熱セットすることで、LCP延伸フィルムをそれぞれ得た。 The obtained LCP extruded films of Examples 1, 4 and 7 were stretched 1.5 times in the TD direction at 130 ° C. using a uniaxial stretching machine (total draw ratio: 1.5 times), and 2 at 130 ° C. By heat setting for 1 minute, LCP stretched films were obtained respectively.

表7に、測定結果を示す。

Figure 2022091687000009
Table 7 shows the measurement results.
Figure 2022091687000009

得られた実施例1,4,7のLCP押出フィルムを、1軸延伸機にて130℃でTD方向に2.0倍(総延伸倍率:2.0倍)に延伸し、130℃で2分間熱セットすることで、LCP延伸フィルムをそれぞれ得た。 The obtained LCP extruded films of Examples 1, 4 and 7 were stretched 2.0 times (total draw ratio: 2.0 times) in the TD direction at 130 ° C. using a uniaxial stretching machine, and 2 at 130 ° C. LCP stretched films were obtained by heat setting for 1 minute.

表8に、測定結果を示す。

Figure 2022091687000010
Table 8 shows the measurement results.
Figure 2022091687000010

本発明のLCP押出フィルムは、電子回路基板、多層基板、高放熱基板、フレキシブルプリント配線板、アンテナ基板、光電子混載基板、ICバッケージ等の用途において広く且つ有効に利用可能であり、とりわけ超微細加工に適応し信頼性が高いため、第5世代移動通信システム(5G)やミリ波レーダー等におけるフレキシブルプリント配線板(FPC)等の絶縁材料や金属箔張積層板等として殊に広く且つ有効に利用可能である。 The LCP extruded film of the present invention can be widely and effectively used in applications such as electronic circuit boards, multilayer boards, high heat dissipation boards, flexible printed wiring boards, antenna boards, optoelectronic mixed boards, and IC packages, and in particular, ultrafine processing. Because it is compatible with and highly reliable, it can be used particularly widely and effectively as an insulating material such as flexible printed wiring boards (FPC) in 5th generation mobile communication boards (5G) and millimeter wave radars, and metal foil-clad laminates. It is possible.

100 ・・・LCP押出フィルム
100a・・・面
100b・・・面
S1 ・・・フィルム表面
S2 ・・・深度5μmのフィルム表面
200 ・・・回路基板用絶縁材料
300 ・・・金属箔張積層板
400 ・・・金属箔張積層板
WF ・・・織布
MF ・・・金属箔
100 ・ ・ ・ LCP extruded film 100a ・ ・ ・ Surface 100b ・ ・ ・ Surface S1 ・ ・ ・ Film surface S2 ・ ・ ・ Film surface with depth of 5 μm 200 ・ ・ ・ Insulation material for circuit board 300 ・ ・ ・ Metal leaf-clad laminate 400 ・ ・ ・ Metal foil-clad laminate WF ・ ・ ・ Woven cloth MF ・ ・ ・ Metal leaf

Claims (16)

