JP2023057725A - 焼結鉱の製造方法および焼結機 - Google Patents

焼結鉱の製造方法および焼結機 Download PDF

Info

Publication number
JP2023057725A
JP2023057725A JP2021167374A JP2021167374A JP2023057725A JP 2023057725 A JP2023057725 A JP 2023057725A JP 2021167374 A JP2021167374 A JP 2021167374A JP 2021167374 A JP2021167374 A JP 2021167374A JP 2023057725 A JP2023057725 A JP 2023057725A
Authority
JP
Japan
Prior art keywords
oxygen gas
sintering
width direction
raw material
sintered ore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021167374A
Other languages
English (en)
Inventor
一洋 岩瀬
Kazuhiro Iwase
隆英 樋口
Takahide Higuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2021167374A priority Critical patent/JP2023057725A/ja
Publication of JP2023057725A publication Critical patent/JP2023057725A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Furnace Details (AREA)

Abstract

【課題】焼結機の幅方向における酸素ガスの供給量の調整を可能とすることで、装入層における局所的な熱不足を解消し、焼結鉱の歩留の低下を抑制できる焼結鉱の製造方法および焼結機を提供する。【解決手段】焼結機を用いて焼結鉱を製造する焼結鉱の製造方法であって、焼結機の給鉱装置で無端移動式のパレットに鉄含有原料と凝結材とを含む焼結原料を装入して装入層を形成し、給鉱装置の下流側に設けられる点火炉で装入層の凝結材に点火し、点火炉の下流側に設けられる酸素ガス供給装置からパレットの幅方向に異なる量の酸素ガスを装入層に供給し、パレットの下方に設けられた風箱で装入層内の空気を吸引し、凝結材を燃焼させて焼結原料を焼結して焼結ケーキとした後、焼結ケーキを破砕して焼結鉱とする。【選択図】図3

