JP2023069599A - molding material - Google Patents

molding material Download PDF

Info

Publication number
JP2023069599A
JP2023069599A JP2021181595A JP2021181595A JP2023069599A JP 2023069599 A JP2023069599 A JP 2023069599A JP 2021181595 A JP2021181595 A JP 2021181595A JP 2021181595 A JP2021181595 A JP 2021181595A JP 2023069599 A JP2023069599 A JP 2023069599A
Authority
JP
Japan
Prior art keywords
prepreg
fabric
thermoplastic
molding material
thermoplastic prepreg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021181595A
Other languages
Japanese (ja)
Inventor
雅弘 橋本
Masahiro Hashimoto
惟史 渡辺
Tadashi Watanabe
亘 長谷川
Wataru Hasegawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2021181595A priority Critical patent/JP2023069599A/en
Publication of JP2023069599A publication Critical patent/JP2023069599A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

To provide a molding material for obtaining a member with an exposed clean surface of thermoplastic prepreg in obtaining a member having a site made of thermoplastic prepreg on the surface of parent material made of thermosetting prepreg.SOLUTION: In a molding material, the following elements are laminated in the order of an element [1] cloth, an element [2] thermoplastic prepreg, and an element [3] thermosetting prepreg.SELECTED DRAWING: Figure 1

Description

本発明は、熱硬化性プリプレグと熱可塑性プリプレグとが複合一体化した部材を得るための成形材料に関する。 TECHNICAL FIELD The present invention relates to a molding material for obtaining a member in which a thermosetting prepreg and a thermoplastic prepreg are combined and integrated.

強化繊維で強化された樹脂材料は、比強度・比剛性に優れることから航空機への適用が進んでいる。一般に、本素材による部材は、例えば航空機胴体の構造の一部として使用する際、単一の部材として用いることは殆ど無く、別個の異なる形状の部材と複合化された複合部材として利用されるのが一般である。 Resin materials reinforced with reinforcing fibers are being applied to aircraft due to their excellent specific strength and specific rigidity. In general, members made of this material are rarely used as a single member when used as part of the structure of an aircraft fuselage, for example, and are used as a composite member combined with separate members of different shapes. is common.

特許文献1には、パネル状の部材にストリンガー状の補強部材がファスナーにて締結され一体化された複合部材の開示がある。締結する別個の部材それぞれに対して穿孔の加工を施し、部材同士を位置決めしてからファスナーで締結される。その際、間隔を空けて多数本のファスナーを繰り返し締結するとの手順から、一連の工程は時間を要し、かつその短縮にも限界がある。さらには、金属製であるファスナー自体の重量によって複合部材の軽量性が損なわれてしまう。 Patent Literature 1 discloses a composite member in which a stringer-like reinforcing member is fastened to a panel-like member with a fastener and integrated. Each of the separate members to be fastened is perforated, and the members are positioned with respect to each other and then fastened with fasteners. At that time, the series of steps requires time due to the procedure of repeatedly fastening a large number of fasteners at intervals, and there is a limit to how much time can be shortened. Furthermore, the weight of the fastener itself, which is made of metal, impairs the lightness of the composite member.

特許文献2には、強化繊維と熱可塑性樹脂とからなる熱可塑性プリプレグで構成された部品を、熱溶着の手段で他部材と接合した例の開示がある。熱可塑性樹脂は加熱することで溶融あるいは軟化して粘着性を示す。この状態で被接合体同士を圧着したまま常温に冷却すると、熱可塑性樹脂に固化を生じて部材間が接着される。この接合の態様は、前記の金属ファスナーに見られた課題を改善している。 Patent Literature 2 discloses an example in which a component made of a thermoplastic prepreg made of reinforcing fibers and a thermoplastic resin is joined to another member by means of heat welding. Thermoplastic resin melts or softens when heated to exhibit stickiness. In this state, when the members to be joined are cooled to normal temperature while being pressure-bonded, the thermoplastic resin is solidified and the members are bonded together. This mode of joining ameliorate the problems found in the metal fasteners described above.

特許文献3には、熱溶着が可能な部品の構成として、強化繊維と熱硬化性樹脂とからなる層を母材としつつ、母材の表面に強化繊維と熱可塑性樹脂とからなる層を設けた部品と、その接合体の開示がある。同様の着想は、非特許文献1にも開示されている。これらの態様は、熱溶着で他の別個の部品と接合できるとの利点を維持しつつ、他部材との接合を要する箇所を熱可塑性の素材で形成し、熱可塑性の素材に対して低廉な熱硬化性の素材で部材の大部分を形成できることから、部材のコストを低くできるとの特徴が認められる。 In Patent Document 3, as a configuration of a part that can be thermally welded, a layer made of reinforcing fibers and a thermosetting resin is used as a base material, and a layer made of reinforcing fibers and a thermoplastic resin is provided on the surface of the base material. There is a disclosure of the parts and their conjugates. A similar idea is also disclosed in Non-Patent Document 1. In these aspects, while maintaining the advantage of being able to join to other separate parts by heat welding, the parts that need to be joined to other members are made of a thermoplastic material, which makes them less expensive than thermoplastic materials. Since the majority of the member can be formed of a thermosetting material, the cost of the member can be reduced.

:国際公開第2010/046684号: International Publication No. 2010/046684 :特開2015―120359号: JP 2015-120359 :米国特許第5304269号: U.S. Patent No. 5,304,269

: Ageorges C, Ye L, Hou M. Composites: Part A 32 (2001) p839-857: Ageorges C, Ye L, Hou M.; Composites: Part A 32 (2001) p839-857

特許文献2および3にあるように、部材の表面に配した熱可塑性の素材で部材間を熱溶着で接合するとの手段は、ファスナー締結に見られた課題に改善を与えるものである。しかしながら、溶着接合可能な部材を得ようと、熱可塑性の素材と未硬化の熱硬化性の素材とを成形により一体化して部材を形成するにおいて、熱硬化性樹脂が熱硬化性の素材の部位から流出して熱可塑性の素材の表面に付着することがある。接合面として利用すべき熱可塑性の素材の表面が汚染されると、接合の品位が下がることが課題である。 As disclosed in Patent Documents 2 and 3, the means of joining members by thermal welding using a thermoplastic material placed on the surfaces of the members provides an improvement to the problems found in fastening fasteners. However, in forming a member by integrating a thermoplastic material and an uncured thermosetting material by molding in order to obtain a member that can be welded and joined, the thermosetting resin may flow out and adhere to the surface of thermoplastic materials. The problem is that if the surface of the thermoplastic material to be used as the joint surface is contaminated, the quality of the joint is lowered.

本発明は、下記の要素が、要素[1]/要素[2]/要素[3]の順に積層された成形材料である。
要素[1]布帛
要素[2]熱可塑性プリプレグ
要素[3]熱硬化性プリプレグ
本発明の成形材料の好ましい態様によれば、布帛の通気度が0.01cm/(cm・s)以上2000.00cm/(cm・s)未満である。
The present invention is a molding material in which the following elements are laminated in the order of element [1]/element [2]/element [3].
Element [1] Fabric element [2] Thermoplastic prepreg element [3] Thermosetting prepreg According to a preferred embodiment of the molding material of the present invention, the air permeability of the fabric is 0.01 cm 3 /(cm 2 ·s) or more 2000 less than 0.00 cm 3 /(cm 2 ·s).

本発明の成形材料の好ましい態様によれば、布帛の全面が熱可塑性プリプレグのみと接してなる。 According to a preferred embodiment of the molding material of the present invention, the entire surface of the fabric is in contact only with the thermoplastic prepreg.

