JP2023060916A - ワーク加工装置 - Google Patents

ワーク加工装置 Download PDF

Info

Publication number
JP2023060916A
JP2023060916A JP2021170595A JP2021170595A JP2023060916A JP 2023060916 A JP2023060916 A JP 2023060916A JP 2021170595 A JP2021170595 A JP 2021170595A JP 2021170595 A JP2021170595 A JP 2021170595A JP 2023060916 A JP2023060916 A JP 2023060916A
Authority
JP
Japan
Prior art keywords
limit value
data
upper limit
lower limit
machining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021170595A
Other languages
English (en)
Inventor
正 小川
Tadashi Ogawa
信也 熊崎
Shinya Kumazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Corp
Original Assignee
Fuji Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Corp filed Critical Fuji Corp
Priority to JP2021170595A priority Critical patent/JP2023060916A/ja
Publication of JP2023060916A publication Critical patent/JP2023060916A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Machine Tool Sensing Apparatuses (AREA)
  • Numerical Control (AREA)

Abstract

【課題】 ワーク加工装置において、監視用のしきい値を適切に設定する。【解決手段】 ワーク加工装置は、第1設定部によって設定された基礎データに基づいて、前記加工工程に沿って前記検出可能物理量の状態を監視するための監視範囲の上限値及び/または下限値を設定する第2設定部と、前記第2設定部によって設定された前記監視範囲の前記上限値及び/または前記下限値が変更された際、前記上限値及び/または前記下限値の変更結果に基づいて前記基礎データを変更する変更部と、前記変更部によって変更された前記基礎データを変更後基礎データとして記憶する記憶部と、を備えている。【選択図】 図7

