JP2023070174A - Total organic carbon measuring device - Google Patents

Total organic carbon measuring device Download PDF

Info

Publication number
JP2023070174A
JP2023070174A JP2022177426A JP2022177426A JP2023070174A JP 2023070174 A JP2023070174 A JP 2023070174A JP 2022177426 A JP2022177426 A JP 2022177426A JP 2022177426 A JP2022177426 A JP 2022177426A JP 2023070174 A JP2023070174 A JP 2023070174A
Authority
JP
Japan
Prior art keywords
measurement solution
measurement
gas
solution
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022177426A
Other languages
Japanese (ja)
Inventor
努 榎木
Tsutomu Enoki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
T & C Technical kk
Original Assignee
T & C Technical kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by T & C Technical kk filed Critical T & C Technical kk
Publication of JP2023070174A publication Critical patent/JP2023070174A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

To provide a measuring device that does not need a gas-liquid separation device, a degasifier, and a scrubber device for preventing corrosive gas, can measure the amount of CO2 gas without being affected by ionized substance under a high conductivity (in a solution densely containing ionizable substance such as sodium other than organic materials) which is impossible when a conductivity manner is used, and can measure the total organic carbon amount in the measurement solution on a business level.SOLUTION: The total organic carbon measuring device includes: an oxidation chamber for forming an oxidized measurement solution by irradiating a measurement solution with ultraviolet rays from an ultraviolet rays supply source or burning an organic material in the measurement solution under a high-temperature and high-pressure condition; and a DCO2 detector for detecting the amount of CO2 in the solution in at least one of the side of supplying the measurement solution into the oxidation chamber and the side of discharging the oxidized measurement solution from the oxidation chamber.SELECTED DRAWING: Figure 1-2

Description

本発明は、被測定水に含まれる全有機炭素(以下、TOCと称す場合もある)量の測定に関し、より詳細には被測定水の溶存CO量を直接測定可能なセンサーを備えた全有機炭素測定装置に関する。 The present invention relates to the measurement of the total organic carbon (hereinafter sometimes referred to as TOC) contained in the water to be measured, and more specifically, the total amount of CO2 dissolved in the water to be measured can be directly measured. It relates to an organic carbon measuring device.

有機物による水質の汚染状態を計測するために、全有機炭素測定装置、所謂、TOC計が用いられている。この係る装置では、その汚染度は水中に存在する有機物中の炭素量で表される。しかしながら、水中の有機炭素量を直接測定することはできないので、被測定水中の有機物を強制的に酸化して二酸化炭素(CO)に変えた後に、全有機炭素(TOC)の量を求める方式の測定法が通常用いられている。 A total organic carbon measuring device, a so-called TOC meter, is used to measure the state of water pollution caused by organic substances. In such an apparatus, the degree of contamination is represented by the amount of carbon in the organic substances present in the water. However, since it is not possible to directly measure the amount of organic carbon in water, it is a method of forcibly oxidizing organic matter in the water to be measured to convert it to carbon dioxide (CO 2 ) and then determining the amount of total organic carbon (TOC). is commonly used.

このような測定に用いられるTOC計には、以下に示すような数種類の方式が利用されている。
例えば、図3(a)に構成図、(b)に外観写真、(c)に内部写真を示す高温燃焼型TOC計(高温燃焼/NDIR:CO分析)30があり、密閉された高温燃焼炉31(熱源:ヒーターH)に測定溶液を注入して有機物を含む溶液のすべてを高温(例えば800℃程度)で燃焼させることで、水分を一瞬にして蒸発させ、有機物は種類により異なるが1~2分程度、遅れて燃焼し、水とCO(炭酸ガス)に変化させ、そのCO量を非拡散赤外線分析器(NDIR)32で分析する方式である。図3(a)において、33は気液分離器、34は除湿器、35はスクラバー、36は曝気装置(NガスパージによるIC除去器)、37は測定溶液注入器、P1、P2は運転ポンプである。
TOC meters used for such measurements employ several types of methods as shown below.
For example, there is a high-temperature combustion TOC meter (high-temperature combustion/NDIR: CO 2 analysis) 30 with a configuration diagram in FIG. By injecting the measurement solution into the furnace 31 (heat source: heater H) and burning the entire solution containing organic matter at a high temperature (for example, about 800 ° C.), the moisture is instantly evaporated, and the organic matter varies depending on the type. In this method, the fuel is combusted with a delay of about 2 minutes to change into water and CO 2 (carbon dioxide gas), and the amount of CO 2 is analyzed by a non-diffusion infrared analyzer (NDIR) 32 . In FIG. 3(a), 33 is a gas-liquid separator, 34 is a dehumidifier, 35 is a scrubber, 36 is an aerator (IC remover by N2 gas purge), 37 is a measuring solution injector, and P1 and P2 are operating pumps. is.

又、図4(a)に構成図、(b)に外観写真、(c)に内部写真を示す湿式酸化型TOC計(UVによる有機物の分解/NDIR:CO分析)40は、基本構成は上記高温燃焼型TOC計と同じだが、有機物を燃焼させる方法として高温燃焼ではなくUV(紫外線)を用いて温度を上げずに紫外線のもつエネルギーを使って有機物を分解する方法である(酸化チェンバー41を燃焼炉からUVチェンバーに置き換える)。ただし溶液に照射するUV(紫外線)にUVランプを使うが、一般的な殺菌UV蛍光灯と異なりエネルギーの大きい185nmと非常に短い波長ランプを用いる必要がある。図4(a)において、43は気液分離器、44は除湿器、45はスクラバー、46は曝気装置(NガスパージによるIC除去器)、P1、P2は運転ポンプである。 In addition, the wet oxidation TOC meter (decomposition of organic matter by UV/NDIR: CO 2 analysis) 40, whose configuration diagram is shown in FIG. It is the same as the above-mentioned high-temperature combustion type TOC analyzer, but instead of high-temperature combustion, UV (ultraviolet) is used as a method of burning organic matter, and the energy of ultraviolet rays is used to decompose organic matter without raising the temperature (oxidation chamber 41 from the combustion furnace to the UV chamber). However, a UV lamp is used to irradiate the solution with UV (ultraviolet rays), but unlike a general germicidal UV fluorescent lamp, it is necessary to use a lamp with a very short wavelength of 185 nm, which has large energy. In FIG. 4(a), 43 is a gas-liquid separator, 44 is a dehumidifier, 45 is a scrubber, 46 is an aerator (IC remover by N2 gas purge), and P1 and P2 are operating pumps.

上記図3、図4に記載のNDIR32、42を用いる方式では、液体状・気体状(または混合)からCOガスを取り出してNDIR(非拡散型赤外線分析装置、例えば、図7(a)参照)を用いて測定するが、COガスを取り出す方法は気液分離装置(例えば、図7(b)参照)・脱気装置及び腐食性ガス防止のためのスクラバー装置(例えば、図7(c)参照)が、腐食性ガスや湿気による劣化や測定誤差を生じるためにNDIRにとって必要な装置類である。
又、測定溶液に最初から含まれるCO(炭酸ガス)を除去する必要があり、そのために測定溶液のpHを2程度にし、曝気などでCO(炭酸ガス)を除くための付帯設備の導入に伴うメンテナンスや、測定値への影響等の問題が生じてしまう。
In the method using NDIR 32 and 42 described in FIGS. 3 and 4 above, CO 2 gas is extracted from the liquid/gas state (or mixture) and NDIR (non-diffusion infrared spectrometer, for example, see FIG. 7(a)) ), but the method for extracting CO2 gas is a gas-liquid separator (see, for example, Fig. 7 (b)), a degassing device, and a scrubber device for preventing corrosive gas (for example, Fig. 7 (c )) are necessary equipment for NDIR because corrosive gases and moisture cause deterioration and measurement errors.
In addition, it is necessary to remove CO 2 (carbon dioxide gas) contained in the measurement solution from the beginning, so that the pH of the measurement solution is adjusted to about 2 and incidental equipment is introduced to remove CO 2 (carbon dioxide gas) by aeration or the like. Problems such as maintenance associated with this and influence on measured values will occur.

