JP2023069982A - Exposure method - Google Patents

Exposure method Download PDF

Info

Publication number
JP2023069982A
JP2023069982A JP2021203746A JP2021203746A JP2023069982A JP 2023069982 A JP2023069982 A JP 2023069982A JP 2021203746 A JP2021203746 A JP 2021203746A JP 2021203746 A JP2021203746 A JP 2021203746A JP 2023069982 A JP2023069982 A JP 2023069982A
Authority
JP
Japan
Prior art keywords
photoresist
cover
exposure
mask
graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021203746A
Other languages
Japanese (ja)
Inventor
克彦 篠原
Katsuhiko Shinohara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2021203746A priority Critical patent/JP2023069982A/en
Publication of JP2023069982A publication Critical patent/JP2023069982A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

To provide an exposure method for manufacturing inexpensive and highly integrated circuits.SOLUTION: Provided is a method in which a photoresist is covered with a photoresist-protecting cover and the gap between the photoresist and cover is filled with a solid, thereby deformation of the photoresist due to pressure in the vertical and horizontal directions of the photoresist is difficult to occur, and exudation of interaction between the photoresist and the solid is made to be less.

Description

本発明は集積回路を製造する露光方法に関する。 The present invention relates to an exposure method for manufacturing integrated circuits.

集積回路を高密度化すれば、高精能となるため、今まで高密度化の努力が続けられてきた。 If the density of an integrated circuit is increased, the precision will be increased, so efforts have been made to increase the density.

そこで集積回路の製作の要である露光について安価でランニングコストが安く微細パターンを得る露光方法が求められていた。 Therefore, there has been a demand for an exposure method that is inexpensive and has a low running cost to obtain a fine pattern, which is the key to the manufacture of integrated circuits.

特開2020-184051JP 2020-184051 日経XTECH プロセス製造技術総覧 出典:2006年2~11月号 日経マイクロデバイスNikkei XTECH Process Manufacturing Technology Overview Source: February-November 2006 Nikkei Microdevices 2-メチル-2-プロパノール Wikipedia2-methyl-2-propanol Wikipedia

液浸露光は水を使用し高度に進化したが、水よりも高光屈折率の液体を使用時、使用している液体にフオトレジストの微粒子の混入、フオトレジスト成分のしみ出し、又使用している液体の露光光による分解等の問題があった。 Immersion lithography has advanced to the point where water is used. However, there is a problem such as decomposition of the liquid containing the liquid by the exposure light.

高密度回路パターン結像には、短波長光源と高精度光学系が必要であり、非常に高額で又高輝度短波長の光源が必要にて、ランニングコストも増大していた。 High-density circuit pattern imaging requires a short-wavelength light source and a high-precision optical system, requiring a very expensive, high-intensity short-wavelength light source and increasing running costs.

本発明露光方法は、この様な従来の問題を解決しようとするものであり、高密度回路パターンを安価の装置で又ランニングコストも安い露光方法を提供しようとするものである。 The exposure method of the present invention is intended to solve such conventional problems, and is intended to provide an exposure method for high-density circuit patterns using inexpensive equipment and low running costs.

そして本発明方法は、上記目的を達成するために、フオトレジストにカバーをかけ、フオトレジストとそのカバーを密着しその間のわずかな空間を液体で満たし、その液体を冷却して固体化して露光している。 In the method of the present invention, in order to achieve the above object, the photoresist is covered, the photoresist and the cover are brought into close contact with each other, the small space between the photoresist and the cover is filled with a liquid, the liquid is cooled and solidified, and exposed. ing.

本発明の効果Effects of the present invention

本発明露光方法は、上記のような方法をとっているので、フオトレジストとそのカバーとの間のわずかな空間を固体化した物質で埋めていて、カバーに垂直方向又水平方向にかかる圧力によるフオトレジスト変形、又温度変化による微小気体の発生を防いでいる。 Since the exposure method of the present invention employs the above-described method, the slight space between the photoresist and its cover is filled with a solidified substance, and the pressure exerted on the cover in the vertical or horizontal direction causes the It prevents the deformation of the photoresist and the generation of minute gases due to temperature changes.

又フオトレジストとそのカバーとの間隙を液体を固体化して埋めているので、その固体にフオトレジストからのしみ出しや、反対に固体からフオトレジストへのしみ込みもほとんどない。そのため高屈折率のアルコールや油の使用が可能となった。In addition, since the gap between the photoresist and the cover is filled with a solidified liquid, the solid does not seep out from the photoresist, and conversely, the solid does not seep into the photoresist. Therefore, it is possible to use high refractive index alcohol or oil.