本発明の成形材料の好ましい態様によれば、布帛の外周線S1と、熱可塑性プリプレグの外周線S2において、S1とS2の間の最小距離が1mm以上100mm未満である。 According to a preferred embodiment of the molding material of the present invention, the minimum distance between S1 and S2 of the outer peripheral line S1 of the fabric and the outer peripheral line S2 of the thermoplastic prepreg is 1 mm or more and less than 100 mm.

本発明の成形材料の好ましい態様によれば、布帛と熱可塑性プリプレグが結着されてなる。 According to a preferred embodiment of the molding material of the present invention, the fabric and the thermoplastic prepreg are bound together.

本発明の成形材料の好ましい態様によれば、熱可塑性プリプレグと熱硬化性プリプレグが固定されてなる。 According to a preferred aspect of the molding material of the present invention, the thermoplastic prepreg and the thermosetting prepreg are fixed.

本発明の成形体は、前記成形材料を、加熱および/または加圧の手段により成形してなる成形体である。 The molded article of the present invention is a molded article obtained by molding the molding material by means of heating and/or pressing.

本発明の成形体の好ましい態様によれば、前記成形材料を、熱可塑性プリプレグに含まれる熱可塑性樹脂の融点以上の温度範囲で成形してなる。 According to a preferred aspect of the molded article of the present invention, the molding material is molded in a temperature range equal to or higher than the melting point of the thermoplastic resin contained in the thermoplastic prepreg.

本発明の成形体の好ましい態様によれば、前記成形材料を、熱可塑性プリプレグに含まれる熱可塑性樹脂の融点未満の温度範囲で成形してなる。 According to a preferred aspect of the molded article of the present invention, the molding material is molded in a temperature range below the melting point of the thermoplastic resin contained in the thermoplastic prepreg.

本発明の部材は、前記成形体から布帛の部位を取り除くことにより得られる。 The member of the present invention is obtained by removing the fabric portion from the molded article.

本発明の成形材料によれば、サンドブラスト等による追加の工程を要すことなく、他の部材との接合面として利用する熱可塑性プリプレグの表面が露出した部材を得ることができる。 According to the molding material of the present invention, it is possible to obtain a member having an exposed thermoplastic prepreg surface that is used as a joint surface with another member without requiring an additional step such as sandblasting.

本発明の成形材料の一例を示す図である。It is a figure which shows an example of the molding material of this invention. 本発明の成形材料の一例を示す図である。It is a figure which shows an example of the molding material of this invention.

本発明は、上記の課題を解決せんとするものであり、下記の要素が、要素[1]/要素[2]/要素[3]の順に積層された成形材料である。
要素[1]布帛
要素[2]熱可塑性プリプレグ
要素[3]熱硬化性プリプレグ
次に、本発明の成形体の実施形態の詳細を説明する。
An object of the present invention is to solve the above problems, and is a molding material in which the following elements are laminated in the order of element [1]/element [2]/element [3].
Element [1] Fabric element [2] Thermoplastic prepreg element [3] Thermosetting prepreg Next, details of an embodiment of the molded article of the present invention will be described.

本発明の熱硬化性プリプレグは、強化繊維に熱硬化性樹脂を含ませたシート状の熱硬化性プリプレグから構成される。成形材料から形成される成形体において基部を構成するものである。 The thermosetting prepreg of the present invention is composed of a sheet-like thermosetting prepreg in which reinforcing fibers are impregnated with a thermosetting resin. It constitutes a base in a molded body formed from a molding material.

強化繊維として連続状の繊維を用いると、繊維の強度特性が効率よく発揮されるプリプレグとなる。特に、繊維が特定の方向に並べられた一方向プリプレグは、強度が高いことから航空機等の構造部材に適している。また別に、繊維の織物または編物からなる繊維基材を用いると、強化繊維に持たせた弛みによって、プリプレグに柔軟性を与えることもできる。さらには、不連続状の繊維を用いることで、プリプレグ自体の形状成形性をさらに高めた構成としても良い。 When continuous fibers are used as the reinforcing fibers, a prepreg that efficiently exhibits the strength characteristics of the fibers can be obtained. In particular, a unidirectional prepreg in which fibers are arranged in a specific direction is suitable for structural members such as aircraft because of its high strength. Alternatively, if a fiber base material made of a woven or knitted fabric of fibers is used, the slackness of the reinforcing fibers can impart flexibility to the prepreg. Furthermore, by using discontinuous fibers, the prepreg itself may have a configuration in which the shape moldability is further enhanced.

熱硬化性プリプレグは、成形体に所望の厚さや剛性、強度を与えるために、プリプレグを積層したものを用いても良い。等方的な性質を持たせる目的で、繊維角度を変えながら一方向プリプレグを積層したものを焼き固めることで得られる積層複合板の形態は、成形体を構造部材として使う場合に好適である。 As the thermosetting prepreg, a laminated prepreg may be used in order to give the molded body desired thickness, rigidity and strength. The form of a laminated composite plate obtained by baking unidirectional prepregs laminated while changing the fiber angle for the purpose of imparting isotropic properties is suitable when the molded body is used as a structural member.

強化繊維の種類としてはとくに限定されず、炭素繊維やガラス繊維、アラミド繊維などを使用でき、これらを組み合わせたハイブリッド構成とすることも可能である。成形体の製造の強度設計や部材製造の容易性からは、特に炭素繊維を含む形態が好ましい。 The type of reinforcing fiber is not particularly limited, and carbon fiber, glass fiber, aramid fiber, or the like can be used, and a hybrid structure combining these is also possible. A form containing carbon fibers is particularly preferable from the viewpoint of strength design for production of molded articles and ease of production of members.

本発明の熱硬化性プリプレグに含まれる熱硬化性樹脂は、各種の熱硬化性樹脂を使用可能である。その種類は特に限定されないが、エポキシ樹脂、ベンゾオキサジン樹脂、シアネートエステル樹脂、ビスマレイミド樹脂、フェノール樹脂およびそれらの変性樹脂から選ばれる少なくとも1種であることが好ましい。とりわけエポキシ樹脂は機械的特性に優れることから好ましく用いることができる。耐熱性が必要な用途には、シアネートエステル樹脂もしくはビスマレイミド樹脂を用いても良い。 Various thermosetting resins can be used as the thermosetting resin contained in the thermosetting prepreg of the present invention. Although the type thereof is not particularly limited, it is preferably at least one selected from epoxy resins, benzoxazine resins, cyanate ester resins, bismaleimide resins, phenolic resins and modified resins thereof. Epoxy resins are particularly preferred because of their excellent mechanical properties. For applications requiring heat resistance, cyanate ester resins or bismaleimide resins may be used.

本発明の熱可塑性プリプレグは、強化繊維に熱可塑性樹脂を含ませたシート状の熱可塑性プリプレグである。成形材料から形成される成形体において、熱硬化性プリプレグにより構成する成形体の基部の一部または全部を覆う部位となる。 The thermoplastic prepreg of the present invention is a sheet-like thermoplastic prepreg in which reinforcing fibers are impregnated with a thermoplastic resin. In a molded body formed from a molding material, it becomes a portion covering part or all of the base portion of the molded body made of thermosetting prepreg.

強化繊維として連続状の繊維を用いると、繊維の強度特性が効率よく発揮されるプリプレグとなる。特に、繊維が特定の方向に並べられた一方向プリプレグは強度が高い構成として例示できる。 When continuous fibers are used as the reinforcing fibers, a prepreg that efficiently exhibits the strength characteristics of the fibers can be obtained. In particular, a unidirectional prepreg in which fibers are arranged in a specific direction can be exemplified as a structure with high strength.