熱可塑性液晶ポリマーを含み15μm以上300μm以下の厚みを有するLCP押出フィルムであって、
露出しているフィルム表面S1を含む配向度α1(%)と、前記フィルム表面S1を厚み方向にエッチング処理することで露出する、前記フィルム表面S1から深度5μmに位置するフィルム表面S2を含む配向度α2(%)とが、-4.0≦[(α2-α1)/α1]×100≦0.0の関係を満たし、且つ、JIS K7197に準拠したTMA法によって測定される23~200℃におけるMD方向及びTD方向の線膨張係数が-30~55ppm/Kの範囲内にある、
LCP押出フィルム。
An LCP extruded film containing a thermoplastic liquid crystal polymer and having a thickness of 15 μm or more and 300 μm or less.
Orientation degree α1 (%) including the exposed film surface S1 and orientation degree including the film surface S2 located at a depth of 5 μm from the film surface S1 exposed by etching the film surface S1 in the thickness direction. At 23 to 200 ° C., where α2 (%) satisfies the relationship of -4.0 ≦ [(α2-α1) / α1] × 100 ≦ 0.0 and is measured by the TMA method based on JIS K7197. The coefficient of linear expansion in the MD and TD directions is in the range of -30 to 55 ppm / K.
LCP extruded film.
前記TD方向の前記線膨張係数が、0~55ppm/Kである
請求項1に記載のLCP押出フィルム。
The LCP extruded film according to claim 1, wherein the coefficient of linear expansion in the TD direction is 0 to 55 ppm / K.
外層、中間層、及び外層を有する積層押出フィルムから前記両外層を除いた、前記中間層である
請求項1又は2に記載のLCP押出フィルム。
The LCP extruded film according to claim 1 or 2, wherein both outer layers are removed from a laminated extruded film having an outer layer, an intermediate layer, and an outer layer.
前記フィルム表面S1に、JIS K5600-5-6に準拠したクロスカット法による密着性試験で、テープ剥離可能なスキン層を有さない
請求項1~3のいずれか一項に記載のLCP押出フィルム。
The LCP extruded film according to any one of claims 1 to 3, which has no tape peelable skin layer on the film surface S1 in an adhesion test by a cross-cut method according to JIS K5600-5-6. ..
前記表面S2を含む前記配向度α2が、37.7(%)以下である
請求項1~4のいずれか一項に記載のLCP押出フィルム。
The LCP extruded film according to any one of claims 1 to 4, wherein the degree of orientation α2 including the surface S2 is 37.7 (%) or less.
前記フィルム表面S1を含む前記配向度α1が、39.0(%)以下である
請求項1~5のいずれか一項に記載のLCP押出フィルム。
The LCP extruded film according to any one of claims 1 to 5, wherein the degree of orientation α1 including the film surface S1 is 39.0 (%) or less.
無機フィラーをさらに含有する
請求項1~6のいずれか一項に記載のLCP押出フィルム。
The LCP extruded film according to any one of claims 1 to 6, further comprising an inorganic filler.
Tダイ押出フィルムである
請求項1~7のいずれか一項に記載のLCP押出フィルム。
The LCP extruded film according to any one of claims 1 to 7, which is a T-die extruded film.
請求項1~8のいずれか一項に記載のLCP押出フィルム及び前記LCP押出フィルムの少なくとも一方の面に設けられた織布を少なくとも有する積層体を備える、
回路基板用絶縁材料。
A laminate comprising the LCP extruded film according to any one of claims 1 to 8 and a woven fabric provided on at least one surface of the LCP extruded film.
Insulation material for circuit boards.
請求項1~8のいずれか一項に記載のLCP押出フィルム及び前記LCP押出フィルムの片面及び/又は両面に設けられた金属箔を備える、
金属箔張積層板。
The LCP extruded film according to any one of claims 1 to 8 and metal foils provided on one side and / or both sides of the LCP extruded film are provided.
Metal leaf-clad laminate.
請求項1~8のいずれか一項に記載のLCP押出フィルム及び織布を少なくとも有する積層体と、前記積層体の片面及び/又は両面に設けられた金属箔とを備える、
金属箔張積層板。
A laminate having at least the LCP extruded film and the woven fabric according to any one of claims 1 to 8, and metal foils provided on one side and / or both sides of the laminate.
Metal leaf-clad laminate.
請求項1~8のいずれか一項に記載のLCP押出フィルムの延伸体を備える、
LCP延伸フィルム。
The stretched body of the LCP extruded film according to any one of claims 1 to 8 is provided.
LCP stretched film.
前記延伸体は、前記LCP押出フィルムに対して1.3~2.5倍の延伸倍率(MD方向×TD方向)を有する
請求項12に記載のLCP延伸フィルム。
The LCP stretched film according to claim 12, wherein the stretched body has a stretch ratio (MD direction × TD direction) of 1.3 to 2.5 times that of the LCP extruded film.
請求項12又は13に記載のLCP延伸フィルム及び前記LCP延伸フィルムの少なくとも一方の面に設けられた織布を少なくとも有する積層体を備える、
回路基板用絶縁材料。
A laminate comprising the LCP stretched film according to claim 12 or 13 and a woven fabric provided on at least one surface of the LCP stretched film.
Insulation material for circuit boards.
請求項12又は13に記載のLCP延伸フィルム及び前記LCP延伸フィルムの片面及び/又は両面に設けられた金属箔を備える、
金属箔張積層板。
The LCP stretched film according to claim 12 or 13 and the metal foil provided on one side and / or both sides of the LCP stretched film are provided.
Metal leaf-clad laminate.
請求項12又は13に記載のLCP延伸フィルム及び織布を少なくとも有する積層体と、前記積層体の片面及び/又は両面に設けられた金属箔とを備える、
金属箔張積層板。
A laminate having at least the LCP stretched film and the woven fabric according to claim 12 or 13, and a metal foil provided on one side and / or both sides of the laminate.
Metal leaf-clad laminate.
JP2021182543A 2020-12-09 2021-11-09 Lcp extruded film, lcp stretched film, insulating material for circuit board, and metal foil-clad laminate Pending JP2022091687A (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
KR1020237043724A KR20240001268A (en) 2020-12-09 2021-12-07 Lcp extruded film and manufacturing method therefor, lcp extruded film for stretching, lcp stretched film, heat shrinking lcp stretched film, insulating material for circuit board, and metal foil-clad laminate
KR1020237043725A KR20240001269A (en) 2020-12-09 2021-12-07 Lcp extruded film and manufacturing method therefor, lcp extruded film for stretching, lcp stretched film, heat shrinking lcp stretched film, insulating material for circuit board, and metal foil-clad laminate
US18/266,228 US20240043635A1 (en) 2020-12-09 2021-12-07 Lcp extruded film and method for manufacturing the same, lcp extruded film for stretch treatment, lcp stretched film, heat-shrinkable lcp stretched film, insulating material for circuit substrate, and metal foil-clad laminate
KR1020237022786A KR20230119162A (en) 2020-12-09 2021-12-07 LCP extruded film and its manufacturing method, LCP extruded film for stretching treatment, LCP stretched film, heat-shrinkable LCP stretched film, insulating material for circuit board, and metal foil-clad laminate
PCT/JP2021/044969 WO2022124308A1 (en) 2020-12-09 2021-12-07 Lcp extruded film and manufacturing method therefor, lcp extruded film for stretching, lcp stretched film, heat shrinking lcp stretched film, insulating material for circuit board, and metal foil-clad laminate
TW112137248A TW202402503A (en) 2020-12-09 2021-12-09 LCP extruded film and manufacturing method therefor, LCP extruded film for stretching, LCP stretched film, heat shrinking LCP stretched film, insulating material for circuit board, and metal foil-clad laminate
TW112137249A TW202404809A (en) 2020-12-09 2021-12-09 LCP extruded film and manufacturing method therefor, LCP extruded film for stretching, LCP stretched film, heat shrinking LCP stretched film, insulating material for circuit board, and metal foil-clad laminate
TW110146092A TW202235286A (en) 2020-12-09 2021-12-09 LCP extruded film and manufacturing method therefor, LCP extruded film for stretching, LCP stretched film, heat shrinking LCP stretched film, insulating material for circuit board, and metal foil-clad laminate
US18/375,798 US20240025102A1 (en) 2020-12-09 2023-10-02 Lcp extruded film and method for manufacturing the same, lcp extruded film for stretch treatment, lcp stretched film, heat-shrinkable lcp stretched film, insulating material for circuit substrate, and metal foil-clad laminate
US18/375,800 US20240032191A1 (en) 2020-12-09 2023-10-02 Lcp extruded film and method for manufacturing the same, lcp extruded film for stretch treatment, lcp stretched film, heat-shrinkable lcp stretched film, insulating material for circuit substrate, and metal foil-clad laminate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020204271 2020-12-09
JP2020204271 2020-12-09