さらに、図5(a)に構成を示すUV酸化・導電率方式TOC計(UV酸化/導電率測定)50は、溶液中のイオン化した物質がイオン量に比例し電気を流すことを応用した導電率計58a、58b(例えば、図5(a)参照)を用いたもので、その原理は、酸化チェンバー51内で、UV照射(UVp)による酸化によって生じたCO(炭酸ガス)は、水中ではイオン化することから、このイオン化したCO(炭酸ガス)の量が、導電率に比例するので、この導電率からCO(炭酸ガス)量を求める方式である。 Furthermore, the UV oxidation/conductivity TOC meter (UV oxidation/conductivity measurement) 50, whose configuration is shown in FIG. It uses rate meters 58a and 58b (see, for example, FIG. 5(a)), and its principle is that CO 2 (carbon dioxide gas) produced by oxidation by UV irradiation (UVp) in the oxidation chamber 51 is In this method, the amount of ionized CO 2 (carbon dioxide gas) is proportional to the electrical conductivity, so the amount of CO 2 (carbon dioxide gas) is obtained from the electrical conductivity.

この導電率方式は、最初に酸化前の導電率を測定しておき、酸化後の導電率と比較する方法を用いている。
しかしながら、欠点として、直接溶液中の導電率を測るためにNDIR方式と異なり気液分離などの装置が不要な反面、溶液にイオン化物質(たとえばナトリウムイオンやカリウムイオンなど)が多いと溶液の導電率がCO(炭酸ガス)の導電率より高くなり測定誤差が大きくなる。したがって、通常は蒸留水以上の水質が必要で、使用できる範囲が半導体工場や医製薬などの純水に限定される。
This conductivity method uses a method in which the conductivity before oxidation is first measured and compared with the conductivity after oxidation.
However, as a drawback, unlike the NDIR method, it does not require a device such as a gas-liquid separator because it directly measures the conductivity in a solution. becomes higher than the conductivity of CO 2 (carbon dioxide gas), resulting in a large measurement error. Therefore, water quality equal to or higher than that of distilled water is usually required, and the scope of use is limited to pure water used in semiconductor factories, pharmaceuticals, and the like.

この導電率方式の欠点に鑑み、図6(a)に示す湿式酸化・導電率方式TOC計60では酸化チェンバー61内で紫外線(UV)による酸化前に、薄膜68aを通して酸化前のCO(炭酸ガス)を、図6(b)に構成図を示す小型の超純水装置62で作られた超純水に溶け込ませ、この超純水に溶け込んだCO(炭酸ガス)に応じた導電率を導電率計(図6(b)、符号58a参照、超純水装置62に組み込まれている)で測定しておき、次に、酸化で生じたCO(炭酸ガス)を一度、薄膜68bを通し、図6(b)に構成図を示す小型の超純水装置62で作られた超純水に溶け込ませ、この超純水に溶け込んだCO(炭酸ガス)に応じた導電率を導電率計(図6(b)、符号58b参照、超純水装置62に組み込まれている)で測定する方法で、測定溶液Lsに含まれ、測定の誤差となるイオン類を除去できるので高導電率でも測定できるが、超純水装置が必要なことと、導電率方式なので高濃度有機物は測定誤差が大きくなる欠点がある。符号63はイオン交換樹脂、P1、P2はポンプである。 In view of the drawbacks of this conductivity method, in the wet oxidation/conductivity method TOC meter 60 shown in FIG . gas) is dissolved in ultrapure water made by a small ultrapure water device 62 whose configuration diagram is shown in FIG. is measured with a conductivity meter (see FIG. 6(b), reference numeral 58a, incorporated in the ultrapure water device 62), and then the CO 2 (carbon dioxide gas) generated by oxidation is measured once through the thin film 68b through and dissolved in ultrapure water made by a small ultrapure water device 62 whose configuration diagram is shown in FIG. By the method of measuring with a conductivity meter (see FIG. 6(b), reference numeral 58b, incorporated in the ultrapure water device 62), ions contained in the measurement solution Ls and causing errors in measurement can be removed, so high Conductivity can also be measured, but it requires an ultrapure water system, and since it is a conductivity method, it has the disadvantages of increasing the measurement error for high-concentration organic substances. Reference numeral 63 is an ion exchange resin, and P1 and P2 are pumps.

このように、水中の有機物を測定する従来からの全有機炭素測定装置(TOC計)は、測定水に含まれているCOの除去と有機物をCOに酸化させる工程と、COを分離する工程およびCOを測定する工程が必要であるが、これらの複雑な工程において、本願は性能を落とすことなく簡略化することで測定精度の向上とコスト低減およびメンテナンスの簡略化を図ろうとするものである。 Thus, the conventional total organic carbon measuring device (TOC meter) for measuring organic matter in water consists of removing CO2 contained in the water to be measured, oxidizing the organic matter to CO2 , and separating CO2 . The process of measuring CO2 and the process of measuring CO2 are necessary, but in these complicated processes, the present application attempts to improve measurement accuracy, reduce costs, and simplify maintenance by simplifying these processes without degrading performance. It is.

このような状況に鑑み、水中の有機物を測定する従来からの全有機炭素測定装置(TOC計)は、その構造が複雑、またはガスの供給や測定条件範囲が狭いなどの問題があり、これは酸化した有機物から発生したCOガスを取り出し、測定することを基本原理としているために、水中からのCOガスを取り出す機構と、ガス分析のために使うキャリアガス供給などの付帯設備が要求され、さらに、NDIR(非拡散型赤外線分析装置)の構造上からCOに含まれる湿気や腐食性ガスが測定誤差原因となり、またNDIRを腐食劣化させる原因となるので除湿装置やスクラバー装置が必要となり、その結果の複雑化が価格低減を妨げていた。 In view of this situation, the conventional total organic carbon measuring device (TOC meter) for measuring organic matter in water has problems such as its complicated structure or narrow range of gas supply and measurement conditions. Since the basic principle is to extract and measure CO2 gas generated from oxidized organic matter, a mechanism for extracting CO2 gas from water and ancillary facilities such as carrier gas supply for gas analysis are required. Furthermore, due to the structure of the NDIR (non-diffusive infrared spectrometer), moisture and corrosive gases contained in CO 2 cause measurement errors, and NDIR corrodes and deteriorates, so dehumidifiers and scrubbers are required. , the resulting complication hindered price reduction.

そこで、本発明では、COガスを含む水溶液に検出器(センサー)を直接設置し、COガス量を直接測定できれば、「気液分離装置」、「脱気装置」、及び「腐食性ガス防止のためのスクラバー装置」を不要とし、また、導電率方式では不可能であった高導電率(有機物以外のナトリウムなどイオン化する物質が高濃度で存在する溶液)でも、これらのイオン化している物質に影響されることなく、COガス量が測定できて、測定溶液中の全有機炭素量の測定が実業的レベルで可能な測定装置を提供するものである。 Therefore, in the present invention, if a detector (sensor) is directly installed in an aqueous solution containing CO 2 gas, and the amount of CO 2 gas can be directly measured, a "gas-liquid separator", a "deaerator", and a "corrosive gas It eliminates the need for a scrubber device for prevention, and even with high conductivity (solutions with high concentration of ionizing substances such as sodium other than organic substances), which was impossible with the conductivity method, ionization To provide a measuring device capable of measuring the amount of CO 2 gas without being affected by substances and measuring the total amount of organic carbon in a solution to be measured at a practical level.

即ち、上記課題を解決するための本発明の第1の態様は、測定溶液に紫外線供給源からの紫外線を照射するか又は高温高圧条件により測定溶液中に含まれる有機物を燃焼させて酸化済測定溶液を形成する酸化チェンバーと、前記酸化チェンバーに測定溶液を供給する側、及び前記酸化チェンバーから酸化済測定溶液を排出する側のいずれか、若しくは両者に備えられる溶存炭酸ガス(溶存CO、DCO(Dissolved CO)とも表記される)を測定する検出器(「溶存炭素検出器」、若しくは「DCO検出器」とも称す。)を含むことを特徴とする全有機炭素測定装置である。 That is, the first aspect of the present invention for solving the above problems is to irradiate the measurement solution with ultraviolet rays from an ultraviolet source or burn the organic matter contained in the measurement solution under high temperature and high pressure conditions to measure the oxidized state. Dissolved carbon dioxide gas (dissolved CO 2 , DCO 2 (Dissolved CO 2 )) (also referred to as "dissolved carbon detector" or "DCO 2 detector").