また別に、繊維の織物または編物からなる繊維基材を用いると、強化繊維に持たせた弛みによって、プリプレグに含まれる熱可塑性樹脂が溶融した状態において柔軟性を持つようになるので、形状を形作ることに適している。 Alternatively, if a fiber base material made of a woven or knitted fabric is used, the slack given to the reinforcing fibers allows the thermoplastic resin contained in the prepreg to become flexible in a molten state. suitable for

成形体に所望の厚みや剛性を持たせる目的で、プリプレグを積層したものを用いることができる。成形体に剛性を持たせたい方向にプリプレグの繊維が多く向くようにしても良い。 A laminate of prepregs can be used for the purpose of imparting desired thickness and rigidity to the molded body. The prepreg fibers may be oriented more in the direction in which the molded body is desired to have rigidity.

強化繊維の種類としてはとくに限定されない。熱硬化性プリプレグの項に挙げられた強化繊維の種類と同じものを用いて良い。 The type of reinforcing fiber is not particularly limited. The same types of reinforcing fibers as listed in the section on thermosetting prepreg may be used.

熱可塑性樹脂の種類については、とくに制限されないが、ポリアミド樹脂、ポリエステル樹脂、ポリフェニレンスルフィド樹脂、ポリアセタール樹脂、ポリフェニレンオキシド樹脂、ポリカーボネート樹脂、ポリ乳酸樹脂、ポリプロピレン樹脂、ポリイミド樹脂(PI樹脂)及びポリアミドイミド樹脂(PAI樹脂)を含む熱可塑性ポリイミド系樹脂、ポリエーテルエーテルケトン樹脂(PEEK樹脂)及びポリエーテルケトンケトン樹脂(PEKK樹脂)を含むポリアリールエーテルケトン系樹脂、ポリサルホン樹脂(PSU樹脂)、ポリエーテルサルホン樹脂(PES樹脂)及びポリフェニレンサルホン樹脂(PPSU樹脂)を含む芳香族ポリエーテルサルホン系樹脂、およびそれらの変性樹脂から選ばれる少なくとも1種を用いることができる。成形体の成形性と耐熱性を両立する観点では、芳香族ポリアミド樹脂、ポリフェニレンスルフィド樹脂、ポリエーテルケトンケトン樹脂、ポリエーテルエーテルケトン樹脂から選択される少なくとも一種を好ましく利用できる。 The types of thermoplastic resins are not particularly limited, but polyamide resins, polyester resins, polyphenylene sulfide resins, polyacetal resins, polyphenylene oxide resins, polycarbonate resins, polylactic acid resins, polypropylene resins, polyimide resins (PI resins) and polyamideimide resins. (PAI resin) containing thermoplastic polyimide resin, polyether ether ketone resin (PEEK resin) and polyether ketone ketone resin (PEKK resin) containing polyaryl ether ketone resin, polysulfone resin (PSU resin), polyether sulfone At least one selected from aromatic polyethersulfone-based resins including sulfone resins (PES resins) and polyphenylenesulfone resins (PPSU resins), and modified resins thereof can be used. At least one selected from aromatic polyamide resins, polyphenylene sulfide resins, polyether ketone ketone resins, and polyether ether ketone resins can be preferably used from the viewpoint of achieving both moldability and heat resistance of the molded article.

本発明の布帛は、繊維材料から構成される。その形態は、繊維からなる構造物であれば特に限定されず、織物、不織布、編物、フェルトなどが使用できる。 The fabric of the present invention is constructed from fibrous materials. The form is not particularly limited as long as it is a structure made of fibers, and woven fabrics, non-woven fabrics, knitted fabrics, felts, and the like can be used.

布帛を構成する繊維としては、特に限定されるものでないが、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート及びこれらにスルフォイソフタレート、イソフタル酸などの第3成分を共重合したもので代表されるポリエステル繊維、ナイロン6、ナイロン66、ナイロン46などで代表されるポリアミド繊維の他、ビニロン繊維、ポリエチレン繊維、ポリプロピレン繊維、アクリル繊維、アラミド繊維、ガラス繊維、炭素繊維、金属繊維などが使用できる。中でも、安価で強度が比較的高い繊維、ポリエステル繊維、ポリアミド繊維が好ましい。 The fibers constituting the fabric are not particularly limited, but polyester fibers typified by, for example, polyethylene terephthalate, polybutylene terephthalate, and those obtained by copolymerizing these with a third component such as sulfoisophthalate and isophthalic acid. , nylon 6, nylon 66, nylon 46, vinylon fiber, polyethylene fiber, polypropylene fiber, acrylic fiber, aramid fiber, glass fiber, carbon fiber, metal fiber, etc. can be used. Among them, inexpensive and relatively high-strength fibers, polyester fibers, and polyamide fibers are preferable.

繊維はそのままでも使用できるし、糸条となしたものでも使用できる。例えば、繊維をそのまま用いれば不織布を得ることができる。糸条を用いれば織物、編物を得ることができる。また、糸条を用いるときは、追撚、合撚、仮撚、エアー混繊など糸加工したものを用いてもよい。 The fiber can be used as it is, or it can be used as a yarn. For example, a nonwoven fabric can be obtained by using the fibers as they are. Woven fabrics and knitted fabrics can be obtained from yarns. When yarns are used, yarns processed by additional twisting, pliing twisting, false twisting, air mixed yarn, etc. may be used.

また、布帛を作製する際に用いる油剤やサイジング剤は、布帛の作製に先立ち精練処理により取り除かれることが好ましい。こうすると、成形材料から成形体を得るにおいて、布帛の成分で熱可塑性プリプレグの表面を汚染することが無い。 In addition, it is preferable that the oil agent and sizing agent used when producing the fabric are removed by scouring treatment prior to producing the fabric. By doing so, the surface of the thermoplastic prepreg is not contaminated with the components of the fabric when a molded article is obtained from the molding material.

本発明の成形材料は、加熱と加圧の機構を持つ成形機により成形できる。成形には、オートクレーブ法、真空圧成形法(Vaccum Bag Only:VBO法)やホットプレス成形法を好ましく利用できる。特にオートクレーブ法では高品位な成形体を得るのに好ましい。 The molding material of the present invention can be molded with a molding machine having a heating and pressing mechanism. For molding, an autoclave method, a vacuum pressure molding method (Vaccum Bag Only: VBO method), or a hot press molding method can be preferably used. In particular, the autoclave method is preferable for obtaining a high-quality molded article.

本発明の成形材料を構成する熱硬化性プリプレグは、未硬化状態の熱硬化性樹脂を含む。前記の熱を利用する成形方法において、未硬化状態の熱硬化性樹脂は、環境温度の上昇に伴って低粘度化して熱硬化性プリプレグの外部へ流れることがある。流れ出た熱硬化性樹脂の一部は、熱可塑性プリプレグの熱硬化性プリプレグと接する面と対をなす面へ流入し、付着するものがある。この現象は、成形材料に真空圧を与えるオートクレーブ成形法やVBO法で生じやすい。 The thermosetting prepreg constituting the molding material of the present invention contains an uncured thermosetting resin. In the molding method using heat, the uncured thermosetting resin may become less viscous as the environmental temperature rises and flow out of the thermosetting prepreg. Some of the flowed out thermosetting resin flows into and adheres to the surface of the thermoplastic prepreg that is in contact with the thermosetting prepreg. This phenomenon tends to occur in the autoclave molding method and the VBO method in which a vacuum pressure is applied to the molding material.