フオトレジストのカバー上にて液浸露光することで、光の高屈折率の油系を使用しても、フオトレジストからの微細分離物が混入しない効果がある。 By performing immersion exposure on the photoresist cover, there is an effect that even if an oil system with a high refractive index of light is used, fine separated substances from the photoresist are not mixed.

フオトレジストのカバーとしてグラフェン又はグラファイトを使用して密着露光すると、フオトレジスが剥れる心配もない。 Contact exposure using graphene or graphite as a photoresist cover eliminates the risk of photoresist peeling.

この時、マスクの回路パターンにグラフェン又はグラファイトのカバーをかけるとマスクの回路パターンの保護や微粒子の付着の心配がなくなる。 At this time, if the circuit pattern of the mask is covered with graphene or graphite, the circuit pattern of the mask is protected and there is no fear of adhesion of fine particles.

又グラフェン又グラファイト間に回路を挟んだマスクを使用すると、マスクが立体構造となり、マスクの前後方向、平面方向の振動が少なくなり又マスクの残留応力もほとんどなく、又マスクの回路パターンを有するグラフェン又はグラファイトをフオトレジスト方向に凸に電気力で張り出させると、フオトレジストを均一で極めて弱い圧力にてマスクに密着することができ、かつマスクの回路パターンを拡大、縮小してフオトレジスと位置合せができ、EUV光源による露光が可能となる。 Also, when a mask having a circuit sandwiched between graphene or graphite is used, the mask has a three-dimensional structure, which reduces the vibration of the mask in the front-rear direction and in the plane direction, and causes almost no residual stress in the mask, and the graphene having the circuit pattern of the mask. Alternatively, if the graphite is protruded in the direction of the photoresist by an electric force, the photoresist can be brought into close contact with the mask with a uniform and extremely weak pressure, and the circuit pattern of the mask can be enlarged or reduced to align with the photoresist. and exposure by an EUV light source becomes possible.

EUV露光時、フオトレジストとそのカバーであるグラフェン又はグラファイト間に水を満たし、氷とすることで、氷の微粒子が飛散しても周囲が真空であるので、直に昇華して消滅してしまう。 During EUV exposure, water is filled between the photoresist and its cover graphene or graphite to form ice. .

フオトレジスのカバーとマスクの回路パターンにグラフェン又はグラファイトを使用した本発明露光方法の密着露光説明図FIG. 2 is an illustration of contact exposure of the exposure method of the present invention using graphene or graphite for the circuit pattern of the photoresist cover and the mask.

フオトレジストとそのカバーの間隙を非特許文献2に示されている融点25.69℃沸点82.4℃の2-メチル-2-プロパノールの液体で埋め、直に融点以下に冷却し露光すると、液体の時にはフオトレジストのカバーに圧力がかかると、液体の移動によりフオトレジストの変形が生じるが、固体だとフオトレジストに均一に圧力がかかり、変形が少ない。 When the gap between the photoresist and its cover is filled with a liquid of 2-methyl-2-propanol having a melting point of 25.69° C. and a boiling point of 82.4° C. shown in Non-Patent Document 2, and is immediately cooled below the melting point and exposed, When the photoresist cover is under pressure when it is liquid, the movement of the liquid causes deformation of the photoresist.

又固体であると、フオトレジストの成分が浸入しずらく、温度変化により生じる気泡も成長して大きくならない。 In addition, if the material is solid, it is difficult for the components of the photoresist to penetrate, and the bubbles generated by the temperature change do not grow and become large.

液浸露光に使用すると、フオトレジストとそのカバーである石英ガラス板との間隙は非常に狭く、ほぼ石英ガラスの光屈折率の物質で満たしているのと同じ効果がある。 When used for immersion exposure, the gap between the photoresist and its cover, the quartz glass plate, is very narrow, and has the same effect as filling the gap with a material having the optical refractive index of quartz glass.

フオトレジストのカバーガラスと対物レンズの間を油浸光学顕微鏡で使用している融点-37℃、沸点154℃のアニソールを使用すると、全体で石英ガラスとほぼ同じ光屈折率の液体を使用した液浸露光が得られる。 Anisole with a melting point of -37°C and a boiling point of 154°C, which is used in oil immersion optical microscopes, is used between the photoresist cover glass and the objective lens. An immersion exposure is obtained.

露光が終って、フオトレジストからカバーを外す時は、2-メチル-2-プロパノールの沸点82.4℃以上に熱して、2-メチル-2-プロパノールを気化してその蒸気圧で、フオトレジストからそのカバーを外すと、フオトレジストの剥れがなく、形成された回路パターンを障害しない。 When the cover is removed from the photoresist after the exposure, the photoresist is heated to the boiling point of 2-methyl-2-propanol of 82.4° C. or higher to evaporate 2-methyl-2-propanol, and the photoresist is exposed to the vapor pressure. When the cover is removed from the substrate, the photoresist does not come off and does not disturb the formed circuit pattern.