本発明の第2の態様は、第1の態様における前記酸化チェンバーに測定溶液を供給する側のDCO検出器の川上側で、前記測定溶液のpHを調整する酸化剤を前記測定溶液に導入するpH調整部を備えることを特徴とする全有機炭素測定装置である。 In a second aspect of the present invention, an oxidizing agent for adjusting the pH of the measurement solution is introduced into the measurement solution on the upstream side of the DCO 2 detector on the side of supplying the measurement solution to the oxidation chamber in the first aspect. The total organic carbon measuring device is characterized by comprising a pH adjusting section for controlling the pH.

本発明の第3の態様は、第1の態様における紫外線の供給源が、紫外線ランプ(UVランプ)又はエキシマランプであることを特徴とする全有機炭素測定装置である。 A third aspect of the present invention is a total organic carbon measuring device characterized in that the UV source in the first aspect is an ultraviolet lamp (UV lamp) or an excimer lamp.

本発明の第4の態様は、第1の態様における酸化チェンバーに測定溶液を供給する側のDCO検出器によりCO量を検出される測定溶液が、pHが2になるように調整されていることを特徴とする全有機炭素測定装置である。尚、溶液中の溶存炭酸ガスは溶液のpHによって炭酸HCO・重炭酸イオンHCO3-・炭酸イオンCO 2-に変化するのでCOを測定するTOC計は測定するCOが遊離炭酸ガスでなければならずpHを2程度以下にするのはこのためであり、本TOC計のDCO検出器もpHは2程度に維持する必要がある。 In a fourth aspect of the present invention, the measuring solution whose CO2 amount is detected by the DCO2 detector on the side supplying the measuring solution to the oxidation chamber in the first aspect is adjusted to have a pH of 2. The total organic carbon measuring device is characterized in that In addition, the dissolved carbon dioxide gas in the solution changes to carbonate H 2 CO 3 , bicarbonate ion HCO 3- , and carbonate ion CO 3 2- depending on the pH of the solution. This is the reason why the pH must be about 2 or less, and the pH of the DCO 2 detector of this TOC meter must be maintained at about 2 as well.

本発明の第5の態様は、第1の態様における測定溶液中又は酸化済測定溶液中のCO量の検出が、前記測定溶液が吸収したCO、又は前記酸化済測定溶液で形成されたCOを、透過膜内に取り込んで直接膜内を中赤外線で検出するが、連続測定を可能とするため、透過膜内のCOは溶液中から自由に出入りできる透過膜を得て分離してCOガスを得た後に、前記COガスの中赤外線の吸収度を用いて定量分析する前記検出器によって行われることを特徴とする全有機炭素測定装置である。 A fifth aspect of the present invention is that the detection of the amount of CO 2 in the measurement solution or in the oxidized measurement solution in the first aspect is formed by the CO 2 absorbed by the measurement solution or the oxidized measurement solution. CO 2 is taken into the permeable membrane and detected directly inside the membrane with mid-infrared rays, but in order to enable continuous measurement, the CO 2 in the permeable membrane is separated from the solution by obtaining a permeable membrane that can enter and exit freely. after obtaining CO 2 gas by means of the detector, quantitative analysis is performed using the mid-infrared absorbance of the CO 2 gas.

本発明の第6の態様は、第1の態様における測定溶液中又は酸化済測定溶液中のCO量の検出が、前記測定溶液が吸収したCO、又は前記酸化済測定溶液で形成されたCOを、透過膜内に取り込んで直接膜内を中赤外線で検出するが、連続測定を可能とし、前記透過膜を通過し、前記透過膜の外側へ出たCOガスの影響を避けるために、前記透過膜を通過し、前記透過膜の外側へ出たCOガスを前記装置の外部へ排出して測定には用いず、透過膜の中に含まれるCOガスを中赤外線の吸収度を用いて定量分析する前記検出器によって行われることを特徴とする全有機炭素測定装置である。 A sixth aspect of the present invention is that the detection of the amount of CO 2 in the measurement solution or in the oxidized measurement solution in the first aspect is formed by the CO 2 absorbed by the measurement solution or the oxidized measurement solution. CO 2 is taken into the permeable membrane and detected directly inside the membrane with mid-infrared rays. Second, the CO 2 gas that has passed through the permeable membrane and exited outside the permeable membrane is discharged to the outside of the device and not used for measurement, and the CO 2 gas contained in the permeable membrane is absorbed by mid-infrared rays. It is a total organic carbon measuring device characterized by being carried out by the detector that quantitatively analyzes using a degree.

本発明の第7の態様は、第1の態様における測定溶液中又は酸化済測定溶液中のCO量の検出が、前記測定溶液に含まれるCO、又は前記酸化済測定溶液で形成されたCOを、前記測定溶液又は酸化済測定溶液側から、反射板/CO透過膜/保護部材の順、又はCO透過膜/反射板の順で構成された複合膜を得て、前記透過膜を透過し、外部に排出されたCOガスは測定には用いず、前記透過膜の内部のCOガスが、前記透過膜の内部で中赤外線を複数回往復させ、COガスの中赤外線の吸収度を高めることで感度を上げたCOガスの中赤外線の吸収度を用いて定量分析する前記検出器によって行われることを特徴とする全有機炭素測定装置である。 A seventh aspect of the present invention is that the detection of the amount of CO 2 in the measurement solution or the oxidized measurement solution in the first aspect is formed by CO 2 contained in the measurement solution or the oxidized measurement solution CO 2 is transferred from the measurement solution or oxidized measurement solution side to obtain a composite film composed of the order of reflector/CO 2 permeable film/protective member or the order of CO 2 permeable film/reflector, and the permeable The CO2 gas that permeates the membrane and is discharged to the outside is not used for measurement . The CO2 gas inside the permeable membrane makes the mid-infrared The total organic carbon measuring apparatus is characterized in that the detector performs quantitative analysis using mid-infrared absorbance of CO 2 gas whose sensitivity is increased by increasing the absorbance of infrared light.

本発明の第8の態様は、第1の態様における測定溶液中又は酸化済測定溶液中のCO量の検出が、前記測定溶液に含まれるCO、又は前記酸化済測定溶液で形成されたCOを、透過膜を得て分離してCOガスを得る前記検出器によって行われ、得られたCOガスを中赤外線で定量分析することを特徴とする全有機炭素測定装置である。 In an eighth aspect of the present invention, the detection of the amount of CO 2 in the measurement solution or in the oxidized measurement solution in the first aspect is formed by CO 2 contained in the measurement solution or the oxidized measurement solution. A total organic carbon measuring apparatus characterized in that CO 2 is separated by a permeable membrane to obtain CO 2 gas by the detector, and the obtained CO 2 gas is quantitatively analyzed with mid-infrared rays.

本発明の第9の態様は、第1の態様におけるDCO検出器が、一端側に液体の流入口を有し、他端側に液体の排出口と検出器の設置部位を有する筐体と、前記筐体の内部に備えられた、前記流入口から前記検出器と前記液体との接触部位まで設けられたヘリカル状の液体誘導板からなる検出器チェンバーの前記検出器の設置部位に設置されていることを特徴とする全有機炭素測定装置である。
また、本発明の第10の態様は、第1の態様における測定溶液又は酸化済測定溶液の中で溶存COが気化により形成した気泡の前記測定溶液又は酸化済測定溶液中の溶存COへの変換が、気液二相流混合器を用いて行われることを特徴とする全有機炭素測定装置である。
In a ninth aspect of the present invention, the DCO 2 detector according to the first aspect has a liquid inlet on one end and a liquid outlet and a detector installation site on the other end. , and is installed at the installation site of the detector of the detector chamber, which is provided inside the housing and consists of a helical liquid guide plate provided from the inlet to the contact site between the detector and the liquid. The total organic carbon measuring device is characterized in that
In a tenth aspect of the present invention, bubbles formed by vaporization of CO 2 dissolved in the measurement solution or oxidized measurement solution in the first aspect are converted into dissolved CO 2 in the measurement solution or oxidized measurement solution. conversion is performed using a gas-liquid two-phase flow mixer.