Description

本明細書は、ワーク加工装置に関する。
ワーク加工装置の一形式として、特許文献1には、加工負荷監視方式により加工負荷を監視する数値制御工作機械が開示されている。その加工負荷監視方式においては、試切削時の複数回の加工負荷のサンプリングデータから、加工負荷の基準データと分散を求め(基準データ・テーブル)、その分散の値を用いてサンプリングデータのばらつきに応じたしきい値を設定し、負荷監視手段により、基準データと加工負荷の実測データとを一定時間毎に比較して、その差がしきい値を超えたか否かを検出して、加工負荷を監視している。
特開平7-132440号公報
上述した特許文献1に記載されているワーク加工装置において、複数のサンプリングデータ(実測データ)のなかには工作機械(加工)の異常を示す異常データが含まれる場合があり、この場合には、加工負荷の基準データと分散とから設定される監視用のしきい値が誤って算出されるおそれがあった。
このような事情に鑑みて、本明細書は、監視用のしきい値を適切に設定することができるワーク加工装置を開示する。
本明細書は、加工工具を使用して加工工程に沿って実行可能である、ワークの加工に係る物理量であって検出可能である検出可能物理量を検出する検出部と、前記加工工程の運転中における前記検出部によって実際に検出された実検出データに基づいて基礎データを設定する第1設定部と、前記第1設定部によって設定された前記基礎データに基づいて、前記加工工程に沿って前記検出可能物理量の状態を監視するための監視範囲の上限値及び/または下限値を設定する第2設定部と、前記第2設定部によって設定された前記監視範囲の前記上限値及び/または前記下限値が変更された際、前記上限値及び/または前記下限値の変更結果に基づいて前記基礎データを変更する変更部と、前記変更部によって変更された前記基礎データを変更後基礎データとして記憶する記憶部と、を備えたワーク加工装置を開示する。
本開示によれば、第2設定部は、第1設定部によって設定された基礎データに基づいて、ワークの加工工程に沿って検出可能物理量の状態を監視するための監視範囲の上限値及び/または下限値を設定することが可能となる。さらに、変更部は、第2設定部によって設定された監視範囲の上限値及び/または下限値が変更された際、上限値及び/または下限値の変更結果に基づいて基礎データを変更し、記憶部は、変更部によって変更された基礎データを変更後基礎データとして記憶することが可能となる。これにより、監視範囲の上限値及び/または下限値を設定する基礎となる基礎データを、上限値及び/または下限値の変更結果に基づいて変更することができるため、監視用のしきい値を適切に設定することができる。
ワーク加工装置が適用された加工システム10を示す正面図である。 図1に示す旋盤モジュール30Aを示すブロック図である。 入出力装置を示す正面図である。 負荷監視範囲調整画面100を示す図である。 負荷監視範囲調整画面100を示す図である。 図1に示すドリミルモジュール30Bを示すブロック図である。 図2に示す制御装置47にて実施されるプログラムを表すフローチャートである。 図2に示す制御装置47にて実施されるプログラムを表すフローチャートである。 ティーチングデータ、マスターデータ及び実検出データの一例を示す図である。 作業者の操作によって先頭2点のティーチングデータ上限値を修正した一例を示す図である。 作業者の操作によって先頭2点のティーチングデータ上限値を修正した際に、先頭2点のマスターデータ上限値を自動的に修正した一例を示す図である。 先頭2点のマスターデータ上限値を自動的に修正した際に、ティーチングデータ上限値及びティーチングデータ下限値を自動的に修正した一例を示す図である。
(加工システム)
以下、加工システムが適用された一実施形態について説明する。加工システム10は、図1に示すように、複数のベースモジュール20と、そのベースモジュール20に設けられた複数(本実施形態では10個)の作業機モジュール30(加工装置)と、多関節ロボット(以下、ロボットと称する場合もある。)70と、を備えている。以下の説明では、加工システム10に関する「前後」,「左右」,「上下」を、加工システム10の正面側から見た場合における前後,左右,上下として扱うこととする。
加工システム10は、複数のモジュール(ベースモジュール20や作業機モジュール30)をライン化して構成されたライン生産設備としてワークWを機械加工する。加工システム10は、加工システム10を統括して管理する制御装置であるラインPC(ライン制御装置)10aを備えている。ラインPC10aは、後述する各制御装置47,57,90とネットワーク(不図示)を介して通信可能に接続されている。
ラインPC10aは、マスターPC1に通信可能に接続されている。マスターPC1は、図1に示すように、ラインPC10aを介して複数の加工システム10を統括して制御・管理するマスター制御装置である。
ベースモジュール20は、搬送装置であるロボット70、及びロボット70を制御するロボット制御装置(不図示)を備えている。
作業機モジュール30は、複数種類あり、旋盤モジュール30A、ドリミルモジュール30B、加工前ストックモジュール30C、加工後ストックモジュール30D、検測モジュール30E、仮置モジュール30Fなどである。
(旋盤モジュール)
旋盤モジュール30Aは、旋盤がモジュール化されたものである。旋盤は、加工対象物であるワークWを回転させて、固定した切削工具(不図示;加工工具)で加工を実施する加工装置(工作機械)である。旋盤モジュール30Aは、主軸台(不図示)、工具台(不図示)、工具台移動装置(不図示)、及びモジュール制御装置47(図2参照。以下、制御装置47と称する場合もある。)を有している。
主軸台は、ワークWを回転可能に保持するものである。主軸台は、前後方向に沿って水平に配置された主軸(不図示)を回転可能に支持する。主軸の先端部にはワークWを把持するチャック(不図示)が設けられる。主軸は、回転伝達機構(不図示)を介してサーボモータ42d(図2参照)によって回転駆動される。サーボモータ42dの電流(駆動電流)は、電流センサ42e(図2参照)によって検出され、その検出結果は後述する制御装置47に出力されている。
工具台は、切削工具に送り運動を与える装置である。工具台は、いわゆるタレット型の工具台であり、ワークWの切削をする複数の切削工具が装着される工具保持部(不図示)と、工具保持部を回転可能に支持するとともに所定の切削位置に位置決め可能である回転駆動部43c(図2参照)と、を有している。
工具台移動装置は、工具台ひいては切削工具を上下方向(X軸方向)及び前後方向(Z軸方向)に沿って移動させる装置である。工具台移動装置は、工具台をX軸方向に沿って移動させるX軸駆動装置(不図示)と、工具台をZ軸方向に沿って移動させるZ軸駆動装置(不図示)とを有している。
X軸駆動装置は、上下方向に沿って摺動可能であるX軸スライダ(不図示)を移動させるためのサーボモータ44a2(図2参照)を有している。Z軸駆動装置は、X軸スライダに対して前後方向に沿って摺動可能に取り付けられたZ軸スライダ(不図示)を移動させるためのサーボモータ44b2(図2参照)を有している。Z軸スライダには、工具台が取り付けられている。サーボモータ44a2の電流(駆動電流)は、電流センサ44a3(図2参照)によって検出され、その検出結果は後述する制御装置47に出力されている。サーボモータ44b2の電流(駆動電流)は、電流センサ44b3によって検出され、その検出結果は後述する制御装置47に出力されている。
(モジュール制御装置、入出力装置など)
制御装置(モジュール制御装置)47は、主軸、主軸台、回転駆動部43c、工具台移動装置などを駆動制御する制御装置である。制御装置47は、図2に示すように、入出力装置47a、記憶装置47b、通信装置47c、回転駆動部43c、電流センサ42e,44a3,44b3及びサーボモータ42d,44a2,44b2に接続されている。制御装置47は、マイクロコンピュータ(不図示)を有しており、マイクロコンピュータは、バスを介してそれぞれ接続された入出力インターフェース、CPU、RAMおよびROM(いずれも不図示)を備えている。CPUは、各種プログラムを実施して、入出力装置47a、記憶装置47b、通信装置47c及び電流センサ42e,44a3,44b3からデータを取得したり、入出力装置47a、主軸(サーボモータ42d)、回転駆動部43c及び工具台移動装置(サーボモータ44a2,44b2)を制御したりする。RAMは同プログラムの実施に必要な変数を一時的に記憶するものであり、ROMは前記プログラムを記憶するものである。
入出力装置47aは、図1に示すように、作業機モジュール30の前面に設けられており、作業者が各種設定、各種指示などをモジュール制御装置47に入力したり、作業者に対して運転状況やメンテナンス状況などの情報を表示したりするためのものである。入出力装置47aは、HMI(ヒューマンマシンインターフェース)、マンマシンインターフェースなどの人間と機械とが情報をやり取りする装置である。入出力装置47aは、作業者が操作入力可能である操作装置である。
入出力装置47aは、図3に示す入出力装置11である。入出力装置11は、表示パネル11a、各個操作補助ボタン11b、警報ブザー11c、USB差込口11d、編集可/不可セレクトキー11e、非常停止ボタン11f、自動/各個セレクトスイッチ11g、運転準備ボタン11h、自動起動ボタン11i、連続切ボタン11j、NC起動ボタン11k、NC一時停止ボタン11l、主軸起動ボタン11m、主軸停止ボタン11n、タレット正転ボタン11o、タレット逆転ボタン11p、扉インターロックセレクトキー11q、扉ロック解除ボタン11r、実行ボタン11s、及び異常リセットボタン11tを備えている。
表示パネル11aは、各種情報を表示するタッチパネル式のモニターである。USB差込口11dは、データを入出力する際にUSB記憶装置を差し込むためのポートである。編集可/不可セレクトキー11eは、記憶装置47b,57b,90bや制御装置内の記憶装置に記憶されているプログラムやパラメータ等のデータの編集操作を行うときに使用する。セレクトキー11eが左位置に位置するときには編集操作ができず、右位置に位置するときに編集操作が可能となる。尚、ドリミルモジュール30Bの入出力装置57aの構成もスイッチ/ボタンが多少異なるものの旋盤モジュール30Aの入出力装置47aの構成とほぼ同様である。
(表示パネル)
表示パネル11aには、図A4,4Bに示す負荷監視範囲調整画面100が表示可能である。負荷監視範囲調整画面100は、負荷データを表示可能であるデータ表示部110、及び負荷データの負荷監視範囲を調整するための操作部120が表示されている。操作部120は、作業者によって入力操作可能である後述の各操作キー121~148を備えている。
