JP3681959B2 - Relay amplification panel for tunnel disaster prevention equipment - Google Patents

Relay amplification panel for tunnel disaster prevention equipment Download PDF

Info

Publication number
JP3681959B2
JP3681959B2 JP2000174957A JP2000174957A JP3681959B2 JP 3681959 B2 JP3681959 B2 JP 3681959B2 JP 2000174957 A JP2000174957 A JP 2000174957A JP 2000174957 A JP2000174957 A JP 2000174957A JP 3681959 B2 JP3681959 B2 JP 3681959B2
Authority
JP
Japan
Prior art keywords
current
signal
line
circuit
disaster prevention
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000174957A
Other languages
Japanese (ja)
Other versions
JP2001358783A (en
Inventor
光栄 五十嵐
光広 栗本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hochiki Corp
Original Assignee
Hochiki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hochiki Corp filed Critical Hochiki Corp
Priority to JP2000174957A priority Critical patent/JP3681959B2/en
Publication of JP2001358783A publication Critical patent/JP2001358783A/en
Application granted granted Critical
Publication of JP3681959B2 publication Critical patent/JP3681959B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Alarm Systems (AREA)
  • Bidirectional Digital Transmission (AREA)
  • Dc Digital Transmission (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、防災受信盤から下り線路と上り線路を個別に備えた伝送路を2系統引出してトンネル内に設置した端末機器を接続して火災を監視するトンネル防災設備の中継増幅盤に関する。
【0002】
【従来の技術】
従来、自動車専用道路等のトンネルに設置される防災設備は、監視室等に設置した防災受信盤から2系統の伝送路を引き出し、トンネル内に設置された火災感知器や消火栓等の端末機器を接続して監視と制御を行っている。またトンネル防災設備では、通信に使用する伝送路が例えば数キロメートルと長くなるため、伝送路の途中に中継増幅盤を設置して信号の減衰劣化を防いでいる(特開平11−284644号)。
【0003】
また近年のトンネル防災設備にあっては、防災受信盤及び端末機器にアドレスを設定し、相手先アドレスを指定した信号の通信によりセンサ情報の収集や制御の指示を行う所謂R型の防災設備としている。
【0004】
この場合、防災受信盤から端末機器へ呼出信号を送信する下り通信と、端末機器から防災受信盤に応答信号を送信する上り通信に対応して、2系統の伝送路毎に上り専用の線路と下り専用の線路を使用している。
【0005】
この上り線路と下り線路を用いた通信にあっては、防災受信盤から電圧信号(電圧モード)で呼出信号を端末に送信し、一方、端末からは電流信号(電流モード)で応答信号を送信するようにしている。
【0006】
【発明が解決しようとする課題】
ところで、このような従来のR型のトンネル防災設備では、同一の伝送路に異なるアドレスを持った複数の端末機器が接続されるが、端末機器のアドレスの誤設定や伝送CPUの異常等により、アドレスが重複した場合、通信障害や誤発報の原因となるため、即時にアドレス重複を検出することが望ましい。
【0007】
端末機器のアドレス重複を検出する方法として、アドレス重複時には2の端末機器が同時に応答信号を電流値で送出するため、2倍の電流値をもった電流信号が送信されるので、この応答信号の電流値が2倍になったことでアドレス重複を検出する。
【0008】
この場合、伝送路の途中には中継増幅盤が設置されており、伝送中に鈍った電流信号を増幅して中継している。電流信号の伝送距離による影響は、信号振幅が小さくなるよりもむしろ波形が鈍ってくる方が要因として大きい。このため受信したアナログ電流値をそのまま増幅して送信する方法では、歪んだ波形のまま増幅され、増幅の効果が少ない。
【0009】
そこで、受信したアナログ電流値をデジタル化して電流信号の受信の有無を判定し、電流信号の受信を判定したら定電流回路を作動して矩形パルスとなる電流信号を送信する中継方法をとっている。
【0010】
このためアドレス重複により中継増幅盤で2倍の電流値の受信を判定した場合に、通常とは異なる2倍の電流信号を送信するため、通常の信号送信用の定電流回路に加え、アドレス重複用の定電流送出回路が必要となり、その分、回路構成が複雑化し、コストアップの要因となってしまう問題点があった。
【0011】
本発明は、通常の電流信号の中継に使用する定電流回路のみにより、アドレス重複時は2倍の電流信号を中継可能としたトンネル防災設備の中継増幅盤を提供することを目的とする。
【0012】
【課題を解決するための手段】
この目的を達成するため本発明は、次のように構成する。本発明は、防災受信盤から下り線路と上り線路を個別に備えた伝送路を2系統引出してトンネル内に設置した端末機器を接続し、防災受信盤から端末機器へは下り線路を用いて電圧信号で通信し、端末機器から防災受信盤へは前記上り線路を用いて電流信号で通信するトンネル防災設備の中継増幅盤を対象とする。
【0013】
このようなトンネル防災設備の中継増幅盤として本発明は、下位側に接続している2系統の上り線路からの信号電流を個別に受信する一対の電流受信回路と、上位側に接続している2系統の上り線に定電流回路の作動により一定値の電流信号を個別に送信する一対の電流送信回路と、一対の電流受信回路で受信した電流値を加算し、所定の閾値との比較により電流信号なし、電流信号あり、又はアドレス重複を判定する電流値判定回路と、電流値判定回路で電流信号ありが判定された時に予め定めた一方の電流送信回路を作動して電流信号を送信させ、また線路障害の検出時は他方(正常系統線路)の電流送信回路を作動して電流信号を送信させ、更に、アドレス重複が判定された時には一対の電流送信回路の両方を作動して通常の2倍の電流信号を送信させる中継制御回路とを備えたことを特徴とする。
【0014】
このように本発明は、アドレス重複を判定した際には、通常時の電流送信回路と線路障害時の電流送信回路を同時に使用することで、2倍の電流値をもつ電流信号を中継することができ、アドレス重複を示す2倍の電流値をもつ電流信号を送信する専用の回路を必要としないため、回路構成を簡単にしてコストダウンできる。
【0015】
また本発明は、時分割により下り信号と上り信号を伝送する半二重の伝送路を防災受信盤から2系統引出してトンネル内に設置した端末機器を接続し、防災受信盤から端末機器へは前記伝送路の下り信号系を用いて電圧信号で通信し、端末機器から防災受信盤へは前記伝送路の上り信号系を用いて電流信号で通信するトンネル防災設備の中継増幅盤を対象とする。
【0016】
この半二重伝送路の場合も本発明は上り下り専用線路の場合と同様、下位側に接続している2系統の伝送路における上り信号系からの信号電流を個別に受信する一対の電流受信回路と、上位側に接続している2系統の上り信号系に定電流回路の作動により一定の電流信号を個別に送信する一対の電流送信回路と、一対の電流受信回路で受信した電流値を加算し、所定の閾値との比較により電流信号なし、電流信号あり、又はアドレス重複を判定する電流値判定回路と、電流値判定回路で電流信号ありと判定された時は予め定めた一方の電流送信回路を作動して電流信号を送信させ、また線路障害の検出時は他方の電流送信回路を作動して電流信号を送信させ、更に、アドレス重複が判定された時には前記一対の電流送信回路の両方を作動して通常の2倍の電流信号を送信させる中継制御回路とを設ける。
【0017】
電流値判定回路は、電流信号なしを判定する第1閾値、電流信号ありを判定する第1閾値より高い第2閾値、アドレス重複を判定する第2閾値より高い第3閾値を設定して加算した電流値を判定する。
【0018】
また2系統の伝送路に優先順位を設定した場合、中継増幅盤の中継制御回路は、優先順位の高い系統の上り線路に対応した電流送信回路を作動し、線路障害の検出時には優先順位の低い系統の上り線路に対応した電流送信回路を作動して電流信号を送信させる。
【0019】
【発明の実施の形態】
図1は本発明の中継増幅盤が使用されるトンネル防災設備の説明図である。図1において、監視室などに設置された防災受信盤1からは、上りトンネル100Aに対し伝送路2が引き出され、また下りトンネル100Bに対し伝送路3が引き出されている。
【0020】
上りトンネル100Aに引き出された伝送路2は、A系伝送路2aとB系伝送路2bの2系統の伝送路を持っている。上りトンネル100A内には所定間隔で消火栓4と自動弁装置5が設置され、また所定間隔で火災感知器6が設置されている。
【0021】
防災受信盤1からのA系伝送路2aには消火栓4及び自動弁5が接続され、またB系伝送路2bには火災感知器6が接続されている。A系伝送路2a及びB系伝送路2bの途中には、所定間隔ごとに本発明の中継増幅盤7a,・・・7n-1 ,7nが接続されている。
【0022】
下りトンネル100Bに引き出されたA系伝送路3aとB系伝送路3bについても、同様に端末機器及び本発明の中継増幅盤7a〜7nが接続されている。
【0023】
図2は図1の防災受信盤1のブロック図である。防災受信盤1はMPU8、上りトンネル用伝送制御部9a、下りトンネル用伝送制御部9b、表示操作部10及び移報部11を備えている。
【0024】