さらには、本発明の成形材料を構成する熱可塑性プリプレグは、常温にて固化した熱可塑性樹脂の特徴を具備しており固形である。特に単層のプリプレグの取扱いにおいて、その性状は脆いため、積層や成形時のハンドリングによって繊維と平行の方向に割れを生じることがある。割れを生じたプリプレグを成形材料に用いると、熱硬化性プリプレグに由来する未硬化状態の熱硬化性樹脂が、熱可塑性プリプレグの割れの部分に浸透し、熱可塑性プリプレグの熱硬化性プリプレグと接する面と対をなす面へ染み出し、付着するものがある。 Furthermore, the thermoplastic prepreg that constitutes the molding material of the present invention has the characteristics of a thermoplastic resin that is solidified at room temperature and is solid. In particular, when single-layer prepregs are handled, they are fragile and may crack in the direction parallel to the fibers due to handling during lamination or molding. When the cracked prepreg is used as a molding material, the uncured thermosetting resin derived from the thermosetting prepreg permeates the cracked portion of the thermoplastic prepreg and contacts the thermosetting prepreg of the thermoplastic prepreg. There are some that seep out and adhere to the surface that is paired with the surface.

上記がごとき成形時の現象により、熱可塑性プリプレグの熱硬化性プリプレグと接する面の対となる面に対し熱硬化性樹脂が付着し、部材の接合面として利用すべき部位が汚染されると、部材を他部材と接合する際の品位の悪化を招くことがある。 Due to the phenomenon during molding such as the above, the thermosetting resin adheres to the surface of the thermoplastic prepreg that is in contact with the thermosetting prepreg, and the part to be used as the bonding surface of the member is contaminated. This may lead to deterioration in quality when the member is joined to another member.

本発明の布帛は通気性を有すことが好ましい。通気性を有すことにより、上記がごとき熱可塑性プリプレグの表面に流入する、あるいは染み出す熱硬化性樹脂を吸着する効果が高められる。 The fabric of the present invention preferably has air permeability. By having air permeability, the effect of adsorbing the thermosetting resin that flows into or exudes to the surface of the thermoplastic prepreg as described above is enhanced.

さらに、布帛の通気度は、0.01cm/(cm・s)以上2000.00cm/(cm・s)未満が好ましく、より好ましくは5.00cm/(cm・s)以上300.00cm/(cm・s)未満であり、さらに好ましくは10.00cm/(cm・s)以上150.00cm/(cm・s)未満である。通気度が0.01cm/(cm・s)よりも大きければ、布帛に取り込まれた熱硬化性樹脂が、成形による熱を受けて硬化を経た後においても布帛に残留する効果が高まる。一般に、通気度が大きくなるほど熱硬化性樹脂を良く吸着できるようになるが、通気度を大きくするために布帛を薄くすると破れを生じやすくなることがある。破れを生じた布帛の部位では熱硬化性樹脂を吸着する効果が弱まるため、布帛の通気度を2000.00cm/(cm・s)未満とすると良い。布帛の通気度は、JIS L 1096(2010)により測定できる。 Furthermore, the air permeability of the fabric is preferably 0.01 cm 3 /(cm 2 s) or more and less than 2000.00 cm 3 /(cm 2 s), more preferably 5.00 cm 3 /(cm 2 s) or more. It is less than 300.00 cm 3 /(cm 2 ·s), more preferably 10.00 cm 3 /(cm 2 ·s) or more and less than 150.00 cm 3 /(cm 2 ·s). If the air permeability is greater than 0.01 cm 3 /(cm 2 ·s), the effect of the thermosetting resin incorporated in the fabric to remain in the fabric even after being hardened by receiving heat from molding is enhanced. In general, the higher the air permeability, the better the thermosetting resin can be adsorbed. Since the effect of adsorbing the thermosetting resin is weakened at the portion of the fabric where the tear occurs, the air permeability of the fabric should be less than 2000.00 cm 3 /(cm 2 ·s). The air permeability of fabric can be measured according to JIS L 1096 (2010).

布帛の通気度を変えるには、繊維や繊維糸状の太さや、糸状の織りや編みのピッチ、布帛の目付を変えることにより実施できる。とりわけ織物ではこれらを比較的容易に変えることができることから、本発明の布帛として好ましく利用できる。 The air permeability of the fabric can be changed by changing the thickness of the fiber or filament, the pitch of the weave or knitting of the filament, or the basis weight of the fabric. In particular, woven fabrics can be preferably used as the fabric of the present invention because these can be changed relatively easily.

布帛は、布帛を構成する繊維の間隙がプリプレグ由来の熱硬化性樹脂で満たされたときに、それ以上熱硬化性樹脂を取り込むことができなくなることがある。この現象は、布帛を熱硬化性プリプレグと接するように配置し、布帛が熱硬化性プリプレグから熱硬化性樹脂を直接的に取り込める状況において生じやすい。よって、熱可塑性プリプレグ上の清浄性を高めるとの布帛の効果を利用する観点では、布帛の全面が熱可塑性プリプレグのみと接してなることが好ましい。 The fabric may not be able to take in any more thermosetting resin when the interstices of the fibers that make up the fabric are filled with the thermosetting resin derived from the prepreg. This phenomenon is likely to occur in a situation where the fabric is placed in contact with the thermosetting prepreg and the fabric can directly take in the thermosetting resin from the thermosetting prepreg. Therefore, from the viewpoint of utilizing the effect of the fabric to improve the cleanliness of the thermoplastic prepreg, it is preferable that the entire surface of the fabric is in contact only with the thermoplastic prepreg.

上記効果をさらに高めた構成として、布帛の外周線S1と、熱可塑性プリプレグの外周線S2において、S1とS2の間の最小距離が0.1mm以上100.0mm未満であることが好ましく、より好ましくは2.0mm以上50.0mm未満であることが好ましい。 As a configuration that further enhances the above effects, the minimum distance between the outer peripheral line S1 of the fabric and the outer peripheral line S2 of the thermoplastic prepreg is preferably 0.1 mm or more and less than 100.0 mm, and more preferably. is preferably 2.0 mm or more and less than 50.0 mm.

布帛の形や、布帛の熱可塑性プリプレグとの位置関係によって、S1とS2の間の距離を適宜変えることができる。矩形の布帛と、矩形の熱可塑性プリプレグを用いた場合の成形材料の一例を図2に示す。このとき、S1とS2の間の距離の最小値を符号6、S1とS2の間の距離の最大値を符号7で示している。このように、S1とS2の間の距離が部位によって一様でない成形材料に対しては、S1とS2の間の距離の最小値(最小距離)を上記範囲内とするのが良い。 The distance between S1 and S2 can be appropriately changed depending on the shape of the fabric and the positional relationship between the fabric and the thermoplastic prepreg. FIG. 2 shows an example of a molding material using a rectangular fabric and a rectangular thermoplastic prepreg. At this time, reference numeral 6 indicates the minimum value of the distance between S1 and S2, and reference numeral 7 indicates the maximum value of the distance between S1 and S2. As described above, for a molding material in which the distance between S1 and S2 is not uniform depending on the part, it is preferable to set the minimum value (minimum distance) of the distance between S1 and S2 within the above range.

S1とS2の間の最小距離が0.1mm以上であることで、熱可塑性プリプレグの上に堆積する熱硬化性樹脂が布帛により効果的に吸着される。前記距離が大きくなるにしたがって、布帛による熱可塑性プリプレグの清浄性を高める効果は強まるが、反面、成形材料から成形体を形成したのち、布帛が取り除かれて接合面として利用できる面積が小さくなる。高価な熱可塑性プリプレグの使用を減じて成形材料の経済性を高める観点では、S1とS2の間の最小距離が100.0mm未満であることが好ましい。 With the minimum distance between S1 and S2 being 0.1 mm or more, the thermosetting resin deposited on the thermoplastic prepreg is effectively adsorbed by the fabric. As the distance increases, the effect of improving the cleanliness of the thermoplastic prepreg by the fabric increases, but on the other hand, after forming a molded body from the molding material, the fabric is removed and the area that can be used as a joint surface becomes smaller. The minimum distance between S1 and S2 is preferably less than 100.0 mm from the viewpoint of reducing the use of expensive thermoplastic prepreg and increasing the economic efficiency of molding materials.