波形表示キー121は、負荷データの波形全体を表示するためのキーである。縦軸キー122は、負荷データの波形表示の拡大・縮小を縦軸に反映するためのキーである。横軸キー123は、負荷データの波形表示の拡大・縮小を横軸に反映するためのキーである。表示縮小キー124は、負荷データの波形表示を縮小するためのキーである。表示拡大キー125は、負荷データの波形表示を拡大するためのキーである。保存キー126は、負荷データの負荷監視範囲の変更を保存するためのキーである。リターンキー127は、データ表示部110の表示を前の画面(一つ前の画面)に戻し、または操作を一つ前に戻すためのキーである。
表示軸選択キー128は、負荷データを表示する(監視範囲を調整したい)軸を選択するためのキーである。ここで、「軸」は、ワークWを加工するために駆動制御される駆動軸であり、例えば旋盤モジュール30Aでは切削工具の上下方向駆動軸であるX軸、切削工具の前後方向駆動軸であるZ軸、及びワークWを回転可能に支持する主軸である。表示位置移動キー129は、一連の負荷データのうち表示させたい所望の箇所(例えば、監視範囲)に表示位置(表示枠)を移動するためのキーである。
プログラム表示キー130は、データ表示部110に負荷データに代えてまたは同時に加工プログラムを表示するためのキーである。監視範囲左方移動キー131は、編集対象(変更対象)となる負荷データの監視範囲の場所(監視箇所)を1つ前の監視箇所に移動させるためのキーである。選択中監視範囲表示ダイアログ132は、編集するために現在選択されている監視箇所を表示するダイアログを表示するためのキーである。このダイアログは、現在選択中(編集中)の監視範囲の順番と加工プログラム中の監視範囲の総数とを表示可能である。監視範囲右方移動キー133は、編集対象となる負荷データの監視箇所を次の監視箇所に移動させるためのキーである。
範囲選択用キー134は、編集(調整)対象となる負荷データの監視範囲のうち、上限値及び/または下限値を編集(調整)する範囲(調整範囲)を選択して指定するためのキーである。波形調整用キー135は、指定した調整範囲の波形(上下限値の波形)を調整するためのキーである。範囲選択用キー134がオンされると、操作部120は図4Aに示す画面となり、調整範囲を選択して指定する操作が可能となり、波形調整用キー135がオンされると、操作部120は図4Bに示す画面となり、調整範囲の波形(上下限値の波形)を調整する操作が可能となる。
調整(編集)範囲開始位置指定キー136は、編集(調整)対象となる負荷データの監視範囲のうち、上限値及び/または下限値を編集(調整)する範囲(調整範囲)の開始位置を指定するためのキーである。調整(編集)範囲終了位置指定キー137は、編集(調整)対象となる負荷データの監視範囲のうち、上限値及び/または下限値を編集(調整)する範囲(調整範囲)の終了位置を指定するためのキーである。このように指定した開始位置と終了位置とにより規定された範囲を指定範囲ともいう。
左移動キー138は、指定された調整範囲(指定範囲)の開始位置及び終了位置を左方向に移動させるためのキーである。右移動キー139は、指定された調整範囲の開始位置及び終了位置を右方向に移動させるためのキーである。移動倍率キー140は、指定された調整範囲の開始位置及び終了位置の移動倍率を所定倍率(例えば10倍)に設定するためのキーである。移動倍率キー141は、指定された調整範囲の開始位置及び終了位置の移動倍率を所定倍率(例えば100倍)に設定するためのキーである。リセットキー142は、編集操作をリセットするためのキーである。
上限値拡大キー143は、調整範囲(指定範囲)の上限値を広げる(換言すると、上限値を画面の上下方向に沿って拡大する)ためのキーである。この場合、指定範囲の変更(調整)後の上限値は、変更(調整)前の上限値を上方に向けて平行移動されたものとなるが、その移動量は、作業者が任意に設定することが可能である。上限値縮小キー144は、調整範囲(指定範囲)の上限値を狭める(換言すると、上限値を画面の上下方向に沿って縮小する)ためのキーである。この場合、指定範囲の変更後の上限値は、変更前の上限値を下方に向けて平行移動されたものとなるが、その移動量は、作業者が任意に設定することが可能である。
下限値拡大キー145は、調整範囲(指定範囲)の下限値を広げる(換言すると、下限値を画面の上下方向に沿って拡大する)ためのキーである。この場合、指定範囲の変更後の下限値は、変更前の下限値を下方に向けて平行移動されたものとなるが、その移動量は、作業者が任意に設定することが可能である。下限値縮小キー146は、調整範囲(指定範囲)の下限値を狭める(換言すると、下限値を画面の上下方向に沿って縮小する)ためのキーである。この場合、指定範囲の変更後の下限値は、変更前の下限値を上方に向けて平行移動されたものとなるが、その移動量は、作業者が任意に設定することが可能である。
上限値最大化キー147は、調整範囲(指定範囲)の上限値を指定範囲内の最大値まで広げる(換言すると、上限値をその最大値に統一する)ためのキーである。この場合、指定範囲の上限は、指定範囲内の最大値にて平らにすることが可能となる。尚、上限値は、指定範囲内の最大値まででなく、指定範囲内の最大値より大きい値である任意の値(例えば負荷データの取り得る最大値未満)まで広げるようにしてもよい。
下限値最小化キー148は、調整範囲(指定範囲)の下限値を指定範囲内の最小値まで広げる(換言すると、下限値をその最小値に統一する)ためのキーである。この場合、指定範囲の下限は、指定範囲内の最小値にて平らにすることが可能となる。尚、下限値は、指定範囲内の最小値まででなく、指定範囲内の最小値より小さい値である任意の値(例えば0(ゼロ)より大きい値)まで広げるようにしてもよい。尚、キーは、スイッチ、押しボタンのことである。
記憶装置47bは、旋盤モジュール30Aの制御に係るデータ、例えば、制御プログラム(加工プログラム)、制御プログラムで使用するパラメータ、各種設定や各種指示に関するデータ、負荷データ(加工データ)を含む負荷検知機能データ、生産数(加工数)を含む生産データなどを記憶している。通信装置47cは、インターネット(またはLAN(ローカル・エリア・ネットワーク(以下、ネットワークと称する場合もある。)))を介して、同一加工システム内における他のモジュールとの間の相互通信、異なる加工システムとの間の相互通信、又は複数の加工システムを統括管理するマスターPC1との間の相互通信を行うための装置である。
(ドリミルモジュール)
ドリミルモジュール30Bは、ドリルによる孔開けやミーリング加工等を行うマシニングセンタがモジュール化されたものである。マシニングセンタは、固定したワークWに対し、回転する工具(回転工具;加工工具)を押し当てて加工を実施する加工装置(工作機械)である。ドリミルモジュール30Bは、主軸ヘッド(不図示)、主軸ヘッド移動装置(不図示)、ワークテーブル54(図5参照)、及びモジュール制御装置57(図5参照。本明細書にて制御装置57と称する場合もある。)を有している。
主軸ヘッドは、主軸(不図示)を回転可能に支持する。主軸の先端(下端)部には、ワークWの切削をする切削工具(例えば、ドリルやエンドミル等の加工工具;不図示)が主軸チャック(不図示)を介して装着可能である。主軸は、サーボモータ52c(図5参照)によって回転駆動される。主軸チャックは、切削工具をクランプ/アンクランプする。サーボモータ52cの電流(駆動電流)は、電流センサ52d(図5参照)によって検出され、その検出結果は後述する制御装置57に出力されている。
主軸ヘッド移動装置(不図示)は、主軸ヘッドひいては切削工具を上下方向(Z軸方向)、前後方向(Y軸方向)及び左右方向(X軸方向)に沿って移動させる装置である。主軸ヘッド移動装置は、主軸ヘッドをZ軸方向に沿って移動させるZ軸駆動装置(不図示)と、主軸ヘッドをX軸方向に沿って移動させるX軸駆動装置(不図示)と、主軸ヘッドをY軸方向に沿って移動させるY軸駆動装置(不図示)と、を有している。Z軸駆動装置は、X軸スライダ(不図示)に対して摺動可能に取り付けられたZ軸スライダ(不図示)をZ軸方向に沿って移動させる。Z軸スライダには、主軸ヘッドが取り付けられている。X軸駆動装置は、Y軸スライダ(不図示)に対して摺動可能に取り付けられたX軸スライダをX軸方向に沿って移動させる。Y軸駆動装置は、本体(不図示)に対して摺動可能に取り付けられたY軸スライダをY軸方向に沿って移動させる。Z軸駆動装置は、内蔵のサーボモータ53a1(図5参照)を駆動源として機能する。X軸駆動装置は、内蔵のサーボモータ53b1(図5参照)を駆動源として機能する。Y軸駆動装置は、内蔵のサーボモータ53c1(図5参照)を駆動源として機能する。各サーボモータ53a1,53b1,53c1の電流(駆動電流)は、各電流センサ53a2,53b2,53c2(図5参照)によってそれぞれ検出され、それら検出結果は後述する制御装置57に出力されている。
ワークテーブル54は、チャック(不図示)を介してワークWを固定保持する。ワークテーブル54は、ワークテーブル回転装置(不図示)に固定されている。ワークテーブル回転装置は、前後方向に沿って延びる軸線まわりに回転駆動される。
(モジュール制御装置、入出力装置など)
制御装置(モジュール制御装置)57は、主軸、主軸ヘッド移動装置などを駆動制御する制御装置である。制御装置57は、図5に示すように、入出力装置57a、記憶装置57b、通信装置57c、ワークテーブル54、電流センサ52d,53a2,53b2,53c2及びサーボモータ52c,53a1,53b1,53c1に接続されている。制御装置57は、マイクロコンピュータ(不図示)を有しており、マイクロコンピュータは、バスを介してそれぞれ接続された入出力インターフェース、CPU、RAMおよびROM(いずれも不図示)を備えている。CPUは、各種プログラムを実施して、入出力装置57a、記憶装置57b、通信装置57c及び電流センサ52d,53a2,53b2,53c2からデータを取得したり、入出力装置57a、主軸(サーボモータ52c)及び主軸ヘッド移動装置(サーボモータ53a1,53b1,53c1)を制御したりする。RAMは同プログラムの実施に必要な変数を一時的に記憶するものであり、ROMは前記プログラムを記憶するものである。
入出力装置57aは、図1に示すように、作業機モジュール30の前面に設けられており、入出力装置47aと同様に機能する。入出力装置57aは、入出力装置47aと同様に入出力装置11である。尚、タレット正転ボタン11oの代わりに主軸クランプボタンが採用され、タレット逆転ボタン11pの代わりに主軸アンクランプボタンが採用されている。これら以外については、入出力装置47aと同様の構成である。記憶装置57bは、ドリミルモジュール30Bの制御に係るデータ、例えば、制御プログラム(加工プログラム)、制御プログラムで使用するパラメータ、各種設定や各種指示に関するデータ、負荷データ(加工データ)を含む負荷検知機能データ、生産数(加工数)を含む生産データなどを記憶している。通信装置57cは、通信装置47cと同様な装置である。
(ストックモジュール、検測モジュール等)