上りトンネル用伝送制御部9aからは、図1に示した上りトンネル100Aに対する伝送路2として、A系伝送路2aとB系伝送路2bが引き出されている。このうちA系伝送路2aはA系下り線路15とA系上り線路16で構成され、またB系伝送路2bはB系下り線路17とB系上り線路18で構成される。
【0025】
ここで、下り線路とは防災受信盤1からトンネル内の端末機器に信号を送る線路であり、この実施形態にあっては下り線路の伝送信号に電圧信号を使用している。これに対し上り線路とはトンネル内の端末機器から防災受信盤1に信号を伝送する線路であり、この実施形態にあっては上り線路の伝送信号には電流信号を使用している。
【0026】
この上りトンネル用伝送制御部9aから引き出された各線路の構成は、下りトンネル用伝送制御部9bについても同様である。
【0027】
MPU8にはプログラム制御により実現される呼出応答部12とアドレス重複判定部13の機能が設けられている。呼出応答部12は予め設定されている端末アドレスを指定した呼出信号としての電文を送信する。例えば上りトンネル用伝送制御部9a側を例にとると、A系下り線路15とB系下り線路17のそれぞれに同時に同じ呼出信号を送信する。
【0028】
この呼出信号に対し、端末側でアドレス一致を判別した端末機器が応答信号を電流信号により防災受信盤1に送り返す。この端末機器からの応答信号は、A系上り線路16とB系上り線路18のうちB系上り線路18側に例えば高い優先順位を設定しており、このため本発明の中継増幅盤7a〜7nにあっては優先順位の高いB系上り線路18を使用して電流信号による応答信号を防災受信盤1側に送信する。
【0029】
そして防災受信盤1からの呼出信号に対し、もし端末側に同じアドレスを設定した端末機器が存在するアドレス重複を生じていた場合には、同時に2つの端末機器が応答信号を電流信号で返送するため、途中の中継増幅器にあっては通常の応答信号の電流値の2倍の電流値が受信され、このアドレス重複時の2倍の電流値を持つ応答信号が中継増幅盤で順次中継された後、最終的に防災受信盤1に受信される。
【0030】
防災受信盤1のMPU8に設けているアドレス重複判定部13は、端末側からの電流信号による受信信号の電流値を判別し、電流値が通常の電流値の2倍であった場合にはアドレス重複と判定し、表示操作部10に端末機器のアドレス重複の発生を警報表示する。
【0031】
通常、アドレス重複が判定されるのは、図1のトンネル防災設備に電源を投入して設備を立ち上げた直後の全端末のアドレスを順次信指定して呼出信号を送信する1回目の呼出処理であり、この段階でアドレス重複が認識できることで直ちに設備を停止してアドレス確認などの適切な対応をとる。
【0032】
また設備の運用中にあっても、端末機器に設けているCPUの異常などによりアドレス重複が起こる可能性があり、このアドレス重複によるCPU異常を放置しておくと種々の問題を生ずることから、アドレス重複を生じた時点で直ちに防災受信盤1でアドレス重複の異常が表示されることで、適切な対応を取る。
【0033】
図3は本発明の中継増幅盤の実施形態を示したブロック図である。本発明の中継増幅盤7に対しては、A系下り線路15、A系上り線路16、B系下り線路17及びB系上り線路18の4回線が、防災受信盤1側となる上位側及び終端側となる下位側に接続されている。
【0034】
中継増幅盤7には下り送受信回路19と上り送受信回路20が設けられている。下り送受信回路19は上位側からの電圧信号による応答信号を受信し、波形成形して振幅を増幅した後に下位側のA系下り線路15及びB系下り線路17に送信する。
【0035】
また上り送受信回路20は下位側のB系上り線路18から受信した電流信号による応答信号の有無を判定し、電流信号なし、電流信号あり、アドレス重複ありのいずれかの判定結果に対応して上位側に電流信号を送信する。この場合、通常の電流信号ありの場合には優先順位の高いB系上り線路18に電流信号を送信する。またアドレス重複を受信した場合には、A系上り線路16及びB系上り線路18の両方に電流信号を送信する。
【0036】
更に下り送受信回路19の両側には線路監視回路21,22が設けられる。同様に上り送受信回路20の両側にも線路監視回路21,22が設けられている。線路監視回路21,22は、図2に示した防災受信盤1のMPU8から一定時間間隔、例えば5秒に1回送信される線路監視タイミング信号を受信した際に、各線路を下り送受信回路19及び上り送受信回路20から切り離して線路監視回路21,22に接続し、線路監視回路21側から上り側の線路に監視電圧を印加し、線路監視回路22側に設けている終端抵抗に監視電流を流し、このときの線間電圧から線路の断線または短絡を検出する。
【0037】
このとき防災受信盤からの電圧信号を用いた呼出信号を送信する下り側で線路の断線が検出された場合には、正常な線路を断線線路に接続する系統混合を行い、防災受信盤からの正常な系統の呼出信号を断線側に後ろ側から回り込ませるループバック接続を行う。
【0038】
これに対し電流信号を応答信号として送信している上り側の線路で断線が起きた場合には、上り送受信回路20において、断線した系統の線路から正常な線路に切替えて電流信号を送出する。
【0039】
更に線路の短絡を検出した場合には、線路監視回路21,22において短絡が起きた線路を中継期間で切り離し、正常な系統の線路を迂回して上り信号または下り信号を送るバックアップを行うことになる。
【0040】
図4は図3の中継増幅盤7に設けた上り送受信回路20を取り出しており、説明を簡単にするため、両側に設けた線路監視回路21,22は省略し、直接、上位及び下位の上り線路を接続して表わしている。
【0041】
図4において、中継増幅盤7は、電流受信回路23a,23b、電流値判定回路24、中継制御回路25、定電流回路40a,40bをそれぞれ備えた電流送信回路26a,26b及び上位側上り線路用断線・短絡検出回路27(以下「断線・短絡検出回路27」)が設けられる。
【0042】
下位側のA系上り線路16及びB系上り線路18に対応して設けた電流受信回路23a,23bは、A系上り線路16及びB系上り線路18の+側に電源電圧+Vcを印加し、−側のラインを引き込んで受信抵抗R1,R2をそれぞれ接続している。
【0043】
この下位側のA系上り線路16には、図1に示したように消火栓4及び自動弁装置5が端末機器として接続されており、またB系上り線路18側には火災感知器6が端末機器として接続されている。このため、防災受信盤1からの呼出信号に対しアドレスが一致した端末機器があると、その端末機器が作動して応答信号をデジタル信号として送信する。
【0044】
このデジタル信号における例えばビット1のタイミングで、端末機器は上り線路に対し定電流回路を作動して、例えば60mAの一定電流を電流信号として送信する。また後段に位置する中継器から正常に電流信号が送信された場合には、優先順位の高いB系上り線路18に60mAの電流信号が送出される。
【0045】
これに対し応答信号のビット0のタイミングや応答信号がない場合には電流信号は0となる。更に上り線路に接続している端末機器にアドレス重複があった場合には、防災受信盤1からの呼出信号に対しアドレス重複を起こしている2つの端末機器が同時に作動し、この場合にはビット1の電流信号としてそれぞれ60mAの電流信号を出力することから、上り線路には通常の電流信号60mAの倍の120mAの電流が流れることになる。
【0046】
このため電流受信回路23a,23bは、その受信抵抗R1,R2に下位側から出力される電流信号として、電流値0、通常の60mAの電流信号、更にはアドレス重複による120mAの電流信号のいずれかを受信し、受信電流に比例した受信電圧を次段の電流値判定回路24に出力する。
【0047】
電流値判定回路24は比較器28a,28b,28cを備えており、それぞれ+入力端子側に第1閾値Vr1、第2閾値Vr2及び第3閾値Vr3となる基準電圧を設定し、抵抗R3,R4を介して加算した電流受信部23a,23bの受信電圧の加算値を比較している。
【0048】
ここで通常時の電流信号は60mA、アドレス重複時の電流信号は120mAであることから、電流信号なし、電流信号あり及びアドレス重複を判定するため、第1閾値Vr1として例えば20mAに対応する基準電圧を設定し、第2閾値Vr2として40mAに対応する基準電圧を設定し、更に第3閾値Vr3として90mAに対応する基準電圧を設定している。
【0049】
このため受信電流が0mAのときには比較器28a〜28cは、
(28a,28b,28c)=(H,L,L)
であり、電流信号の受信時には比較器28a〜28cの出力、
(28a,28b,28c)=(L,H,L)
となり、更に電流信号が120mAとなるアドレス重複時には比較器28a〜28cの出力は、
(28a,28b,28c)=(L,H,H)
となる。
【0050】
中継制御回路25は、波形整形用のフリップフロップ29、アンド回路30,31、反転回路32及びオア回路33,34で構成される。フリップフロップ29は比較器28a,28bの出力が(H,L)のときLベル出力であり、(L,L)のとき直前の状態を維持し、(L,H)となるとHレベル出力を生ずる。
【0051】
ここで断線・短絡検出回路27は、上位側のB系上り線路18が正常時にHレベル出力を生じており、上位側のB系上り線路18の断線または短絡を検出するとLレベル出力となる。このため、アンド回路30は断線・短絡検出回路27のHレベル出力により正常時は許容状態にあり、一方、アンド回路31は反転回路32による断線・短絡検出回路27からのHレベル出力の反転によるLレベルで禁止状態に置かれる。
【0052】
このためフリップフロップ29がHレベル出力を生じた場合にはアンドゲート30のみがHレベルとなり、オア回路34を介して優先順位の高いB系上り線路18側に設けている電流送信回路26bを作動する。
【0053】
ここで電流送信回路26a,26bはそれぞれ定電流回路40a,40bを備えており、オア回路33,34からのHレベル出力により動作し、60mAの電流信号をA系上り線路16及びB系上り線路18のそれぞれに送出する。
【0054】
断線・短絡検出回路27は、後の説明で明らかにするようにB系上り線路18の断線を監視しており、例えば通常時に電流信号が送出されている優先順位の高いB系上り線路18の断線を検出すると、それまでのHレベル出力をLレベル出力とする。
【0055】
このためアンド回路30が禁止状態となり、反転回路32による反転でHレベル入力を受けたアンド回路31が許容状態となる。このため断線検出時にあっては、フリップフロップ29からの電流信号の受信に基づくHレベル出力はアンド回路31からオア回路33を通って電流送信回路26aに供給され、定電流回路40aを作動し、優先順位の低いA系上り線路16に電流信号を送出することで、断線を生じたB系上り線路18をバックアップする。
