JP2023057111A - Emergency facility - Google Patents

Emergency facility Download PDF

Info

Publication number
JP2023057111A
JP2023057111A JP2023019700A JP2023019700A JP2023057111A JP 2023057111 A JP2023057111 A JP 2023057111A JP 2023019700 A JP2023019700 A JP 2023019700A JP 2023019700 A JP2023019700 A JP 2023019700A JP 2023057111 A JP2023057111 A JP 2023057111A
Authority
JP
Japan
Prior art keywords
optical
optical line
line
signal
regular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2023019700A
Other languages
Japanese (ja)
Other versions
JP7462086B2 (en
Inventor
泰周 杉山
Yasunori Sugiyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hochiki Corp
Original Assignee
Hochiki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hochiki Corp filed Critical Hochiki Corp
Priority to JP2023019700A priority Critical patent/JP7462086B2/en
Publication of JP2023057111A publication Critical patent/JP2023057111A/en
Application granted granted Critical
Publication of JP7462086B2 publication Critical patent/JP7462086B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather

Abstract

PROBLEM TO BE SOLVED: To provide a tunnel emergency facility with high failure resistance using an optical line which can appropriately cope with a problem of a metal line and tunnel extension.
SOLUTION: An active optical line 14-1 and a standby optical line 14-2 are connected with a disaster prevention reception panel 12, and a plurality of relay amplifiers 20 are connected with a terminal device 22. Facility devices of fire detectors 25 and fire hydrant devices 24 are connected with the active optical line 14-1. When the active optical line 14-1 between the disaster prevention reception panel 12 and the relay amplifiers 20 is disconnected, the disaster prevention reception panel 12 transmits and receives optical signals by the standby optical line 14-2 in addition to the active optical line 14-1. The optical relay amplifier 20 which detects a disconnection failure performs bypass relay of the optical signals between an upstream side and a downstream side of the standby optical line 14-2 and the active optical line 14-1, and maintains transmission and reception of all the optical signals even when the disconnection failure occurs.
SELECTED DRAWING: Figure 1
COPYRIGHT: (C)2023,JPO&INPIT

Description

本発明は、トンネル内に設置した火災検出器や消火栓装置等の設備機器を監視センターの防災受信盤に光回線により接続してトンネル内の異常を監視する非常用設備に関する。 TECHNICAL FIELD The present invention relates to emergency equipment for monitoring an abnormality in a tunnel by connecting equipment such as a fire detector and a fire hydrant installed in the tunnel to a disaster prevention receiving panel of a monitoring center via an optical line.

従来、自動車専用道路等のトンネルには、トンネル内で発生する火災事故から人身及び車両を守るため、非常用設備が設置されている。 2. Description of the Related Art Conventionally, emergency equipment is installed in tunnels such as motorways to protect people and vehicles from fire accidents that occur in the tunnels.

このような非常用設備としては、火災の監視と通報のため火災検知器、手動通報装置、非常電話が設けられ、また火災の消火や延焼防止のために消火栓装置が設けられ、更にトンネル躯体を火災から防護するために水噴霧ヘッドから消火用水を散水させる水噴霧などが設置され、非常用設備の設備機器を監視センターに設けられた防災受信盤からの伝送回線に接続して監視制御することでトンネル非常用設備を構築している。 As such emergency equipment, fire detectors, manual reporting devices, and emergency telephones are installed to monitor and report fires, and fire hydrants are installed to extinguish fires and prevent the spread of fire. In order to protect against fire, a water spray head that sprays water for fire extinguishing is installed, and the equipment of the emergency equipment is connected to the transmission line from the disaster prevention receiver installed in the monitoring center and monitored and controlled. are constructing tunnel emergency equipment.

防災受信盤と設備機器で構成するトンネル非常用設備は、R型伝送方式とP型直送方式に大別される。R型伝送方式は、防災受信盤から引き出された信号線ケーブルによる伝送回線にアドレスを設定した火災検知器等の設備機器を接続し、伝送制御により設備機器単位に検知と制御を行う個別管理を可能とする、P型直送方式は、設備機器の種別に応じて所定の区画単位に分け、区画単位に引き出した信号回線に同一区画に属する複数の設備機器を接続し、信号回線単位に検知と制御を行う。 Tunnel emergency equipment, which consists of a disaster prevention receiving panel and equipment, is roughly divided into the R-type transmission system and the P-type direct transmission system. In the R-type transmission system, equipment such as a fire detector with an address is connected to the transmission line using a signal line cable drawn from the disaster prevention receiver panel, and individual management is performed to detect and control each equipment by transmission control. In the P-type direct delivery method, equipment is divided into predetermined division units according to the type of equipment, and multiple equipment belonging to the same division is connected to the signal line drawn out for each division, and detection is performed for each signal line. control.

R型伝送方式のトンネル非常用設備は、設備機器による検知や制御が個別にできるため、機能及び管理面で様々な利点があるが、一般的に火災検出器等の設備機器に伝送制御機能を設け、また伝送距離が長くなる場合には中継増幅盤を設ける必要があることから高価になる。 Tunnel emergency equipment using the R-type transmission system can detect and control individual equipment, so there are various advantages in terms of function and management. Moreover, if the transmission distance is long, it is necessary to install a repeater amplifier board, which increases the cost.

一方、P型直送方式のトンネル非常用設備は、火災検出器に伝送制御機能を設ける必要がなく、また、伝送距離が長くなっても中継増幅盤を設ける必要がないことから、R型伝送方式と比較してシステム構成が簡単で安価であるが、設備機器単位に検知と制御を行う個別管理ができないことに加え、火災検出器、手動通報装置等の設備機器の種別と設備機器の区画に分けて専用の信号回線を引き出して設備機器を接続することから、配線数が多くなり、トンネル長が長い場合には、かえってシステムの構成コストが高くなる場合がある。 On the other hand, the P-type direct transmission tunnel emergency equipment does not require a transmission control function in the fire detector, and even if the transmission distance is long, there is no need to install a repeater amplifier panel. Compared to , the system configuration is simple and inexpensive, but in addition to the inability to individually manage detection and control for each piece of equipment, the type of equipment such as fire detectors and manual reporting devices and the division of equipment Since separate dedicated signal lines are drawn out to connect the equipment, the number of wires increases, and if the tunnel length is long, the system configuration cost may rather increase.

トンネル非常用設備としては、R型伝送方式とP型直送方式のメリットとデメリット、トンネル長や車両の交通量等を考慮して、R型伝送方式又はP型直送方式のトンネル非常用設備を構築するようにしている。 Considering the advantages and disadvantages of the R-type transmission system and the P-type direct transmission system, tunnel length, vehicle traffic volume, etc., as tunnel emergency equipment, build tunnel emergency equipment for the R-type transmission system or P-type direct transmission system. I am trying to

特開2002-246962号公報JP-A-2002-246962 特開平11-128381号公報JP-A-11-128381 特開2001-357481号公報JP 2001-357481 A

ところで、近年のトンネル非常用設備にあっては、防災受信盤から信号線ケーブルを引き出したメタル伝送回線に設備機器を接続しており、メタル伝送回線は電気的なノイズの影響を受けやすく、また、伝送距離が長くなると信号減衰が大きくなることから所定距離毎に中継増幅盤を設置しており、更に、使用期間が長期化すると絶縁劣化等により電気的特性が低下して通信障害を起こす可能性がある。更に、近年にあっては、トンネル長が10キロメートルを超えるといった長大化の傾向にあり、メタル伝送回線での対応が難しい状況にある。 By the way, in the recent tunnel emergency equipment, equipment is connected to the metal transmission line that pulls out the signal cable from the disaster prevention receiving panel, and the metal transmission line is easily affected by electrical noise. As the transmission distance increases, the signal attenuation increases, so a repeater amplifier board is installed at each predetermined distance. Furthermore, if the usage period is prolonged, the electrical characteristics may deteriorate due to deterioration of the insulation, etc., and communication failure may occur. have a nature. Furthermore, in recent years, there is a tendency for tunnel lengths to exceed 10 kilometers, which makes it difficult for metal transmission lines to cope with these problems.

このような問題を解決するため、トンネル非常用設備の伝送回線として光ファイバーケーブルを使用した光回線とすることが考えられるが、トンネル非常用設備に光回線を使用した例がなく、光回線を利用したトンネル非常用設備の構築が新たな課題として生じている。 In order to solve this kind of problem, it is conceivable to use an optical line using optical fiber cables as the transmission line for tunnel emergency equipment, but there is no example of using an optical line for tunnel emergency equipment. A new issue is the construction of tunnel emergency equipment.

また、トンネル非常用設備に光回線を用いた場合には、光回線の断線や光信号の強度低下などの障害が発生した場合に、防災受信盤と端末側との通信接続を維持する確実なリカバリー対応が必要となる。 In addition, when an optical line is used for tunnel emergency equipment, it is possible to reliably maintain the communication connection between the disaster prevention receiving panel and the terminal side in the event of a failure such as a disconnection of the optical line or a decrease in the strength of the optical signal. Recovery is required.

本発明は、メタル回線の問題やトンネル長大化に適切に対応可能な光回線を用いた耐障害性の高い非常用設備を提供することを目的とする。 SUMMARY OF THE INVENTION It is an object of the present invention to provide highly fault-tolerant emergency equipment using an optical line that can appropriately cope with the problem of metal lines and the increase in tunnel length.

(非常用設備の断線障害対応)
本発明は、トンネル内の異常に関する監視制御を行う非常用設備であって、
防災受信盤と、
トンネル内に設置された端末側の設備機器と防災受信盤との間で光信号による通信を行うための常用光回線及び予備用光回線と、
常用光回線及び予備用光回線の各線路途中に接続された複数の光中継装置と、
常用光回線及び予備用光回線の各線路終端に接続された終端装置と、
を備え、
光中継装置は、
通常時は、常用光回線の上り側と下り側の間及び予備用光回線の上り側と下り側の間で各々光信号を中継し、
常用光回線の上り側の断線障害を検出した場合は、防災受信盤又は上り側に隣接した他の光中継装置に予備用光回線を介して断線障害信号を送信して予備用光回線により光信号を送受信させると共に、予備用光回線の上り側と常用光回線の上り側及び下り側との間で光信号を迂回中継し、
下り側に位置する他の光中継装置又は終端装置から断線障害信号を受信した場合は、常用光回線の上り側と下り側との間で光信号を中継すると共に常用光回線の上り側と予備用光回線の下り側との間で光信号を迂回中継し、
防災受信盤は、
通常時は、常用光回線により光信号を送受信し、
下り側に隣接した光中継装置から断線障害信号を受信した場合は、常用光回線に加え、予備用光回線により光信号を送受信し、
終端装置は、常用光回線の断線障害を検出した場合に、上り側に隣接した光中継装置に予備用光回線を介して断線障害信号を送信して予備用光回線により光信号を送受信させると共に、予備用光回線と常用光回線との間で光信号を迂回中継する、
ことを特徴とする。また、本発明の非常用設備は、
常用光回線の途中に接続された複数の設備機器と、
常用光回線に分岐接続されると共に、設備機器に信号回線により接続され、常用光回線から受信した光信号を電気信号に変換して設備機器に出力すると共に、設備機器から入力した電気信号を光信号に変換して常用光回線に送信する光変換器と、
を備える。
(Responding to disconnection faults in emergency equipment)
The present invention is an emergency equipment for monitoring and controlling an abnormality in a tunnel,
disaster prevention receiver,
A normal optical line and a standby optical line for performing optical signal communication between the equipment on the terminal side installed in the tunnel and the disaster prevention receiving panel;
a plurality of optical repeaters connected in the middle of each line of the regular optical line and the standby optical line;
a terminating device connected to each line termination of the regular optical line and the standby optical line;
with
The optical repeater is
Normally, optical signals are relayed between the upstream and downstream sides of the regular optical line and between the upstream and downstream sides of the backup optical line,
When a disconnection failure on the upstream side of the regular optical line is detected, a disconnection failure signal is sent to the disaster prevention receiving panel or another optical repeater adjacent to the upstream side via the backup optical line, transmitting and receiving a signal, and detouring and relaying the optical signal between the upstream side of the standby optical line and the upstream and downstream sides of the regular optical line;
When a disconnection failure signal is received from another optical repeater or terminating device located on the downstream side, the optical signal is relayed between the upstream side and the downstream side of the regular optical line, and the upstream side of the regular optical line and the backup. detouring and relaying the optical signal between the downstream side of the optical line for
The disaster prevention receiver is
Normally, optical signals are sent and received via regular optical lines,
When a disconnection failure signal is received from an optical repeater adjacent to the downstream side, the optical signal is transmitted and received through the standby optical line in addition to the regular optical line,
When the terminating device detects a disconnection fault in the regular optical line, it transmits a disconnection fault signal to the adjacent optical repeater on the upstream side via the backup optical line to transmit and receive optical signals through the backup optical line. , detouring and relaying the optical signal between the standby optical line and the regular optical line,
It is characterized by In addition, the emergency equipment of the present invention is
A plurality of equipment devices connected in the middle of a regular optical line,
It is branched and connected to the common optical line and connected to the equipment by the signal line, converts the optical signal received from the common optical line into an electrical signal and outputs it to the equipment, and converts the electrical signal input from the equipment into an optical signal. an optical converter that converts the signal into a signal and transmits it to a common optical line;
Prepare.

ここで、上り側とは、防災受信盤に近い側を意味し、下り側とは終端装置に近い側を意味する。 Here, the upstream side means the side closer to the disaster prevention receiving panel, and the downstream side means the side closer to the terminating device.

(試験信号による断線障害の監視)
防災受信盤は、周期的に試験信号を常用光回線に送信し、
光中継装置及び終端装置は、防災受信盤からの試験信号が断たれた場合に、常用光回線の断線障害を検出する。
(Monitoring of disconnection failure by test signal)
The disaster prevention receiver periodically transmits a test signal to the regular optical line,
The optical repeater and the terminating device detect disconnection failure of the regular optical line when the test signal from the disaster prevention receiving panel is cut off.

(非常用設備の光強度低下障害の対応)
本発明の別の形態にあっては、トンネル内の異常に関する監視制御を行う非常用設備であって、
防災受信盤と、
トンネル内に設置された端末側の設備機器と防災受信盤との間で光信号による通信を行うための常用光回線及び予備用光回線と、
常用光回線及び予備用光回線の各線路途中に接続された複数の光中継装置と、
常用光回線及び予備用光回線の各線路終端に接続された終端装置と、
を備え、
光中継装置は、
通常時は、常用光回線の上り側と下り側の間及び予備用光回線の上り側と下り側の間で各々光信号を中継し、
常用光回線の上り側から受信した光信号の強度低下障害を検出した場合は、防災受信盤又は上り側に隣接した他の光中継装置に予備用光回線を介して光強度低下障害信号を送信して常用光回線による光信号の送受信を停止させて予備用光回線により光信号を送受信させると共に、予備用光回線の上り側と常用光回線の上り側及び下り側との間で光信号を迂回中継し、
下り側に位置する他の光中継装置又は終端装置から光強度低下障害信号を受信した場合は、常用光回線による光信号の送受信を停止すると共に常用光回線の上り側と予備用光回線の下り側との間で光信号を迂回中継し、
防災受信盤は、
通常時は、常用光回線により光信号を送受信し、
下り側に隣接した光中継装置から光強度低下障害信号を受信した場合は、常用光回線
による光信号の送受信を停止して、予備用光回線により光信号を送受信し、
終端装置は、常用光回線から受信した光信号の強度低下障害を検出した場合に、上り側に隣接した光中継装置に予備用光回線を介して光強度低下障害信号を送信して常用光回線による光信号の送受信を停止させると共に、予備用光回線と常用光回線との間で光信号を迂回中継する、
ことを特徴とする。また、本発明の非常用設備は、
常用光回線の途中に接続された複数の設備機器と、
常用光回線に分岐接続されると共に、設備機器に信号回線により接続され、常用光回線から受信した光信号を電気信号に変換して設備機器に出力すると共に、設備機器から入力した電気信号を光信号に変換して常用光回線に送信する光変換器と、
を備える。
(Response to light intensity drop failure of emergency equipment)
In another aspect of the present invention, an emergency facility for monitoring and controlling an abnormality in a tunnel,
disaster prevention receiver,
A normal optical line and a standby optical line for performing optical signal communication between the equipment on the terminal side installed in the tunnel and the disaster prevention receiving panel;
a plurality of optical repeaters connected in the middle of each line of the regular optical line and the standby optical line;
a terminating device connected to each line termination of the regular optical line and the standby optical line;
with
The optical repeater is
Normally, optical signals are relayed between the upstream and downstream sides of the regular optical line and between the upstream and downstream sides of the backup optical line,
When an optical signal intensity drop failure received from the upstream side of a regular optical line is detected, an optical intensity drop failure signal is sent to the disaster prevention receiving panel or another optical repeater adjacent to the upstream side via the backup optical line. Then, the transmission and reception of optical signals through the normal optical line are stopped, and optical signals are transmitted and received through the backup optical line, and optical signals are transmitted between the upstream side of the backup optical line and the upstream and downstream sides of the normal optical line. relay relay,
When an optical intensity drop failure signal is received from another optical repeater or terminating equipment located on the downstream side, transmission and reception of optical signals via the normal optical line are stopped, and the upstream side of the normal optical line and the downstream side of the backup optical line are switched. detour relaying optical signals between
The disaster prevention receiver is
Normally, optical signals are sent and received via regular optical lines,
When an optical intensity drop failure signal is received from an optical repeater adjacent to the downstream side, the optical signal transmission/reception via the normal optical line is stopped, and the optical signal is transmitted/received via the backup optical line,
When the terminating equipment detects an intensity drop fault in the optical signal received from the regular optical line, it transmits an optical intensity drop fault signal to the adjacent optical repeater on the upstream side via the backup optical line, thereby removing the regular optical line. stop the transmission and reception of optical signals by and relay the optical signals by detouring between the standby optical line and the regular optical line;
It is characterized by In addition, the emergency equipment of the present invention is
A plurality of equipment devices connected in the middle of a regular optical line,
It is branched and connected to the common optical line and connected to the equipment by the signal line, converts the optical signal received from the common optical line into an electrical signal and outputs it to the equipment, and converts the electrical signal input from the equipment into an optical signal. an optical converter that converts the signal into a signal and transmits it to a common optical line;
Prepare.

(試験信号による光強度低下障害の監視)
防災受信盤は、周期的に試験信号を常用光回線に送信し、
光中継装置及び終端装置は、試験信号の受信レベルが所定の閾値以下に低下した場合に、光信号の強度低下障害を検出する。
(Monitoring of light intensity drop failure by test signal)
The disaster prevention receiver periodically transmits a test signal to the regular optical line,
The optical repeater and the terminating equipment detect an optical signal intensity drop failure when the received level of the test signal drops below a predetermined threshold.

(試験信号の巡回による予備用光回線の断線監視)
防災受信盤は、周期的に試験信号を常用光回線に送信し、
光中継装置は、常用光回線の上り側から試験信号を受信した場合に、常用光回線の下り側に試験信号を中継し、予備用光回線の下り側から試験信号を受信した場合に予備用光回線の上り側に試験信号を中継し、
終端装置は、常用光回線から試験信号を受信した場合に、予備用光回線に試験信号を送信する。
(Disconnection monitoring of standby optical line by circulating test signals)
The disaster prevention receiver periodically transmits a test signal to the regular optical line,
When the optical repeater receives a test signal from the upstream side of the regular optical line, it relays the test signal to the downstream side of the regular optical line. Relay the test signal to the upstream side of the optical line,
The terminating equipment transmits the test signal to the protection optical line when it receives the test signal from the regular optical line.