加工前ストックモジュール30Cは、加工システム10にワークWを投入するモジュール(ワーク投入モジュール)である。加工後ストックモジュール30Dは、加工システム10によって実施されるワークWに対する一連の加工工程が完了した完成品を収納して排出するモジュール(ワーク排出モジュール)である。検測モジュール30Eは、上流にて加工されたワークW(例えば加工中又は加工後のワークW)を検測(測定、計測)するもの(計測装置)である。仮置モジュール30Fは、加工システム10による一連の加工工程中において、ワークWを仮置きするためのものである。検測モジュール30E及び仮置モジュール30Fは、旋盤モジュール30A及びドリミルモジュール30Bと同様に、走行室(不図示)を有している。
(ワークの加工)
さらに、上述したワーク加工装置(旋盤モジュール30A)によるワークWの加工(切削)について図6に示すフローチャートに沿って説明する。制御装置47は、本フローチャートに沿った処理を実施する。
制御装置47は、ステップS102において、旋盤モジュール30Aにて新たなワークWの加工(所定数量)の開始の指示があったか否かを判定する。制御装置47は、ワークWを加工するための加工プログラムが新たに開始されている場合には、ワークWの加工開始の指示があったと判定し(ステップS102にて「YES」)、プログラムをステップS104に進める。制御装置47は、ワークWを加工するための加工プログラムが新たに開始されていない場合には、ワークWの加工開始の指示がなかったと判定し(ステップS102にて「NO」)、ワークWの加工開始指示があるまでステップS102の判定処理を繰り返し実施する。
制御装置47は、ステップS104において、ワークWの加工を加工プログラムに従って実施する。加工プログラムは、複数の加工処理(加工工程)を含んでおり、制御装置47は、これら加工処理をプログラムの順番に沿って実施する。
制御装置47は、ステップS106において、ティーチングが完了したか否かを示すフラグ(ティーチング完了フラグと称してもよい。)Fがオンであるか否かを判定する。尚、ティーチングは、N回分の負荷データによって監視範囲の上下限値が設定される工程ということもでき、ティーチングデータは、N回分の負荷データによって設定された監視範囲の上下限値であるということができる。フラグFが「オン」であるときにティーチングが完了である旨(監視範囲の上下限値が設定済みである旨)を示し、フラグFが「オフ」であるときにティーチングが未完了である旨(監視範囲の上下限値が未設定である旨)を示す。尚、ワーク加工開始指示があったときに、フラグFは「オフ」に設定される。
制御装置47は、ワークWの加工が開始された後からティーチングが完了されるまでの間は、フラグFは「オフ」であり、ステップS106にて「NO」と判定し、プログラムをステップS108以降(ティーチング)に進める。一方、制御装置47は、ティーチングが完了された場合には、フラグFは「オン」となり、ステップS106にて「YES」と判定し、プログラムをステップS124以降(通常の加工)に進める。
(ティーチング)
制御装置47は、ステップS108-S122において、ワークWの加工をN回実施することでティーチングデータを導出(記憶)するティーチングを実施する。すなわち、制御装置47は、ワークWの加工(ワークW一つの加工)がN回完了するまで、ワークWの加工毎に、加工負荷を検出して、ティーチングデータを更新する。尚、Nは自然数であり、N回は数回~十数回に設定される。
最初に、制御装置47は、ワークWの加工(ワークW一つの加工)が完了するまで、加工負荷を検出して、ティーチングデータを更新する(ステップS108-S114)。
具体的には、制御装置47は、ステップS108において、ワークWの加工に係る物理量であって検出可能である検出可能物理量である加工負荷を、実際に検出された実検出データとして検出する(検出部)。具体的には、加工負荷は、ワークWを切削工具により切削(加工)する際に発生する負荷であり、加工に対して抵抗となる物理量(加工抵抗)である。ここでは、加工負荷は、駆動する側(本実施例では、上述した各サーボモータ)に対して、加工抵抗を発生させるワークWや切削工具(駆動される側)が及ぼす力や消費するエネルギーの大きさをいい、例えば駆動軸にかかるトルク負荷のことをいう。
ステップS108においては、制御装置47は、主軸を駆動するためのサーボモータ42dの駆動電流を検出した電流センサ42eから取得し、その検出電流からサーボモータ42dの加工負荷(主軸にかかるトルク負荷(主軸加工負荷))を導出することができる(導出部)。例えば、加工負荷は、駆動電流と加工負荷との相関関係を示すマップまたは演算式を使用することにより、検出電流に対応する加工負荷として導出される。主軸加工負荷と同様に、サーボモータ44a2の加工負荷であるX軸加工負荷、及びサーボモータ44b2の加工負荷であるZ軸加工負荷も導出することができる。
尚、加工負荷の検出は、所定の短時間(本実施例のサンプリング周期は、数msec(例えば8msec))毎に実施される。加工負荷の検出は、一連の加工プログラム(加工工程)において所定の複数の加工ポイントにて実施されるようになっており、同じ加工プログラムであれば、ワークW毎に同じ加工ポイントにて加工負荷をそれぞれ検出することが可能となっている。加工ポイントは、例えば、加工工程中の任意の加工場所であり、加工時刻、すなわち加工開始時刻からの経過時間でもよい。
さらに、制御装置47は、ステップS110において、ワークW毎に、加工工程に沿って加工負荷の状態を監視するための監視範囲(ティーチングデータ)の基礎となるデータであるマスターデータを、加工工程の運転中における上記ステップS108の処理(検出部)によって実際に検出された実検出データ(加工負荷)に基づいて設定する(第1設定部)。最終的に、制御装置47は、ワークWの加工(ワーク加工)をN回実施し、N回分の負荷データ(実検出データ)を使用することにより、マスターデータひいてはティーチングデータを自動的に設定する。マスターデータは、監視範囲の上下限値(ティーチングデータ)を設定するための基礎となるデータ(基礎データ)である。
制御装置47は、加工ポイント毎に検出した実検出データに基づいてマスターデータの上限値(マスターデータ上限値MD_UL(主として図8参照))及び下限値(マスターデータ下限値MD_LL(主として図8参照))を設定する。例えば、制御装置47は、加工ポイントの検出した複数(N回分)の実検出データのうち最大値をマスターデータ上限値MD_ULとし、最小値をマスターデータ下限値MD_LLとして設定することができる(ピークホールド形式)。図8にマスターデータ及びティーチングデータの一例を示す。例えば、マスターデータは、図8にて太い一点鎖線で示される。マスターデータの上限値(マスターデータ上限値)MD_ULは、濃い太い一点鎖線で示され、マスターデータの下限値(マスターデータ下限値)MD_LLは、薄い太い一点鎖線で示されている。さらに、ティーチングデータ上限値(ティーチングデータ上限値)TD_ULは、濃い太い実線で示され、ティーチングデータの下限値(ティーチングデータ下限値)TD_LLは、薄い太い実線で示されている。尚、データ表示部110に実際に表示されるのは、ティーチングデータのみであり、マスターデータは表示されない。但し、必要に応じて、マスターデータも表示されるようにしてもよい。
尚、監視範囲は、加工工程に沿って加工負荷(検出可能物理量)の状態を監視(判定)するための範囲である。負荷データが監視範囲内にあれば、加工負荷は正常状態であり、監視範囲外であれば、加工負荷は異常状態である。監視範囲は、加工工程に沿った方向(図8に示す図で横軸方向)では監視を開始する監視開始ポイントから監視を終了する監視終了ポイントまでの間の範囲である。監視範囲は、加工負荷の大きさに沿った方向(図8に示す図で縦軸方向)では上限値と下限値とによって規定される範囲である。尚、監視範囲の上下限値は監視用のしきい値と称してもよい。
さらに、制御装置47は、ステップS112において、上記ステップS110の処理によって設定されたマスターデータに基づいて、加工工程に沿って加工負荷(検出可能物理量)の状態を監視するための監視範囲の上限値及び/または下限値すなわちティーチングデータを設定する(第2設定部)。さらに、制御装置47は、ティーチングデータの上限値及び/またはティーチングデータの下限値を、マスターデータに係るオフセット量に基づいて設定するのが好ましい。
例えば、監視範囲の上下限値(ティーチングデータ)は、マスターデータにオフセット量を加味しないで設定されたり、マスターデータに所定のオフセット量を加味して設定されたりするのが好ましい。すなわち、ティーチングデータは、オフセット量が0である場合には、マスターデータと同一のデータに設定され、オフセット量が0より大きい場合には、マスターデータにオフセット量を考慮したデータに設定される。
本実施形態では、オフセット量は、マスターデータの上限値(マスターデータ上限値MD_UL)及びマスターデータの下限値(マスターデータ下限値MD_LL)に基づいて算出している。オフセット量は、マスターデータ上限値MD_ULとマスターデータ下限値MD_LLとの差分量MD_Dに所定比率N%を乗算した値(=MD_D×α=(MD_UL-MD_LL)×(N/100))として算出することができる。
さらに、本実施形態では、ティーチングデータ上限値TD_ULは、マスターデータ上限値MD_ULに基づいて算出することが可能である。例えば、ティーチングデータ上限値TD_ULは、マスターデータ上限値MD_ULに所定値を加算したり、マスターデータ上限値MD_ULに所定率を乗算したりして算出できる。また、ティーチングデータ下限値TD_LLは、ティーチングデータ上限値TD_ULと同様に、マスターデータ下限値)MD_LLに基づいて算出することが可能である。ティーチングデータ下限値TD_LLは、マスターデータ下限値MD_LLに所定値を減算したり、マスターデータ下限値MD_LLに所定率を乗算したりして算出できる。
本実施形態では、上述したように、オフセット量は、マスターデータの上限値及び下限値の差分量のN%に設定されている。例えばNが100に設定された場合には、オフセット量は下記数1で算出される。
(数1)
オフセット量=(マスターデータ上限値MD_UL-マスターデータ下限値MD_LL)×(N/100)
=(マスターデータ上限値MD_UL-マスターデータ下限値MD_LL)×(100/100)
尚、オフセット量は、閾値幅(加工工程(加工時間)方向に設定された上下限値(閾値)の幅)ごとに設定されている。
さらに、ティーチングデータは、マスターデータにオフセット量を加味することにより算出することができる。具体的には、ティーチングデータ上限値TD_ULは、下記数2に示すように、マスターデータ上限値MD_ULにオフセット量を加算することで算出され、ティーチングデータ下限値TD_LLは、下記数3に示すように、マスターデータ下限値MD_LLからオフセット量を減算することで算出される。
(数2)