【0056】
また優先順位の高いB系上り線路18の短絡が検出された場合にも同様にして、断線・短絡検出回路27の出力がLレベルとなり、アンド回路31を許容状態として電流送信回路26aの定電流回路40aの作動によりA系上り線路16を使用して電流信号を送出する。この場合、短絡を起こしたB系上り線路18側は後の説明で明らかにする断線監視回路の動作により中継増幅盤7から切り離されることになる。
【0057】
更に電流値判定回路24でアドレス重複による120mAの電流信号を受信して比較器28cの出力がHレベルとなった場合には、このHレベル出力はオア回路33を通って直接、電流送信回路26a,26bの両方に供給され、それぞれの定電流回路40a,40bを動作することでA系上り線路16とB系上り線路18の両方に60mAの電流信号を送出する。
【0058】
このため本発明の中継増幅盤7にあっては、アドレス重複の電流信号の受信を判別した際に同じ120mAの電流信号を上位の中継増幅盤に出力する特別な定電流回路は備えておらず、通常時に使用する電流送出回路26bと断線または短絡発生時に切り替えて使用する電流送信回路26aの両方を同時に作動することで、特別なアドレス重複用の電流送信回路を必要とすることなく、アドレス重複による120mAの電流信号を上位側に中継することができる。
【0059】
図5は図3の中継増幅盤7の上り送受信回路20側に設けている線路監視回路21,22の実施形態を示した回路ブロック図である。
【0060】
図5において、上り送受信回路20に対する上位側及び下位側のA系上り線路16及びB系上り線路18のそれぞれに対応して、線路監視回路35a,35b,35c,35dと、線路切替回路36a,36b,36c,及び36dを設けている。
【0061】
線路切替回路36a〜36dは、各線路の+ライン及び−ラインごとに切替スイッチa1,a2、切替スイッチb1,b2、切替スイッチc1,c2、切替スイッチd1,d2を備えている。これらの切替スイッチa1,a2〜d1,d2は通信中は図示のように上り送受信回路20側に切り替わっているが、図2に示した防災受信盤1のMPU8より一定時間ごと例えば5秒に1回、線路監視タイミング信号が送信され、この線路監視タイミング信号を上り送受信回路20で受信すると線路切替スイッチ信号E1を出力し、例えば20msの間、切替スイッチa1,a2〜d1,d2を線路監視回路35a〜35d側に切り替える。
【0062】
上位側に位置する線路監視回路35a,35cは、切替スイッチa1,a2と切替スイッチc1,c2が線路を接続した際に線路に対し所定の監視電圧を供給する。これに対し下位側の線路監視回路35b,35dのそれぞれには終端抵抗Rsが設けられており、切替スイッチb1,b2及び切替スイッチd1,d2が監視側に切り替わると上位側の線路に終端抵抗Rsを接続する。
【0063】
したがって線路監視タイミング信号による監視切替によっては、下位側の中継増幅盤から線路に監視電圧が供給されて上位側の終端抵抗に流れ、このときの線路電圧を検出することで線路の断線または短絡を検出することができる。
【0064】
線路監視回路35a〜35dで断線を検出すると、断線検出信号E4a〜E4dを上り送受信回路20に出力し、これを図4の断線・短絡検出回路27で検出し、もしB系上り線路18の断線を検出した場合には断線・短絡検出回路27でそれまでのHレベル出力をLレベル出力に切り替える。
【0065】
また線路監視回路35a〜35dで短絡を検出した場合には、短絡検出信号E4a〜E4dを上り送受信回路20に出力すると同時に線路切替回路36a〜36dに切替保持信号E3a〜E3dを出力し、監視側に切り替わっている切替スイッチa1,a2〜d1,d2の切替状態を保持し、これによって短絡時に短絡を起こした線路側を中継増幅盤7から切り離す。
【0066】
また上り送受信回路20は、図4の断線・短絡検出回路27により短絡検出時にも、その出力をHレベルからLレベルとすることで、短絡を検出したB系上り線路18からA系上り線路16による電流信号の送出に切り替える。
【0067】
更に上り送受信回路20は、通信中に過電流を検出すると切替信号E5a〜E5dを線路切替回路36a〜36dに出力して、過電流を生じた線路側を中継増幅盤7から切り離し、電流信号を短絡時と同様に正常な線路系統に送出するようにする。
【0068】
図6は図3の中継増幅盤7の下り送受信回路19側に設けている線路監視回路21,22の実施形態を示した回路ブロック図である。
【0069】
図6において、中継増幅盤7の下り送受信回路19側は防災受信盤1からの呼出信号を電圧信号として中継しており、下り送受信回路19には電圧信号を増幅するためのドライバ回路が内蔵されている。この下り送受信回路19の両側にはA系下り線路15とB系下り線路17に対応して線路監視回路21,22が設けられている。
【0070】
この下り送受信回路19に対する線路監視回路21,22の構成は、図5の上り送受信回路20側と基本的に同じであり、線路監視回路35a〜35d及び線路切替回路36a〜36dを設けている。
【0071】
その動作も同様に、下り送受信回路19で防災受信盤1からの5秒に1回送出される線路監視タイミング信号を受信したときに監視切替スイッチ信号E1を出力して切替スイッチa1,a2〜d1,d2を監視側に切り替え、下位側の線路監視回路35a,35cから監視電圧を線路に送り、上位側の線路監視回路35b,35dに設けている終端抵抗Rsに監視電圧を供給して監視電流を流すことで線路の断線または短絡を検出している。
【0072】
この電圧信号の送信に使用する下り送受信回路19の線路監視回路21,22の相違点は、上位側に位置する線路切替回路36a,36cの前段に系統混合回路37を設けている点である。
【0073】
系統混合回路37は線路監視回路35aまたは35cでA系下り線路15またはB系下り線路17の断線を検出した際に作動信号E2aまたはE2cによりスイッチe1,e2をオンし、例えば断線を生じたB系下り線路17を系統混合回路37を介して正常なA系下り線路15に接続する。
【0074】
これによって、正常なA系下り線路15に防災受信盤1から同時に送信されてくる呼出信号が系統混合回路37を経由して断線を生じたB系下り線路17側に後ろから回り込み、その断線までの端末機器に供給されるループバックによるバックアップ動作を行う。この他の線路の短絡検出時及び通信中における過電流検出に対する動作は図5の場合と同じになる。
【0075】
次に図1に示したトンネル内における複数の中継期間における中継動作を通常時、断線時及びアドレス重複時に分けて説明する。
【0076】
図7は本発明の中継増幅盤7a〜7dの4台を伝送路に設けた場合について、正常時の通信動作を簡略的に表わしている。ここで中継増幅盤7a〜7dは、A系下り線路15、A系上り線路16、B系下り線路17及びB系上り線路18により相互に接続されている。中継増幅盤7a〜7dには丸印で簡略化して示す下り送受信回路19と上り送受信回路20が設けられている。
【0077】
この実施形態にあってはB系伝送路に高い優先順位を設定しているため、防災受信盤1からの呼出電圧信号はB系下り線路17で転送され、また端末機器からの応答電流信号はB系上り線路18で転送される。
【0078】
例えば防災受信盤1からの呼出電圧信号はB系下り線路17によって矢印のように先頭の中継増幅盤7aに供給され、下り送受信回路19においてA系下り線路15とB系下り線路17の両方に送信される。
【0079】
これによって、防災受信盤からの呼出電圧信号はB系下り線路17によって中継増幅盤7a,7b,7c,7dと送られ、A系下り線路15については、その中継期間においてのみ呼出電圧信号が供給されている。
【0080】
一方、端末からの応答電流信号は、例えば一番後ろの中継増幅盤7dの上り送受信回路20から優先順位の高いB系上り線路18に送出され、中継増幅盤7c,7b,7aで中継されて防災受信盤1側に送られる。
【0081】
また中継増幅盤7a〜7dのそれぞれの間のA系上り線路16に接続している端末機器が呼出信号に応答して応答電流信号を送出した場合には、その前段に位置する中継増幅盤の上り送受信回路20において合成され、B系上り線路18を使用して上位側に中継される。
【0082】
図8は中継増幅盤7bと中継増幅盤7cの間でB系伝送路のB系下り線路17とB系上り線路18が断線した場合の中継動作である。この中継増幅盤7b,7cの間の線路17,18の断線は下位側の中継増幅盤7cで検出され、下り信号としての呼出電圧信号については、図6に示した系統混合回路37のスイッチオンで正常なA系下り線路15が断線を起こしたB系下り線路17に接続されるループバックが行われ、これによって防災受信盤1からの呼出電圧信号は中継増幅盤7cより断線箇所まで供給されるループバックを行うことになる。
【0083】
一方、端末側からの応答電流信号については、断線を検出した中継増幅盤7cにおいて、B系上り線路18から受信した電流信号が図4の断線検出で正常なA系上り線路16側の電流送信回路26aを作動することで、正常なA系上り線路16を使用して電流信号を中継増幅盤7bに送信し、断線箇所を迂回して電流信号を中継する。
【0084】
このため、通常の通信状態で使用しているB系の上り線路及びまたは下り線路に断線が起きても、断線箇所の前後に接続している端末機器に対する電圧呼出信号の供給とそこからの電流応答信号の送信を問題なく継続することができる。
【0085】
図9はアドレス重複が起きた場合の中継動作である。図9において、いま防災受信盤1からの電圧呼出信号に対し、例えば中継増幅盤7cと7dの間のB系上り線路18に接続している2台の火災感知器6がアドレス誤設定により同列アドレスであり、呼出しに対し同時に応答電流信号を送出したとする。
【0086】
このため中継増幅盤7cの上り送受信回路20にあっては、アドレス重複による120mAの電流信号を受信し、これによってアドレス重複を判別すると、上位のA系上り線路16及びB系上り線路18のそれぞれに対し同時に60mAの電流信号を送出する。
【0087】
このため次の中継増幅盤7cにあっては、A系上り線路16及びB系上り線路18のそれぞれから60mAの電流信号を受信し、受信電流を加算することで120mAの電流受信によるアドレス重複であることを判別し、同様にして上位のA系上り線路16とB系上り線路18のそれぞれに60mAの電流信号を送出する。
【0088】
更に中継増幅盤7aにあっても、同様にして120mAのアドレス重複による電流受信を判別し、中継増幅盤7に対するA系上り線路16及びB系上り線路18のそれぞれに60mAの電流信号を送出する。
【0089】