成形材料においては、布帛と熱可塑性プリプレグが結着されてなることが好ましい。熱可塑性プリプレグ上の布帛の位置がずれることが無くなく、成形時の取扱い性が高まる。また、位置がずれないことは、成形材料から得た部材を、他部材と接合するにおいて、接合箇所の位置合わせが容易となる効果も得られる。 In the molding material, it is preferable that the fabric and the thermoplastic prepreg are bound together. The position of the fabric on the thermoplastic prepreg is not displaced, and the handleability during molding is improved. In addition, when the member obtained from the molding material is joined to another member, the fact that the position is not deviated also has the effect of facilitating the alignment of the joining portion.

結着の手段としては、布帛を構成する繊維を溶かして熱可塑性プリプレグに溶着する、あるいは熱可塑性プリプレグに含まれる熱可塑性樹脂を溶かして布帛に溶着させる方法が例示できる。この手段は、加熱および/または加圧により実施して良い。 Examples of binding means include a method of melting the fibers constituting the fabric and welding them to the thermoplastic prepreg, or a method of melting the thermoplastic resin contained in the thermoplastic prepreg and welding it to the fabric. This means may be carried out by heating and/or pressure.

結着された布帛の部位は、布帛を構成する繊維において、布帛を構成する繊維が溶ける、あるいは布帛の繊維の間に熱可塑性樹脂が入り込むことで、繊維間の間隙が減少する場合がある。この部位においては、布帛が熱硬化性樹脂を吸収する効果が小さくなることがある。 In the bound portion of the fabric, the gaps between the fibers may be reduced due to the fibers forming the fabric melting or the thermoplastic resin entering between the fibers of the fabric. At this portion, the fabric may be less effective in absorbing the thermosetting resin.

すなわち、結着された部位の面積が、布帛と熱可塑性プリプレグの接触面積S(mm)に対し、0.001×S以上0.50×S未満であることが好ましく、より好ましくは0.005×S以上0.10×S未満である。0.005×S以上であると、熱可塑性プリプレグ上に布帛の位置が良く固定され、布帛が熱可塑性プリプレグ上で弛んでシワを形成しにくくなる。0.50×S未満であれば、本発明の成形材料が具備する、布帛が熱硬化性樹脂を吸着する効果を維持できる。 That is, the area of the bound portion is preferably 0.001×S or more and less than 0.50×S with respect to the contact area S (mm 2 ) between the fabric and the thermoplastic prepreg, more preferably 0.50×S. 005×S or more and less than 0.10×S. When it is 0.005×S or more, the position of the fabric is well fixed on the thermoplastic prepreg, and the fabric is less likely to loosen and wrinkle on the thermoplastic prepreg. If it is less than 0.50×S, the effect of the fabric adsorbing the thermosetting resin, which is provided by the molding material of the present invention, can be maintained.

結着部は、布帛と熱可塑性プリプレグが接する面の全面に対して設けても、一部に対して設けても良い。結着部は、面状、線状あるいは点状であって構わない。結着部の配置は、パターンによる規則性を持っていても、または不規則であっても良い。 The binding portion may be provided on the entire surface where the fabric and the thermoplastic prepreg are in contact, or may be provided on a portion of the surface. The binding portion may be planar, linear, or point-like. The arrangement of the binding portions may be regular according to a pattern or may be irregular.

分散した点状の結着部となす構成は、布帛に生じるシワが減じられることから、成形材料から得られる成形体の表面品位を高めるとの効果がある。線状の結着部は、その実施が容易との利点がある。 The configuration of dispersed dot-like binding portions has the effect of improving the surface quality of the molded article obtained from the molding material because wrinkles occurring in the fabric are reduced. A linear bond has the advantage of being easy to implement.

本発明の成形材料は、熱可塑性プリプレグと熱硬化性プリプレグが固定されてなることが好ましい。両方のプリプレグが固定されていると、成形材料の取扱いにおいて、熱可塑性プリプレグと熱硬化性プリプレグの位置関係がずれることなく、所望の位置に熱可塑性樹脂が配された部材を得ることが容易となる。 The molding material of the present invention is preferably formed by fixing a thermoplastic prepreg and a thermosetting prepreg. When both prepregs are fixed, it is easy to obtain a member in which the thermoplastic resin is arranged at a desired position without shifting the positional relationship between the thermoplastic prepreg and the thermosetting prepreg in handling the molding material. Become.

熱可塑性プリプレグと熱硬化性プリプレグとを固定する方法は特に制限されないが、熱硬化性樹脂に含まれる熱硬化性樹脂の粘着力を利用する方法を例示できる。熱可塑性プリプレグと熱硬化性プリプレグとを重ね、押圧および/または加熱して実施することができる。 A method for fixing the thermoplastic prepreg and the thermosetting prepreg is not particularly limited, but a method using the adhesive force of the thermosetting resin contained in the thermosetting resin can be exemplified. The thermoplastic prepreg and the thermosetting prepreg may be layered, pressed and/or heated.

固定部は、熱可塑性プリプレグと熱硬化性プリプレグが接する面の全面に対して設けても、一部に対して設けても良い。固定部は、面状、線状あるいは点状であって構わない。固定部の配置は、パターンによる規則性を持っていても、または不規則であっても良い。 The fixing portion may be provided on the entire surface where the thermoplastic prepreg and the thermosetting prepreg are in contact with each other, or may be provided on a part of the surface. The fixing portion may be planar, linear, or point-like. The arrangement of the fixed parts may have regularity according to a pattern or may be irregular.

本発明の成形体は、本発明の成形材料を成形することにより得られる。 The molded article of the present invention is obtained by molding the molding material of the present invention.

本発明の成形体は、熱可塑性プリプレグに含まれる熱可塑性樹脂の融点以上の温度範囲で成形してなることが好ましい。熱可塑性樹脂の融点以上の成形温度とすることで、成形中に熱可塑性樹脂が溶融することから、部材表面の平滑性が高まる。接合面となる部位の平滑性が高まると、接合時の強度が安定して発現するようになる。成形温度の上限については特に制限は無いが、成形材料を構成する熱硬化プリプレグに含まれる熱硬化性樹脂の熱分解温度を例示できる。 The molded article of the present invention is preferably molded in a temperature range equal to or higher than the melting point of the thermoplastic resin contained in the thermoplastic prepreg. By setting the molding temperature to a temperature equal to or higher than the melting point of the thermoplastic resin, the thermoplastic resin is melted during molding, thereby increasing the smoothness of the surface of the member. When the smoothness of the part to be joined is increased, the strength at the time of joining is stably developed. The upper limit of the molding temperature is not particularly limited, but the thermal decomposition temperature of the thermosetting resin contained in the thermosetting prepreg constituting the molding material can be exemplified.

本発明の成形体は、熱可塑性プリプレグに含まれる熱可塑性樹脂の融点未満の温度範囲で成形してなることも好ましい。熱可塑性樹脂の融点よりも低い成形温度とすることで、成形中に熱可塑性樹脂が溶融することが無い。よって、繊維から構成される布帛に対し、熱可塑性樹脂が接着することがなく、成形体から布帛の脱離が容易との利点があることから部材の生産性に優れている。成形温度の下限については特に制限は無いが、成形材料を構成する熱硬化プリプレグに含まれる熱硬化性樹脂の硬化を誘起する観点から、一般に80℃を例示できる。 It is also preferable that the molded article of the present invention is molded in a temperature range below the melting point of the thermoplastic resin contained in the thermoplastic prepreg. By setting the molding temperature lower than the melting point of the thermoplastic resin, the thermoplastic resin does not melt during molding. Therefore, the thermoplastic resin does not adhere to the fabric made of the fibers, and the fabric can be easily removed from the molded product, resulting in excellent member productivity. The lower limit of the molding temperature is not particularly limited, but from the viewpoint of inducing curing of the thermosetting resin contained in the thermosetting prepreg constituting the molding material, 80° C. is generally exemplified.