(試験信号の折り返しによる予備用光回線の断線監視)
光中継装置は、常用光回線の上り側から試験信号を受信した場合に、常用光回線の下り側に試験信号を中継すると共に、予備用光回線の上り側に試験信号を折り返して中継する。
(Disconnection monitoring of standby optical line by loopback of test signal)
When the optical repeater receives a test signal from the upward side of the regular optical line, the optical repeater relays the test signal to the downward side of the regular optical line and also loops back and repeats the test signal to the upward side of the protection optical line.

(防災受信盤による予備用光回線の断線判断)
防災受信盤は、試験信号を送信してから所定の待ち時間以内に予備用光回線から試験信号の受信がない場合に、予備用光回線の断線を判断し、下り側に隣接した光中継装置に常用光回線を経由した試験信号の送信を指示すると共に、下り側に隣接した光中継装置との間の予備用光回線の断線を報知する。
(Disconnection judgment of standby optical line by disaster prevention receiver board)
When the disaster prevention receiving board does not receive the test signal from the standby optical line within a predetermined waiting time after transmitting the test signal, the disaster prevention receiver determines that the standby optical line is broken, and the optical repeater adjacent to the downstream side. transmission of a test signal via the regular optical line, and notifies of disconnection of the protection optical line between the adjacent optical repeater on the downstream side.

(光中継装置による予備用光回線の断線判断)
光中継装置は、常用光回線の下り側に試験信号を送信してから所定の待ち時間以内に予備用光回線の下り側から試験信号の受信がない場合に、下り側の予備用光回線の断線を判断し、下り側に隣接した他の光中継装置又は下り側に隣接した終端装置に常用光回線を経由した試験信号の送信を指示すると共に、上り側の防災受信盤に予備用光回線を経由して、下り側に隣接した光中継装置との間の予備用光回線の断線又は下り側に隣接した終端装置との間の予備用光回線の断線を示す断線障害信号を送信して報知させる。
(Disconnection determination of standby optical line by optical repeater)
If no test signal is received from the downstream side of the backup optical line within a predetermined waiting time after transmitting the test signal to the downstream side of the regular optical line, the optical repeater will Disconnection is determined, and the other optical repeater adjacent to the downstream side or the terminal equipment adjacent to the downstream side is instructed to transmit a test signal via the regular optical line, and the emergency optical line for the upstream is set to the emergency optical line. to transmit a disconnection failure signal indicating disconnection of the backup optical line between the downstream side adjacent optical repeater or the disconnection of the backup optical line between the downstream side adjacent terminating equipment. inform.

(防災受信盤と光中継装置の待ち時間)
予備用光回線の断線を判断する待ち時間は、終端装置から防災受信盤に向けて順次長い時間となるように設定される。
(Waiting time for disaster prevention receiver and optical repeater)
The waiting time for judging disconnection of the standby optical line is set so that the time from the terminating device to the disaster prevention receiving panel becomes longer in sequence.

(非常用設備の断線障害対応による効果)
本発明は、所定の設備機器と、設備機器を監視する防災受信盤と、防災受信盤に接続された常用光回線と、防災受信盤に接続された予備用光回線と、常用光回線及び予備用光回線の各線路途中に接続された複数の光中継装置と、常用光回線及び予備用光回線の各線路終端に接続された終端装置と、常用光回線に分岐接続されると共に、設備機器に信号回線により接続され、常用光回線から受信した光信号を電気信号に変換して設備機器に出力すると共に、設備機器から入力した電気信号を光信号に変換して常用光回線に送信する光変換器とを備えた非常用設備であって、設備機器は、常用光回線に接続され、光中継装置は、通常時は、常用光回線の上り側と下り側の間及び予備用光回線の上り側と下り側の間で各々の光信号を中継し、常用光回線の上り側の断線障害を検出した場合は、防災受信盤又は上り側に隣接した他の光中継装置に予備用光回線を介して断線障害信号を送信して予備用光回線により光信号を送受信させると共に、予備用光回線の上り側と常用光回線の上り側及び下り側との間で光信号を迂回中継し、下り側に位置する他の光中継装置又は終端装置から断線障害信号を受信した場合は、常用光回線の上り側と下り側との間で光信号を中継すると共に、常用光回線の上り側と予備用光回線の下り側との間で光信号を迂回中継し、防災受信盤は、通常時は、常用光回線により光信号を送受信し、下り側に隣接した光中継装置から断線障害信号を受信した場合は、常用光回線に加え、予備用光回線により光信号を送受信し、終端装置は、常用光回線の断線障害を検出した場合に、上り側に隣接した光中継装置に断線障害信号を送信して予備用光回線により光信号を送受信させると共に、予備用光回線と常用光回線との間で光信号を迂回中継するようにしたため、例えば防災受信盤と光中継用装置の間で常用光回線が断線した場合、断線箇所の下り側に位置した光中継装置で断線障害が検出され、防災受信盤に予備用光回線を介して断線障害信号を送信することで、防災受信盤は常用光回線に加え予備用光回線に光信号を送受信し、断線障害を検出した光中継装置は、予備用光回線と常用光回線との間で光信号を迂回中継し、このため断線箇所の下り側に接続されている光変換器は光中継装置からの迂回中継により予備用光回線から常用光回線に折り返された光信号を送受信することとなり、常用光回線に断線障害が起きても、防災受信盤と常用光回線に接続されている全ての光変換器との間で光信号の送受信を継続して行うことを可能とする。
(Effects of dealing with disconnection failures in emergency equipment)
The present invention includes predetermined equipment, a disaster prevention receiver for monitoring the equipment, a regular optical line connected to the disaster prevention receiver, a backup optical line connected to the disaster prevention receiver, a regular optical line and a backup. A plurality of optical repeaters connected in the middle of each optical line for general use, a terminating device connected to each line end of the normal optical line and the standby optical line, branched and connected to the normal optical line, and facility equipment connected by a signal line to convert the optical signal received from the common optical line into an electrical signal and output it to the equipment, and convert the electrical signal input from the equipment into an optical signal and transmit it to the common optical line The equipment is connected to the regular optical line, and the optical repeater is normally connected between the upstream and downstream sides of the regular optical line and between the backup optical line. Each optical signal is relayed between the upstream side and the downstream side, and when a disconnection failure on the upstream side of the regular optical line is detected, a standby optical line is connected to the disaster prevention receiver or another optical repeater adjacent to the upstream side. to transmit and receive the optical signal through the backup optical line, and detour relay the optical signal between the upstream side of the backup optical line and the upstream and downstream sides of the regular optical line, When a disconnection failure signal is received from another optical repeater or terminating equipment located on the downstream side, the optical signal is relayed between the upstream side and the downstream side of the regular optical line, and the upstream side of the regular optical line The optical signal is detoured and relayed between the downstream side of the standby optical line, and the disaster prevention receiving panel normally transmits and receives optical signals via the regular optical line, and receives a disconnection failure signal from the adjacent optical repeater on the downstream side. If received, the optical signal is transmitted and received by the backup optical line in addition to the normal optical line, and when the termination device detects a disconnection fault in the normal optical line, it sends a disconnection fault signal to the adjacent optical repeater on the upstream side. is sent to transmit and receive optical signals through the standby optical line, and optical signals are detoured and relayed between the standby optical line and the regular optical line. If the normal optical line is disconnected, the disconnection failure is detected by the optical repeater located on the downstream side of the disconnection point, and by sending a disconnection failure signal to the disaster prevention receiver via the standby optical line, the disaster prevention receiver An optical repeater that transmits and receives optical signals to the backup optical line in addition to the regular optical line and detects a disconnection failure repeats the optical signal by detouring between the backup optical line and the normal optical line. The optical converter connected to the downstream side transmits and receives the optical signal that has been returned from the standby optical line to the regular optical line by the detour relay from the optical repeater. To continuously transmit and receive optical signals between a disaster prevention receiving panel and all optical converters connected to a common optical line.

このような常用光回線の断線障害は、光中継装置のあいだ、または、光中継装置と終端装置との間で起きた場合にも、断線障害を検出した光中継装置または終端装置からの迂回中継により、断線箇所の下り側に接続されている光変換器は、予備用光回線から常用光回線に折り返された光信号を送受信することとなり、常用光回線に断線障害が起きても、常用光回線に接続されている全ての光変換器との間で光信号の送受信を継続して行うことを可能とする。 If such a disconnection failure of a common optical line occurs between optical repeaters or between an optical repeater and a terminating device, the detour relay from the optical repeater or the terminating device that detects the disconnection failure will occur. As a result, the optical converter connected to the downstream side of the disconnection point transmits and receives the optical signal that is returned from the backup optical line to the regular optical line. To continuously transmit and receive optical signals to and from all optical converters connected to a line.

(試験信号による断線障害の監視による効果)
また、防災受信盤は、周期的に試験信号を常用光回線に送信し、光中継装置及び終端装置は、防災受信盤からの試験信号が断たれた場合に、常用光回線の断線障害を検出するようにしたため、通常時に使用している常用光回線の状態が常時監視されており、断線等の回線障害が発生した場合は、断線箇所の下り側に位置する光中継装置または終端装置で断線障害を検出し、光回線の断線障害に対し確実にリカバリーが行われ、耐障害性が向上し、通信の信頼性が確保される。
(Effect of monitoring disconnection failure by test signal)
In addition, the disaster prevention receiver periodically transmits a test signal to the regular optical line, and the optical repeater and the terminating device detect disconnection of the regular optical line when the test signal from the disaster prevention receiver is interrupted. Therefore, the state of the regular optical line that is normally used is constantly monitored, and in the event of a line failure such as disconnection, the optical repeater or terminal equipment located downstream of the disconnection point is disconnected. Faults are detected, recovery is performed reliably against disconnection faults in optical circuits, fault tolerance is improved, and reliability of communication is ensured.

(非常用設備の光強度低下障害の対応による効果)
また、本発明の別の形態にあっては、所定の設備機器と、設備機器を監視する防災受信盤と、防災受信盤に接続された常用光回線と、防災受信盤に接続された予備用光回線と、常用光回線及び予備用光回線各線路途中に接続された複数の光中継装置と、常用光回線及び予備用光回線の各線路終端に接続された終端装置と、設備機器に対応して設けられ、常用光回線に分岐接続されると共に設備機器に信号回線により接続され、常用光回線から受信した光信号を電気信号に変換して設備機器に出力すると共に設備機器から入力した電気信号を光信号に変換して常用光回線に送信する光変換器とを備えた非常用設備であって、設備機器は、常用光回線に接続され、光中継装置は、通常時は、常用光回線の上り側と下り側の間及び予備用光回線の上り側と下り側の間で各々の光信号を中継し、常用光回線の上り側から受信した光信号の強度低下障害を検出した場合は、防災受信盤又は上り側に隣接した他の光中継装置に予備用光回線を介して光強度低下障害信号を送信して常用光回線による光信号の送受信を停止させて、予備用光回線により光信号を送受信させると共に、予備用光回線の上り側と常用光回線の上り側及び下り側との間で光信号を迂回中継し、下り側に位置する他の光中継装置又は終端装置から光強度低下障害信号を受信した場合は、常用光回線による光信号の送受信を停止すると共に、常用光回線の上り側と予備用光回線の下り側との間で光信号を迂回中継し、防災受信盤の盤制御部は、通常時は常用光回線により光信号を送受信させ、下り側に隣接した光中継装置から光強度低下障害信号を受信した場合は、常用光回線による光信号の送受信を停止して、予備用光回線により光信号を送受信し、終端装置は、常用光回線から受信した光信号の強度低下障害を検出した場合に、上り側に隣接した光中継装置に予備用光回線を介して光強度低下障害信号を送信して常用光回線による光信号の送受信を停止させると共に、予備用光回線と常用光回線との間で光信号を迂回中継するようにしたため、例えば防災受信盤における常用光回線の光コネクタなどの接続不良により、防災受信盤に隣接して接続された光中継装置で光信号のレベルが低下する強度低下障害が検出されると、常用光回線に対する防災受信盤からの光信号の送受信が停止され、これに代えて予備用光回線に対する光信号の送受信に切り替えられ、光強度低下障害を検出した光中継装置が予備用光回線から常用光回線の上り側および下り側に光信号を迂回中継し、このため光コネクタの接続不良箇所などの下り側に接続されている光変換器は光中継装置の迂回中継により予備用光回線から常用光回線に折り返された光信号を送受信することとなり、常用光回線に光強度低下障害が起きても、常用光回線に接続されている全ての光変換器との間で光信号の送受信を継続して行うことを可能とする。
(Effects of dealing with light intensity drop failures in emergency equipment)
Further, in another aspect of the present invention, a predetermined equipment, a disaster prevention receiver for monitoring the equipment, a regular optical line connected to the disaster prevention receiver, and a spare connected to the disaster prevention receiver Compatible with optical lines, multiple optical repeaters connected in the middle of each optical line for normal use and backup optical lines, terminating equipment connected to the end of each line for normal use optical lines and backup optical lines, and facility equipment It is branched and connected to a common optical line and connected to equipment by a signal line, and converts the optical signal received from the common optical line into an electrical signal and outputs it to the equipment and the electricity input from the equipment An emergency facility equipped with an optical converter that converts a signal into an optical signal and transmits it to a regular optical line. When each optical signal is relayed between the upstream side and the downstream side of the line and between the upstream side and the downstream side of the protection optical line, and the strength reduction failure of the optical signal received from the upstream side of the regular optical line is detected. transmits an optical intensity drop failure signal to the disaster prevention receiving panel or another optical repeater adjacent to the upstream side via the standby optical line to stop the transmission and reception of optical signals over the normal optical line, and the standby optical line transmits and receives optical signals by means of the optical relay equipment, relays the optical signals between the upstream side of the backup optical line and the upstream and downstream sides of the regular optical line, and transfers the optical signals from other optical repeaters or terminating equipment located on the downstream side. In the event that an optical intensity drop failure signal is received, transmission and reception of optical signals via the normal optical line are stopped, and optical signals are relayed between the upstream side of the normal optical line and the downstream side of the backup optical line to prevent disasters. The control unit of the receiving panel normally sends and receives optical signals through the regular optical line, and when it receives an optical intensity drop failure signal from the optical repeater adjacent to the downstream side, it sends and receives optical signals through the regular optical line. When the terminating equipment detects that the strength of the optical signal received from the regular optical line has decreased, the terminating equipment connects the optical repeater to the backup optical line to the optical repeater adjacent to the upstream side. to stop the transmission and reception of optical signals through the normal optical line by transmitting an optical intensity drop failure signal via the , and to relay the optical signal between the backup optical line and the normal optical line. If an optical relay device connected adjacent to the disaster prevention receiver board detects a drop in optical signal level due to a poor connection of the optical connector of the common optical line on the board, disaster prevention reception for the common optical line is detected. Transmission and reception of optical signals from the board is stopped, and is switched to transmission and reception of optical signals to the standby optical line instead, and the optical repeater that detects the optical intensity drop failure is switched from the standby optical line to the upstream side of the regular optical line. and relays the optical signal to the downstream side by detouring, so that the optical converter connected to the downstream side such as the connection failure point of the optical connector is looped back from the standby optical line to the regular optical line by the detouring relay of the optical repeater. Therefore, even if an optical intensity drop failure occurs in a common optical line, optical signals can be continuously transmitted and received to and from all optical converters connected to the common optical line. make it possible.

また、光コネクタの接続不良などを起こした防災受信盤から常用光回線に対する光信号の送受信が停止されるため、光中継装置により予備用光回線から迂回中継された光信号との衝突が起きることはない。 In addition, since transmission and reception of optical signals to the regular optical line are stopped from the disaster prevention receiving panel that has caused a connection failure of the optical connector, etc., collision with the optical signal relayed from the backup optical line by the optical repeater may occur. no.

(試験信号による光強度低下障害の監視による効果)
また、防災受信盤は、周期的に試験信号を常用光回線に送信し、光中継装置及び終端装置は、試験信号の受信レベルが所定の閾値以下に低下した場合に、光信号の強度低下障害を検出するようにしたため、通常時に使用している常用光回線の光信号の強度低下が常時監視されており、光信号の強度低下障害が発生した場合は、障害箇所の下り側に位置する光中継装置または終端装置で光強度低下障害を検出し、光強度低下障害に対し確実にリカバリーが行われ、耐障害性が向上し、通信の信頼性が確保される。
(Effect of monitoring light intensity drop failure by test signal)
In addition, the disaster prevention receiving board periodically transmits a test signal to the common optical line, and the optical repeater and the terminating equipment detect an optical signal intensity drop failure when the reception level of the test signal drops below a predetermined threshold. is detected, the drop in the optical signal strength of the regular optical line that is normally used is constantly monitored. An optical intensity drop failure is detected by a repeater or a terminal device, recovery from the optical intensity drop failure is reliably performed, fault tolerance is improved, and reliability of communication is ensured.

(試験信号の巡回による予備用光回線の断線監視による効果)
また、防災受信盤は、周期的に試験信号を常用光回線に送信し、光中継装置は、常用光回線の上り側から試験信号を受信した場合に常用光回線の下り側に試験信号を中継し、予備用光回線の下り側から前験信号を受信した場合に予備用光回線の上り側に試験信号を中継し、終端装置は、常用光回線から試験信号を受信した場合に、予備用光回線に試験信号を送信するようにしため、試験信号は、防災受信盤から常用光回線により光中継装置を経由して終端装置に送られ、終端装置から予備用光回線により再び光中継装置を経由して防災受信盤に送られることで、常用光回線と予備用光回線の間を巡回しており、巡回している試験信号が断たれることで、常用光回線の断線に加え、予備用光回線の断線が確実に判断できる。
(Effect of disconnection monitoring of standby optical line by circulating test signals)
In addition, the disaster prevention receiving board periodically transmits a test signal to the regular optical line, and the optical repeater relays the test signal to the downstream side of the regular optical line when the test signal is received from the upward side of the regular optical line. When a preliminary signal is received from the downstream side of the protection optical line, the test signal is relayed to the upstream side of the protection optical line. In order to transmit the test signal to the optical line, the test signal is sent from the disaster prevention receiving panel to the terminating equipment via the optical repeater via the regular optical line, and then from the terminating equipment to the optical repeater again via the standby optical line. By being sent to the disaster prevention receiver board via, it circulates between the normal optical line and the standby optical line, and if the test signal that is circulating is cut off, in addition to disconnection of the normal optical line, the standby Disconnection of the optical line for use can be determined with certainty.

(試験信号の折り返しによる予備用光回線の断線監視による効果)
また、光中継装置は、常用光回線の上り側から試験信号を受信した場合に、常用光回線の下り側に試験信号を中継すると共に、予備用光回線の上り側に試験信号を折り返して中継するようにしたため、光中継装置単位及び終端装置単位に、試験信号が常用光回線と予備用光回線の間を巡回しており、巡回している試験信号が断たれることで、常用光回線の断線に加え、予備用光回線の断線が確実に判断できる。
(Effect of disconnection monitoring of standby optical line by return of test signal)
Further, when the optical repeater receives the test signal from the upstream side of the regular optical line, the optical repeater relays the test signal to the downstream side of the regular optical line and also repeats the test signal to the upstream side of the standby optical line. As a result, the test signal circulates between the normal optical line and the standby optical line for each optical repeater unit and each terminating unit. In addition to the disconnection of the optical line for protection, the disconnection of the standby optical line can be determined with certainty.