Description

本発明は、高炉原料である焼結鉱の製造方法および焼結機に関する。
従来、焼結鉱が製造される焼結機においては、焼結原料を無端移動式のパレットに装入し、当該パレットに装入して形成された焼結原料層(装入層)への点火及び酸素ガスの吹込み(供給)を行い、焼結原料を焼結することで、焼結鉱の元となる焼結ケーキを製造している。
特許文献1には、焼結原料層への酸素ガスの吹き込みについて、点火炉後段において、焼結原料層の表面から酸素を吹込んで焼結原料を焼結する焼結鉱の製造方法が開示されている。
特開2010-126773号公報
しかしながら、従来の焼結機における酸素ガス吹き込み技術は、焼結機の幅方向に酸素ガスを均一に拡散させた後に焼結原料層に吸引させており、焼結原料層に対して焼結機の幅方向で均一に酸素ガスを供給する設計思想となっている。このため、焼結原料層の中で部分的に燃焼遅れあるいは通気悪化となった箇所が発生した場合には、当該箇所への局所的な酸素ガスの吹き込みを強化することができず、結果的に成品歩留が低下するという問題がある。
本発明は、かかる事情を鑑みてなされたもので、焼結機の幅方向における酸素ガスの供給量の調整を可能とすることで、装入層における局所的な熱不足を解消し、焼結鉱の歩留の低下を抑制できる焼結鉱の製造方法および焼結機を提供することを目的とする。
上記課題を解決する本発明の要旨構成は以下のとおりである。
[1]焼結機を用いて焼結鉱を製造する焼結鉱の製造方法であって、前記焼結機の給鉱装置で無端移動式のパレットに鉄含有原料と凝結材とを含む焼結原料を装入して装入層を形成し、前記給鉱装置の下流側に設けられる点火炉で前記装入層の前記凝結材に点火し、前記点火炉の下流側に設けられる酸素ガス供給装置から前記パレットの幅方向に異なる量の酸素ガスを前記装入層に供給し、前記パレットの下方に設けられた風箱で前記装入層内の空気を吸引し、前記凝結材を燃焼させて焼結原料を焼結して焼結ケーキとした後、前記焼結ケーキを破砕して焼結鉱とする、焼結鉱の製造方法。
[2]前記酸素ガス供給装置は、前記パレットの移動方向に複数の酸素ガス吐出ノズルを有する酸素ガス供給管を複数有し、複数の前記酸素ガス供給管は前記移動方向に対して垂直な幅方向において異なる位置に設けられる、[1]に記載の焼結鉱の製造方法。
[3]前記装入層の前記幅方向の両端部への酸素ガスの供給量を前記幅方向の全体の平均酸素ガス供給量よりも増加させる、[1]または[2]に記載の焼結鉱の製造方法。
[4]焼結時の熱量が不足している前記幅方向における前記装入層の位置を特定し、前記位置への酸素ガスの供給量を前記幅方向の全体の平均酸素ガス供給量よりも増加させる、[1]または[2]に記載の焼結鉱の製造方法。
[5]鉄含有原料と凝結材とを含む焼結原料を供給する給鉱装置と、前記焼結原料が装入されて装入層が形成される無端移動式のパレットと、前記給鉱装置の下流側に設けられ前記装入層の前記凝結材に点火する点火炉と、前記点火炉の下流側に設けられ、前記パレットの幅方向に異なる量の酸素ガスを前記装入層に供給する酸素ガス供給装置と、前記パレットの下方に設けられ前記装入層内の空気を吸引する風箱と、を有する、焼結機。
本発明によれば、焼結機の幅方向における酸素ガスの供給量の調整が可能となり、装入層において部分的に熱不足となる箇所が生じても、焼結機の幅方向において酸素ガスの供給量を調整することで、装入層における局所的な熱不足を解消でき、焼結鉱の歩留の低下を抑制できる。
焼結鉱の製造装置の一例を示す模式図である。 酸素ガス供給装置の断面模式図である。 フード内の酸素濃度を示す断面模式図である。 装入層の断面領域の歩留調査の結果を示す図である。 コークス比と装入層の収縮量との関係を示すグラフである。
以下、本発明の実施形態を通じて本発明を説明する。図1は、本実施形態に係る焼結鉱の製造方法が実施できる焼結鉱の製造装置10の一例を示す模式図である。ヤード11に保管された鉄含有原料12は、搬送コンベア14によって配合槽22に搬送される。鉄含有原料12は、種々の銘柄の鉄鉱石および製鉄所内発生ダストを含む。
原料供給部20は、複数の配合槽22、24、25、26、28を備える。配合槽22には、鉄含有原料12が貯留される。配合槽24には、石灰石や生石灰等を含むCaO含有原料16が貯留される。配合槽25には、ドロマイトや精錬ニッケルスラグ等を含むMgO含有原料17が貯留される。配合槽26には、ロッドミルを用いて粒径1mm以下に破砕された粉コークスや無煙炭を含む凝結材18が貯留される。配合槽28には、焼結鉱の篩下となった粒径5mm以下の返鉱(焼結鉱篩下粉)が貯留される。
原料供給部20の配合槽22~28から、各原料が所定量切り出され、これらが配合されて焼結原料となる。焼結原料は、搬送コンベア30によってドラムミキサー36に搬送される。MgO含有原料17は、任意配合原料であって、焼結原料に配合されてもよく、配合されなくてもよい。
ドラムミキサー36に搬送された焼結原料は、適量の水34が添加されてドラムミキサー36に投入され、例えば、平均粒径3.0~6.0mmの擬似粒子に造粒される。造粒された焼結原料は、搬送コンベア38によって焼結機40の給鉱装置42に搬送される。ドラムミキサー36は、焼結原料を造粒する造粒装置の一例であり、ドラムミキサー36は複数あってもよく、ドラムミキサー36に代えてペレタイザー造粒機を用いてもよい。また、ドラムミキサー36及びペレタイザー造粒機の両方を用いてもよく、ドラムミキサー36の上流に高速撹拌機を設置して、焼結原料を撹拌してもよい。
本実施形態において、擬似粒子の平均粒径は算術平均粒径であって、Σ(Vi×di)(但し、Viはi番目の粒度範囲の中にある粒子の存在比率であり、diはi番目の粒度範囲の代表粒径である。)で定義される粒径である。