ティーチングデータ上限値TD_UL=マスターデータ上限値MD_UL+(マスターデータ上限値MD_UL-マスターデータ下限値MD_LL)×N/100
(数3)
ティーチングデータ下限値TD_LL=マスターデータ下限値MD_LL-(マスターデータ上限値MD_UL-マスターデータ下限値MD_LL)×N/100
尚、本実施形態では、ティーチングデータ上限値TD_UL及びティーチングデータ下限値TD_LLの両方について、オフセット量を同一の値に設定したが、オフセット量を異なる値に設定するようにしてもよい。この場合、上側のオフセット量を下側のオフセット量より大きい値となるようにしてもよく、その逆に設定してもよい。
制御装置47は、ステップS114において、ワークWの加工(ワークW一つの加工)が完了したか否かを判定する。制御装置47は、ワークWの加工が完了するまで、ステップS114にて「NO」と判定し、ステップS108-S112の処理(加工負荷の検出、マスターデータの設定・更新、ティーチングデータの設定・更新)を引き続き実施する。一方、制御装置47は、ワークWの加工が完了すると、ステップS114にて「YES」と判定し、プログラムをステップS116に進め、更新したマスターデータ及びティーチングデータを記憶装置47bに記憶する(ステップS116)。さらに、制御装置47は、ティーチングの回数(ティーチング回数)をインクリメントする(1つ加算する。;ステップS118)。
さらに、制御装置47は、ティーチング回数が所定回数(ティーチング完了数と称してもよい。例えば、N回)に到達するまで、ステップS120にて「NO」と判定し、マスターデータ及びティーチングデータの更新・記憶を繰り返す(ステップS108-S118)。一方、制御装置47は、ティーチング回数がティーチング完了数に到達した場合、ステップS120にて「YES」と判定し、ティーチングが完了したと判断してフラグFをオンする(ステップS122)。
(通常加工)
制御装置47は、ティーチングが完了された場合には、ステップS106にて「YES」と判定し、プログラムをステップS124以降に進め、通常加工を実施する。制御装置47は、ステップS124において、ステップS108と同様に加工負荷を検出し、検出した実検出データ(加工負荷)と、先に記憶したティーチングデータとを比較する。具体的には、制御装置47は、実検出データが監視範囲外であるか否か(すなわち実検出データが監視範囲の上下限値(閾値)内であるか否か)を判定することにより、ワークWの加工に関する加工負荷の異常(ワークWの負荷異常)の有無を判定する。
実検出データが監視範囲内である場合には、制御装置47は、ステップS126にて「NO」と判定し、全てのワークWの加工(加工プログラムにて設定されている全てのワークWの加工)が完了するまで(ステップS132にて「NO」と判定し)、ワークWの負荷異常の有無の判定(ステップS124)を実施する。尚、実検出データが監視範囲内である場合には、制御装置47は、ワークWの負荷異常が有る旨の判定をしない(換言すると、ワークWの負荷異常がない旨の判定をする。)。
一方、実検出データが所定回数連続して監視範囲外である場合には、制御装置47は、ステップS126,S128にてそれぞれ「YES」と判定し、ワークWの負荷異常が有る旨の判定をし、その旨の出力を実施する(ステップS130)。例えば、ステップS130において、制御装置47は、ワークWの負荷異常が発生した旨の警告を発する。その後、制御装置47は、プログラムをステップS132に進める。尚、所定回数は例えば3~5に設定されている。また、制御装置47は、実検出データが所定回数連続して監視範囲外でない場合には、制御装置47は、ステップS126,S128にてそれぞれ「YES」、「NO」と判定し、ワークWの負荷異常が有る旨の判定をしないで、プログラムをステップS132に進める。
制御装置47は、ステップS132において、全てのワークWの加工が完了するまで(ステップS132にて「NO」と判定し)、ワークWの負荷異常の有無の判定(ステップS124)を実施する。また、制御装置47は、全てのワークWの加工が完了すると(ステップS132にて「YES」と判定し)、本フローチャートを終了する。
(マスターデータの変更、記憶)
さらに、マスターデータの変更・記憶処理について図7に示すフローチャートに沿って説明する。制御装置47は、本フローチャートに沿った処理を実施する。マスターデータの変更・記憶処理(以下、マスターデータ変更処理と称する場合がある。)は、基本的には、ワークWを加工していないとき(ワークWの非加工時)に、実施される。尚、本処理は、上述したティーチング処理及び通常加工処理において実施されるようにしてもよい。
制御装置47は、ステップS202において、実検出データ及びティーチングデータ(監視範囲の上下限値)を表示するか否かを判定する。例えば、作業者(ユーザ)によって実検出データ及びティーチングデータを表示するための操作が実施された場合には、実検出データ及びティーチングデータを表示すると判定し(ステップS202にて「YES」と判定し)、制御装置47は、実検出データ及びティーチングデータを表示パネル11aに表示する(ステップS204)。
作業者は、表示パネル11aに表示された実検出データ及びティーチングデータに基づいて、監視範囲の上下限値の調整が必要であるかを検討し、監視範囲の上下限値を見直す必要があれば、監視範囲の上下限値を調整(編集)する(ステップS206~S208)。尚、作業者によって実検出データ及びティーチングデータを表示するための操作が実施されない場合には、実検出データ及びティーチングデータを表示しないと判定し(ステップS202にて「NO」と判定し)、制御装置47は、本フローチャートを一旦終了し、実検出データ及びティーチングデータを表示パネル11aに表示しない。
制御装置47は、プログラムをステップS204に進めて、監視範囲の上下限値(ティーチングデータ)を調整するか否かを作業者に判断させるために、負荷データ(実検出データ)及び先に記憶した(または調整した)監視範囲の上下限値をデータ表示部110に表示する(図8参照)。
作業者が、このようにデータ表示部110に表示された実検出データ及び監視範囲を見て、監視範囲の調整が必要であると考えた場合には、監視範囲を調整するための調整操作を行う。一方、監視範囲の調整が不要であると考えた場合には、作業者は調整操作を行わない。
調整操作は、作業者が調整したい監視範囲を含む軸を選択したり、調整したい監視範囲を選択したり、監視範囲のうち調整したい範囲(調整範囲、指定範囲)を指定したり、指定範囲(ひいては監視範囲)の上限値を拡大・縮小したり、指定範囲の下限値を拡大・縮小したりする操作である。
具体的には、調整したい軸を選択する場合、作業者は、表示軸選択キー128を操作する。さらに、調整したい監視範囲(加工工程)を選択する場合、作業者は、範囲選択用キー134を操作する。尚、作業者は、表示位置移動キー129、監視範囲左方移動キー131及び監視範囲右方移動キー133のうちいずれかを操作してもよい。
作業者が範囲選択用キー134をオンすると、操作部120の画面には図4Aに示す画面が表示される。編集(調整)対象となる負荷データの監視範囲のうち、上限値及び/または下限値を編集(調整)する範囲(調整範囲)の開始位置を指定する場合、作業者は、調整(編集)範囲開始位置指定キー136を操作する。調整範囲の終了位置を指定する場合、作業者は調整(編集)範囲終了位置指定キー137を操作する。さらには、作業者は、左移動キー138を操作して、指定された調整範囲(指定範囲)の開始位置及び終了位置を左方向に移動させる。作業者は、右移動キー139を操作して、指定された調整範囲の開始位置及び終了位置を右方向に移動させる。
作業者が選択した調整範囲が表示された後、作業者が波形調整用キー135をオンすると、操作部120は図4Bに示す画面となり、調整範囲の波形(上下限値の波形)を調整することが可能となる。具体的には、上限値を拡大する場合、作業者は、上限値拡大キー143または上限値最大化キー147を操作する。上限値を縮小する場合、作業者は、上限値縮小キー144を操作する。尚、作業者は、調整範囲(指定範囲)の上限値を指定範囲内の最小値まで狭める(換言すると、上限値をその最小値に統一する)ためのキーである上限値最小化キー(不図示)を操作して、上限値を縮小してもよい。
また、下限値を拡大する場合、作業者は、下限値拡大キー145または下限値最小化キー148を操作する。下限値を縮小する場合、作業者は、下限値縮小キー146を操作する。尚、作業者は、調整範囲(指定範囲)の下限値を指定範囲内の最大値まで狭める(換言すると、下限値をその最大値に統一する)ためのキーである下限値最大化キー(不図示)を操作して、下限値を縮小してもよい。また、編集後の監視範囲を保存する場合、作業者は、保存キー126を操作する。
制御装置47は、監視範囲に対する上述の調整操作がなかった場合には、ステップS206にて「NO」と判定し、本フローチャートの処理を一旦終了する。一方、制御装置47は、監視範囲に対する調整操作があった場合には、ステップS206にて「YES」と判定し、監視範囲の上下限値の全部または一部を調整操作に応じて変更し、変更後(調整後)の監視範囲(ティーチングデータ)を表示する(ステップS208)。その後、制御装置47は、マスターデータ(基礎データ)を変更し(ステップS210)、変更後のマスターデータを記憶装置47bに記憶する(ステップS212)。
制御装置47は、ステップS208において、最初に、作業者による調整操作に応じてティーチングデータの全部または一部を変更する。例えば、図8に示すティーチングデータを図9に示すように変更する。
図8には、調整前(操作前)のティーチングデータが示されている。ティーチングデータ上限値(ティーチングデータ上限値)TD_ULは、濃い太い実線で示され、ティーチングデータの下限値(ティーチングデータ下限値)TD_LLは、薄い太い実線で示されている。さらに、図8には、図9~図11と同様に、実検出データが黒い四角印で示されており細い実線で結ばれている。また、左から2番目の実検出データ(負荷データ(負荷検出値))のみが上限値を越えている。残りの実検出データは監視範囲の上下限値内(ティーチングデータ上限値TD_ULとティーチングデータ下限値TD_LLの範囲内)である。
一方、左から2番目の実検出データは、異常データでなく正常データであることを、作業者は認定(確認)することができた。このようなケースにおいて、正常データである2番目の実検出データを、ティーチングデータ上限値TD_ULとティーチングデータ下限値TD_LLの範囲内に収めるようにするのが望ましい。そのため、図9に示すように、先頭(左端)から2点の加工ポイントの上限値を上方に移動(修正)させるために、作業者は調整操作を実施する。変更後のティーチングデータ上限値(変更後ティーチングデータ上限値)TD_ULaは、濃い太い実線で示され、変更前のティーチングデータの上限値(変更前ティーチングデータ上限値)TD_ULbは、薄い太い破線で示されている。さらに、制御装置47は、作業者の調整操作に応じて、変更されたティーチングデータをデータ表示部110に表示する。