本発明の部材は、成形体から布帛の部位を取り除くことにより得られる部材である。成形体の表面から、熱硬化性プリプレグを構成する熱硬化性樹脂に由来する樹脂硬化物で汚染された布帛を取り除くことで、清浄な熱可塑性プリプレグからなる部位を部材の表面に露出できる。本部材は、他部材と熱および/または加圧の手段により溶着接合することができる。 The member of the present invention is a member obtained by removing the fabric portion from the molded article. By removing the cloth contaminated with the cured resin derived from the thermosetting resin constituting the thermosetting prepreg from the surface of the molded article, a clean thermoplastic prepreg portion can be exposed on the surface of the member. This member can be welded and joined to other members by means of heat and/or pressure.

以下に実施例を示し、本発明を具体的に説明するが、本発明はこれら実施例の記載に限定されるものではない。 EXAMPLES The present invention will be specifically described below with reference to Examples, but the present invention is not limited to the description of these Examples.

[原料]
強化繊維:炭素繊維“トレカ”(登録商標)T800S
熱硬化性樹脂:3900樹脂(東レ社製)
熱可塑性樹脂[1]:ポリアミド6樹脂(融点240℃、重量平均分子量30,000)
熱可塑性樹脂[2]:PPS樹脂(融点235℃、重量平均分子量40,000)
[material]
Reinforcing fiber: Carbon fiber “Torayca” (registered trademark) T800S
Thermosetting resin: 3900 resin (manufactured by Toray Industries, Inc.)
Thermoplastic resin [1]: Polyamide 6 resin (melting point 240°C, weight average molecular weight 30,000)
Thermoplastic resin [2]: PPS resin (melting point 235°C, weight average molecular weight 40,000)

[成形材料]
熱硬化性プリプレグ:一方向に引き揃えられた炭素繊維T800Sに、エポキシ樹脂3900樹脂を含浸して一方向プリプレグを製造した。プリプレグにおける炭素繊維の体積含有率は53%であった。
[Molding material]
Thermosetting prepreg: Carbon fiber T800S aligned in one direction was impregnated with epoxy resin 3900 resin to produce a unidirectional prepreg. The volume content of carbon fibers in the prepreg was 53%.

熱可塑性プリプレグ[1]:一方向に引き揃えられた炭素繊維T800Sに、ポリアミド6樹脂を溶融含浸法にて含浸させた一方向プリプレグを製造した。プリプレグにおける炭素繊維の体積含有率は48%であった。 Thermoplastic prepreg [1]: A unidirectional prepreg was produced by impregnating carbon fibers T800S aligned in one direction with a polyamide 6 resin by a melt impregnation method. The volume content of carbon fibers in the prepreg was 48%.

熱可塑性プリプレグ[2]:一方向に引き揃えられた炭素繊維T800Sに、PPS樹脂を溶融含浸法にて含浸させた一方向プリプレグを製造した。プリプレグにおける炭素繊維の体積含有率は51%であった。 Thermoplastic prepreg [2]: A unidirectional prepreg was produced by impregnating carbon fibers T800S aligned in one direction with a PPS resin by a melt impregnation method. The volume content of carbon fibers in the prepreg was 51%.

布帛[1]:ポリエステル糸状から、織機を用いて平織物を製造し布帛とした。JIS L 1096(2010)に基づく通気度は15cm/cm・sであった。 Cloth [1]: A plain weave fabric was produced from polyester filaments using a loom to obtain a fabric. The air permeability based on JIS L 1096 (2010) was 15 cm 3 /cm 2 ·s.

布帛[2]:E-ガラスのロービングから、織機を用いて平織物を製造し布帛とした。JIS L 1096(2010)に基づく通気度は46cm/cm・sであった。 Cloth [2]: A plain weave fabric was produced from the E-glass roving using a loom. The air permeability based on JIS L 1096 (2010) was 46 cm 3 /cm 2 ·s.

〔実施例1〕
ともに30cm角とした布帛、熱硬化性プリプレグ、熱可塑性プリプレグ[1]を、下から、熱硬化性プリプレグ/熱可塑性プリプレグ[1]/布帛[1]の順で、各々の端部が一致するように積層して成形材料[1]とした。
[Example 1]
Fabric, thermosetting prepreg, and thermoplastic prepreg [1], all of which are 30 cm square, are aligned in the order of thermosetting prepreg/thermoplastic prepreg [1]/fabric [1] from the bottom. A molding material [1] was obtained by laminating them in the following manner.

成形材料[1]をオートクレーブ成形して成形体[1]を得た。成形においては、下から、アルミ製のツール板、フッ素樹脂製の離型フィルム、成形材料、フッ素樹脂製の離型フィルム、バギングフィルムの順に重ねた。バギングフィルムをツール板に対して密閉した。ツール板とバギングフィルムで作られる空間を真空引きしつつ、オートクレーブ内で加圧力0.3MPa、環境温度180℃、静置時間120分の条件で成形した。ツール板一式をオートクレーブ内で室温まで冷却した後、成形体をツール板より取り外した。 Molding material [1] was molded in an autoclave to obtain molding [1]. In the molding, an aluminum tool plate, a fluororesin release film, a molding material, a fluororesin release film, and a bagging film were stacked in this order from the bottom. The bagging film was sealed against the tool plate. While evacuating the space formed by the tool plate and the bagging film, molding was performed in an autoclave under the conditions of a pressure of 0.3 MPa, an environmental temperature of 180° C., and a standing time of 120 minutes. After cooling the set of tool plates to room temperature in an autoclave, the compact was removed from the tool plate.

成形体[1]の表面の布帛の部分を剥がして脱離させ、部材[1]とした。 The fabric portion on the surface of molded body [1] was peeled off to obtain member [1].

部材[1]を5体製造し、各々の部材に対し、部材表面の熱可塑性プリプレグからなる部位を目視で調べた。熱可塑性プリプレグからなる部位の表面の0.0%~2.0%の部分に熱硬化性樹脂が付着していた。 Five members [1] were produced, and the portion of the surface of each member made of the thermoplastic prepreg was visually inspected. The thermosetting resin adhered to 0.0% to 2.0% of the surface of the portion made of the thermoplastic prepreg.

〔実施例2〕
熱可塑性プリプレグ[1]に代えて、熱可塑性プリプレグ[2]を使用したことを除けば、実施例1と同様にして成形材料[2]、成形体[2]および部材[2]を得た。
[Example 2]
A molding material [2], a compact [2] and a member [2] were obtained in the same manner as in Example 1, except that the thermoplastic prepreg [2] was used instead of the thermoplastic prepreg [1]. .

部材[2]を5体製造し、各々の部材に対し、部材表面の熱可塑性プリプレグからなる部位を目視で調べた。熱可塑性プリプレグからなる部位の表面の0.0%~4.0%の部分に熱硬化性樹脂が付着していた。 Five members [2] were produced, and the portion of the surface of each member made of the thermoplastic prepreg was visually inspected. The thermosetting resin adhered to 0.0% to 4.0% of the surface of the portion made of the thermoplastic prepreg.