焼結機40は、例えば、下方吸引式のドワイトロイド焼結機である。焼結機40は、給鉱装置42と、無端移動式のパレット44と、点火炉46と、酸素ガス供給装置47と、ウインドボックス等の風箱48とを有する。給鉱装置42において焼結原料がパレット44に装入され、焼結原料の装入層が形成される。そして、装入層が形成されたパレット44は、給鉱装置42の下流側に設けられる点火炉46に移動する。点火炉46において装入層の表層に含まれる凝結材18が点火される。その後、風箱48を通じて空気を吸引しながら、点火炉46の下流側に設けられる酸素ガス供給装置47において、装入層に気体燃料および酸素ガスを吸気させ、装入層内で気体燃料と凝結材18とを燃焼させつつ装入層内の燃焼、溶融帯を装入層の下方へ移動させる。これにより、装入層は焼結されて焼結ケーキが形成される。気体燃料として、高炉ガス、コークス炉ガス、高炉・コークス炉混合ガス、転炉ガス、天然ガス、メタンガス、エタンガス、プロパンガス、都市ガス、シェールガスなどの可燃性ガスを用いてよい。
本実施形態における焼結機40の機長方向はパレット44の移動方向と同じ方向であり、焼結機40の幅方向は当該移動方向に対して垂直な方向であって、パレット44の幅方向と同じ方向である。
焼結ケーキは、破砕機50によって破砕され、冷却機60によって冷却され、篩分け装置70によって篩分けされる。このようにして、粒径5mm超の焼結鉱が製造される。一方、篩分け装置70により篩分けられる粒径5mm以下の返鉱74は、搬送コンベア78によって原料供給部20の配合槽28に搬送される。焼結鉱72の粒径および返鉱74の粒径は、篩によって篩分けられる粒径を意味し、例えば粒径5mm超とは、目開き5mmの篩を用いて篩上に篩分けされる粒径であり、粒径5mm以下とは、目開き5mmの篩を用いて篩下に篩分けされる粒径である。焼結鉱72および返鉱74の粒径の各値は、あくまで一例であり、この値に限定するものではない。
次に、図2を参照して、酸素ガス供給装置47の構成について説明する。図2は、酸素ガス供給装置47の断面模式図である。図2において、図面の横方向が焼結機40及びパレット44の幅方向に相当する。図面の奥行方向が焼結機40の機長方向であり、パレット44の移動方向に相当する。
図2に示す酸素ガス供給装置47は、四角筒状のフード6と、複数の酸素ガス供給管1と、複数の気体燃料供給管3と、複数の遮蔽板2とを有する。図2に示す通り、酸素ガス供給装置47には、例えば、焼結機40及びパレット44の幅方向に向けて、13本の酸素ガス供給管1と、7本の気体燃料供給管3と、41枚の遮蔽板2とが設けられている。これらは、四角筒状のフード6の中において、下方から上方に向けて気体燃料供給管3、遮蔽板2、酸素ガス供給管1の順に設けられる。13本の酸素ガス供給管1には、焼結機40の機長方向(パレット44の移動方向)において異なる位置に複数の酸素ガス吐出ノズルが設けられており、7本の気体燃料供給管3にも機長方向において異なる位置に複数の気体燃料吐出ノズルが設けられている。また、酸素ガス供給管1は、機長方向に対して垂直なパレット44の幅方向において異なる位置に設けられている。
各々の酸素ガス吐出ノズルから酸素ガスが吐出され、装入層4に酸素ガスが供給される。各々の気体燃料吐出ノズルからは気体燃料が吐出され、装入層4に気体燃料が供給される。気体燃料吐出ノズルに近い装入層4の上層は、中層、下層に比べて焼結時の温度が低温になりやすく歩留りが低下しやすい。この点につき、本実施形態では、気体燃料や酸素ガスを装入層4に供給することで、装入層4の上層の焼結時の温度を高めることができ、装入層4の上層の歩留の低下を抑制できる。また、遮蔽板2は気体燃料がフード6の外部に飛散するのを抑制すると共に、フード6の外部の環境に気体燃料が影響を受けることを抑制する。さらに、酸素ガス供給装置47は、各酸素ガス供給管1への酸素ガスの供給量を制御する制御装置(不図示)を有する。各酸素ガス供給管1への酸素ガスの供給量は当該制御装置によって制御される。
酸素ガスは、酸素濃度が21体積%より高く100体積%未満の酸素富化空気や、酸素濃度100体積%の純酸素である。また、酸素ガスとして、酸素濃度が24体積%以上100体積%未満の酸素富化空気や、酸素濃度が100体積%の純酸素を用いることが好ましい。
次に、酸素ガス供給装置47において、酸素ガス供給管1の酸素ガス吐出ノズルから酸素ガスが吐出された状態のフード6内の酸素濃度の変化の状況について、図3を用いて説明する。図3は、フード6内の幅方向において、図面に向かって右側6つの酸素ガス供給管1における酸素ガス吐出ノズルから酸素ガスを吐出させた場合のフード6内の酸素濃度の変化を示す断面図である。図3においては、図中の凡例に示す5段階の指標値によりフード6内の酸素濃度の変化を示す。指標値0.00は酸素濃度が変化していないことを示し、当該指標値が大きいほど酸素濃度が高まっていることを示す。
図3に示す通り、右側6つの酸素ガス供給管1(酸素ガス吐出ノズル)から酸素ガスを吐出させることで、右側6つの酸素ガス吐出ノズルの下方の酸素濃度が高まり、他の領域の酸素濃度は変化していないことが確認できる。
この結果から、フード6内に遮蔽板2が設けられていたとしても、特定の酸素ガス吐出ノズルから酸素ガスを吐出させることで、当該酸素ガス吐出ノズルが設けられた幅方向の位置に対応する装入層4の上表面の位置に酸素ガスを選択的に供給できることが確認された。
次に、気体燃料および酸素ガスを供給せずに焼結鉱を製造した場合の焼結鉱の歩留状況を図4を用いて説明する。図4は、幅方向4m、装入層厚570mmの装入層4について、上層~下層に亘る断面方向において、3行10列で区分した断面領域の焼結鉱の歩留調査の結果を示す図である。各断面領域における数値は、当該断面領域における最終的な製品としての歩留値である。