本発明によれば、以下に示す効果を奏するものである。
1.測定溶液中のCOの量を直接測定するので、従来の気液分離器及び除湿装置並びに腐食性ガスを除去するスクラバー装置が不要となる。
2.湿式酸化方式に対して、窒素ガスなどのキャリアガスを必要としない利点を有する。
3.UV酸化方式の欠点であった高導電率溶液も測定が可能となっている。
4.湿式酸化方式の欠点であった全有機炭素が高濃度な溶液の測定も可能となっている。
5.測定に供する溶液への制限が少ない。
6.測定溶液の無機炭素(IC)除去のために曝気装置が必要であったが不要となる。
7.曝気によって誤差の原因であった揮発性有機物の消失がなくなる。
8.「試料水の導電率測定」時の測定誤差の排除が可能となり、測定精度の向上が見込める。
9.「導電率/CO変換」時に生じる変換誤差が排除可能となり、測定精度の向上が見込める。
10.オンライン計測が可能で、その計測結果を基準とする水質制御が可能となる。
ADVANTAGE OF THE INVENTION According to this invention, there exists an effect shown below.
1. Direct measurement of the amount of CO2 in the measured solution eliminates the need for conventional gas-liquid separators and dehumidifiers as well as scrubbers to remove corrosive gases.
2. It has the advantage over the wet oxidation method that it does not require a carrier gas such as nitrogen gas.
3. It is now possible to measure high-conductivity solutions, which was a drawback of the UV oxidation method.
4. It is also possible to measure solutions with high concentrations of total organic carbon, which was a drawback of the wet oxidation method.
5. There are few restrictions on the solutions used for measurement.
6. An aerator, which was required to remove inorganic carbon (IC) from the measurement solution, is no longer necessary.
7. Aeration eliminates the disappearance of volatile organics, which was a source of error.
8. It is possible to eliminate measurement errors during "conductivity measurement of sample water", and improvement of measurement accuracy can be expected.
9. It is possible to eliminate the conversion error that occurs during "conductivity/ CO2 conversion", and an improvement in measurement accuracy can be expected.
10. Online measurement is possible, and water quality control based on the measurement results is possible.

本発明に係る全有機炭素測定装置の一例の概略構成図である。1 is a schematic configuration diagram of an example of a total organic carbon measuring device according to the present invention; FIG. 本発明に係る全有機炭素測定装置の他の一例の概略構成図である。FIG. 2 is a schematic configuration diagram of another example of the total organic carbon measuring device according to the present invention; 本発明に係る検出器の概略構成図で、(a)は本発明の実施態様に係るDCO検出器(1a、1b)の概略構造の一例を示す模式図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic block diagram of the detector based on this invention, (a) is a schematic diagram which shows an example of schematic structure of DCO2 detector (1a, 1b) based on embodiment of this invention. 本発明に係る検出器の具体的概略構成図で、(b)及び(c)は本発明の実施態様に係るDCO検出器(1a、1b)の概略構造の一例を示す模式図であり、(b)は基本構成を示し、(c)は検出感度をより高めるときに用いる概略構造で、光の積分構造を応用したものである。It is a specific schematic configuration diagram of the detector according to the present invention, (b) and (c) are schematic diagrams showing an example of the schematic structure of the DCO 2 detector (1a, 1b) according to the embodiment of the present invention, (b) shows the basic structure, and (c) is a schematic structure used to further increase the detection sensitivity, which is an application of the light integration structure. 本発明に係るDCO検出器の具体的概略構成図で、(d)は他の実施態様を示す概略構造の模式図である。FIG. 2D is a specific schematic configuration diagram of the DCO 2 detector according to the present invention, and (d) is a schematic structural diagram showing another embodiment. 本発明に係るDCO検出器の具体的概略構成図で、(e)は他の実施態様を示す概略構造の模式図で、(f)は外観写真である。FIG. 2 is a specific schematic configuration diagram of a DCO 2 detector according to the present invention, where (e) is a schematic structural diagram showing another embodiment, and (f) is a photograph of the external appearance. 従来の高温燃焼型TOC計(高温燃焼/NDIR:CO分析)である。(a)は構成図、(b)は外観写真、(c)は内部写真である。It is a conventional high temperature combustion TOC meter (high temperature combustion/NDIR: CO2 analysis). (a) is a block diagram, (b) is an external photograph, and (c) is an internal photograph. 湿式酸化型TOC計(UVによる有機物の分解/NDIR:CO分析)である。(a)は構成図、(b)は外観写真、(c)は内部写真である。It is a wet oxidation type TOC meter (decomposition of organic matter by UV/NDIR: CO2 analysis). (a) is a block diagram, (b) is an external photograph, and (c) is an internal photograph. 湿式酸化・導電率方式TOC計(湿式酸化/導電率測定)である。(a)は構成図、(b)は内部写真である。It is a wet oxidation/conductivity TOC meter (wet oxidation/conductivity measurement). (a) is a configuration diagram, and (b) is an internal photograph. 図5とは異なる形態の湿式酸化・導電率方式TOC計(湿式酸化/導電率測定)である。(a)は構成図、(b)は超純水装置の構成図である。This is a wet oxidation/conductivity TOC meter (wet oxidation/conductivity measurement) of a different form from that of FIG. (a) is a configuration diagram, and (b) is a configuration diagram of an ultrapure water device. (a)はNDIR装置、(b)は付帯設備(気液分離装置)、(c)は付帯設備(スクラバー装置)の内部写真である。(a) is an NDIR device, (b) is an incidental facility (gas-liquid separator), and (c) is an internal photograph of an incidental facility (scrubber device).

本実施態様に係る全有機炭素測定装置について、以下に詳細に説明する。
なお、本発明は、以下の説明における内容に限定されるものではなく、本発明の趣旨を逸脱しない範囲内で、種々の変更例や代替例を含むことが出来る。
The total organic carbon measuring device according to this embodiment will be described in detail below.
It should be noted that the present invention is not limited to the contents in the following description, and can include various modifications and alternative examples without departing from the scope of the present invention.

図1-1、図1-2は本発明に係る全有機炭素測定装置の概略構成図の一例と他の例で、10A、10Bは本発明に係る全有機炭素測定装置、2は酸化チェンバー、UVpは紫外線供給源(UVランプ)、4は測定溶液貯液槽、5は排水口、6は配管、7は酸化剤(Ox)供給源、7aは酸化剤投入位置、8は気液二相流混合器、P1、P2は運転ポンプ、1aは酸化チェンバー2の入口側DCO検出器、1bは酸化チェンバー2の出口側DCO検出器である。なお、図示されていないが、測定装置10の運転、測定などを制御する制御・測定部が備えられている。 FIGS. 1-1 and 1-2 are one example and another example of a schematic configuration diagram of a total organic carbon measuring device according to the present invention, wherein 10A and 10B are total organic carbon measuring devices according to the present invention, 2 is an oxidation chamber, UVp is an ultraviolet supply source (UV lamp), 4 is a measurement solution storage tank, 5 is a drain port, 6 is a pipe, 7 is an oxidant (Ox) supply source, 7a is an oxidant input position, and 8 is a gas-liquid two-phase. Flow mixer, P1, P2 are operating pumps, 1a is the inlet side DCO 2 detector of the oxidation chamber 2, 1b is the outlet side DCO 2 detector of the oxidation chamber 2. Although not shown, a control/measuring unit for controlling the operation, measurement, etc. of the measuring apparatus 10 is provided.