(防災受信盤による予備用光回線断線判断の効果)
防災受信盤は、試験信号を送信してから所定の待ち時間以内に予備用光回線から試験信号の受信がない場合に、予備用光回線の断線を判断し、下り側に隣接した光中継装置に常用光回線を経由した試験信号の送信を指示すると共に、下り側に隣接した光中継装置との間の予備用光回線の断線を報知するようにしたため、予備用光回線に断線障害が発生した場合、断線箇所の上り側に位置する防災受信盤が断線箇所の下り側に位置する他の光中継装置に常用光回線を経由した試験信号の送信を指示することで、断線した予備用光回線を迂回した試験信号の巡回が継続されることで断線監視が継続され、同時に、防災受信盤自身で予備用光回線の断線箇所を判断することで、予備用光回線の断線を報知して断線した予備用光回線を修復させる対処を可能とする。
(Effect of judgment of disconnection of standby optical line by disaster prevention receiver)
When the disaster prevention receiving board does not receive the test signal from the standby optical line within a predetermined waiting time after transmitting the test signal, the disaster prevention receiver determines that the standby optical line is broken, and the optical repeater adjacent to the downstream side. In addition to instructing the transmission of the test signal via the regular optical line, the disconnection of the backup optical line between the adjacent optical repeater on the downstream side was notified, so the disconnection failure occurred in the backup optical line. In this case, the disaster prevention receiver located on the upstream side of the disconnection point instructs another optical repeater located on the downstream side of the disconnection point to transmit a test signal via the regular optical line, Continuous patrol of the test signal bypassing the line continues to monitor disconnection, and at the same time, the disaster prevention receiving panel itself determines the disconnection point of the backup optical line and notifies the disconnection of the backup optical line. To enable a countermeasure to restore a broken spare optical line.

(光中継装置による予備用光回線断線判断の効果)
また、光中継装置は、常用光回線の下り側に試験信号を送信してから所定の待ち時間以内に予備用光回線の下り側から試験信号の受信がない場合に、下り側の予備用光回線の断線を判断し、下り側に隣接した他の光中継装置又は下り側に隣接した終端装置に常用光回線を経由した試験信号の送信を指示すると共に、上り側の防災受信盤に予備用光回線を経由して、下り側に隣接した光中継装置との間の予備用光回線の断線又は下り側に隣接した終端装置との間の予備用光回線の断線を示す断線障害信号を送信して報知させるようにしたため、予備用光回線に断線障害が発生した場合、断線箇所の上り側に位置する光中継装置が断線箇所の下り側に位置する他の光中継装置又は終端装置に常用光回線を経由した試験信号の送信を指示することで、断線した予備用光回線を迂回した試験信号の巡回が継続されることで断線監視が継続され、同時に、予備用光回線の断線位置を示す断線障害信号が防災受信盤に送られることで、予備用光回線の断線を報知して断線した予備用光回線を修復させる対処を可能とする。
(Effect of disconnection judgment for backup optical line by optical repeater)
Further, if the optical repeater does not receive the test signal from the downstream side of the protection optical line within a predetermined waiting time after transmitting the test signal to the downstream side of the regular optical line, It judges the disconnection of the line, instructs other optical repeaters adjacent to the downstream side or the terminal equipment adjacent to the downstream side to transmit test signals via the regular optical line, and prepares the standby disaster prevention receiver on the upstream side. Transmits a disconnection failure signal indicating disconnection of the backup optical line between the downstream side adjacent optical repeater or disconnection of the backup optical line between the downstream side adjacent terminating equipment via the optical line. Therefore, when a disconnection failure occurs in the backup optical line, the optical repeater located on the upstream side of the disconnection point is normally used by other optical repeaters or termination devices located on the downstream side of the disconnection point. By instructing transmission of the test signal via the optical line, the circulation of the test signal that bypasses the broken standby optical line continues, thereby continuing the disconnection monitoring, and at the same time detecting the disconnection position of the backup optical line. By sending the disconnection failure signal shown to the disaster prevention receiving panel, it is possible to notify the disconnection of the backup optical line and restore the disconnected backup optical line.

(待ち時間による効果)
また、予備用光回線の断線を判断する待ち時間は、終端装置から防災受信盤に向けて順次長い時間となるように設定されたため、例えば終端装置に対する予備用光回線が断線した場合、断線箇所の上り側に位置する光中継装置の待ち時間が短く、防災受信盤に近づくほど待ち時間が長くなるため、断線箇所の上り側に位置する光中継装置において、試験信号の送信からの経過時間が所定の待ち時間に最初に達し、常用光回線の断線が判断されて予備用光回線の断線箇所を迂回した常用光回線による試験信号の上り送信が行われ、このため上り側に位置する他の光中継装置や防災受信盤は、試験信号の送信からの経過時間が設定されている待ち時間に到達する前に、再び予備用光回線から試験信号が受信され、予備用光回線の断線に対し上り側に位置する複数の光中継装置及び防災受信盤で断線が重複して判断される不具合を防止できる。
(Effect of waiting time)
In addition, the waiting time for judging disconnection of the backup optical line is set so that the time from the terminating device to the disaster prevention receiving panel becomes progressively longer. The waiting time of the optical repeater located on the upstream side of the cable is short, and the closer it gets to the disaster prevention receiver board, the longer the waiting time. When the predetermined waiting time is reached first, it is determined that the normal optical line is broken, and the test signal is transmitted upstream by the normal optical line that bypasses the broken point of the backup optical line. The optical repeater and disaster prevention receiver receive the test signal again from the standby optical line before the time elapsed from the transmission of the test signal reaches the set waiting time. It is possible to prevent a problem that a plurality of optical repeaters and disaster prevention receivers located on the upstream side are repeatedly judged to have a disconnection.

光回線を用いたトンネル非常用設備の概要を示した説明図Explanatory diagram showing the outline of tunnel emergency equipment using optical circuits 図1に設けられた防災受信盤と設備機器の実施形態を機能構成により示したブロック図Block diagram showing the functional configuration of the embodiment of the disaster prevention receiving panel and equipment provided in FIG. 図2に設けられた制御器の実施形態を機能構成により示したブロック図FIG. 3 is a block diagram showing the functional configuration of the embodiment of the controller provided in FIG. 図2に設けられた光中継増幅器の実施形態を機能構成により示したブロック図FIG. 2 is a block diagram showing the functional configuration of the embodiment of the optical repeater amplifier provided in FIG. 図2に設けられた終端装置の実施形態を機能構成により示したブロック図FIG. 2 is a block diagram showing the functional configuration of the embodiment of the terminal device provided in FIG. 通常状態における光信号の送受信を示した説明図Explanatory diagram showing transmission and reception of optical signals in a normal state 図6の通常状態における光中継増幅器のノーマルモードの動作を示したブロック図Block diagram showing the normal mode operation of the optical repeater amplifier in the normal state of FIG. 図6の通常状態における終端装置のノーマルモードの動作を示したブロック図FIG. 6 is a block diagram showing the normal mode operation of the terminating device in the normal state of FIG. 防災受信盤と光中継増幅器の間の常用光回線で断線障害が起きた場合の光信号の送受信を示した説明図Explanatory diagram showing transmission and reception of optical signals when disconnection failure occurs in the regular optical line between the disaster prevention receiving panel and the optical repeater amplifier 図9の断線障害に対し迂回中継を行う光中継増幅器の迂回モードの動作を示したブロック図FIG. 9 is a block diagram showing operation in detour mode of an optical repeater amplifier that performs detour relay for the disconnection failure of FIG. 光中継増幅器の間の常用光回線で断線障害が起きた場合の光信号の送受信を示した説明図An explanatory diagram showing transmission and reception of optical signals when a disconnection failure occurs in a common optical line between optical repeater amplifiers. 光中継増幅器と終端装置の間の常用光回線で断線障害が起きた場合の光信号の送受信を示した説明図An explanatory diagram showing the transmission and reception of optical signals when a disconnection failure occurs in the common optical line between the optical repeater amplifier and the terminating equipment. 防災受信盤に隣接した光中継増幅器で光強度低下障害が検出された場合の光信号の送受信を示した説明図Explanatory diagram showing transmission and reception of optical signals when an optical intensity drop failure is detected by an optical repeater amplifier adjacent to a disaster prevention receiver panel 光中継増幅器に隣接した光中継増幅器で光強度低下障害が検出された場合の光信号の送受信を示した説明図An explanatory diagram showing transmission and reception of optical signals when an optical intensity drop fault is detected in an optical repeater adjacent to the optical repeater. 図6の光強度低下障害による光中継増幅器のシングルパスモードの動作を示したブロック図Block diagram showing single-pass mode operation of the optical repeater amplifier due to the light intensity drop fault of FIG. 光中継増幅器に隣接した終端装置で光強度低下障害が検出された場合の光信号の送受信を示した説明図Explanatory diagram showing transmission and reception of optical signals when an optical intensity drop failure is detected in a terminating device adjacent to an optical repeater amplifier. 常用光回線から予備用光回線に試験信号を巡回させる断線監視において、光中継増幅器の間の予備用光回線が断線した場合の試験信号の迂回送信を示した説明図Explanatory drawing showing detour transmission of a test signal when a standby optical line between optical repeater amplifiers is disconnected in disconnection monitoring in which a test signal is circulated from a regular optical line to a standby optical line. 常用光回線から予備用光回線に試験信号を巡回させる断線監視において、光中継増幅器と終端装置の間の予備用光回線が断線した場合の試験信号の迂回送信を示した説明図Explanatory drawing showing detour transmission of a test signal when the optical line for protection between the optical repeater amplifier and the terminating equipment is disconnected in disconnection monitoring in which the test signal is circulated from the regular optical line to the backup optical line. 常用光回線から予備用光回線に試験信号を巡回させる断線監視において、防災受信盤と光中継増幅器の間の予備用光回線が断線した場合の試験信号の迂回送信を示した説明図Explanatory diagram showing detour transmission of test signals when the standby optical line between the disaster prevention receiving panel and the optical repeater amplifier is disconnected in disconnection monitoring in which the test signal is circulated from the regular optical line to the standby optical line. 光中継増幅器単位及び終端装置単位に常用光回線から予備用光回線に試験信号を巡回させる断線監視において、光中継増幅器の間の予備用光回線が断線した場合の試験信号の迂回送信を示した説明図In the disconnection monitoring that circulates the test signal from the normal optical line to the backup optical line for each optical repeater amplifier and each terminating device, the detour transmission of the test signal when the backup optical line between the optical repeater amplifiers is broken is shown. Explanatory diagram

[トンネル非常用設備の概要]
図1は光回線を用いたトンネル非常用設備の概要を示した説明図である。図1に示すように、トンネル10の内部には、トンネル長手方向に、火災による炎を検知するため火災検知器25が50メートル間隔で設置され、また、火災の消火や延焼防止のためにノズル付きホースを収納した消火栓装置24が50メートル間隔で設置されている。
[Overview of Tunnel Emergency Equipment]
FIG. 1 is an explanatory diagram showing an outline of tunnel emergency equipment using an optical line. As shown in FIG. 1, inside the tunnel 10, fire detectors 25 are installed at intervals of 50 meters in the longitudinal direction of the tunnel to detect flames caused by fire. Fire hydrants 24 containing attached hoses are installed at intervals of 50 meters.

また、トンネル10内には、火災検知器25及び消火栓装置24以外の設備機器として、火災通報のために手動通報装置や非常電話が設けられ、更にトンネル躯体やダクト内を火災から防護するために水噴霧ヘッドから消火用水を散水させる水噴霧などが設置されるが、図示を省略している。 In addition, in the tunnel 10, as equipment other than the fire detector 25 and the fire hydrant device 24, a manual reporting device and an emergency telephone are provided for fire reporting, and furthermore, to protect the tunnel frame and the inside of the duct from fire A water spray for sprinkling water for fire extinguishing from a water spray head is installed, but illustration is omitted.

一方、監視センター等には防災受信盤12が設置されており、防災受信盤12からはトンネル10に対し常用光回線14-1と予備用光回線14-2が引き出され、常用光回線14-1にはトンネル10内に設置された火災検知器25や消火栓装置24の設備機器やそれ以外の非常設備の機器が光変換器18を介して接続されている。 On the other hand, a disaster prevention receiving panel 12 is installed in the monitoring center or the like. 1 is connected via an optical converter 18 to equipment such as a fire detector 25 and a fire hydrant device 24 installed in the tunnel 10 and other emergency equipment.

また、常用光回線14-1及び予備用光回線14-2の途中には、所定の伝送距離毎に光中継増幅器20が接続されて光信号を中継増幅している。更に、常用光回線14-1及び予備用光回線14-2の終端には終端装置22が接続されている。 In addition, optical repeater amplifiers 20 are connected at predetermined transmission distances in the middle of the regular optical line 14-1 and the standby optical line 14-2 to repeat and amplify optical signals. Furthermore, a terminating device 22 is connected to the ends of the regular optical line 14-1 and the standby optical line 14-2.

常用光回線14-1及び予備用光回線14-2にはFTTH等の光ファイバーケーブルが使用され、例えばIPパケット等を用いた光波長多重通信(WDM)が行われる。 An optical fiber cable such as FTTH is used for the regular optical line 14-1 and the standby optical line 14-2, and optical wavelength division multiplexing (WDM) using IP packets, for example, is performed.

また、防災受信盤12からはトンネル内に電源線16が引き出され、トンネル内に設置された光変換器18、光中継増幅器20、終端装置22、火災検知器25及び消火栓装置24に設けられた設備機器に対し電源を供給している。 A power supply line 16 is drawn into the tunnel from the disaster prevention receiving panel 12, and an optical converter 18, an optical repeater amplifier 20, a terminal device 22, a fire detector 25, and a fire hydrant device 24 installed in the tunnel. Power is supplied to equipment.

また、防災受信盤12に対しては、消火ポンプ設備26、ダクト用の冷却ポンプ設備27、換気設備28、警報表示板設備29、ラジオ再放送設備30、テレビ監視設備31、照明設備32及びIG子局設備33等を設けており、IG子局設備33をデータ伝送回線で接続する点を除き、それ以外の設備はP型信号回線により防災受信盤12に個別に接続されている。 In addition, for the disaster prevention receiving panel 12, fire pump equipment 26, duct cooling pump equipment 27, ventilation equipment 28, alarm display board equipment 29, radio rebroadcast equipment 30, television monitoring equipment 31, lighting equipment 32 and IG Slave station equipment 33 and the like are provided, and except for connecting the IG slave station equipment 33 with a data transmission line, other equipment is individually connected to the disaster prevention receiving panel 12 with a P-type signal line.

ここで、換気設備28は、トンネル内の天井側に設置されているジェットファンの運転による高い吹き出し風速によってトンネル内の空気にエネルギーを与えて、トンネル長手方向に換気の流れを起こす設備である。 Here, the ventilation equipment 28 is equipment that gives energy to the air in the tunnel by means of a high blowing wind speed generated by the operation of a jet fan installed on the ceiling side of the tunnel to generate a ventilation flow in the longitudinal direction of the tunnel.

警報表示板設備29は、トンネル内の利用者に対して、トンネル内の異常を、電光表示板に表示して知らせる設備である。ラジオ再放送設備30は、トンネル内で運転者等が道路管理者からの情報を受信できるようにするための設備である。テレビ監視設備31は、火災の規模や位置を確認したり、水噴霧設備の作動、避難誘導を行う場合のトンネル内の状況を把握するための設備である。 The alarm display board facility 29 is a facility for notifying users in the tunnel of an abnormality in the tunnel by displaying it on an electric display board. The radio rebroadcast facility 30 is a facility for enabling drivers and the like to receive information from road administrators in tunnels. The television monitoring equipment 31 is equipment for checking the scale and position of the fire, operating the water spray equipment, and grasping the situation inside the tunnel when conducting evacuation guidance.

照明設備32はトンネル内の照明機器を駆動して管理する設備である。更に、IG子局設備33は、防災受信盤12と外部に設けた上位設備である遠方監視制御設備35とをネットワーク34を経由して結ぶ通信設備である。 The lighting equipment 32 is equipment for driving and managing the lighting equipment in the tunnel. Further, the IG slave station equipment 33 is a communication equipment that connects the disaster prevention receiving panel 12 and a remote monitoring control equipment 35, which is a higher-level equipment provided outside, via a network 34 .

[設備の機能構成]
図2は図1に設けられた防災受信盤と設備機器の実施形態を機能構成により示したブロック図である。
[Equipment functional configuration]
FIG. 2 is a block diagram showing an embodiment of the disaster prevention receiving panel and equipment provided in FIG. 1 in terms of functional configuration.

(防災受信盤)
図2に示すように、防災受信盤12は盤制御部46を備え、盤制御部46は例えばプログラムの実行により実現される機能であり、ハードウェアとしてはCPU、メモリ、各種の入出力ポート等を備えたコンピュータ回路等を使用する。
(Disaster prevention receiver)
As shown in FIG. 2, the disaster prevention receiver panel 12 includes a panel control section 46, which is a function realized by executing a program, for example. using a computer circuit or the like with

盤制御部46に対しては、2系統の伝送部48と光送受信部50が設けられ、一方の光送受信部50からトンネル内に常用光回線14-1が引き出され、他方の光送受信部50からトンネル内に予備用光回線14-2が引き出され、光分配器15を介して例えば火災検知器25と消火栓装置24に対応して設けられた光変換器18が分岐された光回線に接続されている。 Two systems of a transmission unit 48 and an optical transmission/reception unit 50 are provided for the board control unit 46 . A standby optical line 14-2 is drawn into the tunnel from the tunnel, and an optical converter 18 provided corresponding to, for example, a fire detector 25 and a fire hydrant device 24 is connected to the branched optical line via an optical distributor 15. It is

なお、盤制御部46に対する2系統の伝送部48と光送受信部50は、必要に応じて複数セットであっても良い。例えば、防災受信盤12で上りトンネルと下りトンネルの防災設備を監視する場合には、盤制御部46に対する2系統の伝送部48と光送受信部50は少なくとも2セット設けられる。 It should be noted that the two systems of the transmission unit 48 and the optical transmission/reception unit 50 for the board control unit 46 may be a plurality of sets as required. For example, when the disaster prevention receiver board 12 monitors the disaster prevention equipment of the up tunnel and the down tunnel, at least two sets of the two-system transmission unit 48 and the optical transmission/reception unit 50 for the board control unit 46 are provided.

盤制御部46に対しては、液晶ディスプレイ、プリンタ等を備えた表示部52、各種スイッチ等を備えた操作部54、スピーカ、警報表示灯等を備えた警報部56、外部監視設備と通信するIG子局設備40を接続するモデム58が設けられ、更に、図1に示した消火ポンプ設備26、冷却ポンプ設備27、換気設備28、警報表示板設備29、ラジオ再放送設備30、テレビ監視設備31及び照明設備32が接続されたIO部60が設けられている。 The panel control unit 46 communicates with a display unit 52 equipped with a liquid crystal display, a printer, etc., an operation unit 54 equipped with various switches, etc., an alarm unit 56 equipped with a speaker, an alarm indicator lamp, etc., and external monitoring equipment. A modem 58 for connecting the IG slave station equipment 40 is provided, and furthermore, the fire pump equipment 26, the cooling pump equipment 27, the ventilation equipment 28, the alarm display board equipment 29, the radio rebroadcast equipment 30, and the television monitoring equipment shown in FIG. IO section 60 to which 31 and lighting equipment 32 are connected is provided.