これによって、図2に示した防災受信盤1にあっては、A系上り線路16及びB系上り線路18からのそれぞれの60mAの電流信号の受信で120mAの受信を判別し、アドレス重複判定部13においてアドレス重複が判定され、アドレス重複を起こした端末機器の設定アドレスと共にアドレス重複の警報を表示操作部10に表示することになる。
【0090】
更に、本発明の他の実施形態として、時分割により下り信号と上り信号を伝送する半二重の伝送路を防災受信盤1から2系統引出してトンネル内に設置した端末機器を接続し、防災受信盤1から端末機器へは伝送路の下り信号系を用いて電圧信号で通信し、端末機器から防災受信盤1へは伝送路の上り信号系を用いて電流信号で通信するトンネル防災設備の中継増幅盤7を対象とする。
【0091】
このように半二重の伝送路によって時分割で同一線路を上り信号系と下り信号系で共用する場合にも、本発明の中継増幅盤7は、図4のように、上位側に接続している2系統の伝送路における上り信号系からの信号電流を個別に受信する一対の電流受信回路23a,23bと、上位側に接続している2系統の上り信号系に定電流回路40a,40bの作動により一定の電流信号を個別に送信する一対の電流送信回路26a,26bと、一対の電流受信回路23a,23bで受信した電流値を加算し、所定の閾値との比較により電流信号なし、電流信号あり、又はアドレス重複を判定する電流値判定回路24と、電流値判定回路24で電流信号ありと判定された時は予め定めた一方の電流送信回路26bを作動して電流信号を送信させ、また線路障害の検出時は他方の電流送信回路26aを作動して電流信号を送信させ、更に、アドレス重複が判定された時には一対の電流送信回路26a,26bの両方を作動して通常の2倍の電流信号を送信させる中継制御回路25とを備えることになる。
【0092】
尚、上記の実施形態にあっては、中継増幅盤における線路の断線と短絡の検出を防災受信盤からの線路監視タイミング信号による線路切替えで通信を停止して行うようにしているが、これ以外に通信状態から線路の断線や短絡を検出するようにしてもよい。また本発明は、その目的と利点を損なわない適宜の変形を含む。更に本発明は上記の実施形態に示した数値による限定は受けない。
【0093】
【発明の効果】
以上説明してきたように本発明によれば、端末機器のアドレス重複を判定した際には、通常時の電流送出回路と線路障害時の電流送出回路を同時に使用した電流信号の送出を行うことで、アドレス重複に伴って出力された2倍の電流値を持つ電流信号を中継することができ、アドレス重複を示す2倍の電流値を持つ電流信号を送信する専用の回路を必要としないため、中継増幅盤における回路構成を簡単にしてコストダウンを図ることができる。
【図面の簡単な説明】
【図1】本発明が適用されるトンネル防災設備の説明図
【図2】図1の防災受信盤のブロック図
【図3】本発明の中継増幅盤のブロック図
【図4】図3の中継増幅盤における上り送受信回路の回路ブロック図
【図5】図3の中継増幅盤における上り送受信回路側の線路監視回路の回路ブロック図
【図6】図3の中継増幅盤における下り送受信回路側の線路監視回路の回路ブロック図
【図7】正常時の中継増幅の説明図
【図8】断線時の中継増幅の説明図
【図9】アドレス重複時の中継増幅の説明図
【符号の説明】
1:防災受信盤
2,3:伝送路
2a,3a:A系伝送路
2b,3b:B系伝送路
4:消火栓
5:自動弁装置
6:火災検知器
7,7a〜7n:中継増幅盤
8:MPU
9a:上りトンネル用伝送制御部
9b:下りトンネル用伝送制御部
10:表示操作部
11:移報部
12:呼出応答部
13:アドレス重複判定部
15:A系上り線路
16:A系下り線路
17:B系下り線路
18:B系上り線路
19:下り送受信回路
20:上り送受信回路
21,22:線路監視回路
23a,23b:電流受信回路
24:電流値判定回路
25:中継制御回路
26a.26b:電流送信回路
27:上位側上り線用断線・短絡検出回路
28a〜28c:比較器
29:フリップフロップ
30,31:アンド回路
32:反転回路
33,34:オア回路
35a〜35d:線路監視回路
36a〜36d:監視切替回路
37:系統混合回路
40a,40b:定電流回路
100A:上りトンネル
100B:下りトンネル
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a relay amplifying board for a tunnel disaster prevention facility in which two transmission lines each having a downstream line and an upstream line are drawn from a disaster prevention receiving board and a terminal device installed in the tunnel is connected to monitor a fire.
[0002]
[Prior art]
Conventionally, disaster prevention equipment installed in tunnels for exclusive use of automobile roads, etc., pulls out two transmission lines from the disaster prevention reception board installed in the monitoring room, etc., and installs terminal devices such as fire detectors and fire hydrants installed in the tunnel Connect and monitor and control. Moreover, in the tunnel disaster prevention equipment, since the transmission line used for communication is as long as several kilometers, for example, a relay amplifying board is installed in the middle of the transmission line to prevent signal deterioration (Japanese Patent Laid-Open No. 11-284644).
[0003]
Also, in recent tunnel disaster prevention equipment, as the so-called R-type disaster prevention equipment that sets addresses in the disaster prevention reception panel and terminal equipment, and collects sensor information and instructs control by communication of signals specifying the destination address. Yes.
[0004]
In this case, in correspondence with downlink communication that transmits a call signal from the disaster prevention reception panel to the terminal device and uplink communication that transmits a response signal from the terminal device to the disaster prevention reception panel, an uplink dedicated line is provided for each of the two transmission lines. We use a track dedicated to downhill.
[0005]
In communication using this up line and down line, a call signal is sent to the terminal by a voltage signal (voltage mode) from the disaster prevention receiver, while a response signal is sent from the terminal by a current signal (current mode). Like to do.
[0006]
[Problems to be solved by the invention]
By the way, in such a conventional R-type tunnel disaster prevention equipment, a plurality of terminal devices having different addresses are connected to the same transmission path. However, due to an incorrect setting of the terminal device address or an abnormality in the transmission CPU, If an address is duplicated, it may cause a communication failure or a false alarm, so it is desirable to detect the address duplication immediately.
[0007]
As a method of detecting address duplication of terminal equipment, since the two terminal equipments simultaneously send out response signals as current values at the time of address duplication, a current signal having a double current value is transmitted. Address duplication is detected when the current value has doubled.
[0008]