〔実施例3〕
布帛[1]を25cm角、熱可塑性プリプレグ[1]を27cm角、熱硬化性プリプレグを30cm角に切り出した。下から、熱硬化性プリプレグ/熱可塑性プリプレグ[1]/布帛の順で積層した。このとき、それぞれの要素の中心が一致し、かつそれぞれの要素の直線状の辺が平行となるように積層した。布帛の外周線S1と、熱可塑性プリプレグの外周線S2において、S1とS2の間の距離の最小値は10mmであった。本積層体を成形材料[3]として用いた。
[Example 3]
The fabric [1] was cut into 25 cm squares, the thermoplastic prepreg [1] into 27 cm squares, and the thermosetting prepreg into 30 cm squares. From the bottom, the layers were laminated in the order of thermosetting prepreg/thermoplastic prepreg [1]/fabric. At this time, the lamination was performed so that the centers of the respective elements coincided and the linear sides of the respective elements were parallel. The minimum distance between the outer circumference S1 of the fabric and the outer circumference S2 of the thermoplastic prepreg was 10 mm. This laminate was used as a molding material [3].

成形材料[3]から、実施例1と同様にして成形材料[3]、成形体[3]および部材[3]を得た。 Molding material [3], molding [3] and member [3] were obtained in the same manner as in Example 1 from molding material [3].

部材[3]を5体製造し、各々の部材に対し、部材表面の熱可塑性プリプレグからなる部位を目視で調べた。熱可塑性プリプレグからなる部位の表面の0.0%~1.0%の部分に熱硬化性樹脂が付着していた。 Five members [3] were produced, and the portion of the surface of each member made of the thermoplastic prepreg was visually inspected. The thermosetting resin adhered to 0.0% to 1.0% of the surface of the portion made of the thermoplastic prepreg.

〔実施例4〕
布帛[1]を25cm角、熱可塑性プリプレグ[1]を27cm角、熱硬化性プリプレグを30cm角に切り出した。布帛[1]の上に熱可塑性プリプレグを置いた後、熱可塑性プリプレグの上からはんだごてを当て、熱可塑性プリプレグに含まれる熱可塑性樹脂を加熱して溶融させ、その一部を布帛[1]に含ませることにより、布帛[1]と熱可塑性プリプレグとを結着させた。結着部は約1mmの点形状であり、その間隔はおよそ10mmの格子点状とした。
[Example 4]
The fabric [1] was cut into 25 cm squares, the thermoplastic prepreg [1] into 27 cm squares, and the thermosetting prepreg into 30 cm squares. After placing the thermoplastic prepreg on the fabric [1], a soldering iron is applied from above the thermoplastic prepreg, the thermoplastic resin contained in the thermoplastic prepreg is heated and melted, and a part of it is applied to the fabric [1]. ] to bind the fabric [1] and the thermoplastic prepreg. The binding portions were in the shape of dots with a size of about 1 mm, and the intervals between them were in the shape of lattice points with a size of about 10 mm.

この処理を施した布帛[1]と熱可塑性プリプレグ[1]との積層体を用い、下から、熱硬化性プリプレグ/熱可塑性プリプレグ[1]/布帛[1]の順となるように積層した。このとき、それぞれの要素の中心が一致し、かつそれぞれの要素の直線状の辺が平行となるように積層した。布帛の外周線S1と、熱可塑性プリプレグの外周線S2において、S1とS2の間の距離の最小値は10mmであった。 Using the laminate of the fabric [1] subjected to this treatment and the thermoplastic prepreg [1], it was laminated in the order of thermosetting prepreg / thermoplastic prepreg [1] / fabric [1] from the bottom. . At this time, the lamination was performed so that the centers of the respective elements coincided and the linear sides of the respective elements were parallel. The minimum distance between the outer circumference S1 of the fabric and the outer circumference S2 of the thermoplastic prepreg was 10 mm.

次いで、上記積層体の上から手で加圧して、熱可塑性プリプレグ[1]と熱硬化性プリプレグとの間の空気を取り除いて、両者を密着させることにより固定した。本積層体を成形材料[4]として用いた。 Next, pressure was applied from above the laminate by hand to remove air between the thermoplastic prepreg [1] and the thermosetting prepreg, and the two were brought into close contact with each other and fixed. This laminate was used as a molding material [4].

成形材料[4]を用い、実施例1と同様にして成形体[4]を得た。 A compact [4] was obtained in the same manner as in Example 1 using the molding material [4].

成形体[4]の表面の布帛の部分を剥がして脱離させ、部材[4]とした。 The fabric portion on the surface of the molded body [4] was peeled off to obtain a member [4].

部材[4]を5体製造し、各々の部材に対し、部材表面の熱可塑性プリプレグからなる部位を目視で調べた。熱可塑性プリプレグからなる部位の表面の0.0%~1.0%未満の部分に熱硬化性樹脂が付着していた。 Five members [4] were produced, and the portion of the surface of each member made of the thermoplastic prepreg was visually inspected. The thermosetting resin adhered to 0.0% to less than 1.0% of the surface of the portion made of the thermoplastic prepreg.

また本実施例の成形材料は、成形材料の要素の間が固定されていることにより、成形材料がばらけることなく、成形時の取り扱い性に優れ、かつ成形の前後において要素の位置関係がずれることが無かった。 In addition, since the molding material of this embodiment is fixed between the elements of the molding material, the molding material does not come apart and is excellent in handleability during molding, and the positional relationship of the elements is shifted before and after molding. There was nothing.

〔実施例5〕
布帛[1]に代えて、布帛[2]を使用したことを除けば、実施例1と同様にして成形材料[5]を得た。
[Example 5]
A molding material [5] was obtained in the same manner as in Example 1, except that the fabric [2] was used instead of the fabric [1].

成形材料[5]を用い、オートクレーブ成形の環境温度を260℃としたことを除けば、実施例[1]と同様にして成形体[5]を得た。 A molded article [5] was obtained in the same manner as in Example [1], except that the molding material [5] was used and the ambient temperature for autoclave molding was 260°C.

成形体[5]の表面の布帛の部分を剥がして脱離させ、部材[5]とした。 The fabric portion on the surface of the molded product [5] was peeled off to obtain a member [5].

部材[5]を5体製造し、各々の部材に対し、部材表面の熱可塑性プリプレグからなる部位を目視で調べた。熱可塑性プリプレグからなる部位の表面の1.0%~2.0%の部分に熱硬化性樹脂が付着していた。 Five members [5] were produced, and the portion of the surface of each member made of the thermoplastic prepreg was visually inspected. The thermosetting resin adhered to 1.0% to 2.0% of the surface of the portion made of the thermoplastic prepreg.

〔比較例1〕
布帛を用いなかったことを除けば、実施例1と同様にして、成形材料[6]、成形体[6]および部材[6]を得た。
[Comparative Example 1]
A molding material [6], a molded article [6] and a member [6] were obtained in the same manner as in Example 1, except that the fabric was not used.

部材[6]を5体製造し、各々の部材に対し、部材表面の熱可塑性プリプレグからなる部位を目視で調べた。熱可塑性プリプレグからなる部位の表面の18%~24%が熱硬化性樹脂で被覆された状態にあった。熱可塑性プリプレグからなる部位の表面は熱硬化性樹脂による汚染が顕著であった。 Five members [6] were produced, and the portion of the surface of each member made of the thermoplastic prepreg was visually inspected. 18% to 24% of the surface of the portion made of the thermoplastic prepreg was covered with the thermosetting resin. Contamination with the thermosetting resin was conspicuous on the surface of the portion made of the thermoplastic prepreg.

〔比較例2〕
布帛に代えて、ポリイミドフィルム(ユーピレックス-75S(登録商標)、宇部興産社製)を用いた。ポリイミドフィルムに対し、JIS L 1096(2010)に基づく通気度を測定したところ0.00cm/(cm・s)であった。
[Comparative Example 2]
A polyimide film (Upilex-75S (registered trademark), manufactured by Ube Industries, Ltd.) was used instead of the cloth. The air permeability of the polyimide film measured according to JIS L 1096 (2010) was 0.00 cm 3 /(cm 2 ·s).