伝送部48は所定のシリアル通信プロトコルに従ってパケット信号(電気信号)を送受信する。 The transmission unit 48 transmits and receives packet signals (electrical signals) according to a predetermined serial communication protocol.

光送受信部50は、伝送部48からのパケット信号を所定の下り波長帯域の光信号に変換して光回線に送信し、また、光回線から受信した所定の上り波長帯域の光信号をパケット信号(電気信号)に変換して伝送部に出力する。 The optical transmission/reception unit 50 converts the packet signal from the transmission unit 48 into an optical signal of a predetermined downstream wavelength band and transmits the optical signal to the optical line, and converts the optical signal of a predetermined upstream wavelength band received from the optical line into a packet signal. (Electrical signal) and output to the transmission unit.

例えば、光送受信部50は、電気信号を光信号に変換するレーザーダイオードを備えた電気/光変換器(E/O変換器)と、光信号を電気信号に変換するフォトダイオードを備えた光/電気変換器(O/E変換器)と、光回線からの上り波長帯域の光信号を分離すると共に光回線に下り波長帯域の光信号を合成して送り込むWDMフィルタとを備える。 For example, the optical transmitter/receiver 50 includes an electrical/optical converter (E/O converter) having a laser diode that converts an electrical signal into an optical signal, and an optical/optical converter having a photodiode that converts an optical signal into an electrical signal. It comprises an electrical converter (O/E converter) and a WDM filter that separates optical signals in the upstream wavelength band from the optical line and combines and sends optical signals in the downstream wavelength band to the optical line.

本実施形態にあっては、伝送部48と光送受信部50により、波長間隔の広い光波長多重通信として知られた例えばCWDM(コアースWDM)伝送を行うことで、10キロメートルを超えるトンネル長であっても、適切に対応できる。 In this embodiment, the transmission unit 48 and the optical transmission/reception unit 50 perform CWDM (coarse WDM) transmission known as optical wavelength division multiplexing communication with wide wavelength intervals, thereby achieving a tunnel length exceeding 10 kilometers. However, we can respond appropriately.

盤制御部46は、常用光回線14-1に対応した伝送部48に指示し、光伝送部50を介してトンネル内に設置された設備機器との間でパケット信号を送受信する制御を行う。 The board control unit 46 instructs the transmission unit 48 corresponding to the common optical line 14-1 to control the transmission and reception of packet signals to and from equipment installed in the tunnel via the optical transmission unit 50. FIG.

ここで、トンネル内に設置された設備機器は、盤制御部46に対し検知信号やスイッチ信号を送信する火災検知器25、発信機76、消火栓スイッチ80等の検知系の設備機器と、盤制御部46により制御される赤色表示灯74,応答ランプ78等の制御系の設備機器に分けることができる。 Here, the equipment installed in the tunnel includes detection system equipment such as a fire detector 25 that transmits detection signals and switch signals to the panel control unit 46, a transmitter 76, a fire hydrant switch 80, and a panel control unit. It can be divided into control system equipment such as a red indicator lamp 74 and a response lamp 78 controlled by the unit 46 .

このため盤制御部46は、検知系の設備機器となる火災検知器25、発信機76、消火栓スイッチ80に対しては、設備機器に割り当てられた固有のIPアドレスを順次指定したポーリングコマンドを含む呼出パケット信号を繰り返し送信する制御を行っており、検知系の設備機器は自己のIPアドレスに一致する呼出パケット信号を受信すると、火災検知やスイッチオン等の自己の状態情報を含む応答パケット信号を返信する。 For this reason, the panel control unit 46 includes a polling command that sequentially designates the unique IP addresses assigned to the equipment for the fire detector 25, the transmitter 76, and the fire hydrant switch 80, which are equipment for the detection system. Control is performed to repeatedly transmit call packet signals, and when detection system equipment receives a call packet signal that matches its own IP address, it sends a response packet signal containing its own status information such as fire detection and switch-on. Reply.

また、盤制御部46は、制御系の設備機器となる赤色表示灯74,応答ランプ78に対しては、制御を必要とする場合に、固有のIPアドレスを指定した制御コマンドを含む制御パケット信号を送信する制御を行い、検知系の設備機器は自己のIPアドレスに一致する呼出パケット信号を受信すると、表示灯の点灯や点滅といった制御を行わせる。 In addition, the panel control unit 46, when control is required for the red indicator lamp 74 and the response lamp 78, which are equipment of the control system, is a control packet signal containing a control command designating a unique IP address. When the equipment of the detection system receives a call packet signal that matches its own IP address, it controls the lighting and blinking of the indicator lamp.

なお、盤制御部46は、制御系の設備機器についても、検知系の設備機器と同様に、IPアドレスを順次指定したポーリングコマンドを含む呼出パケット信号を繰り返し送信し、それぞれの状態を示す応答パケット信号を返信させるようにしても良い。 Note that the panel control unit 46 also repeatedly transmits a call packet signal including a polling command sequentially specifying an IP address to the control-system equipment as well as the detection-system equipment, and sends a response packet indicating the status of each device. A signal may be returned.

盤制御部46による具体的に制御は次のようになる。盤制御部46は、火災検知器25からの火災情報を含む応答パケット信号(火災信号)の受信により火災を検知した場合は、警報部56により火災警報を出力させると共にIO部60を介し他設備の連動を指示する制御を行う。 Specifically, the control by the board control unit 46 is as follows. When the panel control unit 46 detects a fire by receiving a response packet signal (fire signal) containing fire information from the fire detector 25, the alarm unit 56 outputs a fire alarm and outputs a fire alarm to other equipment via the IO unit 60. perform control to instruct interlocking.

また、盤制御部46は、消火栓装置24に設けられた発信機76の操作による火災通報情報を含む応答パケット信号(火災通報信号)の受信により火災を検知した場合は、警報部56により火災警報を出力させると共にIO部60を介し他設備の連動を指示する制御を行い、更に、発信機76が操作された消火栓装置24に設けられている応答ランプ78及び赤色表示灯74のIPアドレスを指定した制御コマンドを含む制御パケット信号を送信する制御を行い、応答ランプ78を点灯させると共に、赤色表示灯74を点滅させる制御を行う。 In addition, when the panel control unit 46 detects a fire by receiving a response packet signal (fire notification signal) containing fire notification information by operating the transmitter 76 provided in the fire hydrant device 24, the alarm unit 56 issues a fire alarm. is output and the IP address of the response lamp 78 and the red indicator light 74 provided in the fire hydrant device 24 where the transmitter 76 is operated is specified. Control is performed to transmit a control packet signal including the received control command, to turn on the response lamp 78 and to blink the red indicator lamp 74 .

一方、盤制御部46は、伝送部48に指示し、光送受信部50を介して常用光回線14-1及び予備用光回線14-2に試験光信号を所定周期毎に送信させる制御を行っており、終端装置22は試験光信号を正常に受信すると試験応答光信号を送り返してくることから、これにより盤制御部46は常用光回線14-1及び予備用光回線14-2が正常に機能していることを確認している。 On the other hand, the board control unit 46 instructs the transmission unit 48 to perform control to transmit the test optical signal to the regular optical line 14-1 and the standby optical line 14-2 via the optical transmission/reception unit 50 at predetermined intervals. When the terminating device 22 normally receives the test optical signal, it sends back the test response optical signal. I have verified that it is working.

(設備機器側の機能構成)
図2に示すように、火災検知器25及び消火栓装置24が設けられた設備機器側には、光変換器18が設けられる。光変換器18は、常用光回線14-1に対応した光送受信部62を備え、その電気信号の送受信側を信号変換部として機能するゲートウェイ66に接続している。
(Functional configuration on equipment side)
As shown in FIG. 2, the optical converter 18 is provided on the side of the equipment where the fire detector 25 and the fire hydrant device 24 are provided. The optical converter 18 has an optical transmission/reception unit 62 corresponding to the common optical line 14-1, and the transmission/reception side of the electric signal is connected to a gateway 66 functioning as a signal conversion unit.

光送受信部62は防災受信盤12に設けられた光送受信部50と同様であり、電気/光変換器(E/O変換器)、光/電気変換器(O/E変換器)及びWDMフィルタを備え、光回線からの下り波長帯域の光信号を電気信号に変換してゲートウェイ66に出力し、また、ゲートウェイ66からの電気信号を上り波長帯域の光信号に変換して光回線に出力する。 The optical transmitter/receiver 62 is the same as the optical transmitter/receiver 50 provided on the disaster prevention receiver panel 12, and includes an electrical/optical converter (E/O converter), an optical/electrical converter (O/E converter), and a WDM filter. converts an optical signal in the downstream wavelength band from the optical line into an electrical signal and outputs it to the gateway 66, and converts the electrical signal from the gateway 66 into an optical signal in the upstream wavelength band and outputs it to the optical line. .

ゲートウェイ66は、光回線側のIPプロトコルと設備機器側のTCPプロトコル、例えば所定のLANプロトコルとなるイーサネット(登録商標)との間のプロトコル変換を行う。ゲートウェイ66はOSI基本参照モデルでの7層全ての接続機能を持つが、ゲートウェイ66をルーターに替えても良い。ルーターは、OSI基本参照モデルの1~3層までの接続機能を持ち、同様に、光回線側のIPプロトコルと設備機器側の所定のLANプロトコルとの間のプロトコル変換が可能となる。 The gateway 66 performs protocol conversion between the IP protocol on the optical line side and the TCP protocol on the equipment side, such as Ethernet (registered trademark), which is a predetermined LAN protocol. Although the gateway 66 has the connection function of all seven layers in the OSI basic reference model, the gateway 66 may be replaced with a router. The router has a connection function of layers 1 to 3 of the OSI basic reference model, and likewise enables protocol conversion between the IP protocol on the optical line side and the predetermined LAN protocol on the equipment side.

ゲートウェイ66は設備機器側にLAN回線68が接続されており、LAN回線68に対し火災検知器25が直接接続されると共に、制御系の設備機器となる赤色表示灯74と応答ランプ78は制御器70を介してLAN回線68に接続され、また、検知系の設備機器となる発信機76と消火栓スイッチ80が別の制御器72を介してLAN回線68に接続されている。 A LAN line 68 is connected to the equipment side of the gateway 66, and the fire detector 25 is directly connected to the LAN line 68. A red indicator lamp 74 and a response lamp 78, which are control system equipment, are used as controllers. A transmitter 76 and a fire hydrant switch 80 serving as detection system equipment are connected to the LAN line 68 via another controller 72 .

なお、光変換器18に設けられたゲートウェイ66と火災検知器25及び消火栓装置に設けられた制御器70,72との間の伝送はLANプロトコルによる伝送以外に、R型火災報知設備で使用されている火災伝送プロトコルとしても良い。 The transmission between the gateway 66 provided in the optical converter 18 and the controllers 70 and 72 provided in the fire detector 25 and the fire hydrant system is used in the R-type fire alarm system in addition to the LAN protocol transmission. It is also good as a fire transmission protocol.

火災伝送プロトコルの場合、ゲートウェイ66の伝送部から火災検知器25及び制御器70,72の伝送部に対する下り信号は電圧モードの伝送であり、伝送路の電圧を所定の電圧範囲で変化させる電圧パルスとして伝送される。これに対し火災検知器25及び制御器70,72の伝送部からのゲートウェイ66の伝送部に対する上り信号は電流モードの伝送であり、伝送路に伝送データのビット1のタイミングで信号電流を流し、いわゆる電流パルス列として上り信号が伝送される。 In the case of the fire transmission protocol, the downstream signal from the transmitter of the gateway 66 to the transmitters of the fire detector 25 and the controllers 70, 72 is a voltage mode transmission, which is a voltage pulse that changes the voltage of the transmission line within a predetermined voltage range. transmitted as On the other hand, the upstream signal from the transmitters of the fire detector 25 and the controllers 70 and 72 to the transmitter of the gateway 66 is transmitted in the current mode. An upstream signal is transmitted as a so-called current pulse train.

図3は図2の消火栓装置側に設けられた制御器の実施形態を機能構成により示したブロック図であり、図3(A)が制御系の設備機器に使用される制御器を示し、図3(B)が検知系の設備機器に使用される制御器を示している。 FIG. 3 is a block diagram showing the functional configuration of an embodiment of a controller provided on the side of the fire hydrant device in FIG. 3(B) indicates a controller used for the equipment of the detection system.

図3(A)の制御系の設備機器に使用される制御器70は、端末制御部82、LAN伝送部84及び駆動回路部86を備える。端末制御部82はCPU、メモリ、各種の入出力ポート等を備えたコンピュータ回路等を使用する。 The controller 70 used in the control-system equipment shown in FIG. The terminal control unit 82 uses a computer circuit or the like having a CPU, memory, various input/output ports, and the like.

LAN伝送部84には固有のIPアドレスが設定されており、LAN回線68を介して受信したパケット信号のアドレスと自己アドレスが一致した場合、端末制御部82はパケット信号に設定されている制御コマンドに基づく制御信号を駆動回路86に出力し、例えば設備機器として接続されている赤色表示灯74を点滅させる制御を行う。 A unique IP address is set in the LAN transmission unit 84, and when the address of the packet signal received via the LAN line 68 matches the own address, the terminal control unit 82 transmits the control command set in the packet signal. is output to the drive circuit 86 to control the blinking of the red indicator lamp 74 connected as equipment, for example.

なお、駆動回路部86は通常状態では赤色表示灯74を点灯状態に維持している。また、図2に示した応答ランプ78に接続された制御器70も図3(A)と同様となる。 In addition, the drive circuit unit 86 keeps the red indicator lamp 74 in a lighting state in a normal state. Also, the controller 70 connected to the response lamp 78 shown in FIG. 2 is the same as that shown in FIG. 3(A).

図3(B)の検知系に使用すれる制御器72は、端末制御部82、LAN伝送部84及び入力回路部88を備える。LAN伝送部84には固有のIPアドレスが設定されている。入力回路部88には設備機器として例えば発信機76が接続されており、発信機76の押釦操作によりスイッチがオンされると、入力回路部88がスイッチオンを検知して火災通報信号を出力する。 A controller 72 used in the detection system of FIG. A unique IP address is set in the LAN transmission unit 84 . For example, a transmitter 76 is connected as equipment to the input circuit section 88. When the switch of the transmitter 76 is turned on by operating the push button, the input circuit section 88 detects the switch-on and outputs a fire notification signal. .

端末制御部82は入力回路部88からの火災通報信号を検知すると、LAN伝送部84に指示し、防災受信盤12のIPアドレス及び火災通報情報が設定されたパケット信号を生成して送信させる制御を行う。 When the terminal control unit 82 detects the fire notification signal from the input circuit unit 88, it instructs the LAN transmission unit 84 to generate and transmit a packet signal in which the IP address of the disaster prevention receiver 12 and the fire notification information are set. I do.

なお、発信機76に使用するスイッチはノンロック型のスイッチとすることが望ましい。発信機76にノンロック型のスイッチを使用することで、スイッチ操作を行った後の復旧操作が不要となる。 It is desirable that the switch used for the transmitter 76 be a non-lock type switch. By using a non-locking switch for the transmitter 76, recovery operation after switch operation is unnecessary.

また、図2に示した消火栓スイッチ80に接続された制御器72も図3(B)と同様となる。また、消火栓スイッチ80は消火栓装置24に設けられた消火栓弁開閉レバーを開放位置に操作した場合にオンするスイッチであり、防災受信盤12に対し消火ポンプ設備のポンプ起動コマンドを含むパケット信号が送信される。更に、消火栓スイッチ80には、消火栓装置24内に設けられた消防隊が使用する消火ポンプ起動スイッチ(図示せず)が並列接続されている。 Also, the controller 72 connected to the fire hydrant switch 80 shown in FIG. 2 is the same as that shown in FIG. 3(B). In addition, the fire hydrant switch 80 is a switch that is turned on when the fire hydrant valve opening/closing lever provided in the fire hydrant device 24 is operated to the open position, and a packet signal including a pump activation command for the fire pump equipment is sent to the disaster prevention receiving panel 12. be done. Furthermore, the fire hydrant switch 80 is connected in parallel with a fire pump starting switch (not shown) provided in the fire hydrant device 24 and used by the fire brigade.

また、図2の火災検知器25は、LAN伝送部の機能が内蔵されていることから、制御器を外付けする必要はない。また、図2にあっては、制御器70,72を設備機器に外付けしているが、両者を一体化した設備機器としても良い。 Further, since the fire detector 25 of FIG. 2 has a built-in function of a LAN transmission section, it is not necessary to attach a controller externally. Also, in FIG. 2, the controllers 70 and 72 are externally attached to the equipment, but the equipment may be integrated with both.

また、図3に示した制御器70,72の電源は、図1に示したように防災受信盤12から電源線16により供給しているが、発信機76や消火栓スイッチ80等の通常状態ではオフしている図3(B)の設備機器の制御器72については、電池電源を設け、スイッチがオフしている通常状態では電池電源により制御器72を動作させ、火災時や点検時にスイッチ操作が行われた場合に、防災受信盤12からの電源に切り替えて制御器72を動作させるようにし、これにより設備機器側の電力消費を低減させる。 The controllers 70 and 72 shown in FIG. 3 are powered by the power line 16 from the disaster prevention receiving panel 12 as shown in FIG. A battery power supply is provided for the controller 72 of the facility equipment shown in FIG. is performed, the power supply is switched to the power supply from the disaster prevention receiving panel 12 to operate the controller 72, thereby reducing the power consumption on the equipment side.

また、図3(A)(B)の制御器70,72のCPUを備えた端末制御部82について、通常状態ではスリープモードとして消費電力を節減し、表示制御やスイッチ操作が行われた場合にウェイクアップによりスリープモードを解除して通常モードにより動作させるようにしても良い。 In addition, the terminal control unit 82 having the CPU of the controllers 70 and 72 shown in FIGS. The sleep mode may be released by wakeup and the device may be operated in the normal mode.

(光中継増幅器の構成)
図4は図2に設けられた光中継増幅器の実施形態を機能構成により示したブロック図である。
(Configuration of optical repeater amplifier)
FIG. 4 is a block diagram showing the functional configuration of an embodiment of the optical repeater amplifier provided in FIG.

図4に示すように、光中継増幅器20は、常用中継増幅部90、予備用中継増幅部92、迂回用中継増幅部94、中継増幅制御部96及びゲートウェイ98で構成されている。なお、中継増幅制御部96及びゲートウェイ98と常用中継増幅部90、予備用中継増幅部92及び予備用中継増幅部92の間の信号線接続は省略している。 As shown in FIG. 4, the optical repeater amplifier 20 comprises a regular repeater amplifier 90, a backup repeater amplifier 92, a detour repeater amplifier 94, a repeater amplifier controller 96, and a gateway 98. FIG. Signal line connections between the relay amplification control section 96 and the gateway 98, the regular relay amplification section 90, the standby relay amplification section 92, and the standby relay amplification section 92 are omitted.

常用中継増幅部90は常用光回線14-1の上り側と下り側との間で光信号を中継増幅する。常用中継増幅部90による下り信号の中継増幅は、WDMフィルタ100、光/電気変換器(O/E変換器)102、アンプ104、電気/光変換器(E/O変換器)106及びWDMフィルタ108からなる系統で行われる。 The common repeater amplifier 90 repeats and amplifies the optical signal between the upstream side and the downstream side of the common optical line 14-1. A WDM filter 100, an optical/electrical converter (O/E converter) 102, an amplifier 104, an electric/optical converter (E/O converter) 106, and a WDM filter are used for relay amplification of a downstream signal by the common relay amplifier 90. 108.