In this case, a relay amplifying board is installed in the middle of the transmission line, and a current signal dulled during transmission is amplified and relayed. The influence of the transmission distance of the current signal is largely due to the fact that the waveform becomes dull rather than the signal amplitude becoming smaller. For this reason, in the method of amplifying and transmitting the received analog current value as it is, it is amplified with a distorted waveform, and the amplification effect is small.
[0009]
Therefore, the received analog current value is digitized to determine whether or not a current signal is received, and when it is determined that a current signal has been received, a relay method is employed in which a constant current circuit is activated to transmit a current signal that becomes a rectangular pulse. .
[0010]
For this reason, when it is determined that the relay amplifier board receives twice the current value due to address duplication, the current signal is doubled, which is different from the normal one. In addition to the constant current circuit for normal signal transmission, address duplication Therefore, there is a problem that the circuit configuration becomes complicated and the cost increases.
[0011]
SUMMARY OF THE INVENTION An object of the present invention is to provide a relay amplifying panel for a tunnel disaster prevention facility that can relay a current signal twice as long as addresses are duplicated by using only a constant current circuit used for relaying a normal current signal.
[0012]
[Means for Solving the Problems]
In order to achieve this object, the present invention is configured as follows. The present invention draws two transmission lines each having a downstream line and an upstream line from the disaster prevention reception board, connects terminal equipment installed in the tunnel, and uses the downstream line from the disaster prevention reception board to the terminal equipment. The relay amplification board of the tunnel disaster prevention equipment which communicates with a signal and communicates with a current signal from the terminal device to the disaster prevention reception board using the upstream line is targeted.
[0013]
As a relay amplifier panel of such a tunnel disaster prevention equipment, the present invention is connected to a pair of current receiving circuits that individually receive signal currents from two upstream lines connected to the lower side and to the upper side. By adding a pair of current transmission circuits that individually transmit a current signal of a constant value by the operation of a constant current circuit to two upstream lines, and a current value received by the pair of current reception circuits, and comparing with a predetermined threshold value A current value determination circuit for determining whether there is no current signal, whether there is a current signal, or address duplication, and one current transmission circuit that is determined in advance when the current value determination circuit determines that a current signal is present, causes a current signal to be transmitted. When a line fault is detected, the other (normal system line) current transmission circuit is activated to transmit a current signal, and when address duplication is determined, both the pair of current transmission circuits are activated to perform normal operation. Twice the electricity Characterized in that a relay control circuit for transmitting a signal.
[0014]
As described above, the present invention relays a current signal having a double current value by using the current transmission circuit at the normal time and the current transmission circuit at the time of the line failure at the same time when the address duplication is determined. This eliminates the need for a dedicated circuit for transmitting a current signal having a double current value indicating address duplication, thereby simplifying the circuit configuration and reducing the cost.
[0015]
In addition, the present invention connects a terminal device installed in a tunnel by extracting two systems of half-duplex transmission lines for transmitting downstream signals and upstream signals by time division from the disaster prevention receiver, and from the disaster prevention receiver to the terminal device. The relay amplifier board of the tunnel disaster prevention equipment that communicates with the voltage signal using the downstream signal system of the transmission path and communicates with the current signal using the upstream signal system of the transmission path from the terminal device to the disaster prevention receiving board is targeted. .