密着露光時、フオトレジストのカバーとしてグラフェン又はグラファイトを使用しマスクの石英ガラス又は蛍石の基板に作った回路パターンを直接密着するか又マスクの回路パターンをグラフェン又はグラファイトで覆ってカバーとし、このカバーとフオトレジストのカバーであるグラフェン又はグラファイトと密着し位置合わせ時も密着したままで実施する。こうすることで微粒子の発生も少ない。マスクにかけたグラフェン又グラファイトのカバーとマスク本体は静電力によって密着さしている。 During contact exposure, graphene or graphite is used as a photoresist cover, and the circuit pattern formed on the quartz glass or fluorite substrate of the mask is directly adhered, or the circuit pattern of the mask is covered with graphene or graphite as a cover. The cover and the graphene or graphite that is the cover of the photoresist are in close contact with each other, and the alignment is performed while the cover is in close contact with the graphite. By doing so, the generation of fine particles is also reduced. The graphene or graphite cover applied to the mask and the mask body are in close contact with each other by electrostatic force.

EUV光にて露光するには、図1に示す様に、フオトレジスト1にグラフェン又はグラファイトのカバー2をかけ、その間隙を氷でできた固体3で埋め2枚のグラフェン又はグラファイト4で挾んだ回路パターン5でできたマスク6を外枠7に取りつけ、カバー2に密着して露光する。この時2枚のグラフェン又はグラファイト4間に静電力を働かせて回路パターン5を保持している。 For exposure to EUV light, as shown in FIG. A mask 6 made of a circuit pattern 5 is attached to an outer frame 7 and is brought into close contact with the cover 2 for exposure. At this time, the circuit pattern 5 is held by applying an electrostatic force between the two sheets of graphene or graphite 4 .

外枠7の内側に設置した電極8とグラフェン又はグラファイト製のマスク6に反発する静電位をかけ、マスク6をほんの少し外側に膨らましてフオトレジストのカバー2と密着さすと、マスク6を均一で非常に小さい圧力にて密着することが可能となり、又マスク6の外側に膨らます程度を加減することによりウエハーの反り等による歪による位置合せ時の補正も可能となっている。 A repulsive electrostatic potential is applied to the electrode 8 installed inside the outer frame 7 and the mask 6 made of graphene or graphite, and the mask 6 is inflated slightly outward and brought into close contact with the photoresist cover 2, so that the mask 6 is uniform. It is possible to achieve close contact with a very small pressure, and by adjusting the extent to which the mask 6 bulges to the outside, it is possible to correct alignment due to distortion due to wafer warpage or the like.

密着露光であるのでEUV光の反射光学系が必要なく、弱いEUV光源で露光でき、かつ波長の選択性はなくより短波長のEUV光が使用可能となり、より微細パターンが得られる。 Since it is a contact exposure, a reflective optical system for EUV light is not required, exposure can be performed with a weak EUV light source, and EUV light with a shorter wavelength can be used without wavelength selectivity, resulting in a finer pattern.

フオレジスト1は氷でできた固体3で覆われているので、フオトレジスト1からのアウトガスも外部に漏れず、マスク6の内部は外部としや断されているので汚染もない。又マスク6はナノインプラント法にて予備品が多数用意でき交換して洗争できる。 Since the photoresist 1 is covered with a solid 3 made of ice, outgassing from the photoresist 1 does not leak to the outside, and the inside of the mask 6 is cut off from the outside, so there is no contamination. Moreover, many spare parts can be prepared for the mask 6 by the nano-implantation method, and it can be cleaned by exchanging.

露光時に照射光により発生した熱も、グラフェン又はグラファイト4の熱伝導率が良いので、直ちにフオトレジスト1側に逃げて温度上昇も少ない。 Since the graphene or graphite 4 has good thermal conductivity, the heat generated by the irradiation light at the time of exposure also immediately escapes to the side of the photoresist 1 and the temperature rise is small.

フオトレジスト1のカバー2であるグラフェン又はグラファイト4を各電気的に結合さすと、静電チャツクでウエハを吸着した時、グラフェン又はグラファイト4が導体であるので、固体3に強く吸着される。この時グラフェン又はグラファイト4と固体3の間隙は極めて小さいので、分子間力が働き強く吸着され、マスク6のグラフェン又はグラファイト4とカバー2のグラフェン又はグラファイト4を軽く密着して位置合わせを行っても、カバー2は剥れない。 When the graphene or graphite 4, which is the cover 2 of the photoresist 1, is electrically connected to each other, when the wafer is chucked with an electrostatic chuck, the graphene or graphite 4 is a conductor and is strongly attracted to the solid 3. At this time, since the gap between the graphene or graphite 4 and the solid 3 is extremely small, an intermolecular force works and they are strongly adsorbed, and the graphene or graphite 4 of the mask 6 and the graphene or graphite 4 of the cover 2 are lightly adhered and aligned. However, the cover 2 cannot be peeled off.