また、常用中継増幅部90による上り信号の中継増幅は、WDMフィルタ108、光/電気変換器(O/E変換器)110、アンプ112、切替器114、電気/光変換器(E/O変換器)116及びWDMフィルタ100からなる系統で行われる。 Further, the relay amplification of the upstream signal by the common relay amplifier 90 includes a WDM filter 108, an optical/electrical converter (O/E converter) 110, an amplifier 112, a switch 114, an electric/optical converter (E/O converter). 116 and the WDM filter 100 .

予備用中継増幅部92は予備用光回線14-2の上り側と下り側との間で光信号を中継増幅する。予備用中継増幅部92による下り信号の中継増幅は、WDMフィルタ118、光/電気変換器(O/E変換器)120、アンプ122、切替器124、電気/光変換器(E/O変換器)126及びWDMフィルタ128からなる系統で行われる。 The backup repeater amplifier 92 repeats and amplifies the optical signal between the upstream side and the downstream side of the backup optical line 14-2. The relay amplification of the downstream signal by the standby relay amplifier 92 includes a WDM filter 118, an optical/electrical converter (O/E converter) 120, an amplifier 122, a switch 124, an electric/optical converter (E/O converter). ) 126 and WDM filter 128 .

また、予備用中継増幅部92による上り信号の中継増幅は、WDMフィルタ128、光/電気変換器(O/E変換器)130、アンプ132、電気/光変換器(E/O変換器)134及びWDMフィルタ118からなる系統で行われる。 Further, the relay amplification of the upstream signal by the standby relay amplifier 92 includes a WDM filter 128, an optical/electrical converter (O/E converter) 130, an amplifier 132, an electric/optical converter (E/O converter) 134 and the WDM filter 118 .

常用中継増幅部90に設けられた切替器114は、アンプ112の出力を自己の電気/光変換器116または予備用中継増幅部92の電気/光変換器134に選択的に接続させる。 A switch 114 provided in the normal relay amplifier section 90 selectively connects the output of the amplifier 112 to its own electrical/optical converter 116 or the electrical/optical converter 134 of the backup relay amplifier section 92 .

予備用中継増幅部92に設けられた切替器124は、アンプ122の出力を自己の電気/光変換器126または常用中継増幅部90の電気/光変換器106に選択的に接続させる。 A switch 124 provided in the backup repeater amplifier 92 selectively connects the output of the amplifier 122 to its own electrical/optical converter 126 or the electrical/optical converter 106 of the regular repeater amplifier 90 .

迂回用中継増幅部94は常用光回線14-1と予備用光回線14-2との間で光信号を中継増幅させる。迂回用中継増幅部94による常用光回線14-1から予備用光回線14-2への光信号は、WDMフィルタ136、光/電気変換器(O/E変換器)138、アンプ114、電気/光変換器(E/O変換器)142及びWDMフィルタ144からなる系統で中継増幅される。 The detour relay amplifier 94 relays and amplifies the optical signal between the regular optical line 14-1 and the standby optical line 14-2. The optical signal from the regular optical line 14-1 to the standby optical line 14-2 by the bypass relay amplifier 94 passes through a WDM filter 136, an optical/electrical converter (O/E converter) 138, an amplifier 114, an electric/ It is relay-amplified by a system composed of an optical converter (E/O converter) 142 and a WDM filter 144 .

また、迂回用中継増幅部94による予備用光回線14-2から常用光回線14-1への光信号は、WDMフィルタ144、光/電気変換器(O/E変換器)146、アンプ148、電気/光変換器(E/O変換器)150及びWDMフィルタ136からなる系統で中継増幅される。 Further, the optical signal from the backup optical line 14-2 to the regular optical line 14-1 by the detouring repeater amplifier 94 is passed through a WDM filter 144, an optical/electrical converter (O/E converter) 146, an amplifier 148, It is relay-amplified by a system composed of an electrical/optical converter (E/O converter) 150 and a WDM filter 136 .

(光中継増幅器の制御)
光中継増幅器20の中継増幅制御部96は、例えばプログラムの実行により実現される機能であり、ハードウェアとしてはCPU、メモリ、各種の入出力ポート等を備えたコンピュータ回路等を使用する。
(Control of optical repeater amplifier)
The repeater amplification control unit 96 of the optical repeater amplifier 20 is a function realized by executing a program, for example, and uses a computer circuit having a CPU, a memory, various input/output ports, etc. as hardware.

中継増幅制御部96は、通常状態では光中継増幅器20をノーマルモードで動作させ、常用光回線14-1の断線障害を検出した場合は光中継増幅器20を迂回モードで動作させ、更に、他の光中継増幅器から断線障害信号を受信した場合は光中継増幅器20をデュアルパスモードで動作させる。 The repeater amplifier control unit 96 operates the optical repeater amplifier 20 in the normal mode in a normal state, and operates the optical repeater amplifier 20 in the detour mode when a disconnection failure of the regular optical line 14-1 is detected. When a disconnection trouble signal is received from the optical repeater amplifier, the optical repeater amplifier 20 is operated in the dual path mode.

中継増幅制御部96は、防災受信盤12から常用光回線14-1に下り信号として周期的に送信される試験光信号を例えば光/電気変換器102の出力から電気信号として取り込み、試験光信号が所定時間継続して停止した場合または連続して所定回数受信できなかった場合に、上り側の常用光回線14-1の断線障害を検出する。 The relay amplification control unit 96 captures the test optical signal periodically transmitted from the disaster prevention receiver 12 to the common optical line 14-1 as a downstream signal from the output of the optical/electrical converter 102, for example, as an electrical signal, and converts the test optical signal is stopped for a predetermined period of time, or if reception is not possible for a predetermined number of times in succession, disconnection failure of the regular optical line 14-1 on the upstream side is detected.

中継増幅制御部96が上り側の常用光回線14-1の断線障害を検出した場合、ゲートウェイ98に指示し、上り側に位置する防災受信盤12又は他の光中継増幅器20に対し予備用光回線14-2を介して断線障害信号を送信させ、予備用光回線14-2により光信号を送受信させる。 When the relay amplification control unit 96 detects a disconnection failure in the upstream normal optical line 14-1, it instructs the gateway 98 to transmit the backup light to the disaster prevention receiving panel 12 or other optical relay amplifier 20 located on the upstream side. A disconnection fault signal is transmitted through the line 14-2, and an optical signal is transmitted and received through the optical line for protection 14-2.

また、上り側の常用光回線14-1の断線障害を検出した中継増幅部96は、
迂回モードの動作として、迂回用中継増幅部94を介して上り側の予備用光回線14-2と上り側の常用光回線14-1との間で光信号を迂回中継させると共に、常用中継増幅部90と予備用中継増幅部92の切替器114,124のb側への切り替えにより、上り側の予備用光回線14-1と下り側の常用光回線14-1との間で、光信号を迂回中継させる制御を行う。
Further, the relay amplifier unit 96, which has detected the disconnection failure of the regular optical line 14-1 on the upstream side,
As the detour mode operation, the optical signal is detour-relayed between the backup optical line 14-2 on the upstream side and the normal optical line 14-1 on the upstream side via the detour-use relay amplifier 94, and the normal relay amplification is performed. By switching the switches 114 and 124 of the unit 90 and the standby relay amplifier unit 92 to the b side, optical signals are transmitted between the upstream standby optical line 14-1 and the downstream normal optical line 14-1. control to relay by detour.

また、中継増幅部96は、下り側に隣接した他の光中継増幅器20から断線障害信号を受信した場合、デュアルパスモードの動作として、迂回用中継増幅部94、常用中継増幅部90及び予備用中継増幅部92の動作により、上り側の常用光回線14-1と下り側の常用光回線14-1との間で光信号を中継増幅させると共に、上り側の常用光回線14-1と下り側の予備用光回線14-2との間で光信号を中継増幅させる制御を行う。 Further, when the repeater amplifier 96 receives a disconnection failure signal from another optical repeater amplifier 20 adjacent on the downstream side, the repeater amplifier 96 operates in the dual path mode as the detour repeater amplifier 94, the regular repeater amplifier 90, and the standby repeater amplifier 90. By the operation of the relay amplifier 92, the optical signal is relay-amplified between the upstream regular optical line 14-1 and the downstream regular optical line 14-1, and the optical signal is amplified between the regular optical line 14-1 on the upstream side and the regular optical line 14-1 on the downstream side. control for relaying and amplifying the optical signal with the standby optical line 14-2 on the side.

(終端装置の機能構成)
図5は図2に設けられた終端装置の実施形態を機能構成により示したブロック図である。図5に示すように、終端装置22には、終端制御部152とゲートウェイ154が設けられる。
(Functional configuration of terminating device)
FIG. 5 is a block diagram showing the functional configuration of an embodiment of the termination device provided in FIG. As shown in FIG. 5, the terminal device 22 is provided with a terminal controller 152 and a gateway 154 .

また、常用光回線14-1から予備用光回線14-2へ光信号を送信するため、WDMフィルタ156、光/電気変換器(O/E変換器)158、アンプ160、電気/光変換器(E/O変換器)162及びWDMフィルタ164からなる系統が設けられる。 In order to transmit an optical signal from the regular optical line 14-1 to the standby optical line 14-2, a WDM filter 156, an optical/electrical converter (O/E converter) 158, an amplifier 160, an electric/optical converter A chain consisting of (E/O converter) 162 and WDM filter 164 is provided.

更に、予備用光回線14-2から常用光回線14-1へ光信号を送信するため、WDMフィルタ164、光/電気変換器(O/E変換器)166、アンプ168、電気/光変換器(E/O変換器)170及びWDMフィルタ156からなる系統が設けられる。 Furthermore, a WDM filter 164, an optical/electrical converter (O/E converter) 166, an amplifier 168, an electric/optical converter for transmitting an optical signal from the standby optical line 14-2 to the regular optical line 14-1. A chain consisting of (E/O converter) 170 and WDM filter 156 is provided.

終端制御部152は、例えばプログラムの実行により実現される機能であり、ハードウェアとしてはCPU、メモリ、各種の入出力ポート等を備えたコンピュータ回路等を使用する。 The termination control unit 152 is a function realized by executing a program, for example, and uses a computer circuit or the like having a CPU, a memory, various input/output ports, etc. as hardware.

終端制御部152は通常状態ではノーマルモードで終端装置22を動作させ、常用光回線14-1の断線障害を検出した場合は終端装置22を迂回モードで動作させる。 The termination control unit 152 operates the termination device 22 in the normal mode in a normal state, and operates the termination device 22 in the detour mode when a disconnection failure of the regular optical line 14-1 is detected.

終端制御部152のノーマルモードの動作は、アンプ160,168の動作を停止させることで、常用光回線14-1と予備用光回線14-2による光信号の送受信を独立に行っており、防災受信盤12から周期的に送信された試験光信号を受信すると、試験応答光信号を送信させる制御を行う。 In the normal mode operation of the termination control unit 152, by stopping the operation of the amplifiers 160 and 168, optical signals are independently transmitted and received by the regular optical line 14-1 and the standby optical line 14-2, thereby preventing disasters. Upon receiving the test optical signal periodically transmitted from the receiving board 12, control is performed to transmit the test response optical signal.

終端制御部152は、防災受信盤12から常用光回線14-1に下り信号として周期的に送信される試験光信号を例えば光/電気変換器158の出力から電気信号として取り込み、試験光信号が所定時間継続して停止した場合または連続して所定回数受信できなかった場合に、常用光回線14-1の断線障害を検出する。 The termination control unit 152 captures the test optical signal periodically transmitted as a downstream signal from the disaster prevention receiving board 12 to the common optical line 14-1 as an electrical signal from the output of the optical/electrical converter 158, for example, and the test optical signal is A disconnection failure of the regular optical line 14-1 is detected when the line is stopped continuously for a predetermined time or when reception is not possible for a predetermined number of times.

終端制御部152は、常用光回線14-1の断線障害を検出した場合、ゲートウェイ154に指示し、上り側に位置する光中継増幅器20に対し予備用光回線14-2を介して断線障害信号を送信させ、予備用光回線14-2により光信号を送受信させる。 When the termination control unit 152 detects a disconnection fault in the regular optical line 14-1, it instructs the gateway 154 to send a disconnection fault signal to the upstream optical repeater amplifier 20 via the backup optical line 14-2. is transmitted, and an optical signal is transmitted and received through the standby optical line 14-2.

また、常用光回線14-1の断線障害を検出した終端制御部152は、迂回モードとして、アンプ160,168を動作状態とし、予備用光回線14-2と常用光回線14-1との間で光信号を迂回中継させる制御を行う。 Termination control unit 152, which has detected a disconnection failure in regular optical line 14-1, activates amplifiers 160 and 168 in a detour mode, and switches between standby optical line 14-2 and regular optical line 14-1. performs control to detour and relay the optical signal.

[トンネル非常用設備の伝送制御]
(通常状態での伝送制御)
図6は通常状態における光信号の送受信を示した説明図であり、光信号の伝送を破線の矢印で示す。図7は図6の通常状態における光中継増幅器のノーマルモードの動作を示したブロック図、図8は図6の通常状態における終端装置の動作を示したブロック図である。
[Transmission control of tunnel emergency equipment]
(Transmission control under normal conditions)
FIG. 6 is an explanatory diagram showing transmission and reception of optical signals in a normal state, and transmission of optical signals is indicated by dashed arrows. 7 is a block diagram showing the normal mode operation of the optical repeater amplifier in the normal state of FIG. 6, and FIG. 8 is a block diagram showing the operation of the termination device in the normal state of FIG.

図6に示すように、通常状態では、防災受信盤12は常用光回線14-1に対する光信号の送受信により、常用光回線14-1に接続された複数の光変換器18との間で光信号を送受信しており、光中継増幅器20-1,20-2は常用光回線14-1の光信号を双方向に中継増幅しており、更に、終端装置22は防災受信盤12から周期的に送信された試験光信号を受信して試験応答光信号を送信している。なお、光中継増幅器20-1,20-2は、以下の説明で区別する必要がない場合は、光中継増幅器20という場合がある。 As shown in FIG. 6, in a normal state, the disaster prevention receiving panel 12 transmits and receives optical signals to and from the regular optical line 14-1, thereby transmitting and receiving optical signals to and from a plurality of optical converters 18 connected to the regular optical line 14-1. The optical repeater amplifiers 20-1 and 20-2 bi-directionally repeat and amplify the optical signal of the common optical line 14-1, and the terminal device 22 periodically receives the test optical signal transmitted to the and transmits the test response optical signal. Note that the optical repeater amplifiers 20-1 and 20-2 may be referred to as the optical repeater amplifier 20 when there is no need to distinguish between them in the following description.

図6の通常状態で、光中継増幅器20は図7に示すノーマルモードで動作している。光中継増幅器20のノーマルモードの動作は、図7に示すように、常用中継増幅部90の切替器114及び予備用中継増幅器92の切替器124が、a側に切り替えられており、迂回用中継増幅部94は、光/電気変換器138,146、アンプ140,148及び電気/光変換器138,150が停止状態にあり、迂回中継機能が停止している。 In the normal state of FIG. 6, the optical repeater amplifier 20 operates in the normal mode shown in FIG. In normal mode operation of the optical repeater amplifier 20, as shown in FIG. In the amplifying section 94, the optical/electrical converters 138, 146, the amplifiers 140, 148, and the electrical/optical converters 138, 150 are in a stopped state, and the bypass relay function is stopped.

このため光中継増幅器20のノーマルモードでは、常用中継増幅部90と予備用中継増幅部92の動作により、光信号の双方向の中継増幅が個別に行われている。 Therefore, in the normal mode of the optical repeater amplifier 20, the operation of the regular repeater amplifier 90 and the standby repeater amplifier 92 individually performs bidirectional repeater amplification of the optical signal.

また、図6の状態で終端装置22は、図8に示すように、ノーマルモードの動作となり、アンプ160,160の動作が停止されており、常用光回線14-1と予備用光回線14-2による光信号の送受信を独立に行っており、防災受信盤12から周期的に送信された試験光信号を受信すると、試験応答光信号を送信させる制御を行う。 In the state of FIG. 6, the termination device 22 operates in the normal mode, as shown in FIG. 2 independently performs transmission and reception of optical signals, and upon receiving a test optical signal periodically transmitted from the disaster prevention receiving board 12, performs control to transmit a test response optical signal.

(防災受信盤と光中継増幅器の間の常用光回線で断線障害)
図9は防災受信盤と光中継増幅器の間の常用光回線で断線障害が起きた場合の光信号の送受信を示した説明図、図10は図9の断線障害に対し迂回中継を行う光中継増幅器の迂回モードの動作を示したブロック図である。
(Disconnection failure in the regular optical line between the disaster prevention receiver and the optical relay amplifier)
FIG. 9 is an explanatory diagram showing the transmission and reception of optical signals in the event of a disconnection failure in the common optical line between the disaster prevention receiver panel and the optical repeater amplifier. FIG. 4 is a block diagram illustrating bypass mode operation of the amplifier;

図9に示すように、防災受信盤12と光中継増幅器20-1の間の常用光回線14-1で断線障害180が発生した場合、下り側に位置する光中継増幅器20-1で断線障害が検出され、防災受信盤12に予備用光回線14-2を介して断線障害信号が送信される。 As shown in FIG. 9, when a disconnection fault 180 occurs in the regular optical line 14-1 between the disaster prevention receiving panel 12 and the optical repeater amplifier 20-1, the disconnection fault occurs in the optical repeater amplifier 20-1 located on the downstream side. is detected, and a disconnection failure signal is transmitted to the disaster prevention receiving panel 12 via the standby optical line 14-2.

断線障害信号を受信した防災受信盤12は、それまでの常用光回線14-1に対する光信号の送受信に加え、予備用光回線14-2に対して同じ光信号の送受信を開始する。 Upon receiving the disconnection failure signal, the disaster prevention receiving board 12 starts transmitting and receiving the same optical signal to and from the backup optical line 14-2 in addition to the transmission and reception of the optical signal to and from the regular optical line 14-1.

断線障害を検出した光中継増幅器20-1は、迂回モードで動作する。光中継増幅器20-1の迂回モードで動作は、図10に示すように、中継増幅制御部96の制御により、切替器114,124がb側に切り替えられると共に、常用中継増幅部90の光/電気変換器102、アンプ104及び電気/光変換器116の動作が破線で示すように停止され、また、予備用中継増幅部92の電気/光変換器126、光/電気変換器130及びアンプ132の動作が破線示すように停止される。 The optical repeater amplifier 20-1 that has detected the disconnection fault operates in the detour mode. As shown in FIG. 10, the optical repeater amplifier 20-1 operates in the detour mode. The electric converter 102, the amplifier 104 and the electric/optical converter 116 are stopped as indicated by the dashed lines, and the electric/optical converter 126, the optical/electrical converter 130 and the amplifier 132 of the backup repeater amplifier 92 are stopped. is stopped as indicated by the dashed line.

このため迂回モードで動作した光中継増幅器20-1は、図9に示すように、備用光回線14-2と断線障害180が起きている上り側の常用光回線14-1との間で光信号を送受信させる迂回中継を行う。また、断線障害を検出した光中継増幅器20は、予備用光回線14-2の下り側の常用光回線14-1との間で光信号を送受信させる迂回中継を行う。それ以外の光中継増幅器20及び終端装置22はノーマルモードで動作している。 For this reason, the optical repeater amplifier 20-1 operating in the detour mode, as shown in FIG. A detour relay for sending and receiving signals is performed. In addition, the optical repeater amplifier 20 that has detected the disconnection failure performs detour relay for transmitting and receiving optical signals between the standby optical line 14-2 and the regular optical line 14-1 on the downstream side. Other than that, the optical repeater amplifier 20 and the termination device 22 are operating in normal mode.