[0016]
In the case of this half-duplex transmission line as well, the present invention is a pair of current receivers that individually receive the signal current from the upstream signal system in the two transmission lines connected to the lower side, as in the case of the upstream and downstream dedicated line. A circuit, a pair of current transmission circuits that individually transmit a constant current signal to the two upstream signal systems connected to the upper side by the operation of the constant current circuit, and a current value received by the pair of current reception circuits. A current value determination circuit for determining whether there is no current signal, whether there is a current signal, or address duplication by comparing with a predetermined threshold, and one current determined when the current value determination circuit determines that there is a current signal The transmitter circuit is operated to transmit a current signal, and when a line fault is detected, the other current transmitter circuit is operated to transmit a current signal. Further, when address overlap is determined, the pair of current transmitter circuits Actuate both Twice the current signal normally provided a relay control circuit to transmit.
[0017]
The current value determination circuit sets and adds a first threshold for determining the absence of a current signal, a second threshold higher than the first threshold for determining the presence of a current signal, and a third threshold higher than a second threshold for determining address duplication. Determine the current value.
[0018]
When the priority order is set for the two transmission lines, the relay control circuit of the relay amplifier panel operates the current transmission circuit corresponding to the upstream line of the high priority system, and the priority order is low when a line fault is detected. A current transmission circuit corresponding to the upstream line of the system is operated to transmit a current signal.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is an explanatory diagram of a tunnel disaster prevention facility in which the relay amplifier panel of the present invention is used. In FIG. 1, from the disaster prevention receiving board 1 installed in a monitoring room or the like, the transmission path 2 is drawn out to the up tunnel 100A, and the transmission path 3 is drawn out from the down tunnel 100B.
[0020]
The transmission line 2 drawn out to the upstream tunnel 100A has two transmission lines, an A transmission line 2a and a B transmission line 2b. In the up tunnel 100A, the fire hydrant 4 and the automatic valve device 5 are installed at a predetermined interval, and the fire detector 6 is installed at a predetermined interval.
[0021]
A fire hydrant 4 and an automatic valve 5 are connected to the A-system transmission path 2a from the disaster prevention receiving board 1, and a fire detector 6 is connected to the B-system transmission path 2b. In the middle of the A-system transmission line 2a and the B-system transmission line 2b, the relay amplifier boards 7a,... 7n-1, 7n of the present invention are connected at predetermined intervals.
[0022]
Similarly, the terminal equipment and the relay amplifier boards 7a to 7n of the present invention are connected to the A-system transmission line 3a and the B-system transmission line 3b drawn to the down tunnel 100B.
[0023]
FIG. 2 is a block diagram of the disaster prevention receiving board 1 of FIG. The disaster prevention receiving board 1 includes an MPU 8, an upstream tunnel transmission control unit 9 a, a downstream tunnel transmission control unit 9 b, a display operation unit 10, and a transfer unit 11.
[0024]
From the upstream tunnel transmission control unit 9a, an A-system transmission path 2a and a B-system transmission path 2b are drawn out as the transmission path 2 for the upstream tunnel 100A shown in FIG. Of these, the A-system transmission line 2a is composed of an A-system downstream line 15 and an A-system upstream line 16, and the B-system transmission line 2b is composed of a B-system downstream line 17 and a B-system upstream line 18.
[0025]
Here, the down line is a line that sends a signal from the disaster prevention receiving board 1 to the terminal device in the tunnel, and in this embodiment, a voltage signal is used as a down line transmission signal. On the other hand, the upstream line is a line for transmitting a signal from the terminal device in the tunnel to the disaster prevention receiving panel 1, and in this embodiment, a current signal is used as the transmission signal for the upstream line.
[0026]
The configuration of each line drawn from the upstream tunnel transmission control unit 9a is the same as that of the downstream tunnel transmission control unit 9b.
[0027]
The MPU 8 is provided with functions of a call response unit 12 and an address duplication determination unit 13 realized by program control. The call response unit 12 transmits a telegram as a call signal designating a preset terminal address. For example, taking the upstream tunnel transmission control unit 9a as an example, the same paging signal is simultaneously transmitted to each of the A-system downlink 15 and the B-system downlink 17.
[0028]
In response to this call signal, the terminal device that has determined that the address matches on the terminal side sends a response signal back to the disaster prevention reception panel 1 using a current signal. The response signal from the terminal device sets, for example, a high priority on the B system uplink line 18 side of the A system uplink line 16 and the B system uplink line 18, and for this reason, the relay amplifier boards 7a to 7n of the present invention are set. In this case, the response signal based on the current signal is transmitted to the disaster prevention reception panel 1 side using the B system uplink 18 having a high priority.
[0029]
And if there is an address duplication in which there is a terminal device with the same address set on the terminal side in response to the call signal from the disaster prevention receiving board 1, the two terminal devices simultaneously return response signals as current signals. Therefore, in the relay amplifier in the middle, a current value that is twice the current value of the normal response signal is received, and the response signal having a current value that is twice that of the address duplication is sequentially relayed by the relay amplifier board. After that, it is finally received by the disaster prevention receiving board 1.
[0030]
The address duplication determination unit 13 provided in the MPU 8 of the disaster prevention receiving panel 1 determines the current value of the received signal based on the current signal from the terminal side, and if the current value is twice the normal current value, the address It is determined that there is a duplication, and an alarm is displayed on the display / operation unit 10 indicating that the address duplication of the terminal device has occurred.
[0031]
Usually, address duplication is determined by the first call processing in which the addresses of all terminals immediately after the power is turned on and the facilities are started up are sequentially specified and the call signal is transmitted. Because the address duplication can be recognized at this stage, the equipment is immediately stopped and appropriate measures such as address confirmation are taken.
[0032]
In addition, even during the operation of the equipment, address duplication may occur due to an abnormality of the CPU provided in the terminal device, and various problems will occur if the CPU abnormality due to this address duplication is left unattended. Appropriate action is taken by displaying the address duplication abnormality immediately on the disaster prevention reception board 1 when the address duplication occurs.
[0033]
FIG. 3 is a block diagram showing an embodiment of the relay amplifier board of the present invention. For the relay amplifier board 7 of the present invention, the four lines of the A-system down line 15, the A-system up line 16, the B-system down line 17 and the B-system up line 18 are the upper side which becomes the disaster prevention receiver board 1 side. It is connected to the lower side that is the terminal side.
[0034]
The relay amplifier board 7 is provided with a downstream transmission / reception circuit 19 and an upstream transmission / reception circuit 20. The down transmission / reception circuit 19 receives a response signal based on a voltage signal from the upper side, shapes the waveform, amplifies the amplitude, and transmits the amplified signal to the lower A system down line 15 and B system down line 17.
[0035]
The upstream transmission / reception circuit 20 determines the presence / absence of a response signal based on the current signal received from the lower-level B-system upstream line 18 and corresponds to the determination result of either no current signal, current signal, or address overlap. Send a current signal to the side. In this case, when there is a normal current signal, the current signal is transmitted to the B system upstream line 18 having a high priority. When address duplication is received, a current signal is transmitted to both the A-system uplink 16 and the B-system uplink 18.
[0036]
Further, line monitoring circuits 21 and 22 are provided on both sides of the downstream transmission / reception circuit 19. Similarly, line monitoring circuits 21 and 22 are provided on both sides of the upstream transmission / reception circuit 20. When the line monitoring circuits 21 and 22 receive a line monitoring timing signal transmitted once every predetermined time interval, for example, 5 seconds, from the MPU 8 of the disaster prevention receiving board 1 shown in FIG. And connected to the line monitoring circuits 21 and 22 by being disconnected from the upstream transmission / reception circuit 20, applying a monitoring voltage from the line monitoring circuit 21 side to the upstream line, and applying a monitoring current to the terminating resistor provided on the line monitoring circuit 22 side. The disconnection or short circuit of the line is detected from the line voltage at this time.