Publications (1)

Publication Number Publication Date
JP2022091687A true JP2022091687A (en) 2022-06-21

Family

ID=82067073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021182543A Pending JP2022091687A (en) 2020-12-09 2021-11-09 Lcp extruded film, lcp stretched film, insulating material for circuit board, and metal foil-clad laminate

Country Status (1)

Country Link
JP (1) JP2022091687A (en)

Similar Documents

Publication Publication Date Title
WO2020262255A1 (en) Lcp extruded film, flexible laminate using same and method for producing same
WO2021106768A1 (en) Lcp resin composition for circuit boards, lcp film for circuit boards and method for producing same
JP6930046B1 (en) Manufacturing method of LCP film for circuit board and T-die melt extrusion LCP film for circuit board
US20240032191A1 (en) Lcp extruded film and method for manufacturing the same, lcp extruded film for stretch treatment, lcp stretched film, heat-shrinkable lcp stretched film, insulating material for circuit substrate, and metal foil-clad laminate
WO2022065285A1 (en) Insulating material for circuit boards, method for producing same and metal foil-clad laminate
WO2022065270A1 (en) Insulating material for circuit substrate, and metal foil-clad laminate
JP2022085734A (en) Liquid crystal polymer film, and laminate
JP2022091687A (en) Lcp extruded film, lcp stretched film, insulating material for circuit board, and metal foil-clad laminate
JP2022091688A (en) Lcp extruded film, lcp stretched film, insulating material for circuit board, and metal foil-clad laminate
JP2022091493A (en) Method for manufacturing lcp extrusion film
WO2023033102A1 (en) Lcp extruded film, insulating material for circuit board, and metal foil clad laminate
JP2022091469A (en) Method for manufacturing lcp extrusion film
JP2011157533A (en) Liquid crystalline polyester composition and film of the same
WO2023140187A1 (en) Liquid crystal polymer film, and circuit board insulating material and metal foil-clad laminate using same
JP2023070392A (en) Lcp extruded film for stretching, heat-shrinkable lcp stretched film, insulating material for circuit board, and metal foil-clad laminate
JP2023106957A (en) Winding roll of thermocompression bonding laminated film
JP2023106954A (en) Manufacturing method of thermoplastic polymer film, and orientation control method of thermoplastic polymer film