制御装置47は、ステップS210において、上述したステップS112(第2設定部)によって設定された監視範囲の上限値及び/または下限値(変更前ティーチングデータ)が変更された際、当該上限値及び/または下限値の変更結果(変更後ティーチングデータ)に基づいてマスターデータ(基礎データ)を変更する(変更部)。例えば、制御装置47は、ユーザの操作によってティーチングデータ上限値及び/またはティーチングデータ下限値が編集された場合、これら上限値及び/または下限値の編集結果(変更後ティーチングデータ上限値TD_ULa及び/または変更後ティーチングデータ下限値TD_LLa)に基づいてマスターデータすなわちマスターデータ上限値MD_UL及び/またはマスターデータ下限値MD_LLを変更する(変更部)。
上述したように、ティーチングデータ上限値TD_ULは、マスターデータ上限値MD_ULにオフセット量すなわちマスターデータの差分量MD_DのN%を加算して算出される。また、ティーチングデータ下限値TD_LLは、マスターデータ下限値MD_LLからオフセット量すなわちマスターデータの差分量MD_DのN%を減算して算出される。この関係は、ティーチングデータを変更した場合にも維持されるので、変更後ティーチングデータから変更後マスターデータを算出することは可能である。
例えば、図9に示すように、作業者の操作によって先頭2点の変更前ティーチングデータ上限値TD_ULbが、変更後ティーチングデータ上限値TD_ULaに修正(変更)された場合、図10に示すように、先頭2点の変更前マスターデータ上限値MD_ULb(濃い太い破線)が、所定値MD_DNだけ加味(増大または減少)されて変更後マスターデータ上限値MD_ULa(濃い太い一点鎖線)に自動的に修正(変更)される。
この場合においても、上述した数2に示す関係があるので、変更後ティーチングデータ上限値TD_ULaは、下記数4に示すように、変更後マスターデータ上限値MD_ULa及び変更後差分量MD_Daにより表すことができる。
(数4)
変更後ティーチングデータ上限値TD_ULa
=変更後マスターデータ上限値MD_ULa+変更後差分量MD_Da×N%
さらに、変更後差分量MD_Daと変更前差分量MD_Dbとの差分をMD_DNとした場合、変更後マスターデータ上限値MD_ULaは、変更前マスターデータ上限値MD_ULb+差分MD_DNで表すことができ、変更後差分量MD_Daは、変更前差分量MD_Db+差分MD_DNで表すことができる。その結果、上記数4は下記数5に変形することができる。
(数5)
変更後ティーチングデータ上限値TD_ULa
=(変更前マスターデータ上限値MD_ULb+差分MD_DN)
+(変更前差分量MD_Db+差分MD_DN)×N%
さらに、上記数5を展開して、差分MD_DNを算出すると、差分MD_DNは、下記数6に示すように、変更後ティーチングデータ上限値TD_ULa、変更前マスターデータ上限値MD_ULb、及び、変更前差分量MD_Dbで表すことができる。
(数6)
差分MD_DN=(1/(1+N%))×(変更後ティーチングデータ上限値TD_ULa-変更前マスターデータ上限値MD_ULb-変更前差分量MD_Db×N%)
そして、変更後マスターデータ上限値MD_ULaは、変更前マスターデータ上限値MD_ULbに、数6より算出した差分MD_DNを加算して算出することができる。
尚、変更後マスターデータ上限値MD_ULaは、変更後ティーチングデータ上限値TD_ULa及び変更後マスターデータ下限値MD_LLa(または変更前マスターデータ下限値MD_LLb)から算出するようにしてもよい。変更後ティーチングデータ上限値TD_ULaは、上記数4に示すように、変更後マスターデータ上限値MD_ULa及び変更後差分量MD_Daにより表すことができる。さらに、変更後差分量MD_Daは、変更後マスターデータ上限値MD_ULa-変更後マスターデータ下限値MD_LLaであるので、変更後マスターデータ上限値MD_ULaは、下記数7で示される。
(数7)
変更後ティーチングデータ上限値TD_ULa
=変更後マスターデータ上限値MD_ULa+(変更後マスターデータ上限値MD_ULa-変更後マスターデータ下限値MD_LLa)×N%
さらに、上記数7を展開して、変更後マスターデータ上限値MD_ULを算出すると、変更後マスターデータ上限値MD_ULは、下記数8で示される。
(数8)
変更後マスターデータ上限値MD_UL=(1/2)×(変更後ティーチングデータ上限値TD_ULa+変更後マスターデータ下限値MD_LLa×N%)
ここで、マスターデータ下限値が変更されていない場合には、変更後マスターデータ下限値MD_LLaは変更前マスターデータ下限値MD_LLbと同じであるため、変更後マスターデータ上限値MD_ULは、下記数9で示される。
(数9)
変更後マスターデータ上限値MD_UL=(1/2)×(変更後ティーチングデータ上限値TD_ULa+変更前マスターデータ下限値MD_LLb×N%)
尚、上述したように、ステップS112(第2設定部)にて監視範囲(ティーチングデータ)の上限値及び/または下限値をマスターデータに係るオフセット量に基づいて設定する場合には、ステップS210(変更部)において、変更後ティーチングデータ上限値TD_ULa及び/または変更後ティーチングデータ下限値TD_LLa(変更結果)及びオフセット量に基づいてマスターデータを変更することが好ましい。
さらに、制御装置47は、ステップS212において、上述したステップS210によって変更されたマスターデータ上限値及び/またはマスターデータ下限値を、変更後マスターデータ上限値MD_ULa及び/または変更後マスターデータ下限値MD_LLaとして記憶装置47bに記憶する。
そして、制御装置47は、ステップS214において、変更後マスターデータに基づいて監視範囲の上下限値(ティーチングデータ)を必要に応じて再修正し、再修正した再修正後ティーチングデータ(図11参照)をデータ表示部110に再表示する。図11には、先頭から2点の加工ポイントのティーチングデータ下限値を下方に移動(修正)した波形データが示されている。変更後のティーチングデータ下限値(変更後ティーチングデータ下限値)TD_LLaは、濃い太い実線で示され、変更前のティーチングデータの下限値(変更前ティーチングデータ下限値)TD_LLbは、薄い太い破線で示されている。
変更後ティーチングデータ下限値TD_LLaは、変更前ティーチングデータ下限値TD_LLbから差分MD_DNを減算した値として算出することができる。尚、変更後ティーチングデータ下限値TD_LLaは、変更後マスターデータ下限値MD_LLaから変更後差分量MD_Da×N%だけ減算した値として算出することができる。
尚、上述した工作機械(ドリミルモジュール30B)によるワークWの加工(切削)についても、上述した旋盤モジュール30Aと同様に図8に示すフローチャートに沿った制御が実施可能である。この場合、制御は、制御装置47に代えて制御装置57によって行われる。
(本実施形態の作用効果)
上述した実施形態によるワーク加工装置(旋盤モジュール30A,ドリミルモジュール30B)は、切削工具43a(加工工具)を使用して加工工程に沿って実行可能である、ワークWの加工に係る物理量であって検出可能である加工負荷(検出可能物理量)を検出する検出部(制御装置47,57:ステップS108)と、加工工程の運転中における検出部によって実際に検出された実検出データに基づいてマスターデータ(基礎データ)を設定する第1設定部(制御装置47,57:ステップS110)と、第1設定部(制御装置47,57:ステップS110)によって設定されたマスターデータに基づいて、加工工程に沿って検出可能物理量の状態を監視するためのティーチングデータ(監視範囲の上限値及び/または下限値)を設定する第2設定部(制御装置47,57:ステップS112)と、第2設定部(制御装置47,57:ステップS112)によって設定された監視範囲の上限値及び/または下限値が変更された際、上限値及び/または下限値の変更結果(変更後ティーチングデータ)に基づいてマスターデータを変更する変更部(制御装置47,57:ステップS210)と、変更部(制御装置47,57:ステップS210)によって変更されたマスターデータを変更後マスターデータとして記憶する記憶部(制御装置47,57:ステップS212)と、を備えている。
これによれば、第2設定部(制御装置47,57:ステップS112)は、第1設定部(制御装置47,57:ステップS110)によって設定されたマスターデータに基づいて、ワークWの加工工程に沿って検出可能物理量の状態を監視するための監視範囲の上限値及び/または下限値(ティーチングデータ)を設定することが可能となる。さらに、変更部(制御装置47,57:ステップS210)は、第2設定部(制御装置47,57:ステップS112)によって設定された監視範囲の上限値及び/または下限値(ティーチングデータ)が変更された際、上限値及び/または下限値の変更結果(変更後ティーチングデータ)に基づいてマスターデータを変更し、記憶部(制御装置47,57:ステップS212)は、変更部(制御装置47,57:ステップS210)によって変更されたマスターデータを変更後マスターデータとして記憶することが可能となる。これにより、監視範囲の上限値及び/または下限値(ティーチングデータ)を設定する基礎となるマスターデータを、上限値及び/または下限値の変更結果(変更後ティーチングデータ)に基づいて変更することができるため、監視用のしきい値を適切に設定することができる。
また、上述したワーク加工装置において、変更部(制御装置47,57:ステップS210)は、ユーザの操作によって上限値及び/または下限値が編集された場合、上限値及び/または下限値の編集結果に基づいてマスターデータを変更する。これによれば、ユーザによって上限値及び/または下限値が編集された場合であっても、その編集に応じてマスターデータを適切に変更することができ、ひいては、監視用のしきい値を適切に設定することができる。
また、上述したワーク加工装置において、第2設定部(制御装置47,57:ステップS112)が、上限値及び/または下限値を、マスターデータに係るオフセット量に基づいて設定する場合、変更部(制御装置47,57:ステップS210)は、変更結果(変更後ティーチングデータ)及びオフセット量に基づいてマスターデータを変更する。これによれば、ユーザによって上限値及び/または下限値が編集された場合であっても、その編集に応じてマスターデータを適切に変更することができ、ひいては、監視用のしきい値を適切に設定することができる。
30A…旋盤モジュール(ワーク加工装置)、30B…ドリミルモジュール(ワーク加工装置)、43a,52b…切削工具(加工工具)、47,57…制御装置(検出部(ステップS108)、第1設定部(ステップS110)、第2設定部(ステップS112)、変更部(ステップS210)、記憶部(ステップS212))、W…ワーク。