[0037]
At this time, when a disconnection of the line is detected on the downstream side that transmits the calling signal using the voltage signal from the disaster prevention receiver, system mixing is performed to connect the normal line to the disconnection line, and A loop-back connection is made so that the call signal of the normal system goes around from the back side to the disconnection side.
[0038]
On the other hand, when a disconnection occurs in the upstream line that transmits the current signal as a response signal, the upstream transmission / reception circuit 20 switches the disconnected system line to a normal line and sends the current signal.
[0039]
Further, when a line short circuit is detected, the line monitoring circuit 21, 22 disconnects the line where the short circuit occurred in the relay period, and performs backup to bypass the normal system line and send an upstream signal or downstream signal. Become.
[0040]
FIG. 4 shows the upstream transmission / reception circuit 20 provided in the relay amplifying board 7 of FIG. 3. For simplicity of explanation, the line monitoring circuits 21 and 22 provided on both sides are omitted, and the upstream and lower upstream circuits are directly connected. The lines are connected.
[0041]
In FIG. 4, the relay amplifier board 7 includes current receiving circuits 23a and 23b, a current value determination circuit 24, a relay control circuit 25, current transmission circuits 26a and 26b each having constant current circuits 40a and 40b, and an upper side upstream line. A disconnection / short circuit detection circuit 27 (hereinafter, “disconnection / short circuit detection circuit 27”) is provided.
[0042]
Current receiving circuits 23a and 23b provided corresponding to the lower A-system upstream line 16 and the B-system upstream line 18 apply a power supply voltage + Vc to the positive side of the A-system upstream line 16 and the B-system upstream line 18, The negative resistors are connected to the receiving resistors R1 and R2, respectively.
[0043]
As shown in FIG. 1, a fire hydrant 4 and an automatic valve device 5 are connected as terminal equipment to the lower A system up line 16, and a fire detector 6 is connected to the B system up line 18 side. Connected as a device. For this reason, if there is a terminal device whose address matches the call signal from the disaster prevention receiving board 1, the terminal device operates and transmits a response signal as a digital signal.
[0044]
For example, at the timing of bit 1 in this digital signal, the terminal device operates a constant current circuit for the upstream line, and transmits a constant current of, for example, 60 mA as a current signal. In addition, when a current signal is normally transmitted from the repeater located at the subsequent stage, a 60 mA current signal is transmitted to the B-system uplink 18 having a high priority.
[0045]
On the other hand, when there is no response signal bit 0 timing or response signal, the current signal is 0. Furthermore, when there is an address overlap in the terminal device connected to the upstream line, the two terminal devices causing the address overlap for the call signal from the disaster prevention reception board 1 operate simultaneously. Since a current signal of 60 mA is output as each current signal, a current of 120 mA that is twice the normal current signal of 60 mA flows through the upstream line.
[0046]
For this reason, the current receiving circuits 23a and 23b are any of a current value 0, a normal 60 mA current signal, and a 120 mA current signal due to address duplication as current signals output from the lower side to the receiving resistors R1 and R2. And a reception voltage proportional to the reception current is output to the current value determination circuit 24 in the next stage.
[0047]
The current value determination circuit 24 includes comparators 28a, 28b, and 28c, sets reference voltages to be the first threshold value Vr1, the second threshold value Vr2, and the third threshold value Vr3 on the + input terminal side, respectively, and resistors R3 and R4. The added values of the received voltages of the current receivers 23a and 23b added through the are compared.
[0048]
Here, since the current signal at the normal time is 60 mA and the current signal at the time of address duplication is 120 mA, a reference voltage corresponding to, for example, 20 mA is used as the first threshold value Vr1 in order to determine whether there is no current signal, whether there is a current signal, and address duplication. Is set, a reference voltage corresponding to 40 mA is set as the second threshold Vr2, and a reference voltage corresponding to 90 mA is set as the third threshold Vr3.
[0049]
Therefore, when the reception current is 0 mA, the comparators 28a to 28c are
(28a, 28b, 28c) = (H, L, L)
When receiving the current signal, the outputs of the comparators 28a to 28c,
(28a, 28b, 28c) = (L, H, L)
Further, at the time of address duplication where the current signal is 120 mA, the outputs of the comparators 28a to 28c are
(28a, 28b, 28c) = (L, H, H)
It becomes.
[0050]
The relay control circuit 25 includes a waveform shaping flip-flop 29, AND circuits 30 and 31, an inverting circuit 32, and OR circuits 33 and 34. The flip-flop 29 is an L bell output when the outputs of the comparators 28a and 28b are (H, L), maintains the previous state when (L, L), and outputs an H level output when (L, H). Arise.
[0051]
Here, the disconnection / short circuit detection circuit 27 generates an H level output when the upper B system upstream line 18 is normal, and outputs an L level output when a disconnection or a short circuit of the upper B system upstream line 18 is detected. Therefore, the AND circuit 30 is in an allowable state when it is normal due to the H level output of the disconnection / short circuit detection circuit 27, while the AND circuit 31 is caused by the inversion of the H level output from the disconnection / short circuit detection circuit 27 by the inversion circuit 32. At the L level, it is prohibited.
[0052]
Therefore, when the flip-flop 29 generates an H level output, only the AND gate 30 becomes the H level, and the current transmission circuit 26b provided on the B system upstream line 18 side having a high priority is operated via the OR circuit 34. To do.
[0053]
Here, the current transmission circuits 26a and 26b are provided with constant current circuits 40a and 40b, respectively, operate by the H level output from the OR circuits 33 and 34, and send a 60 mA current signal to the A system up line 16 and the B system up line. 18 to each.
[0054]
The disconnection / short-circuit detection circuit 27 monitors the disconnection of the B-system uplink 18 as will be clarified in the following description. For example, the disconnection / short-circuit detection circuit 27 When disconnection is detected, the previous H level output is set to L level output.
[0055]
For this reason, the AND circuit 30 is in a prohibited state, and the AND circuit 31 that has received an H level input by inversion by the inversion circuit 32 is in an allowable state. Therefore, when disconnection is detected, the H level output based on the reception of the current signal from the flip-flop 29 is supplied from the AND circuit 31 to the current transmission circuit 26a through the OR circuit 33, and the constant current circuit 40a is operated. By sending a current signal to the A-system upstream line 16 having a low priority, the B-system upstream line 18 that has been disconnected is backed up.
[0056]
Similarly, when a short circuit of the B system upstream line 18 having a high priority is detected, the output of the disconnection / short circuit detection circuit 27 becomes L level, the AND circuit 31 is allowed, and the constant current of the current transmission circuit 26a is set. By operating the circuit 40a, a current signal is transmitted using the A-system up line 16. In this case, the side of the B-system upstream line 18 that has caused a short circuit is disconnected from the relay amplifier board 7 by the operation of the disconnection monitoring circuit that will be clarified later.
[0057]
Further, when the current value determination circuit 24 receives a 120 mA current signal due to address duplication and the output of the comparator 28c becomes H level, the H level output is directly passed through the OR circuit 33 and the current transmission circuit 26a. , 26b, and by operating the respective constant current circuits 40a, 40b, a current signal of 60 mA is sent to both the A-system upstream line 16 and the B-system upstream line 18.
[0058]
For this reason, the relay amplifier board 7 of the present invention does not include a special constant current circuit that outputs the same 120 mA current signal to the upper relay amplifier board when it is determined that a current signal with overlapping addresses is received. By simultaneously operating both the current transmission circuit 26b used at normal time and the current transmission circuit 26a used by switching when a disconnection or short circuit occurs, address duplication can be performed without requiring a special current transmission circuit for address duplication. Can be relayed to the upper side.
[0059]
FIG. 5 is a circuit block diagram showing an embodiment of the line monitoring circuits 21 and 22 provided on the upstream transmission / reception circuit 20 side of the relay amplifier board 7 of FIG.