本発明に係る全有機炭素測定装置10A、10Bの特徴の相違点は、第一に両者ともにCOを透過膜内に取り込んで直接中赤外線で検出する方式であるが、全有機炭素測定装置10Bでは、連続測定を可能とし、透過膜内のCOガスが前記透過膜を通過して前記透過膜の外側へ出たCOガスの影響を避けるために、前記透過膜を通過し、前記透過膜の外側へ出たCOガスを全有機炭素測定装置の外部へ排出することで分離し、この透過膜の外側に出たCOガスによる赤外線測定への影響を避けることが可能となり、分離されて透過膜内に存在するCOガスを得た後に、そのCOガスの中赤外線の吸収度を用いて定量分析するDCO検出器によって行われる点にある。
更に、第二には、本発明における有機物をCOに酸化する過程において、高濃度の有機物を酸化した場合、「溶存炭酸ガス」の一部がガス化して「気泡」となり、「気液二相流」を生じることがある。そこで、溶存炭酸ガス検出器を用いる本発明に係る全有機炭素測定装置では、気泡化したCOは測定誤差を生じさせる結果を生む恐れがあり、その対策として、図1-2に示される全有機炭素測定装置10Bのように、「気液二相流混合器(符号8)」を、酸化チェンバー2の川下側に設置して使用することで、ガス化して気泡となっているCO成分を溶存化させる方法を用いる点にある。この第二の相違点は、本発明に係る全有機炭素測定装置10Aにも応用可能であるのは言うまでもない。
The difference in the features of the total organic carbon measuring apparatuses 10A and 10B according to the present invention is that, first, both of them are of a system in which CO 2 is taken into a permeable film and detected directly by mid-infrared rays, but the total organic carbon measuring apparatus 10B In order to enable continuous measurement and avoid the influence of the CO 2 gas in the permeable membrane that has passed through the permeable membrane and exited the permeable membrane, the CO 2 gas passes through the permeable membrane and the permeable It is possible to separate the CO 2 gas that has come out of the membrane by discharging it to the outside of the total organic carbon measurement device, and to avoid the influence of the CO 2 gas that has come out of this permeable membrane on the infrared measurement. After obtaining the CO 2 gas present in the permeable membrane, the DCO 2 detector performs a quantitative analysis using the mid-infrared absorbance of the CO 2 gas.
Furthermore, secondly, in the process of oxidizing organic matter to CO 2 in the present invention, when a high concentration of organic matter is oxidized, part of the "dissolved carbon dioxide gas" gasifies into "bubbles" and "gas-liquid two A “phase flow” may occur. Therefore, in the total organic carbon measuring apparatus according to the present invention using a dissolved carbon dioxide detector, bubbling CO 2 may cause measurement errors. As in the organic carbon measurement device 10B, a "gas-liquid two-phase flow mixer (code 8)" is installed on the downstream side of the oxidation chamber 2 and used, so that CO 2 components that are gasified and become bubbles The point is that a method of dissolving is used. It goes without saying that this second difference can also be applied to the total organic carbon measuring apparatus 10A according to the present invention.

図2-1(a)は、本発明で用いられるDCO検出器(図1の符号1a、1bで示される)の一例を示す概略構造の模式図である。
測定溶液Ls又は酸化済測定溶液Lsとの接触部位であるCO透過膜21との接触により測定溶液中の溶存COが透過膜に取り込まれ、その透過膜21に、発光器22より中赤外線を照射し、CO透過膜21での中赤外線のCO濃度に比例した中赤外線の吸収量を受光器23により検出、測定(吸光度測定)するものである。さらに、保護部材25は、COガスを透過せず中赤外線を透過するガラスで、例えば「サファイアガラス」を用いる。
FIG. 2-1(a) is a schematic structural diagram showing an example of a DCO 2 detector (indicated by symbols 1a and 1b in FIG. 1) used in the present invention.
Dissolved CO 2 in the measurement solution is taken into the permeable membrane 21 by contact with the CO 2 permeable membrane 21 which is the contact portion with the measuring solution Ls B or the oxidized measuring solution Ls A , and Mid-infrared rays are irradiated, and the amount of mid-infrared absorption proportional to the CO 2 concentration of the mid-infrared rays in the CO 2 permeable film 21 is detected and measured (absorbance measurement) by the photodetector 23 . Furthermore, the protective member 25 is made of glass that is impermeable to CO 2 gas and is permeable to mid-infrared rays, such as “sapphire glass”.

上記図2-1(a)に記載のCO透過膜21は、測定溶液に接する面と、その反対面の両者間をCOガスが双方向に透過可能である膜を用いる。又、検出、測定に際してはCOの消費を伴わないことから測定誤差の排除が可能である利点を有する。 As the CO 2 permeable membrane 21 shown in FIG. 2-1(a), a membrane is used that allows CO 2 gas to permeate bidirectionally between the surface in contact with the measurement solution and the opposite surface. In addition, detection and measurement do not involve consumption of CO 2 , so there is an advantage that measurement errors can be eliminated.

又、本発明の実施態様の他の一例は、図2-2(b)に示すような検出器1a、1bが用いられる。
図2-1(a)に示すDCO検出器は、COを吸収した膜の表面でCOが吸収する溶液中のCOを、中赤外線を用いて減衰度から直接計測する方法であるが、より高感度の検出を目指す場合には、CO吸着厚膜27(図2-2(b)参照)に中赤外線を透過させ、反対側にある金メッキした反射板26で戻りの中赤外線を、もう一度吸着厚膜27を通過してから受光器23へ導くために、より大きなCOによる減衰量が得られる特徴を有している。
使用するサファイアガラス(保護部材)25は、中赤外線は透過するが測定溶液側からCOや水蒸気が電気系統へ漏れるのを防ぐ役割を果たしている。又、反射板26の金めっきパンチング板は、小さなCO出入り用穴26aを開けた板で、CO吸着厚膜27へCOの出入りを行い、且つ厚膜の保持が目的であるが、穴の面積合計が大きいと反射面が縮小するので穴の面積は全体の30~40%程度に抑え込む必要がある。
なお、CO吸着材の表面の反射によるCO吸光と透過吸光では、10~100倍以上の効率差があるが、吸着厚膜の中赤外線透過率が測定に大きな影響を与える。
Another example of the embodiment of the present invention uses detectors 1a and 1b as shown in FIG. 2-2(b).
The DCO 2 detector shown in Fig. 2-1(a) is a method for directly measuring CO 2 in a solution that absorbs CO 2 on the surface of a film that has absorbed CO 2 from the degree of attenuation using mid-infrared rays. However, when aiming for detection with higher sensitivity, mid-infrared rays are transmitted through the CO 2 adsorption thick film 27 (see FIG. 2-2(b)), and returned mid-infrared rays are emitted by the gold-plated reflector 26 on the opposite side. passes through the adsorption thick film 27 again and then is guided to the photodetector 23, so that a larger amount of attenuation due to CO 2 can be obtained.
The sapphire glass (protective member) 25 used is permeable to mid-infrared rays, but plays a role in preventing CO 2 and water vapor from leaking from the measurement solution side to the electric system. The gold-plated punching plate of the reflecting plate 26 is a plate with small holes 26a for CO 2 entry and exit, and the purpose is to allow CO 2 to enter and exit the CO 2 adsorption thick film 27 and to maintain the thick film. If the total area of the holes is large, the reflective surface will be reduced, so it is necessary to suppress the area of the holes to about 30 to 40% of the total area.
There is an efficiency difference of 10 to 100 times or more between CO 2 absorption due to reflection on the surface of the CO 2 adsorbent and transmission absorption.