このため断線障害180の発生箇所の上り側の常用光回線14-1に接続されている光検出器18は、常用光回線14-1により防災受信盤12との間で光信号を送受信し、断線障害180の発生箇所の下り側の常用光回線14-1に接続している光検出器18は、迂回モードで動作している光中継増幅器20-1を介して予備用光回線14-2との間で光信号を送受信し、更に、断線障害を検出した光中継増幅器20の下り側の常用光回線14-1に接続している光検出器18は、迂回モードで動作している光中継増幅器20-1を介して予備用光回線14-2との間で光信号を送受信し、断線障害180が起きても、防災受信盤12は常用光回線14-1に接続している全ての光変換器18との間で光信号を送受信できる。 For this reason, the photodetector 18 connected to the normal optical line 14-1 on the upstream side of the location where the disconnection fault 180 occurs transmits and receives an optical signal to and from the disaster prevention receiving board 12 via the normal optical line 14-1, The photodetector 18 connected to the regular optical line 14-1 on the downstream side where the disconnection fault 180 occurs is connected to the backup optical line 14-2 via the optical repeater amplifier 20-1 operating in the detour mode. Further, the photodetector 18 connected to the regular optical line 14-1 on the downstream side of the optical repeater amplifier 20 that has detected the disconnection failure detects the optical signal operating in the detour mode. Optical signals are transmitted and received to and from the standby optical line 14-2 via the repeater amplifier 20-1, and even if a disconnection failure 180 occurs, the disaster prevention receiver board 12 is connected to the regular optical line 14-1. can transmit and receive optical signals to and from the optical converter 18 of the .

(光中継増幅器の間の常用光回線で断線障害)
図11は光中継増幅器の間の常用光回線で断線障害が起きた場合の光信号の送受信を示した説明図である。
(Disconnection failure in regular optical line between optical repeater amplifiers)
FIG. 11 is an explanatory diagram showing transmission and reception of optical signals when a disconnection failure occurs in a common optical line between optical repeater amplifiers.

図11に示すように、光中継増幅器20-1,20-2の間の常用光回線14-1で断線障害180が起きた場合、断線障害180の発生箇所の下り側に位置する光中継増幅器20-2は断線障害を検出して光中継増幅器20-1に予備用光回線14-2を介して断線障害信号を送信すると共に、迂回モードで動作する。 As shown in FIG. 11, when a disconnection fault 180 occurs in the regular optical line 14-1 between the optical repeater amplifiers 20-1 and 20-2, the optical repeater located downstream of the location where the disconnection fault 180 occurs 20-2 detects the disconnection fault, transmits a disconnection fault signal to the optical repeater amplifier 20-1 via the standby optical line 14-2, and operates in the detour mode.

断線障害180の発生箇所の上り側に位置する光中継増幅器20-1は、断線障害信号の受信によりデュアルパスモードで動作し、上り側の常用光回線14-1と下り側の常用光回線14-1の間で光信号を中継増幅すると共に、上り側の常用光回線14-1と下り側の予備用光回線14-2の間で光信号を中継増幅する。 The optical repeater amplifier 20-1 located on the upstream side of the location where the disconnection fault 180 occurs operates in dual-path mode upon receiving the disconnection fault signal, and the upstream normal optical line 14-1 and the downstream normal optical line 14 are operated. -1, and repeats and amplifies the optical signal between the normal optical line 14-1 on the upstream side and the standby optical line 14-2 on the downstream side.

光中継増幅器20-1のデュアルパスモードの動作は、図4に示した光中継増幅器20の常用中継増幅部90、予備用中継増幅部92及び迂回用中継増幅部94の全てが動作状態となったモードである。 In the dual-path mode operation of the optical repeater amplifier 20-1, all of the regular repeater amplifier 90, the backup repeater amplifier 92, and the detour repeater amplifier 94 of the optical repeater amplifier 20 shown in FIG. mode.

断線障害180を検出した光中継増幅器20-2の迂回モードの動作は、図9及び図10に示したと同じである。 The detour mode operation of the optical repeater amplifier 20-2 that has detected the disconnection fault 180 is the same as shown in FIGS.

このため断線障害180の発生箇所の上り側の常用光回線14-1に接続している光検出器18は、デュアルパスモードで動作している光中継増幅器20-1を介して防災受信盤12と光信号を送受信し、断線障害180の発生箇所の下り側の常用光回線14-1に接続している光検出器18は、迂回モードで動作している光中継増幅器20-2を介して予備用光回線14-2との間で光信号を送受信し、更に、断線障害を検出した光中継増幅器20の下り側の常用光回線14-1に接続している光検出器18は、迂回モードで動作している光中継増幅器20を介して予備用光回線14-2との間で光信号を送受信し、光中継増幅器20-1,20-2の間で断線障害180が起きても、防災受信盤12は常用光回線14-1に接続している全ての光変換器18との間で光信号を送受信できる。 For this reason, the photodetector 18 connected to the regular optical line 14-1 on the upstream side of the location where the disconnection fault 180 has occurred is connected to the disaster prevention receiver panel 12 via the optical repeater amplifier 20-1 operating in the dual path mode. , and the photodetector 18 connected to the common optical line 14-1 on the downstream side of the location where the disconnection fault 180 occurs via the optical repeater amplifier 20-2 operating in the detour mode. The photodetector 18, which transmits and receives optical signals to and from the backup optical line 14-2 and is connected to the regular optical line 14-1 on the downstream side of the optical repeater amplifier 20 that has detected the disconnection failure, is detoured. An optical signal is transmitted/received to/from the standby optical line 14-2 via the optical repeater amplifier 20 operating in the mode, and even if a disconnection fault 180 occurs between the optical repeater amplifiers 20-1 and 20-2, , the disaster prevention receiving board 12 can transmit and receive optical signals to and from all the optical converters 18 connected to the common optical line 14-1.

(光中継増幅器と終端装置の間の常用光回線で断線障害)
図12は光中継増幅器と終端装置の間の常用光回線で断線障害が起きた場合の光信号の送受信を示した説明図である。
(Disconnection failure in regular optical line between optical repeater amplifier and terminating equipment)
FIG. 12 is an explanatory diagram showing transmission and reception of optical signals when a disconnection failure occurs in a regular optical line between an optical repeater amplifier and a terminating device.

図12に示すように、光中継増幅器20-2と終端装置22の間の常用光回線14-1で断線障害180が起きた場合、終端装置22は断線障害180を検出して断線障害信号を予備用光回線14-2を介して光中継増幅器20-2に送信すると共に、迂回モードで動作する。 As shown in FIG. 12, when a disconnection fault 180 occurs in the common optical line 14-1 between the optical repeater amplifier 20-2 and the termination device 22, the termination device 22 detects the disconnection fault 180 and outputs a disconnection fault signal. It is transmitted to the optical repeater amplifier 20-2 via the standby optical line 14-2 and operates in the detour mode.

断線障害180の発生箇所の上り側に位置する光中継増幅器20-2は断線障害信号の受信によりデュアルパスモードで動作し、上り側の常用光回線14-1と下り側の常用光回線14-1の間で光信号を中継増幅すると共に、上り側の常用光回線14-1と下り側の予備用光回線14-2の間で光信号を中継増幅する。 The optical repeater amplifier 20-2 located on the upstream side of the location where the disconnection fault 180 occurs operates in the dual-path mode upon receiving the disconnection fault signal, and the upstream normal optical line 14-1 and the downstream normal optical line 14- are operated. 1, and relays and amplifies the optical signal between the normal optical line 14-1 on the upstream side and the standby optical line 14-2 on the downstream side.

終端装置22の迂回モードの動作は、図5に示した光/電気変換器158,166、アンプ160,168及び電気/光変換器162,170の全てが動作状態となったモードである。 The detour mode operation of the termination device 22 is a mode in which all of the optical/electrical converters 158, 166, the amplifiers 160, 168, and the electrical/optical converters 162, 170 shown in FIG. 5 are in operation.

このため断線障害180の発生箇所の上り側の常用光回線14-1に接続している光検出器18は、デュアルパスモードで動作している光中継増幅器20-2を介して防災受信盤12との間で光信号を送受信し、断線障害180の発生箇所の下り側の常用光回線14-1に接続している光検出器18は、迂回モードで動作している終端装置22を介して予備用光回線14-2との間で光信号を送受信し、光中継増幅器20-2と終端装置22の間で断線障害180が起きても、防災受信盤12は常用光回線14-1に接続している全ての光変換器18との間で光信号を送受信できる。 For this reason, the photodetector 18 connected to the regular optical line 14-1 on the upstream side of the location where the disconnection fault 180 has occurred is connected to the disaster prevention receiver panel 12 via the optical repeater amplifier 20-2 operating in the dual path mode. and the photodetector 18 connected to the common optical line 14-1 on the downstream side of the location where the disconnection fault 180 occurs via the terminal device 22 operating in the detour mode. Even if an optical signal is transmitted and received to and from the standby optical line 14-2, and a disconnection failure 180 occurs between the optical repeater amplifier 20-2 and the terminating device 22, the disaster prevention receiving board 12 will be connected to the regular optical line 14-1. Optical signals can be sent and received to and from all the optical converters 18 connected.

[トンネル非常用設備の光強度低下障害の対応]
図1に示した光伝送を用いたトンネル非常用設備にあっては、常用光回線14-1の断線障害以外に、防災受信盤12や光中継増幅器20に常用光回線14-1を接続している光コネクタの接続不良などに起因した光漏れにより、受信される光信号の強度が低下し、光信号の送受信が不能となる光強度低下障害を起こす場合があり、光強度低下障害をリカバリーする制御が必要となる。
[Response to light intensity drop failure of tunnel emergency equipment]
In the tunnel emergency equipment using optical transmission shown in FIG. Due to light leakage caused by poor connection of the optical connector, etc., the intensity of the received optical signal may be reduced, causing a light intensity drop failure that makes it impossible to transmit and receive the optical signal. control is required.

(防災受信盤に隣接した光中継増幅器で光強度低下障害を検出)
図13は防災受信盤に隣接した光中継増幅器で光強度低下障害が検出された場合の光信号の送受信を示した説明図である。
(An optical repeater amplifier adjacent to the disaster prevention receiving panel detects an optical intensity drop failure.)
FIG. 13 is an explanatory diagram showing transmission and reception of optical signals when an optical intensity drop failure is detected by an optical repeater amplifier adjacent to a disaster prevention receiving panel.

図13に示すように、防災受信盤12に隣接した光中継増幅器20-1で常用光回線14-1から周期的に受信した試験光信号のレベルが所定の閾値以下となった場合、光強度低下障害190が検出される。 As shown in FIG. 13, when the level of the test optical signal periodically received from the regular optical line 14-1 by the optical repeater amplifier 20-1 adjacent to the disaster prevention receiver panel 12 falls below a predetermined threshold, the optical intensity A degrading fault 190 is detected.

光強度低下障害190を検出した光中継増幅器20-1は、防災受信盤12に予備用光回線14-2を介して光強度低下障害信号を送信し、光強度低下障害信号を受信した防災受信盤12は、常用光回線14-1による光信号の送受信を停止させると共に、予備用光回線14-2により光信号を送受信させる。 The optical repeater amplifier 20-1 that has detected the optical intensity drop fault 190 transmits the optical intensity drop fault signal to the disaster prevention receiving board 12 via the standby optical line 14-2, and receives the optical intensity drop fault signal for disaster prevention reception. The board 12 stops transmission and reception of optical signals through the regular optical line 14-1, and causes transmission and reception of optical signals through the standby optical line 14-2.

また、光強度低下障害190を検出した光中継増幅器20-1は、迂回モードの動作状態となり、予備用光回線14-2と上り側の常用光回線14-1との間で光信号を送受信させる迂回中継を行い、また、上り側の予備用光回線14-2と下り側の常用光回線14-1との間で光信号を送受信させる迂回中継を行う。それ以外の光中継増幅器20-2及び終端装置22はノーマルモードで動作している。 In addition, the optical repeater amplifier 20-1, which has detected the optical intensity drop fault 190, enters the detour mode operation state, and transmits and receives optical signals between the backup optical line 14-2 and the upstream regular optical line 14-1. Also, a detour relay is performed to transmit and receive optical signals between the backup optical line 14-2 on the upstream side and the regular optical line 14-1 on the downstream side. Other than that, the optical repeater amplifier 20-2 and the termination device 22 are operating in normal mode.

このため光強度低下障害190を検出した光中継増幅器20-1の上り側の常用光回線14-1に接続している光検出器18は、迂回モードで動作している光中継増幅器20-1を介して予備用光回線14-2との間で光信号を送受信し、また、光強度低下障害を検出した光中継増幅器20-1の下り側の常用光回線14-1に接続している光検出器18は、迂回モードで動作している光中継増幅器20-1を介して予備用光回線14-2との間で光信号を送受信し、光強度低下障害が起きても、防災受信盤12は常用光回線14-1に接続している全ての光変換器18との間で光信号を送受信できる。 For this reason, the photodetector 18 connected to the regular optical line 14-1 on the upstream side of the optical repeater amplifier 20-1 that detected the optical intensity drop fault 190 operates in the detour mode. and transmits and receives optical signals to and from the standby optical line 14-2 via the optical relay amplifier 20-1, and is connected to the regular optical line 14-1 on the downstream side of the optical repeater amplifier 20-1 that has detected the optical intensity drop failure. The photodetector 18 transmits and receives an optical signal to and from the standby optical line 14-2 via the optical repeater amplifier 20-1 operating in the detour mode. The board 12 can transmit and receive optical signals to and from all the optical converters 18 connected to the common optical line 14-1.

また、防災受信盤12の常用光回線14-1に対する光信号の送受信は停止されているため、光中継増幅器20-1の迂回中継による光信号の衝突は起きない。 In addition, since the transmission and reception of optical signals to and from the regular optical line 14-1 of the disaster prevention receiver panel 12 is stopped, collision of optical signals due to detour relaying of the optical repeater amplifier 20-1 does not occur.

(光中継増幅器に隣接した光中継増幅器で光強度低下障害を検出)
図14は光中継増幅器に隣接した光中継増幅器で光強度低下障害が検出された場合の光信号の送受信を示した説明図ある。
(Optical repeater amplifier adjacent to optical repeater amplifier detects optical intensity drop fault)
FIG. 14 is an explanatory diagram showing transmission and reception of optical signals when an optical intensity drop fault is detected in an optical repeater adjacent to the optical repeater.

図14に示すように、光中継増幅器20-1の下り側に隣接した光中継増幅器20-2で常用光回線14-1による光信号の光強度低下障害190が検出された場合、光強度低下障害190を検出した光中継増幅器20-2は、上り側に隣接した光中継増幅器20-1に予備用光回線14-2を介して光強度低下障害信号を送信し、光強度低下障害信号を受信した光中継増幅器20-1は、シングルパスモードで動作し、下り側の常用光回線14-1との光信号の送受信を停止すると共に、上り側の常用光回線14-1と下り側の予備用光回線14-2の間で光信号を送受信させる。 As shown in FIG. 14, when the optical repeater amplifier 20-2 adjacent to the downstream side of the optical repeater amplifier 20-1 detects an optical signal intensity drop fault 190 of the optical signal from the common optical line 14-1, the optical intensity drops. The optical repeater amplifier 20-2 that has detected the failure 190 transmits an optical intensity drop failure signal to the adjacent optical repeater amplifier 20-1 on the upstream side via the standby optical line 14-2, and transmits the optical intensity drop failure signal. The optical repeater amplifier 20-1 having received the signal operates in the single-path mode, stops transmitting/receiving optical signals to/from the regular optical line 14-1 on the downstream side, and connects the regular optical line 14-1 on the upstream side to the downstream side. An optical signal is transmitted and received between the standby optical lines 14-2.

図15は図14における光中継増幅器のシングルパスモードで動作を示したブロック図である。図15に示すように、光中継増幅器20のシングルパスモードの動作では、常用中継増幅部90に設けられた光/電気変換器102,110、アンプ104,112及び電気/光変換器106,116の動作が停止されることで、下り側の常用光回線14-1に対する光信号の送受信が停止されており、迂回用中継増幅部94及び予備用中継増幅部92が動作している。 FIG. 15 is a block diagram showing the operation of the optical repeater amplifier in FIG. 14 in a single pass mode. As shown in FIG. 15, in the single-pass mode operation of the optical repeater amplifier 20, the optical/electrical converters 102, 110, the amplifiers 104, 112, and the electrical/optical converters 106, 116 provided in the common repeater amplifier 90 By stopping the operation of , transmission and reception of optical signals to and from the regular optical line 14-1 on the downstream side is stopped, and the detour repeater amplifier 94 and the spare repeater amplifier 92 are operating.

再び図14を参照するに、光強度低下障害190を検出した光中継増幅器20-2は、迂回モードの動作状態となり、予備用光回線14-2と上り側の常用光回線14-1との間で光信号を送受信させる迂回中継を行い、また、上り側の予備用光回線14-2と下り側の常用光回線14-1との間で光信号を送受信させる迂回中継を行う。終端装置22はノーマルモードで動作している。 Referring to FIG. 14 again, the optical repeater amplifier 20-2 that has detected the optical intensity drop failure 190 enters the detour mode operation state, and the backup optical line 14-2 and the upstream regular optical line 14-1 are connected. Also, a detour relay is performed for transmitting and receiving optical signals between the backup optical line 14-2 on the upstream side and the regular optical line 14-1 on the downstream side. Termination device 22 is operating in normal mode.

このため光強度低下障害190を検出した光中継増幅器20-2の上り側の常用光回線14-1に接続している光検出器18は、シングルパスモードで動作している光中継増幅器20-1による上り側の常用光回線14-1と下り側の予備用光回線14-2との間の光信号の中継増幅に加え、迂回モードで動作している光中継増幅器20-2を介して予備用光回線14-2との間で光信号を送受信し、また、光強度低下障害190を検出した光中継増幅器20-2の下り側の常用光回線14-1に接続している光検出器18は、迂回モードで動作している光中継増幅器20-2を介して予備用光回線14-2との間で光信号を送受信し、光強度低下障害が起きても、防災受信盤12は常用光回線14-1に接続している全ての光変換器18との間で光信号を送受信できる。 For this reason, the photodetector 18 connected to the up-side regular optical line 14-1 of the optical repeater amplifier 20-2 that detected the optical intensity drop fault 190 detects the optical repeater amplifier 20-2 operating in the single-path mode. In addition to the relay amplification of the optical signal between the uplink regular optical line 14-1 and the downlink standby optical line 14-2 according to 1, through the optical repeater amplifier 20-2 operating in the detour mode. An optical detector that transmits and receives optical signals to and from the standby optical line 14-2 and is connected to the regular optical line 14-1 on the downstream side of the optical repeater amplifier 20-2 that has detected the optical intensity drop fault 190. The receiver 18 transmits and receives optical signals to and from the standby optical line 14-2 via the optical repeater amplifier 20-2 operating in the detour mode. can transmit and receive optical signals to and from all optical converters 18 connected to the common optical line 14-1.