図4に示す通り、装入層4の下層に比べて上層の歩留が低く、パレット44の幅方向中央部に比べて両端部の歩留が低いことがわかる。このため、当該歩留を向上させるために酸素ガスを装入層4に供給する場合、幅方向中央部の歩留を基準に酸素ガスを幅方向に均一に供給すると、両端部の歩留を十分の上昇させることができない。一方、両端部の歩留を基準に酸素ガスを幅方向に均一に供給すると、幅方向中央部への酸素ガスの供給量が過剰となるので、当該過剰となる酸素ガス分のコストが上昇してしまう。
これに対し、本施形態に係る焼結鉱の製造方法および焼結機では、装入層4の上表面において、装入層4の幅方向の酸素ガスの供給位置の選択が可能となり、複数ある供給位置から特定の供給位置を選択すると共に当該供給位置への酸素ガスの供給量を調整できる。このため、装入層4のパレット44の幅方向の酸素ガスの供給量について、幅方向両端部への酸素ガスの供給量を全体の平均酸素ガス供給量よりも増加させることができる。これにより、パレット44の幅方向の両端部の歩留を他の領域よりも向上できるので、酸素ガスを過剰に供給することを抑制しつつ、焼結鉱の歩留を向上できる。
次に、コークス比と装入層の収縮量との関係について、図5を用いて説明する。図5は、コークス比と装入層の収縮量との関係を示すグラフである。コークス比は、焼結原料に含まれる凝結材18である粉コークスの配合割合(質量%)である。装入層4の収縮量(mm)は、焼結原料をパレット44に装入して装入層4を形成させた後の装入層4の上表面位置が焼結後にどのくらい低下したかを示し、装入層4が形成された後の上表面高さと、焼結後の装入層4の上表面高さとの差により算出される。
図5に示す通り、焼結原料のコークス比が高くなるにしたがって装入層4の収縮量は大きくなることが確認できる。ここで、焼結原料のコークス比は焼結時の熱量を示すので、この結果から、焼結による装入層4の収縮量と焼結時の熱量には相関関係があり、装入層4の収縮量を測定することで、焼結時の熱量を求められることがわかる。
つまり、装入層4が形成された直後の位置、及び、焼結機の機端の位置(装入層4の焼結工程を終える位置)に非接触式の位置測定装置を設置して各々の位置で上表面の高さを測定し、焼結前後の装入層4の上表面の高さの差(収縮量)を算出することで、装入層4の幅方向において熱不足となる位置の特定が可能となる。非接触式の位置測定装置として、レーザー変位計または音波式の距離計を用いることができる。
このため、本実施形態に係る焼結鉱の製造方法および焼結機では、焼結後の装入層4の焼結後の収縮量を測定して、焼結時の熱量が不足している装入層4の幅方向の位置を特定し、当該位置への酸素ガスの供給量を、当該幅方向における全体の平均酸素ガス供給量よりも増加させてもよい。
また、焼結後の装入層4の収縮量の測定を行わなくとも、焼結時に熱不足となる位置(例えば、装入層4の幅方向両端部)が予め特定されている場合には、装入層4の幅方向両端部への酸素ガスの供給量を、幅方向の全体の平均酸素ガス供給量よりも増加させてもよい。
このように、焼結原料の成分濃度の変動によりパレット44の幅方向において焼結時の熱量が少なくなる位置が発生した場合でも、熱量の低下した装入層4の位置を特定し、当該位置への酸素ガスの供給量を、他の位置よりも増加させることで着熱効率を向上できる。
さらに、酸素ガスを多く供給することで、凝結材18の燃焼速度の向上による燃焼帯の拡大や、酸素ポテンシャル(酸素分圧)の向上による焼結中の液相率の向上によって、より高強度の焼結鉱の生産が可能になるため、これらの効果により、熱量低下による焼結鉱の歩留低下を抑制できる。
以下、本実施形態に係る焼結鉱の製造方法および焼結機を用いて焼結鉱の歩留を調べた実施例を説明する。
本実施例では、図2に示す酸素ガス供給管1に設けられた酸素ガス吐出ノズルからの酸素ガスの吐出について、吐出無し、幅方向両端部の酸素ガス吐出ノズルのみの吐出、幅方向中央部の酸素ガス吐出ノズル(2つ)のみの吐出、の3つの吐出パターンについて、各酸素ガス供給条件における装入層4の上層の歩留を調査した。歩留の調査の結果を表1に示す。
Figure 2023057725000002
調査の結果として、酸素ガスの「吐出無し」の場合には、装入層4の上層の幅方向両端部の平均歩留は68%となり、幅方向中央部の平均歩留は75%となった。
これに対し、幅方向両端部の酸素ガス吐出ノズルから、それぞれノズルの直下の吸引空気中の酸素濃度が30体積%になるように純酸素を供給(各ノズル1000Nm/h:合計2000Nm/h)して焼結工程を実施した所、装入層4の上層の幅方向両端部の平均歩留は70%となった。その一方で、幅方向中央部の平均歩留は75%となった。
また、幅方向中央部の2つの酸素ガス吐出ノズルから、当該2つのノズル直下の吸引給気中の酸素濃度が30体積%となるように純酸素を供給(各ノズル1000Nm/h:合計2000Nm/h)して焼結工程を実施した所、装入層4の上層の幅方向中央部の平均歩留は77%となった。その一方で、幅方向両端部の歩留は68%となった。
以上の結果から、本発明に係る焼結鉱の製造方法および焼結機により、焼結機40の幅方向の特定位置への酸素ガス供給量を調整することで、当該特定位置における装入層4の燃焼帯を拡大させることができ、これにより当該特定位置の焼結鉱の歩留を向上できることが確認された。
1 酸素ガス供給管
2 遮蔽板
3 気体燃料供給管
4 装入層
6 フード
10 焼結鉱の製造装置
11 ヤード
12 鉄含有原料
14、30、38、76、78 搬送コンベア
16 CaO含有原料
17 MgO含有原料
18 凝結材
20 原料供給部
22、24、25、26、28 配合槽
34 水
36 ドラムミキサー
40 焼結機
42 給鉱装置
44 パレット
46 点火炉
47 酸素ガス供給装置
48 風箱
50 破砕機
60 冷却機
70 篩分け装置
72 焼結鉱
74 返鉱
80 高炉