又、本発明の実施態様の他の一例は、図2-2(c)に示すような筐体の検出器チェンバー28と検出器を組み合わせた検出機器が用いられる。この機器は上記DCO検出器1a、1bの検出効率を改良するもので、DCO検出器(1a、1b)と測定溶液Ls又は酸化済測定溶液Lsを接触させる際に、酸化済測定溶液との接触部位S(破線で囲まれた領域)を覆うように検出器チェンバー28を備え、そのチェンバー28は、その内部に、測定溶液入口28INから接触部位Sに向けてヘリカル状の液体誘導板29を設け、測定後の液体は、液体排出口28OUTから排出する形態のチェンバーである。
このような形態の検出器チェンバー28を用いることで、チェンバー手前で酸化剤を測定溶液に注入した場合、その液体誘導板のヘリカル状の液体誘導板29によって測定溶液内で効率よく混ざり合い、そのpHが2付近まで容易に下げることができ、効率よく遊離炭酸ガスが得られる効果を有する。
さらに、ヘリカル状の液体誘導板で測定水が乱流となり酸化剤のミキサー効果とともに水流が乱流となりDCO検出器(センサー)の検出面に絶えず新しい測定水が当たるので効率の良い検出効果が得られる利点を有する。
Another example of the embodiment of the present invention uses a detection device in which a detector chamber 28 of a housing and a detector are combined as shown in FIG. 2-2(c). This device improves the detection efficiency of the DCO 2 detectors 1a and 1b . A detector chamber 28 is provided so as to cover the contact site S (the area surrounded by the dashed line) with the solution, and the chamber 28 has a helical liquid guide from the measurement solution inlet 28 IN toward the contact site S. A chamber is provided with a plate 29 and the liquid after measurement is discharged from a liquid discharge port 28OUT.
By using the detector chamber 28 having such a configuration, when the oxidizing agent is injected into the measurement solution in front of the chamber, it is efficiently mixed in the measurement solution by the helical liquid guide plate 29 of the liquid guide plate. The pH can be easily lowered to around 2, and it has the effect of efficiently obtaining free carbon dioxide gas.
In addition, the helical liquid guide plate makes the water flow turbulent and the mixing effect of the oxidant causes the water flow to become turbulent, and the detection surface of the DCO 2 detector (sensor) is constantly exposed to fresh water, resulting in an efficient detection effect. There are advantages that can be obtained.

又、図2-3(d)に示すように、前記測定溶液中又は酸化済測定溶液中のCO量の検出が、前記測定溶液又は酸化済測定溶液側から、反射板/CO透過膜/保護部材の順、またはCO透過膜/反射板の順で構成された複合膜を得て、前記透過膜内部のCOは、前記透過膜内部で中赤外線を複数回往復(図中の矢印線で表記)させ、COガスの中赤外線の吸収度を高めることで感度を上げ、そのCOガスの中赤外線の吸収度を用いて定量分析する検出器によって行われる。符号260は反射板である。
さらに、図2-4(e)、図2-4(f)に示すように、前記測定溶液中又は酸化済測定溶液中のCO量の検出が、連続測定を可能とし、透過膜を通過して透過膜の外側へ出たCOガスの影響を避けるために、透過膜を通過し、透過膜の外側へ出たCOガスを、スイープガスSGに、窒素ガスやCOフリーガスなどを用い、その外側に出ているCOガスを、装置の外部へ排出して測定には用いず、透過膜の中に含まれるCOガスを中赤外線の吸収度を用いて定量分析する検出器により行われる。この手法は、本発明で使用される検出器で利用可能である。
In addition, as shown in FIG. 2-3(d), the detection of the amount of CO 2 in the measurement solution or the oxidized measurement solution is performed from the measurement solution or oxidized measurement solution side through the reflector/CO 2 permeable membrane. / A composite film composed of the order of the protective member or the order of the CO 2 permeable film / reflector is obtained. (indicated by arrow lines), the sensitivity is increased by increasing the absorbance of the CO 2 gas in the mid-infrared rays, and the detector performs quantitative analysis using the absorbance of the CO 2 gas in the mid-infrared rays. Reference numeral 260 is a reflector.
Furthermore, as shown in FIGS. 2-4(e) and 2-4(f), the detection of the amount of CO 2 in the measurement solution or in the oxidized measurement solution enables continuous measurement and passes through a permeable membrane. In order to avoid the effect of the CO2 gas that has passed through the permeable membrane and exited to the outside of the permeable membrane, the CO2 gas that has passed through the permeable membrane and exited to the outside of the permeable membrane is used as the sweep gas SG, such as nitrogen gas or CO2 free gas. is used, and the CO 2 gas emitted outside is discharged to the outside of the device and not used for measurement, and the CO 2 gas contained in the permeable membrane is quantitatively analyzed using the absorbance of mid-infrared rays. performed by the instrument. This technique is available in the detectors used in the present invention.

次に、本実施態様に係る全有機炭素測定装置を用いた水溶液中の全有機炭素量の測定方法を、図1-1、及び図1-2を参照しながら説明する。なお、図中の検出器には図2-1の(a)に記載のDCO検出器1a、1bを用いている。
図1-1、図1-2に示すように、各構成機器を配管により接続し、全有機炭素測定装置10A、10Bを準備する。全有機炭素測定装置10A、10Bにおける共通した構成は、ポンプP1を用いて貯液槽4から測定溶液Lsを配管6に流通させ、その途中で検出器IN(1a)により測定溶液Lsに含まれる無機炭素(IC)を検出、その「無機炭素濃度:IC」を測定する。
Next, a method for measuring the total organic carbon content in an aqueous solution using the total organic carbon measuring device according to this embodiment will be described with reference to FIGS. 1-1 and 1-2. The DCO 2 detectors 1a and 1b described in (a) of FIG. 2-1 are used as the detectors in the figure.
As shown in FIGS. 1-1 and 1-2, each component is connected by piping to prepare total organic carbon measuring devices 10A and 10B. The common configuration of the total organic carbon measuring apparatuses 10A and 10B is that the measurement solution Ls is circulated from the liquid storage tank 4 to the pipe 6 using the pump P1, and the detector IN (1a) is included in the measurement solution Ls along the way. Inorganic carbon (IC) is detected and its "inorganic carbon concentration: IC" is measured.

次いで、測定溶液Lsは酸化チェンバー2に送られ、酸化チェンバー2内で、紫外線供給源(ここでは紫外線ランプ「UVランプ」UVp)からの紫外線照射を受け、酸化することで、溶液に含まれていた有機物の炭化(即ち、有機炭素の生成)が行われ、その有機炭素を含む液体(「酸化済測定溶液」とも称す)が、配管6を流れて検出器OUT(1b)に送られ、検出器OUT(1b)で、液体に含まれているCO(炭酸ガス)濃度を測定することで、測定溶液Lsに含まれていた「全炭素濃度:TC」を算出することができる。又、酸化チェンバーを溶液が気化しない高温、高圧の条件、例えば230℃、30kg/cm程の条件で、溶液を液体のままで、含まれる有機物を酸化させることができる高温酸化チェンバーを用いることで、通常の高温酸化方式では溶液が気化してしまうが、気化しない高温、高圧の条件で液体のまま有機物を酸化させることができるので、高温、高圧の「高温酸化チェンバー」を用いればUV酸化方式ではなく燃焼方式の採用も可能であり、本COセンサーを用いることができる。
即ち、UV酸化チェンバーを高温酸化チェンバーに置き換えることで同じ効果かそれ以上の効果を得ることができる。
Next, the measurement solution Ls is sent to the oxidation chamber 2, where it is irradiated with ultraviolet rays from an ultraviolet source (here, an ultraviolet lamp “UV lamp” UVp), and oxidized so that the solution contains Carbonization of the organic matter (that is, generation of organic carbon) is performed, and the liquid containing the organic carbon (also referred to as "oxidized measurement solution") flows through the pipe 6 and is sent to the detector OUT (1b) for detection. By measuring the CO 2 (carbon dioxide gas) concentration contained in the liquid with the device OUT (1b), it is possible to calculate the "total carbon concentration: TC" contained in the measurement solution Ls. In addition, a high-temperature oxidation chamber that can oxidize the contained organic matter while the solution remains liquid under high temperature and high pressure conditions that do not vaporize the solution, such as 230° C. and 30 kg/cm 2 , should be used. In the normal high-temperature oxidation method, the solution vaporizes, but it is possible to oxidize the organic substance in a liquid state under high temperature and high pressure conditions that do not vaporize. It is also possible to adopt a combustion method instead of a method, and the present CO 2 sensor can be used.
That is, replacing the UV oxidation chamber with a high temperature oxidation chamber can provide the same effect or better.