また、光中継増幅器20-2の上り側の常用光回線14-1に対する光信号の送受信は、シングルバスモードで動作している光中継増幅器20-1により停止されているため、光中継増幅器20-2の迂回中継による光信号の衝突は起きない。 In addition, since the optical repeater amplifier 20-1 operating in the single bus mode has stopped transmission and reception of optical signals to and from the regular optical line 14-1 on the upstream side of the optical repeater amplifier 20-2, the optical repeater amplifier 20 There is no optical signal collision due to the -2 detour relay.

(終端装置で光強度低下障害を検出)
図16は終端装置で光強度低下障害が検出された場合の光信号の送受信を示した説明図ある。
(Detection of light intensity drop failure at the end device)
FIG. 16 is an explanatory diagram showing transmission and reception of an optical signal when an optical intensity drop failure is detected in a terminal device.

図16に示すように、終端装置22で常用光回線14-1による光信号の光強度低下障害190が検出された場合、光強度低下障害190を検出した終端装置22は、上り側に隣接した光中継増幅器20-2に予備用光回線14-2を介して光強度低下障害信号を送信し、光強度低下障害信号を受信した光中継増幅器20-2は、シングルパスモードで動作し、下り側の常用光回線14-1との光信号の送受信を停止すると共に、上り側の常用光回線14-1と下り側の予備用光回線14-2の間で光信号を送受信させる。 As shown in FIG. 16, when the termination device 22 detects the optical intensity drop failure 190 of the optical signal from the common optical line 14-1, the termination device 22 that detected the optical intensity drop failure 190 is adjacent to the upstream side. The optical repeater amplifier 20-2 transmits an optical intensity drop failure signal to the optical repeater amplifier 20-2 via the standby optical line 14-2, and receives the optical intensity drop failure signal. optical signal transmission/reception with the regular optical line 14-1 on the side is stopped, and optical signals are transmitted/received between the regular optical line 14-1 on the upstream side and the standby optical line 14-2 on the downstream side.

光強度低下障害190を検出した終端装置22は、迂回モードで動作し、予備用光回線14-2と常用光回線14-1との間で光信号を送受信させる迂回中継を行う。 The terminating device 22 that has detected the optical intensity drop failure 190 operates in the detour mode, and performs detour relay for transmitting and receiving optical signals between the backup optical line 14-2 and the regular optical line 14-1.

このため光強度低下障害190を検出した終端装置22の上り側の常用光回線14-1に接続している光検出器18は、シングルパスモードで動作している光中継増幅器20-2により予備用光回線14-2に中継された光信号が、終端は装置22の迂回モードの動作により常用光回線14-1に迂回中継され、終端装置22で光強度低下障害190が検出されても、防災受信盤12は常用光回線14-1に接続している全ての光変換器18との間で光信号を送受信できる。 For this reason, the photodetector 18 connected to the regular optical line 14-1 on the upstream side of the termination device 22 that detected the optical intensity drop fault 190 is spared by the optical repeater amplifier 20-2 operating in the single-path mode. The optical signal relayed to the optical line 14-2 is detoured to the common optical line 14-1 by the detour mode operation of the terminal device 22. The disaster prevention receiving board 12 can transmit and receive optical signals to and from all the optical converters 18 connected to the common optical line 14-1.

また、終端装置22の上り側の常用光回線14-1に対する光信号の送受信は、光中継増幅器20-2のシングルパスモードの動作により停止されているため、終端装置22の迂回中継による光信号との衝突は起きない。 Further, since the transmission and reception of optical signals to and from the normal optical line 14-1 on the upstream side of the terminal equipment 22 is stopped by the operation of the optical repeater amplifier 20-2 in the single-path mode, the optical signal by the detour relay of the terminal equipment 22 is stopped. no conflict with

[予備用光回線の断線監視]
図17は常用光回線から予備用光回線に試験信号を巡回させる断線監視において、光中継増幅器の間の予備用光回線が断線した場合の試験信号の迂回送信を示した説明図である。
[Disconnection monitoring of standby optical line]
FIG. 17 is an explanatory diagram showing detour transmission of a test signal when a standby optical line between optical repeater amplifiers is disconnected in disconnection monitoring in which a test signal is circulated from a regular optical line to a backup optical line.

(通常状態での断線監視制御)
図17の実施形態にあっては、通常状態において、試験信号の巡回により常用光回線14-1と予備用光回線14-2の断線を監視している。このため図2に示した防災受信盤12の盤制御部46は、周期的に断線監視用の試験信号を常用光回線14-1に送信する。
(Disconnection monitoring control under normal conditions)
In the embodiment of FIG. 17, in the normal state, disconnection of the regular optical line 14-1 and the standby optical line 14-2 is monitored by circulating test signals. Therefore, the board control section 46 of the disaster prevention receiving board 12 shown in FIG. 2 periodically transmits a test signal for monitoring disconnection to the common optical line 14-1.

また、図4に示した光中継増幅器20の中継増幅制御部96は、常用光回線14-1の上り側から試験信号を受信した場合に常用光回線14-1の下り側に試験信号を中継させ、予備用光回線14-2の下り側から試験信号を受信した場合に予備用光回線14-2の上り側に試験信号を中継する。 4 relays the test signal to the downstream side of the regular optical line 14-1 when the test signal is received from the upstream side of the regular optical line 14-1. When a test signal is received from the downstream side of the protection optical line 14-2, the test signal is relayed to the upstream side of the protection optical line 14-2.

更に、図5に示した終端装置22の終端制御部152は、常用光回線14-1から試験信号を受信した場合に予備用光回線14-2に試験信号を送信する。 Furthermore, the termination controller 152 of the termination device 22 shown in FIG. 5 transmits the test signal to the protection optical line 14-2 when the test signal is received from the regular optical line 14-1.

また、光中継増幅器20の中継制御部96は、試験信号の送信から所定の待ち時間以内に予備用光回線14-2の下り側から試験信号の受信がない場合に予備用光回線14-2の断線を判断し、下り側に隣接した他の光中継増幅器20又は終端装置22に常用光回線14-1を経由した試験信号の送信を指示すると共に、防災受信盤12に予備用光回線14-1を経由して、隣接した光中継増幅器との間の予備用光回線14-2の断線又は隣接した終端装置22との間の予備用光回線14-2の断線を示す断線障害信号を送信して報知させる制御を行う。 Further, if the test signal is not received from the downstream side of the protection optical line 14-2 within a predetermined waiting time after transmission of the test signal, the relay control unit 96 of the optical repeater amplifier 20 determines whether the protection optical line 14-2 , instructs another optical repeater amplifier 20 or terminating device 22 adjacent on the downstream side to transmit a test signal via the normal optical line 14-1, and sends the emergency optical line 14 to the disaster prevention receiving panel 12. -1, a disconnection failure signal indicating disconnection of the backup optical line 14-2 between the adjacent optical repeater amplifier or disconnection of the backup optical line 14-2 between the adjacent terminating equipment 22. Control to send and notify.

また、防災受信盤12の盤制御部46は、試験信号の送信から所定の待ち時間以内に予備用光回線14-2の下り側から試験信号の受信がない場合に予備用光回線14-2の断線を判断し、下り側に隣接した光中継増幅器20に常用光回線14-1を経由した試験信号の送信を指示すると共に、防災受信盤12と隣接した光中継増幅器20との間の予備用光回線14-2の断線を報知させる制御を行う。 Further, the board control unit 46 of the disaster prevention receiving board 12, if the test signal is not received from the downstream side of the standby optical line 14-2 within a predetermined waiting time from the transmission of the test signal, the standby optical line 14-2 , and instructs the optical repeater amplifier 20 adjacent on the downstream side to transmit a test signal via the common optical line 14-1, and the standby between the disaster prevention receiving panel 12 and the adjacent optical repeater amplifier 20. Control is performed to report disconnection of the optical line 14-2.

ここで、防災受信盤12で予備用光回線14-2の断線を判断する待ち時間をTw1及び光中継増幅器20-1,20-2で予備用光回線14-2の断線を判断する待ち時間をTw2,Tw3とすると、終端装置22から防災受信盤12に向けて順次長い時間となるように、
Tw1>Tw2>Tw3
の関係が設定されている。
Here, Tw1 is the waiting time for judging disconnection of the standby optical line 14-2 by the disaster prevention receiving board 12, and waiting time for judging the disconnection of the standby optical line 14-2 by the optical repeater amplifiers 20-1 and 20-2. are Tw2 and Tw3.
Tw1 > Tw2 > Tw3
relationship is set.

なお、以下の説明では、防災受信盤12の盤制御部46、光中継増幅器20の中継増幅制御部96及び終端装置22の終端制御部152の制御機能は、防災受信盤12、光中継増幅器20及び終端装置22の制御機能として説明する。 In the following description, the control functions of the board control section 46 of the disaster prevention receiver panel 12, the relay amplification control section 96 of the optical relay amplifier 20, and the termination control section 152 of the terminal device 22 are the same as those of the disaster prevention receiver panel 12 and the optical relay amplifier 20. and the control function of the terminal device 22 .

(光中継増幅器間での予備用光回線の断線障害)
図17に示すように、光中継増幅器20-1と光中継増幅器20-2の間の予備用光回線14-2で断線障害200が発生した場合、断線箇所の上り側に位置する光中継増幅器20-1は、常用光回線14-1に対する試験信号の送信から所定の待ち時間Tw2以内に予備用光回線14-2の下り側から試験信号の受信がない場合に予備用光回線14-2の断線を判断し、下り側に隣接した他の光中継増幅器20-2に常用光回線14-1を経由した試験信号の送信を指示すると共に、防災受信盤12に予備用光回線14-2を経由して、隣接した光中継増幅器20-2との間の予備用光回線14-2の断線障害200を示す断線障害信号を送信して報知させる。
(Disconnection failure of standby optical line between optical repeater amplifiers)
As shown in FIG. 17, when a disconnection failure 200 occurs in the standby optical line 14-2 between the optical repeater amplifier 20-1 and the optical repeater amplifier 20-2, the optical repeater located upstream of the disconnection point 20-1 receives the test signal from the downstream side of the protection optical line 14-2 within a predetermined waiting time Tw2 after transmission of the test signal to the regular use optical line 14-1. , instructs another optical repeater amplifier 20-2 adjacent on the downstream side to transmit a test signal via the normal optical line 14-1, and sends the emergency optical line 14-2 to the disaster prevention receiving panel 12. , a disconnection fault signal indicative of a disconnection fault 200 in the standby optical line 14-2 between the adjacent optical repeater amplifier 20-2 is transmitted and notified.

なお、防災受信盤12も断線障害200により予備用光回線14-2の上り側から試験信号を受信しなくなるが、断線障害を判断する待ち時間Tw1は、光中継増幅器20-1が断線障害を判断する待ち時間Tw2より長いため、試験信号を受信しない時間が待ち時間Tw1に達する前に、光中継増幅器20-1の迂回中継による試験信号が受信され、防災受信盤12で断線障害200を重複して判断することはない。 The disaster prevention receiver 12 also stops receiving the test signal from the upstream side of the standby optical line 14-2 due to the disconnection failure 200. Since it is longer than the waiting time Tw2 to be judged, the test signal is received by the detour relay of the optical repeater amplifier 20-1 before the time during which the test signal is not received reaches the waiting time Tw1, and the disconnection failure 200 is duplicated in the disaster prevention receiving board 12. do not judge by

このため図17の破線の矢印で示すように、予備用光回線14-2の断線障害200に対し、光中継増幅器20-2は予備用光回線14-2の上り側から受信した試験信号を常用光回線14-1の上り側に中継し、光中継増幅器20-1は常用光回線14-1の下り側から受信した試験信号を予備用光回線14-2の上り側に中継することで故障個所を迂回させ、常用光回線14-1から予備用光回線14-2に試験信号を巡回させることによる断線監視が継続される。 For this reason, as indicated by the dashed arrow in FIG. 17, the optical repeater amplifier 20-2 receives the test signal from the upstream side of the backup optical line 14-2 against the disconnection failure 200 of the backup optical line 14-2. By relaying to the upstream side of the regular optical line 14-1 and by relaying the test signal received from the downstream side of the regular optical line 14-1 to the upstream side of the standby optical line 14-2 by the optical repeater amplifier 20-1, The disconnection monitoring is continued by detouring the failure point and circulating the test signal from the regular optical line 14-1 to the standby optical line 14-2.

ここで、光中継増幅器20-1,20-2による試験信号の迂回中継は、図4に示した光中継増幅器20の常用増幅部90、予備用増幅部92及び迂回用増幅部94の全てを動作状態とし、受信信号から試験信号であることを判別して迂回中継させる。 Here, the detour relaying of the test signal by the optical repeater amplifiers 20-1 and 20-2 uses all of the normal amplifier section 90, the standby amplifier section 92 and the detour amplifier section 94 of the optical repeater amplifier 20 shown in FIG. The test signal is determined from the received signal and relayed by a detour.

(光中継増幅器と終端装置の間での予備用光回線の断線障害)
図18は常用光回線から予備用光回線に試験信号を巡回させる断線監視において、光中継増幅器と終端装置の間の予備用光回線が断線した場合の試験信号の迂回送信を示した説明図である。
(Disconnection failure of standby optical line between optical repeater amplifier and terminating equipment)
FIG. 18 is an explanatory diagram showing detour transmission of a test signal when a break in a standby optical line between an optical repeater amplifier and a terminating device is broken in disconnection monitoring in which a test signal is circulated from a regular optical line to a standby optical line. be.

図18に示すように、光中継増幅器20-2と終端装置22の間の予備用光回線14-2で断線障害200が発生した場合、断線箇所の上り側に位置する光中継増幅器20-2は、常用光回線14-1に対する試験信号の送信から所定の待ち時間Tw2以内に予備用光回線14-2の下り側から試験信号の受信がない場合に予備用光回線14-1の断線を判断し、下り側に隣接した終端装置22に常用光回線14-1を経由した試験信号の送信を指示すると共に、防災受信盤12に予備用光回線14-2を経由して、隣接した終端装置22との間の予備用光回線14-2の断線障害200を示す断線障害信号を送信して報知させる。 As shown in FIG. 18, when a disconnection fault 200 occurs in the standby optical line 14-2 between the optical repeater amplifier 20-2 and the terminating device 22, the optical repeater amplifier 20-2 located upstream of the disconnection point disconnects the standby optical line 14-1 when no test signal is received from the downstream side of the standby optical line 14-2 within a predetermined waiting time Tw2 after transmission of the test signal to the regular optical line 14-1. and instructs the termination device 22 adjacent on the downstream side to transmit a test signal via the regular optical line 14-1, and transmits the test signal to the disaster prevention receiving board 12 via the standby optical line 14-2. A disconnection fault signal indicative of a disconnection fault 200 in the standby optical line 14-2 with the device 22 is transmitted to notify.

なお、防災受信盤12及び光中継増幅20-1も断線障害200により予備用光回線14-2の下り側から試験信号を受信しなくなるが、断線障害を判断するそれぞれ待ち時間Tw1、Tw2は、光中継増幅器20-2が断線障害を判断する待ち時間Tw3より長いため、試験信号を受信しない時間が待ち時間Tw1、Tw2に達する前に、光中継増幅器20-2の迂回中継による試験信号が受信され、防災受信盤12及び光中継増幅器20-1で断線障害200を重複して判断することはない。 The disaster prevention receiving panel 12 and the optical repeater amplifier 20-1 also stop receiving the test signal from the downstream side of the standby optical line 14-2 due to the disconnection fault 200, but the waiting times Tw1 and Tw2 for judging the disconnection fault are Since the optical repeater amplifier 20-2 is longer than the wait time Tw3 for judging a disconnection fault, the test signal is received by the detour relay of the optical repeater amplifier 20-2 before the time during which the test signal is not received reaches the wait times Tw1 and Tw2. Therefore, the disconnection failure 200 is not judged redundantly by the disaster prevention receiving panel 12 and the optical relay amplifier 20-1.

このため図18の破線の矢印で示すように、予備用光回線14-2の断線障害200に対し、終端装置22は常用光回線14-1から受信した試験信号を常用光回線14-1に送信し、光中継増幅器20-2は常用光回線14-1の下り側から受信した試験信号を予備用光回線14-2の上り側に中継することで断線箇所を迂回させ、常用光回線14-1から予備用光回線14-2に試験信号を巡回させることによる断線監視を継続される。 Therefore, as indicated by the dashed arrow in FIG. 18, the terminating device 22 transmits the test signal received from the regular optical line 14-1 to the regular optical line 14-1 in response to the disconnection failure 200 of the standby optical line 14-2. The optical repeater amplifier 20-2 relays the test signal received from the downstream side of the regular optical line 14-1 to the upstream side of the protection optical line 14-2 to bypass the disconnection point and -1 continues the disconnection monitoring by circulating the test signal from the standby optical line 14-2.

(光中継増幅器間での予備用光回線の断線障害)
図19は常用光回線から予備用光回線に試験信号を巡回させる断線監視において、防災受信盤と光中継増幅器の間の予備用光回線が断線した場合の試験信号の迂回送信を示した説明図である。
(Disconnection failure of standby optical line between optical repeater amplifiers)
FIG. 19 is an explanatory diagram showing detour transmission of a test signal in the case of breakage monitoring in which a test signal is circulated from a regular optical line to a standby optical line when the standby optical line between the disaster prevention receiving panel and the optical repeater amplifier is broken. is.

図19に示すように、防災受信盤12と光中継増幅器20-1の間の予備用光回線14-2で断線障害200が発生した場合、断線箇所の上り側に位置する防災受信盤12は、常用光回線14-1に対する試験信号の送信から所定の待ち時間Tw1以内に予備用光回線14-2の下り側から試験信号の受信がない場合に予備用光回線14-2の断線を判断し、下り側に隣接した光中継増幅器20-1に常用光回線14-1を経由した試験信号の送信を指示すると共に、隣接した光中継増幅器20-1との間の予備用光回線14-2の断線障害200を判断して報知する。 As shown in FIG. 19, when a disconnection fault 200 occurs in the standby optical line 14-2 between the disaster prevention receiver 12 and the optical repeater amplifier 20-1, the disaster prevention receiver 12 located upstream of the disconnection point If no test signal is received from the downstream side of the protection optical line 14-2 within a predetermined waiting time Tw1 after transmission of the test signal to the regular optical line 14-1, it is determined that the protection optical line 14-2 is broken. Then, the optical repeater amplifier 20-1 adjacent on the downstream side is instructed to transmit a test signal via the regular optical line 14-1, and the standby optical line 14- between the adjacent optical repeater amplifier 20-1. 2 disconnection failure 200 is determined and notified.

このため図19の破線の矢印で示すように、予備用光回線14-2の断線障害200に対し、光中継増幅器20-1は予備用光回線14-2の下り側から受信した試験信号を常用光回線14-1の上り側に中継することで断線箇所を迂回させ、常用光回線14-1から予備用光回線14-2に試験信号を巡回させることによる断線監視が継続される。 Therefore, as indicated by the dashed arrow in FIG. 19, the optical repeater amplifier 20-1 receives the test signal from the downstream side of the protection optical line 14-2 against the disconnection failure 200 of the protection optical line 14-2. By relaying to the upstream side of the normal-use optical line 14-1, the disconnection point is detoured, and disconnection monitoring is continued by circulating the test signal from the normal-use optical line 14-1 to the backup optical line 14-2.