Claims (5)

  1. 焼結機を用いて焼結鉱を製造する焼結鉱の製造方法であって、
    前記焼結機の給鉱装置で無端移動式のパレットに鉄含有原料と凝結材とを含む焼結原料を装入して装入層を形成し、
    前記給鉱装置の下流側に設けられる点火炉で前記装入層の前記凝結材に点火し、
    前記点火炉の下流側に設けられる酸素ガス供給装置から前記パレットの幅方向に異なる量の酸素ガスを前記装入層に供給し、
    前記パレットの下方に設けられた風箱で前記装入層内の空気を吸引し、前記凝結材を燃焼させて焼結原料を焼結して焼結ケーキとした後、前記焼結ケーキを破砕して焼結鉱とする、焼結鉱の製造方法。
  2. 前記酸素ガス供給装置は、前記パレットの移動方向に複数の酸素ガス吐出ノズルを有する酸素ガス供給管を複数有し、
    複数の前記酸素ガス供給管は前記移動方向に対して垂直な幅方向において異なる位置に設けられる、請求項1に記載の焼結鉱の製造方法。
  3. 前記装入層の前記幅方向の両端部への酸素ガスの供給量を前記幅方向の全体の平均酸素ガス供給量よりも増加させる、請求項1または請求項2に記載の焼結鉱の製造方法。
  4. 焼結時の熱量が不足している前記幅方向における前記装入層の位置を特定し、前記位置への酸素ガスの供給量を前記幅方向の全体の平均酸素ガス供給量よりも増加させる、請求項1または請求項2に記載の焼結鉱の製造方法。
  5. 鉄含有原料と凝結材とを含む焼結原料を供給する給鉱装置と、
    前記焼結原料が装入されて装入層が形成される無端移動式のパレットと、
    前記給鉱装置の下流側に設けられ前記装入層の前記凝結材に点火する点火炉と、
    前記点火炉の下流側に設けられ、前記パレットの幅方向に異なる量の酸素ガスを前記装入層に供給する酸素ガス供給装置と、
    前記パレットの下方に設けられ前記装入層内の空気を吸引する風箱と、
    を有する、焼結機。
JP2021167374A 2021-10-12 2021-10-12 焼結鉱の製造方法および焼結機 Pending JP2023057725A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021167374A JP2023057725A (ja) 2021-10-12 2021-10-12 焼結鉱の製造方法および焼結機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021167374A JP2023057725A (ja) 2021-10-12 2021-10-12 焼結鉱の製造方法および焼結機