ここで、前述したように本発明に係る全有機炭素測定装置は、有機物をCOに酸化する過程において、高濃度の有機物を酸化した場合、「溶存炭酸ガス」の一部がガス化して「気泡」を生じさせ、気液二相流を生じることがある。
そのような状態では、溶存炭酸ガス検出器を用いる本発明に係る全有機炭素測定装置では、気泡化したCOは測定誤差を生じさせる結果を生み、その対策には、図1-2に示される全有機炭素測定装置10Bのように、「気液二相流混合器(符号8)」を使用してガス化して気泡となっているCO成分を溶存化させる方法を用いると良い。
Here, as described above, in the total organic carbon measuring apparatus according to the present invention, in the process of oxidizing organic matter to CO 2 , when high-concentration organic matter is oxidized, part of the "dissolved carbon dioxide gas" is gasified and " It may cause gas-liquid two-phase flow.
In such a state, in the total organic carbon measuring apparatus according to the present invention using a dissolved carbon dioxide gas detector, bubbling CO 2 causes measurement errors. As in the total organic carbon measuring apparatus 10B, it is preferable to use a method of dissolving the CO 2 component that is gasified and formed into bubbles using a "gas-liquid two-phase flow mixer (code 8)".

測定により得られた測定溶液に含まれていた「無機炭素濃度:IC」、酸化済測定溶液に含まれている「全炭素濃度:TC」から下記(1)式により、測定溶液中の「全有機炭素濃度:TOC」が算出される。 From the "inorganic carbon concentration: IC" contained in the measurement solution obtained by measurement and the "total carbon concentration: TC" contained in the oxidized measurement solution, the following formula (1) is used to calculate the "total Organic carbon concentration: TOC” is calculated.

Figure 2023070174000002
Figure 2023070174000002

本発明による全有機炭素測定において、注意する点は、測定水溶液中の溶存COはpHによって存在形態が変わるが、本発明では「遊離COガス」、そのものの測定なので、水溶液中のCOガス測定は、pHに依存してしまう。
そのために測定水溶液に、酸化剤としてリン酸や硫酸などの酸を添加してpHを2程度まで下げ、この状態では、全てが「遊離炭酸ガス」となるので、「無機炭素IC」の除去の際に、窒素ガスで曝気したりすると、全てCOガスとして分離することができるので本発明に係る検出器測定が可能となる。
なお、そのpHが一定の値であれば、検量線を設定することで計算上からpH制御することなく測定することも可能となっている。
In the measurement of total organic carbon according to the present invention, it should be noted that the dissolved CO2 in the aqueous solution to be measured changes its form depending on the pH. Gas measurements become pH dependent.
For this purpose, an acid such as phosphoric acid or sulfuric acid is added as an oxidizing agent to the aqueous solution to be measured to lower the pH to about 2. In this state, everything becomes "free carbon dioxide gas", so it is necessary to remove "inorganic carbon IC". In this case, when aeration is performed with nitrogen gas, all of the gas can be separated as CO 2 gas, so that the detector measurement according to the present invention becomes possible.
In addition, if the pH is a constant value, it is also possible to measure without pH control from a calculation point of view by setting a calibration curve.

1a、1b DCO検出器
(1a:検出器IN、1b:検出器OUT)
2、41、51、61 酸化チェンバー
4 測定溶液(測定水)貯液槽
5 排水口
6 配管
7 pH調整部(酸化剤供給源)
7a 酸化剤投入位置
8 気液二相流混合器
10A、10B (本発明に係る)全有機炭素測定装置
30、40、50、60 (従来の)全有機炭素測定装置
21 CO透過膜
22 発光器
23 受光器
25 保護部材(サファイアガラス板)
26 反射板(金めっきパンチング板)
26a CO出入り用孔
27 吸着厚膜
28 検出器チェンバー
28IN 測定溶液入口
28OUT 液体排出口
29 ヘリカル状の液体誘導板
31 高温燃焼炉
32、42 NDIR(赤外線分析)
33、43 気液分離器
34、44 除湿器
35、45 ハロゲンスクラバー
36、46 曝気装置(NガスパージによるIC除去器)
37 測定溶液注入器
58a、58b、 導電率計
62 超純水装置
63 イオン交換樹脂
68a、68b 薄膜
260 反射板
H ヒーター
Ls 測定溶液(測定水)
Ls 酸化済測定溶液
Ls 測定溶液
Ox 酸化剤
P1、P2 ポンプ
UVp UVランプ(紫外線供給源)
S 接触部位
SG スイープガス
1a, 1b DCO 2 detector (1a: detector IN, 1b: detector OUT)
2, 41, 51, 61 Oxidation Chamber 4 Measurement Solution (Measurement Water) Storage Tank 5 Drain Port 6 Piping 7 pH Adjuster (Oxidant Supply Source)
7a Oxidant injection position 8 Gas-liquid two-phase flow mixer 10A, 10B Total organic carbon measuring device 30, 40, 50, 60 (conventional) total organic carbon measuring device 21 CO 2 permeable membrane 22 Light emission Device 23 Light receiver 25 Protective member (sapphire glass plate)
26 reflector (gold-plated punching plate)
26a CO2 entry/exit hole 27 adsorption thick film 28 detector chamber 28IN measurement solution inlet 28OUT liquid outlet 29 helical liquid guide plate 31 high temperature combustion furnace 32, 42 NDIR (infrared spectroscopy)
33, 43 Gas-liquid separator 34, 44 Dehumidifier 35, 45 Halogen scrubber 36, 46 Aerator (IC remover by N2 gas purge)
37 Measurement solution injector 58a, 58b Conductivity meter 62 Ultrapure water device 63 Ion exchange resin 68a, 68b Thin film 260 Reflector H Heater Ls Measurement solution (measurement water)
Ls A oxidized measuring solution Ls B measuring solution Ox oxidizing agent P1, P2 pump UVp UV lamp (ultraviolet source)
S Contact part SG Sweep gas

Claims (10)