[試験信号の折り返しによる予備用光回線の断線監視]
図20は光中継増幅器単位及び終端装置単位に常用光回線から予備用光回線に試験信号を巡回させる断線監視において、光中継増幅器の間の予備用光回線が断線した場合の試験信号の迂回送信を示した説明図である。
[Disconnection monitoring of standby optical line by loopback of test signal]
FIG. 20 shows detour transmission of the test signal when the standby optical line between the optical repeater amplifiers is broken in disconnection monitoring in which the test signal is circulated from the regular optical line to the backup optical line for each optical repeater amplifier and each terminating device. It is an explanatory view showing the.

図20の実施形態にあっては、通常状態において、防災受信盤12は、周期的に断線監視用の試験信号を常用光回線14-1に送信させ、光中継増幅器20-1,20-2及び終端装置22は、常用光回線14-1の上り側から試験信号を受信した場合に、予備用光回線14-2の上り側に試験信号を折り返して中継させることで、光中継増幅器20-1,20-2及び終端装置22の各々の単位に、常用光回線14-1から予備用光回線14-2に試験信号を巡回させることで断線を監視している。 In the embodiment of FIG. 20, in a normal state, the disaster prevention receiver 12 periodically transmits test signals for monitoring disconnection to the regular optical line 14-1, and optical repeater amplifiers 20-1 and 20-2. When receiving the test signal from the upstream side of the regular optical line 14-1, the terminal device 22 loops back and repeats the test signal to the upstream side of the protection optical line 14-2, so that the optical repeater amplifier 20- 1, 20-2, and terminating equipment 22, a test signal is circulated from the regular optical line 14-1 to the standby optical line 14-2 to monitor disconnection.

図20に示すように、光中継増幅器20-1,20-2の間の予備用光回線14-2で断線障害200が発生した場合、断線箇所の上り側に位置する光中継増幅器20-1が試験信号を常用光回線14-1に送信してからの経過時間が待ち時間Tw2に達しても予備用光回線14-2の下り側から試験信号が受信されず、これにより下り側の予備用光回線14-2の断線を判断する。 As shown in FIG. 20, when a disconnection fault 200 occurs in the standby optical line 14-2 between the optical repeater amplifiers 20-1 and 20-2, the optical repeater amplifier 20-1 located upstream of the disconnection point has transmitted the test signal to the regular optical line 14-1, and the test signal is not received from the downstream side of the standby optical line 14-2 even when the waiting time Tw2 has been reached. A disconnection of the optical line 14-2 is determined.

光中継増幅器20-1が予備用光回線14-2の断線障害を判断した場合の制御は図17の場合と同様であり、下り側に隣接した終端装置22に常用光回線14-1を経由した試験信号の送信を指示すると共に、防災受信盤12に予備用光回線14-2を経由して、隣接した終端装置22との間の予備用光回線14-2の断線障害200を示す断線障害信号を送信して報知させる。 The control when the optical repeater amplifier 20-1 determines that the protection optical line 14-2 is disconnected is the same as in FIG. In addition to instructing the transmission of the test signal, the disconnection indicating the disconnection fault 200 of the standby optical line 14-2 between the adjacent terminal device 22 to the disaster prevention receiving panel 12 via the standby optical line 14-2 A fault signal is sent to alert the user.

また、図20において、光中継増幅器20-2と終端装置22の間の予備用光回線14-2の断線障害は光中継増幅器20-2が判断し、図18に示したと同じ制御が行われる。 Further, in FIG. 20, the optical repeater amplifier 20-2 judges disconnection failure of the standby optical line 14-2 between the optical repeater amplifier 20-2 and the terminating device 22, and the same control as shown in FIG. 18 is performed. .

更に、図20において、防災受信盤12と光中継増幅器20-1の間の予備用光回線14-2の断線障害は防災受信盤12が判断し、図19に示したと同じ制御が行われる。 Furthermore, in FIG. 20, the disaster prevention receiver board 12 judges disconnection failure of the standby optical line 14-2 between the disaster prevention receiver board 12 and the optical repeater amplifier 20-1, and the same control as shown in FIG. 19 is performed.

[本発明の変形例]
(OLTとONU)
上記の実施形態は、防災受信盤12及び設備機器側の光変換器18に、光送受信部50,62の機能を設けているが、防災受信盤12の光変換部50としては、光通信に使用されているOLT(Optical Line Terminal)を使用し、設備機器側の光送受信部62としては、光回線終端装置として知られたONU(Optical Network Unit)を使用しても良い。
[Modification of the present invention]
(OLTs and ONUs)
In the above-described embodiment, the functions of the optical transmission/reception units 50 and 62 are provided in the disaster prevention receiver 12 and the optical converter 18 on the equipment side. An OLT (Optical Line Terminal) in use may be used, and an ONU (Optical Network Unit) known as an optical network unit may be used as the optical transmitter/receiver 62 on the equipment side.

(ゲートウェイ装置)
上記の実施形態では、設備機器側の光変換器18や終端装置22にゲートウェイ66,92の機能を設けているが、ゲートウェイ66,92としては、市販のゲートウェイ装置を使用しても良い。
(gateway device)
In the above embodiment, the functions of the gateways 66 and 92 are provided in the optical converter 18 and the terminal device 22 on the equipment side, but as the gateways 66 and 92, commercially available gateway devices may be used.

(設備機器)
上記の実施形態は、光回線により監視制御される設備機器として、火災検知器と消火栓装置に設けられた赤色表示灯、発信機、応答ランプ及び消火栓スイッチを例にとっているが、これ以外の非常用設備の設備機器についても、同様に適用される。
(equipment)
In the above-described embodiment, the fire detector and the red indicator light provided in the fire hydrant device, the transmitter, the response lamp, and the fire hydrant switch are taken as examples of equipment that is monitored and controlled by the optical line. The same shall apply to equipment of facilities.

(非IP化)
上記の実施形態は、火災検知器及び消火栓装置に設けられた赤色表示灯、発信機、応答ランプ及び消火栓スイッチ等の設備機器の伝送部にIPアドレスを設定することにより、防災受信盤と設備機器との間で光回線を介してIPプロトコルに従った伝送制御を行っているが、これに限定されない。例えば、端末機器にIPアドレス以外のアドレスを設定し、所定の通信プロトコル、例えばR型火災報知設備で使用されている火災伝送プロトコルによる光回線を介した伝送制御としても良い。
(Non-IP)
In the above embodiment, by setting an IP address in the transmission part of equipment such as a red indicator light, a transmitter, a response lamp, and a fire hydrant switch provided in a fire detector and a fire hydrant device, disaster prevention receivers and equipment Although the transmission control according to the IP protocol is performed between them via an optical line, the present invention is not limited to this. For example, an address other than an IP address may be set in the terminal device, and transmission control may be performed via an optical line according to a predetermined communication protocol, for example, a fire transmission protocol used in R-type fire alarm equipment.

(その他)
また、本発明は、その目的と利点を損なうことのない適宜の変形を含み、更に、上記の実施形態に示した数値による限定は受けない。
(others)
Moreover, the present invention includes appropriate modifications that do not impair its purpose and advantages, and is not limited by the numerical values shown in the above embodiments.

10:トンネル
12:防災受信盤
14-1:常用光回線
14-2:予備用光回線
15:光分配器
16:電源線
18:光変換器
20,20-1,20-2:光中継増幅器
22:終端装置
24:消火栓装置
25:火災検知器
46:盤制御部
48:伝送部
50,62:光送受信部
66,98,154:ゲートウェイ
68:LAN回線
70,72:制御器
74:赤色表示灯
76:発信機
78:応答ランプ
80:消火栓スイッチ
82:端末制御部
84:LAN伝送部
86:駆動回路部
88:入力回路部
90:常用中継増幅部
92:予備用中継増幅部
94:迂回用中継増幅部
96:中継増幅制御部
152:終端制御部
180:断線障害
190:光強度低下障害
10: Tunnel 12: Disaster prevention receiver 14-1: Common optical line 14-2: Backup optical line 15: Optical distributor 16: Power line 18: Optical converters 20, 20-1, 20-2: Optical repeater amplifier 22: Termination device 24: Fire hydrant device 25: Fire detector 46: Panel control unit 48: Transmission units 50, 62: Optical transmission/reception units 66, 98, 154: Gateway 68: LAN lines 70, 72: Controller 74: Red display Light 76: Transmitter 78: Response lamp 80: Fire hydrant switch 82: Terminal control unit 84: LAN transmission unit 86: Drive circuit unit 88: Input circuit unit 90: Common relay amplifier unit 92: Backup relay amplifier unit 94: Detour Repeater amplifier 96: Repeater amplifier controller 152: Termination controller 180: Disconnection fault 190: Light intensity drop fault

Claims (3)

トンネル内の異常に関する監視制御を行う非常用設備であって、
防災受信盤と、
前記トンネル内に設置された端末側の設備機器と前記防災受信盤との間で光信号による通信を行うための常用光回線及び予備用光回線と、
前記常用光回線及び前記予備用光回線の各線路途中に接続された複数の光中継装置と、
前記常用光回線及び前記予備用光回線の各線路終端に接続された終端装置と、
を備え、
前記光中継装置は、
通常時は、前記常用光回線の上り側と下り側の間及び前記予備用光回線の上り側と下り側の間で各々前記光信号を中継し、
前記常用光回線の上り側から受信した前記光信号の強度低下障害を検出した場合は、前記防災受信盤又は上り側に隣接した他の光中継装置に前記予備用光回線を介して光強度低下障害信号を送信して前記常用光回線による前記光信号の送受信を停止させ、前記予備用光回線により前記光信号を送受信させると共に、前記予備用光回線の上り側と前記常用光回線の上り側及び下り側との間で前記光信号を迂回中継し、
下り側に位置する他の光中継装置又は前記終端装置から前記光強度低下障害信号を受信した場合は、前記常用光回線による前記光信号の送受信を停止すると共に、前記常用光回線の上り側と前記予備用光回線の下り側との間で前記光信号を迂回中継し、
前記防災受信盤は、
通常時は、前記常用光回線により前記光信号を送受信し、
下り側に隣接した前記光中継装置から前記光強度低下障害信号を受信した場合は、前記常用光回線による前記光信号の送受信を停止して、前記予備用光回線により前記光信号を送受信し、
前記終端装置は、前記常用光回線から受信した前記光信号の強度低下障害を検出した場合に、上り側に隣接した前記光中継装置に前記予備用光回線を介して光強度低下障害信号を送信して前記常用光回線による前記光信号の送受信を停止させると共に、前記予備用光回線と前記常用光回線との間で前記光信号を迂回中継する、
ことを特徴とする非常用設備。
Emergency equipment for monitoring and controlling abnormalities in tunnels,
disaster prevention receiver,
a regular optical line and a standby optical line for performing optical signal communication between the equipment on the terminal side installed in the tunnel and the disaster prevention receiving panel;
a plurality of optical repeaters connected in the middle of each line of the regular optical line and the standby optical line;
a termination device connected to each line termination of the regular optical line and the standby optical line;
with
The optical repeater is
normally, relaying the optical signal between the upstream and downstream sides of the regular optical line and between the upstream and downstream sides of the backup optical line;
When the intensity reduction failure of the optical signal received from the upstream side of the regular optical line is detected, the optical intensity is decreased to the disaster prevention receiving panel or another optical repeater adjacent to the upstream side via the backup optical line. A fault signal is transmitted to stop the transmission and reception of the optical signal through the normal optical line, and the optical signal is transmitted and received through the backup optical line, and the upstream side of the backup optical line and the upstream side of the normal optical line. and relaying the optical signal by detour between the downstream side,
When the optical intensity drop failure signal is received from another optical repeater located on the downstream side or from the terminating device, the transmission and reception of the optical signal via the regular optical line is stopped, and the upstream side of the regular optical line is received. detouring and relaying the optical signal to and from the downstream side of the standby optical line;
The disaster prevention receiving board
Normally, the optical signal is transmitted and received through the regular optical line,
when the optical intensity drop failure signal is received from the optical repeater adjacent to the downstream side, stopping transmission/reception of the optical signal through the normal optical line and transmitting/receiving the optical signal through the backup optical line;
The terminal equipment transmits an optical intensity reduction failure signal to the optical repeater adjacent on the upstream side via the backup optical line when detecting the intensity reduction failure of the optical signal received from the regular optical line. stopping transmission and reception of the optical signal through the regular optical line, and detouring and repeating the optical signal between the standby optical line and the regular optical line;
An emergency facility characterized by:
請求項1記載の非常用設備に於いて、
前記防災受信盤は、周期的に試験信号を前記常用光回線に送信し、
前記光中継装置及び前記終端装置は、前記試験信号の受信レベルが所定の閾値以下に低下した場合に、前記光信号の強度低下障害を検出することを特徴とする非常用設備。
In the emergency equipment according to claim 1,
The disaster prevention receiver periodically transmits a test signal to the regular optical line,
The emergency facility, wherein the optical repeater and the terminal device detect the strength drop failure of the optical signal when the reception level of the test signal drops below a predetermined threshold.
請求項1記載の非常用設備に於いて、
前記常用光回線の途中に接続された複数の前記設備機器と、
前記常用光回線に分岐接続されると共に、前記設備機器に信号回線により接続され、前記常用光回線から受信した前記光信号を電気信号に変換して前記設備機器に出力すると共に、前記設備機器から入力した電気信号を前記光信号に変換して前記常用光回線に送信する光変換器と、
を備えたことを特徴とする非常用設備。
In the emergency equipment according to claim 1,
a plurality of equipment devices connected in the middle of the common optical line;
branch-connected to the common optical line and connected to the equipment by a signal line, converts the optical signal received from the common optical line into an electrical signal, outputs the electrical signal to the equipment, and outputs the electrical signal from the equipment. an optical converter that converts an input electrical signal into the optical signal and transmits the optical signal to the common optical line;
An emergency facility characterized by comprising
JP2023019700A 2017-08-18 2023-02-13 Emergency Equipment Active JP7462086B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023019700A JP7462086B2 (en) 2017-08-18 2023-02-13 Emergency Equipment

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017157715A JP6924651B2 (en) 2017-08-18 2017-08-18 Tunnel emergency equipment
JP2021126419A JP7228636B2 (en) 2017-08-18 2021-08-02 emergency equipment
JP2023019700A JP7462086B2 (en) 2017-08-18 2023-02-13 Emergency Equipment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2021126419A Division JP7228636B2 (en) 2017-08-18 2021-08-02 emergency equipment

Publications (2)

Publication Number Publication Date
JP2023057111A true JP2023057111A (en) 2023-04-20
JP7462086B2 JP7462086B2 (en) 2024-04-04

Family

ID=65655686

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2017157715A Active JP6924651B2 (en) 2017-08-18 2017-08-18 Tunnel emergency equipment
JP2021126419A Active JP7228636B2 (en) 2017-08-18 2021-08-02 emergency equipment
JP2023019700A Active JP7462086B2 (en) 2017-08-18 2023-02-13 Emergency Equipment

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2017157715A Active JP6924651B2 (en) 2017-08-18 2017-08-18 Tunnel emergency equipment
JP2021126419A Active JP7228636B2 (en) 2017-08-18 2021-08-02 emergency equipment

Country Status (1)

Country Link
JP (3) JP6924651B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112820063B (en) * 2021-04-19 2021-07-09 四川鼎锐成科技有限公司 Fire control early warning system based on image data processing

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0731753B2 (en) * 1985-05-22 1995-04-10 日本鋼管工事株式会社 Tunnel abnormality notification device
JPH0228798A (en) * 1988-05-31 1990-01-30 Hochiki Corp Disaster prevention monitoring device
JP2719654B2 (en) * 1989-07-10 1998-02-25 日本電信電話株式会社 Monitoring method of optical amplification repeater transmission line
US5282193A (en) * 1990-11-24 1994-01-25 Fujitsu Limited Maintenance signal transmission system
JPH05102938A (en) * 1991-08-14 1993-04-23 Hitachi Cable Ltd Catv network
JP3284477B2 (en) * 1993-03-08 2002-05-20 能美防災株式会社 Tunnel disaster prevention equipment
JPH06268589A (en) * 1993-03-15 1994-09-22 Hitachi Ltd Optical communications method and communications equipment
JPH08212481A (en) * 1995-02-06 1996-08-20 Nohmi Bosai Ltd Fire alarming facility
JP3883285B2 (en) * 1998-03-31 2007-02-21 能美防災株式会社 Tunnel disaster prevention system
ATE414967T1 (en) * 2000-02-03 2008-12-15 Siemens Ag METHOD AND DEVICE FOR CONFIGURING A DETECTION SYSTEM FOR TUNNEL FIRE
JP3681959B2 (en) 2000-06-12 2005-08-10 ホーチキ株式会社 Relay amplification panel for tunnel disaster prevention equipment
JP3768781B2 (en) * 2000-06-12 2006-04-19 ホーチキ株式会社 Tunnel disaster prevention equipment
JP2002271267A (en) * 2001-03-07 2002-09-20 Nec Corp Network node device, and network system using the same, and method of detecting its hindrance location
JP4366885B2 (en) 2001-05-24 2009-11-18 日本電気株式会社 Optical communication network, optical communication node device, and fault location specifying method used therefor
JP2005080108A (en) * 2003-09-02 2005-03-24 Fujitsu Ltd Optical repeater
JP2007257569A (en) * 2006-03-27 2007-10-04 Nohmi Bosai Ltd Fire detection system in tunnel
KR101399025B1 (en) * 2014-02-13 2014-05-30 비아이산업(주) Both way communication for fire and gas detection system installing in hazardous area
JP2017005605A (en) * 2015-06-15 2017-01-05 富士通株式会社 Optical receiver and optical path switching control method
CN105741475B (en) * 2016-05-11 2023-08-01 广州天赋人财光电科技有限公司 Redundant distributed optical fiber line type temperature-sensing fire detection method and system

Also Published As

Publication number Publication date
JP2021168222A (en) 2021-10-21
JP6924651B2 (en) 2021-08-25
JP7228636B2 (en) 2023-02-24
JP2019036180A (en) 2019-03-07
JP7462086B2 (en) 2024-04-04

Similar Documents

Publication Publication Date Title
US8244123B2 (en) System and method for optical transmission
JP2023057111A (en) Emergency facility
JP2024016274A (en) booster
CN102144416A (en) Redundant connection of radio network elements to a central station
KR102134256B1 (en) Repeater for Automatic Fire Detection system
JP6965403B2 (en) Tunnel emergency equipment
JP6110776B2 (en) Tunnel disaster prevention system
JP3908632B2 (en) Line switching system and method
KR102060467B1 (en) Method for monitoring the peaker line, and broadcasting system including the same
JP6715654B2 (en) Tunnel emergency equipment
KR100786123B1 (en) Multi-routes communication system with multi-communication routes
JP7257481B2 (en) Tunnel emergency equipment
KR102294201B1 (en) Repeater capable of monitoring disconnection and short circuit
JP3768781B2 (en) Tunnel disaster prevention equipment
WO2006017962A1 (en) Method to protect human eyes in optical communication system
JP7361835B2 (en) emergency equipment
JP2005322122A (en) Controller of security system
JP3575940B2 (en) Remote monitoring system and monitoring device for abnormality reporting device
KR102180101B1 (en) Dualized environment monitoring system
JP2023112100A (en) Emergency facility
JP2000286988A (en) Fault monitor system, transmission line monitoring system and gas failure monitor system
JP7390792B2 (en) fire alarm equipment
CN113196347B (en) Fire alarm device and booster
JP2003323684A (en) Tunnel disaster prevention system
JPH07336296A (en) Optical transmission system

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20230213

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240229

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240325

R150 Certificate of patent or registration of utility model

Ref document number: 7462086

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150