Publications (1)

Publication Number Publication Date
JP2023057725A true JP2023057725A (ja) 2023-04-24

Family

ID=86054792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021167374A Pending JP2023057725A (ja) 2021-10-12 2021-10-12 焼結鉱の製造方法および焼結機

Country Status (1)

Country Link
JP (1) JP2023057725A (ja)

Similar Documents

Publication Publication Date Title
TWI449795B (zh) 燒結礦的製造方法
JP6988712B2 (ja) 焼結鉱の製造方法
JP6680369B2 (ja) 焼結鉱の製造方法
JP2023057725A (ja) 焼結鉱の製造方法および焼結機
JP6519036B2 (ja) 高炉操業方法
JP7501489B2 (ja) 焼結鉱の製造方法および焼結機
JP6874780B2 (ja) 焼結鉱の製造方法
KR20150016635A (ko) 소결광의 제조 방법
JP6866856B2 (ja) 焼結鉱の製造方法および高炉操業方法
JP2007277594A (ja) 焼結鉱製造方法
JP2018536837A (ja) 原料装入装置及び方法
JP2023087778A (ja) 焼結鉱の製造方法および焼結機
JP2002121621A (ja) 焼結鉱の製造法およびdl式焼結機
JP6988844B2 (ja) 焼結鉱の製造方法
JP5338310B2 (ja) 高炉への原料装入方法
JP5338308B2 (ja) 高炉への原料装入方法
JP7227053B2 (ja) 焼結鉱の製造方法
KR20170095579A (ko) 소결광 제조방법 및 이를 이용하여 제조되는 소결광
TW202346607A (zh) 造粒裝置、造粒燒結原料的製造方法以及燒結礦的製造方法
JP7180406B2 (ja) 焼結鉱の製造方法
WO2023210412A1 (ja) 造粒装置、造粒焼結原料の製造方法および焼結鉱の製造方法
JP6665972B2 (ja) 焼結鉱の製造方法
JP2022182572A (ja) 焼結鉱の製造方法
RU2137851C1 (ru) Способ получения агломерата для доменного производства на металлургическом предприятии
JP2005281810A (ja) 焼結鉱の移動トラフ式冷却機への給鉱方法及び装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240411