測定溶液に紫外線供給源からの紫外線を照射するか又は高温高圧条件により測定溶液中に含まれる有機物を燃焼させて酸化済測定溶液を形成する酸化チェンバーと、前記酸化チェンバーに測定溶液を供給する側、及び前記酸化チェンバーから酸化済測定溶液を排出する側のいずれか、若しくは両者に備えられる溶存炭酸ガス(溶存CO)を測定するDCO検出器を含むことを特徴とする全有機炭素測定装置。 an oxidation chamber for forming an oxidized measurement solution by irradiating the measurement solution with ultraviolet rays from an ultraviolet source or burning organic matter contained in the measurement solution under high temperature and pressure conditions; and a side for supplying the measurement solution to the oxidation chamber. , and a DCO 2 detector for measuring dissolved carbon dioxide gas (dissolved CO 2 ) provided on either or both of the sides discharging the oxidized measurement solution from the oxidation chamber. . 前記酸化チェンバーに測定溶液を供給する側のDCO検出器の川上側で、前記測定溶液のpHを調整する酸化剤を前記測定溶液に導入するpH調整部を備えることを特徴とする請求項1に記載の全有機炭素測定装置。 2. A pH adjustment unit for introducing an oxidizing agent for adjusting the pH of the measurement solution into the measurement solution upstream of the DCO 2 detector on the side of supplying the measurement solution to the oxidation chamber. Total organic carbon measuring device according to. 前記紫外線の供給源が、紫外線ランプ(UVランプ)又はエキシマランプであることを特徴とする請求項1に記載の全有機炭素測定装置。 2. A total organic carbon measuring apparatus according to claim 1, wherein said UV source is an ultraviolet lamp (UV lamp) or an excimer lamp. 前記酸化チェンバーに測定溶液を供給する側のDCO検出器によりCO量を検出される測定溶液が、pHが2になるように調整されていることを特徴とする請求項1に記載の全有機炭素測定装置。 2. The method according to claim 1, wherein the measuring solution whose CO2 amount is detected by the DCO2 detector on the side supplying the measuring solution to the oxidation chamber is adjusted so that the pH is 2. Organic carbon measuring device. 前記測定溶液中又は酸化済測定溶液中のCO量の検出が、前記測定溶液が吸収したCO、又は前記酸化済測定溶液で形成されたCOを、透過膜内に取り込んで直接膜内を中赤外線で検出するが、連続測定を可能とするため、透過膜内のCOは溶液中から自由に出入りできる透過膜を得て分離してCOガスを得た後に、前記COガスの中赤外線の吸収度を用いて定量分析する前記検出器によって行われることを特徴とする請求項1に記載の全有機炭素測定装置。 Detection of the amount of CO 2 in the measurement solution or in the oxidized measurement solution is achieved by taking CO 2 absorbed by the measurement solution or formed in the oxidized measurement solution directly into the permeable membrane. is detected by mid-infrared rays, but in order to enable continuous measurement, the CO 2 in the permeable membrane is separated from the solution by obtaining a permeable membrane that can freely enter and exit, and after obtaining the CO 2 gas, the CO 2 gas 2. The total organic carbon measuring apparatus according to claim 1, characterized in that the detector performs quantitative analysis using the absorbance of mid-infrared rays. 前記測定溶液中又は酸化済測定溶液中のCO量の検出が、前記測定溶液が吸収したCO、又は前記酸化済測定溶液で形成されたCOを、透過膜内に取り込んで直接膜内を中赤外線で検出するが、連続測定を可能とし、前記透過膜を通過し、前記透過膜の外側へ出たCOガスの影響を避けるために、前記透過膜を通過し、前記透過膜の外側へ出たCOガスを前記装置の外部へ排出して測定には用いず、透過膜の中に含まれるCOガスを中赤外線の吸収度を用いて定量分析する前記検出器によって行われることを特徴とする請求項1に記載の全有機炭素測定装置。 Detection of the amount of CO 2 in the measurement solution or in the oxidized measurement solution is achieved by taking CO 2 absorbed by the measurement solution or formed in the oxidized measurement solution directly into the permeable membrane. is detected in the mid-infrared, but in order to enable continuous measurement and to avoid the influence of CO 2 gas that has passed through the permeable membrane and exited the permeable membrane, The CO 2 gas that has flowed outside is discharged to the outside of the device and is not used for measurement, and the detector quantitatively analyzes the CO 2 gas contained in the permeable membrane using the absorbance of mid-infrared rays. The total organic carbon measuring device according to claim 1, characterized in that: 前記測定溶液中又は酸化済測定溶液中のCO量の検出が、前記測定溶液に含まれるCO、又は前記酸化済測定溶液で形成されたCOを、前記測定溶液又は酸化済測定溶液側から、反射板/CO透過膜/保護部材の順、又はCO透過膜/反射板の順で構成された複合膜を得て、前記透過膜を透過し、外部に排出されたCOガスは測定には用いず、前記透過膜の内部のCOガスが、前記透過膜の内部で中赤外線を複数回往復させ、COガスの中赤外線の吸収度を高めることで感度を上げたCOガスの中赤外線の吸収度を用いて定量分析する前記検出器によって行われることを特徴とする請求項1に記載の全有機炭素測定装置。 Detection of the amount of CO 2 in the measurement solution or in the oxidized measurement solution causes CO 2 contained in the measurement solution or CO 2 formed in the oxidized measurement solution to be transferred to the measurement solution or the oxidized measurement solution. , a composite film composed of the order of reflector/CO 2 permeable film/protective member or the order of CO 2 permeable film/reflector is obtained, and the CO 2 gas transmitted through the permeable film and discharged to the outside is not used for measurement, and the CO 2 gas inside the permeable membrane reciprocates the mid-infrared ray multiple times inside the permeable membrane, increasing the absorbance of the CO 2 gas to the mid-infrared ray to increase the sensitivity. 2. A total organic carbon measuring apparatus according to claim 1, wherein said detector quantitatively analyzes using absorbance of mid-infrared rays of two gases. 前記測定溶液中又は酸化済測定溶液中のCO量の検出が、前記測定溶液に含まれるCO、又は前記酸化済測定溶液で形成されたCOを、透過膜を得て分離してCOガスを得る前記検出器によって行われ、得られたCOガスを中赤外線で定量分析することを特徴とする請求項1に記載の全有機炭素測定装置。 Detection of the amount of CO 2 in the measurement solution or in the oxidized measurement solution is achieved by separating CO 2 contained in the measurement solution or formed in the oxidized measurement solution by obtaining a permeable membrane to separate CO 2. The total organic carbon measuring device according to claim 1, characterized in that it is carried out by said detector to obtain 2 gases, and the obtained CO 2 gas is quantitatively analyzed with mid-infrared rays. 前記DCO検出器が、一端側に液体の流入口を有し、他端側に液体の排出口と検出器の設置部位を有する筐体と、前記筐体の内部に備えられた、前記流入口から前記検出器と前記液体との接触部位まで設けられたヘリカル状の液体誘導板からなる検出器チェンバーの前記検出器の設置部位に設置されていることを特徴とする請求項1に記載の全有機炭素測定装置。 The DCO 2 detector has a housing having a liquid inlet on one end and a liquid outlet and a detector installation portion on the other end, and the flow provided inside the housing. 2. The detector according to claim 1, wherein the detector is installed at the position where the detector is installed in a detector chamber comprising a helical liquid guide plate extending from an inlet to a contact position between the detector and the liquid. Total organic carbon measuring device. 前記測定溶液又は酸化済測定溶液の中で溶存COが気化により形成した気泡の前記測定溶液又は酸化済測定溶液中の溶存COへの変換が、気液二相流混合器を用いて行われることを特徴とする請求項1に記載の全有機炭素測定装置。
The gas-liquid two-phase flow mixer is used to convert bubbles formed by vaporization of CO 2 dissolved in the measurement solution or oxidized measurement solution into CO 2 dissolved in the measurement solution or oxidized measurement solution. The total organic carbon measuring device according to claim 1, characterized in that
JP2022177426A 2021-11-04 2022-11-04 Total organic carbon measuring device Pending JP2023070174A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021180055 2021-11-04
JP2021180055 2021-11-04

Publications (1)

Publication Number Publication Date
JP2023070174A true JP2023070174A (en) 2023-05-18

Family

ID=86327309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022177426A Pending JP2023070174A (en) 2021-11-04 2022-11-04 Total organic carbon measuring device

Country Status (1)

Country Link
JP (1) JP2023070174A (en)

Similar Documents

Publication Publication Date Title
US7454952B2 (en) Method and apparatus for monitoring mercury in a gas sample
US9176106B2 (en) Total organic carbon meter provided with system blank function
US7354553B2 (en) Method and apparatus for detecting the presence of elemental mercury in a gas sample
US9791430B2 (en) Measurement of total organic carbon
WO2009093401A1 (en) System for measuring carbon dioxide concentration in water and method thereof
EP1890141A1 (en) Measuring method for total organic carbon, measuring method for total nitrogen and measuring apparatus for the methods
WO2006119424A2 (en) Method and apparatus for detecting the presence of elemental mercury in a gas sample
JP4211915B2 (en) A wide range of total organic carbon content measuring equipment using plasma oxidation
KR101576603B1 (en) A total organic carbon analyzer with quantitative sample loop and a total organic carbon measurement method therewith
JP5533641B2 (en) Analysis equipment
KR100728600B1 (en) Organic analysis apparatus and method for pure/ultra pure water treatment system
JP4025702B2 (en) Method and apparatus for analyzing sulfur component by ultraviolet fluorescence method
CN105675763A (en) Multifunctional chromatographic apparatus and method for measuring chloridion and total organic carbon
JP2023070174A (en) Total organic carbon measuring device
US11754494B2 (en) Device and method for simultaneously measuring mercury, cadmium, zinc and lead
JP2013015387A (en) Water quality analyzer
JP2006284508A (en) On-vehicle exhaust gas analyzer
US4254339A (en) Method for the fluorimetric quantitative determination of SO2 in gases and apparatus therefor
WO2022014664A1 (en) Inspection method and inspection device
JP4542930B2 (en) Exhaust gas analyzer
JPS60207057A (en) Apparatus for measuring organic carbon in water
Johnson et al. Photolytic spectroscopic quantification of residual chlorine in potable waters
JP2004138467A (en) Ultraviolet absorption type measuring instrument and method for treating measurement specimen
US11975988B2 (en) Determination of hydroxyl radical scavenging capacity and related techniques in advanced oxidative processes
JP2009204431A (en) Measuring method of chemical oxygen demand