本発明は、集積回路製作時の露光工程に利用される。 INDUSTRIAL APPLICABILITY The present invention is used in an exposure process during integrated circuit fabrication.

1 フオトレジスト
2 カバー
3 固体
4 グラフェン又はグラファイト
5 回路パターン
6 マスク
7 外枠
8 電極
1 photoresist 2 cover 3 solid 4 graphene or graphite 5 circuit pattern 6 mask 7 outer frame 8 electrode

Claims (5)

ホトレジストとそのカバーの間に固体を満たして露光する露光方法。 An exposure method in which a solid is placed between the photoresist and its cover for exposure. ホトレジストのカバーの外から液浸露光する請求項1記載の露光方法。 2. The exposure method according to claim 1, wherein the immersion exposure is performed from outside the photoresist cover. ホトレジストのカバーとしてグラフェン又はグラファイトを使用し、その上にマスクを密着して露光する請求項1記載の露光方法。 2. The exposure method according to claim 1, wherein graphene or graphite is used as a cover for the photoresist, and a mask is adhered thereon for exposure. マスクの回路パターンにグラフェン又はグラファイトのカバーをかけて露光する請求項3記載の露光方法。 4. The exposure method according to claim 3, wherein the circuit pattern of the mask is covered with graphene or graphite for exposure. グラフェン又はグラファイト間に回路パターンを挟んでできたマスクを密着して露光する請求項3記載の露光方法。 4. The exposure method according to claim 3, wherein a mask formed by sandwiching a circuit pattern between graphene or graphite is brought into close contact with the exposure method.
JP2021203746A 2021-11-05 2021-11-05 Exposure method Pending JP2023069982A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021203746A JP2023069982A (en) 2021-11-05 2021-11-05 Exposure method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021203746A JP2023069982A (en) 2021-11-05 2021-11-05 Exposure method

Publications (1)

Publication Number Publication Date
JP2023069982A true JP2023069982A (en) 2023-05-18

Family

ID=86327596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021203746A Pending JP2023069982A (en) 2021-11-05 2021-11-05 Exposure method

Country Status (1)

Country Link
JP (1) JP2023069982A (en)

Similar Documents

Publication Publication Date Title
KR102251999B1 (en) Pellicle and method of manufacturing the same
TWI830485B (en) Pellicle frame, pellicle, photomask with pellicle, exposure method, method of manufacturing a pattern, and method of manufacturing a semiconductor device
JP5960154B2 (en) Electrostatic clamp, lithographic apparatus, and method of manufacturing electrostatic clamp
JP2010541196A (en) Electrostatic clamp, lithographic apparatus and method of manufacturing electrostatic clamp
JP2001068411A (en) Lithography process for fabrication of device
JP2008266123A (en) Method for molding glass member, molding apparatus, and molded product of glass material
JP5821909B2 (en) Optical imprint mold and manufacturing method thereof
WO2013018569A1 (en) Resist developer, process for forming resist pattern and process for producing mold
KR20200067092A (en) Container, processing apparatus, particle removing method, and method of manufacturing article
JP2001028334A (en) Structure of pellicle of x-ray mask and manufacture thereof
JP2009113311A (en) Manufacturing process of micro-lens array
JP2023069982A (en) Exposure method
JP2010153773A (en) Method and apparatus for processing substrate, and the substrate
KR102383372B1 (en) Lithography apparatus and method of manufacturing article
JP2008119870A (en) Imprinting mold
JP2010245470A (en) Mold for optical imprint
KR100859244B1 (en) Exposure apparatus and device manufacturing method
US10813223B2 (en) Piezochromic stamp
JP5200726B2 (en) Imprint method, pre-imprint mold, pre-imprint mold manufacturing method, imprint apparatus
KR102008057B1 (en) Method for manufacturing pellicle
JP2014086701A (en) Holding device, lithographic apparatus, and manufacturing method of goods
JP5565495B2 (en) Substrate fixing device
KR100861368B1 (en) Immersion lithography method to suppress water residue on back side of wafer
KR20150011775A (en) Stage apparatus, lithography apparatus and method of manufacturing article
JP2019149532A (en) Imprint method and manufacturing method thereof