布帛[1]に代えて、ポリイミドフィルムを用いたことを除けば、実施例1と同様にして、成形材料[7]、成形体[7]および部材[7]を得た。 A molding material [7], a molding [7] and a member [7] were obtained in the same manner as in Example 1, except that a polyimide film was used instead of the cloth [1].

部材[7]を5体製造し、各々の部材に対し、部材表面の熱可塑性プリプレグからなる部位を目視で調べた。熱可塑性プリプレグからなる部位の表面の15%~28%が熱硬化性樹脂で被覆された状態にあった。熱可塑性プリプレグからなる部位の表面は熱硬化性樹脂による汚染が顕著であった。 Five members [7] were produced, and the portion of the surface of each member made of the thermoplastic prepreg was visually inspected. 15% to 28% of the surface of the portion made of the thermoplastic prepreg was covered with the thermosetting resin. Contamination with the thermosetting resin was conspicuous on the surface of the portion made of the thermoplastic prepreg.

本発明の成形材料、成形体および部材の用途としては、例えば、電気、電子機器部品、土木、建材用部品、自動車、二輪車用構造部品、航空機用部品が挙げられる。 Applications of the molding material, molded article and member of the present invention include, for example, electrical and electronic device parts, civil engineering and construction parts, structural parts for automobiles and motorcycles, and aircraft parts.

1:布帛
2:熱可塑性プリプレグ
3:熱硬化性プリプレグ
4:布帛の外周線S1
5:熱可塑性プリプレグの外周線S2
6:布帛の外周線S1と熱可塑性プリプレグの外周線S2との距離の最小値
7:布帛の外周線S1と熱可塑性プリプレグの外周線S2との距離の最大値
1: Fabric 2: Thermoplastic prepreg 3: Thermosetting prepreg 4: Outer peripheral line S1 of fabric
5: Peripheral line S2 of thermoplastic prepreg
6: Minimum value of the distance between the outer peripheral line S1 of the fabric and the outer peripheral line S2 of the thermoplastic prepreg 7: Maximum value of the distance between the outer peripheral line S1 of the fabric and the outer peripheral line S2 of the thermoplastic prepreg

Claims (10)

下記の要素が、要素[1]/要素[2]/要素[3]の順に積層された成形材料。
要素[1]布帛
要素[2]熱可塑性プリプレグ
要素[3]熱硬化性プリプレグ
A molding material in which the following elements are laminated in the order of element [1]/element [2]/element [3].
Element [1] Fabric element [2] Thermoplastic prepreg Element [3] Thermoset prepreg
布帛の通気度が0.01cm/(cm・s)以上2000.00cm/(cm・s)未満である、請求項1に記載の成形材料。 The molding material according to claim 1, wherein the fabric has an air permeability of 0.01 cm 3 /(cm 2 ·s) or more and less than 2000.00 cm 3 /(cm 2 ·s). 布帛の全面が熱可塑性プリプレグのみと接してなる、請求項1または2に記載の成形材料。 3. The molding material according to claim 1, wherein the entire surface of the fabric is in contact only with the thermoplastic prepreg. 布帛の外周線S1と、熱可塑性プリプレグの外周線S2において、S1とS2の間の最小距離が0.1mm以上100.0mm未満である、請求項3に記載の成形材料。 The molding material according to claim 3, wherein the minimum distance between S1 and S2 of the outer peripheral line S1 of the fabric and the outer peripheral line S2 of the thermoplastic prepreg is 0.1 mm or more and less than 100.0 mm. 布帛と熱可塑性プリプレグが結着されてなる、請求項1から4のいずれかに記載の成形材料。 5. The molding material according to any one of claims 1 to 4, wherein the fabric and the thermoplastic prepreg are bound together. 熱可塑性プリプレグと熱硬化性プリプレグが固定されてなる、請求項1から5のいずれかに記載の成形材料。 The molding material according to any one of claims 1 to 5, wherein the thermoplastic prepreg and the thermosetting prepreg are fixed. 請求項1から6のいずれかに記載の成形材料を、加熱および/または加圧の手段により成形してなる成形体。 A molded article obtained by molding the molding material according to any one of claims 1 to 6 by means of heating and/or pressing. 熱可塑性プリプレグに含まれる熱可塑性樹脂の融点以上の温度範囲で成形することで得られる、請求項7に記載の成形体。 The molded article according to claim 7, which is obtained by molding in a temperature range equal to or higher than the melting point of the thermoplastic resin contained in the thermoplastic prepreg. 熱可塑性プリプレグに含まれる熱可塑性樹脂の融点未満の温度範囲で成形することで得られる、請求項7に記載の成形体。 The molded article according to claim 7, which is obtained by molding in a temperature range below the melting point of the thermoplastic resin contained in the thermoplastic prepreg. 請求項7から9のいずれかに記載の成形体から布帛の部位を取り除くことにより得られる部材。 A member obtained by removing a fabric portion from the molded article according to any one of claims 7 to 9.
JP2021181595A 2021-11-08 2021-11-08 molding material Pending JP2023069599A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021181595A JP2023069599A (en) 2021-11-08 2021-11-08 molding material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021181595A JP2023069599A (en) 2021-11-08 2021-11-08 molding material

Publications (1)

Publication Number Publication Date
JP2023069599A true JP2023069599A (en) 2023-05-18

Family

ID=86327422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021181595A Pending JP2023069599A (en) 2021-11-08 2021-11-08 molding material

Country Status (1)

Country Link
JP (1) JP2023069599A (en)

Similar Documents

Publication Publication Date Title
US10596730B2 (en) Hybrid lay-up mold
KR101496172B1 (en) Carbon fibre reinforced composite sheet and production method thereof
JP5417631B2 (en) Molding method of thermoplastic resin composite material molded product
JP4899692B2 (en) Reinforcing fiber fabric and method for producing the same
WO2003046057A1 (en) Fiber-reinforced thermoplastic resin sheet, structural material comprising the same, and process for producing fiber-reinforced thermoplastic resin sheet
EP2829569A1 (en) Carbon fiber preform, carbon fiber reinforced plastic, and method for producing carbon fiber preform
WO2008020628A1 (en) Multiaxially reinforced laminated moldings and process for production thereof
CN109996658B (en) Fiber-reinforced resin molded article and method for producing fiber-reinforced resin molded article
KR20150126066A (en) Surface layer material for cushioning material and cushioning material for hot-pressing
JP6521895B2 (en) Fiber-reinforced resin intermediate material and method for producing the same
RU2735685C2 (en) Multilayer sheet of reinforcing fibers, a reinforced polymer molded article and a method of producing a multilayer sheet of reinforcing fibers
JP7087337B2 (en) Reinforced fiber base material, reinforcing fiber laminate and fiber reinforced resin
JP2007126793A (en) Cutting method and preform substrate for laminate, and preform production method using the same
JP2010214704A (en) Base material for preform using binder including superfine fiber, and method of manufacturing the same
JP2023069599A (en) molding material
JP2006103305A (en) Substrate for preform
WO2020031771A1 (en) Reinforced fiber tape material and production method therefor, fiber reinforced resin molded body and reinforced fiber layered body using reinforced fiber tape material
JP7467840B2 (en) Reinforced fiber substrate, reinforced fiber laminate, and fiber reinforced resin
JP2018192717A (en) Reinforcing fiber base material and preform
KR20190031908A (en) Fiber reinforced plastic sheet and stack structure including the same
JP2015100930A (en) Preform
JP2020508238A (en) Composite products
WO2023062870A1 (en) Metal-prepreg complex
JP2023065897A (en) Composite member
JP4837897B2 (en) Fiber reinforced resin and method for producing the same