Claims (3)

  1. 加工工具を使用して加工工程に沿って実行可能である、ワークの加工に係る物理量であって検出可能である検出可能物理量を検出する検出部と、
    前記加工工程の運転中における前記検出部によって実際に検出された実検出データに基づいて基礎データを設定する第1設定部と、
    前記第1設定部によって設定された前記基礎データに基づいて、前記加工工程に沿って前記検出可能物理量の状態を監視するための監視範囲の上限値及び/または下限値を設定する第2設定部と、
    前記第2設定部によって設定された前記監視範囲の前記上限値及び/または前記下限値が変更された際、前記上限値及び/または前記下限値の変更結果に基づいて前記基礎データを変更する変更部と、
    前記変更部によって変更された前記基礎データを変更後基礎データとして記憶する記憶部と、
    を備えたワーク加工装置。
  2. 前記変更部は、ユーザの操作によって前記上限値及び/または前記下限値が編集された場合、前記上限値及び/または前記下限値の編集結果に基づいて前記基礎データを変更する請求項1に記載のワーク加工装置。
  3. 前記第2設定部が、前記上限値及び/または前記下限値を、前記基礎データに係るオフセット量に基づいて設定する場合、前記変更部は、前記変更結果及び前記オフセット量に基づいて前記基礎データを変更する請求項1または請求項2に記載のワーク加工装置。
JP2021170595A 2021-10-19 2021-10-19 ワーク加工装置 Pending JP2023060916A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021170595A JP2023060916A (ja) 2021-10-19 2021-10-19 ワーク加工装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021170595A JP2023060916A (ja) 2021-10-19 2021-10-19 ワーク加工装置

Publications (1)

Publication Number Publication Date
JP2023060916A true JP2023060916A (ja) 2023-05-01

Family

ID=86239356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021170595A Pending JP2023060916A (ja) 2021-10-19 2021-10-19 ワーク加工装置

Country Status (1)

Country Link
JP (1) JP2023060916A (ja)

Similar Documents

Publication Publication Date Title
JP4676544B2 (ja) 工作機械に対してワークの供給及び取り出しを行うロボットを制御するロボット制御装置
KR101257275B1 (ko) 자동가공기능을 갖는 지능형 cnc공작기계 및 그 제어방법
JP4249794B1 (ja) ワーク搬送用ロボットの制御装置
JP3363958B2 (ja) ドリル加工方式
CN105320064B (zh) 具有设备异常履历的解析支援功能的数值控制装置
JP6802213B2 (ja) 工具選定装置及び機械学習装置
US9229443B2 (en) Numerical control machine tool
JP2008015740A (ja) 工作機械の制御装置
US20080086220A1 (en) Machine-tool controller
US20150105900A1 (en) Numerical controller provided with operation setting screen
JP2008027045A (ja) 干渉チェック機能を備える数値制御装置
JP2003271215A (ja) 数値制御工作機械の加工プログラムチェック方法およびチェック装置ならびにそれを備えた数値制御工作機械
EP0510204A1 (en) Method of evaluating operating accuracy in numerically controlled machine
US5453674A (en) Numerical control apparatus
JP3606595B2 (ja) 工作機械制御装置
WO2021192071A1 (ja) ワーク加工装置
JP2023060916A (ja) ワーク加工装置
US20190202017A1 (en) Selecting device, selecting method, and program
JP7390479B2 (ja) ワーク加工装置
EP1632824A1 (en) Numerical control apparatus with feed rate changing means
JP7198568B2 (ja) 多関節ロボット
WO2021245717A1 (ja) ワーク加工装置
JP2004102568A (ja) 数値制御装置
US10088823B2 (en) Numerically controlled machine tool for direct and manual operation of movable part
WO2022102738A1 (ja) 制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240809