[0060]
In FIG. 5, line monitoring circuits 35a, 35b, 35c, 35d, line switching circuits 36a, 36a, 35c, 35d, respectively, corresponding to the upper and lower A-system upstream lines 16 and B-system upstream lines 18 with respect to the upstream transceiver circuit 20, respectively. 36b, 36c, and 36d are provided.
[0061]
The line changeover circuits 36a to 36d include changeover switches a1 and a2, changeover switches b1 and b2, changeover switches c1 and c2, and changeover switches d1 and d2 for each + line and −line of each line. These change-over switches a1, a2-d1, d2 are switched to the upstream transmission / reception circuit 20 side as shown in the figure during communication. The line monitoring timing signal is transmitted once, and when the line monitoring timing signal is received by the upstream transmission / reception circuit 20, the line changeover switch signal E1 is output. For example, the changeover switches a1, a2 to d1, d2 are set to the line monitoring circuit for 20 ms. Switch to the 35a-35d side.
[0062]
The line monitoring circuits 35a and 35c located on the upper side supply a predetermined monitoring voltage to the line when the changeover switches a1 and a2 and the changeover switches c1 and c2 connect the lines. On the other hand, each of the lower line monitoring circuits 35b and 35d is provided with a termination resistor Rs. When the changeover switches b1 and b2 and the changeover switches d1 and d2 are switched to the monitoring side, the termination resistor Rs is added to the upper line. Connect.
[0063]
Therefore, depending on the monitoring switching by the line monitoring timing signal, the monitoring voltage is supplied to the line from the lower side repeater amplifier board and flows to the upper side terminating resistor, and the line voltage is detected to detect disconnection or short circuit of the line. Can be detected.
[0064]
When disconnection is detected by the line monitoring circuits 35a to 35d, the disconnection detection signals E4a to E4d are output to the upstream transmission / reception circuit 20, which is detected by the disconnection / short circuit detection circuit 27 of FIG. Is detected, the disconnection / short-circuit detection circuit 27 switches the previous H level output to the L level output.
[0065]
When a short circuit is detected by the line monitoring circuits 35a to 35d, the short circuit detection signals E4a to E4d are output to the upstream transmission / reception circuit 20, and simultaneously, the switching holding signals E3a to E3d are output to the line switching circuits 36a to 36d. The changeover state of the changeover switches a1, a2 to d1, d2 is maintained, and the line side that caused a short circuit at the time of a short circuit is disconnected from the relay amplifier board 7.
[0066]
Further, when the short circuit is detected by the disconnection / short circuit detection circuit 27 of FIG. 4, the upstream transmission / reception circuit 20 changes the output from the H level to the L level to change the B system upstream line 18 from which the short circuit is detected to the A system upstream line 16. Switch to send current signal by.
[0067]
Further, when the upstream transmission / reception circuit 20 detects an overcurrent during communication, the upstream transmission / reception circuit 20 outputs switching signals E5a to E5d to the line switching circuits 36a to 36d, disconnects the line side where the overcurrent has occurred from the relay amplifier board 7, and outputs the current signal. It will be sent to the normal line system in the same way as when short-circuiting.
[0068]
FIG. 6 is a circuit block diagram showing an embodiment of the line monitoring circuits 21 and 22 provided on the downstream transmission / reception circuit 19 side of the relay amplifier board 7 of FIG.
[0069]
6, the downstream transmission / reception circuit 19 side of the relay amplifier board 7 relays the calling signal from the disaster prevention reception board 1 as a voltage signal, and the downstream transmission / reception circuit 19 has a built-in driver circuit for amplifying the voltage signal. ing. Line monitoring circuits 21 and 22 are provided on both sides of the down transmission / reception circuit 19 in correspondence with the A system down line 15 and the B system down line 17, respectively.
[0070]
The configuration of the line monitoring circuits 21 and 22 for the downstream transmission / reception circuit 19 is basically the same as that of the upstream transmission / reception circuit 20 in FIG. 5, and line monitoring circuits 35 a to 35 d and line switching circuits 36 a to 36 d are provided.
[0071]
Similarly, when the downstream transmission / reception circuit 19 receives a line monitoring timing signal sent once every 5 seconds from the disaster prevention receiving board 1, it outputs a monitoring changeover switch signal E1 and outputs changeover switches a1, a2 to d1. , D2 are switched to the monitoring side, the monitoring voltage is sent from the lower line monitoring circuits 35a and 35c to the line, and the monitoring voltage is supplied to the terminating resistor Rs provided in the upper line monitoring circuits 35b and 35d to monitor the current. The disconnection or short circuit of the line is detected.
[0072]
The difference between the line monitoring circuits 21 and 22 of the downlink transmission / reception circuit 19 used for the transmission of the voltage signal is that a system mixing circuit 37 is provided in front of the line switching circuits 36a and 36c located on the upper side.
[0073]
When the line monitoring circuit 35a or 35c detects the disconnection of the A-system downstream line 15 or the B-system downstream line 17, the system mixing circuit 37 turns on the switches e1 and e2 by the operation signal E2a or E2c. The system down line 17 is connected to the normal A system down line 15 via the system mixing circuit 37.
[0074]
As a result, the ringing signal transmitted simultaneously from the disaster prevention receiver 1 to the normal A-system downstream line 15 wraps around from the back to the B-system downstream line 17 side where the disconnection has occurred via the system mixing circuit 37, and until the disconnection occurs. Backup operation by loopback supplied to the terminal equipment. The operation for overcurrent detection during other line short-circuit detection and during communication is the same as in FIG.
[0075]
Next, relay operations in a plurality of relay periods in the tunnel shown in FIG. 1 will be described separately for normal time, disconnection, and address duplication.
[0076]
FIG. 7 simply shows a normal communication operation when the four relay amplifier boards 7a to 7d of the present invention are provided in the transmission line. Here, the relay amplifying boards 7 a to 7 d are connected to each other by an A-system downstream line 15, an A-system upstream line 16, a B-system downstream line 17, and a B-system upstream line 18. The relay amplifier boards 7a to 7d are provided with a downlink transmission / reception circuit 19 and an uplink transmission / reception circuit 20 which are indicated by circles in a simplified manner.
[0077]
In this embodiment, since a high priority is set for the B-system transmission line, the ringing voltage signal from the disaster prevention receiving board 1 is transferred through the B-system downlink 17 and the response current signal from the terminal device is The data is transferred via the B system uplink 18.
[0078]
For example, the ringing voltage signal from the disaster prevention receiving board 1 is supplied to the first relay amplifier board 7a as indicated by the arrow by the B system downlink line 17 and is transmitted to both the A system downlink line 15 and the B system downlink line 17 in the downlink transmission / reception circuit 19. Sent.
[0079]
As a result, the calling voltage signal from the disaster prevention receiving board is sent to the relay amplifier boards 7a, 7b, 7c, and 7d by the B system downlink line 17, and the calling voltage signal is supplied to the A system downlink line 15 only during the relay period. Has been.
[0080]
On the other hand, the response current signal from the terminal is transmitted from the upstream transmission / reception circuit 20 of the rearmost relay amplifier board 7d to the B system upstream line 18 having a higher priority, and relayed by the relay amplifier boards 7c, 7b, 7a. Sent to the disaster prevention reception board 1 side.
[0081]
Further, when a terminal device connected to the A-system upstream line 16 between each of the relay amplifier boards 7a to 7d sends a response current signal in response to the calling signal, the relay amplifier board located in the preceding stage is sent. The signals are combined in the upstream transmission / reception circuit 20 and relayed to the upper side using the B-system upstream line 18.
[0082]
FIG. 8 shows a relay operation when the B system down line 17 and the B system up line 18 of the B system transmission line are disconnected between the relay amplifier board 7b and the relay amplifier board 7c. The disconnection of the lines 17 and 18 between the relay amplifier boards 7b and 7c is detected by the lower relay amplifier board 7c, and the ringing voltage signal as the down signal is switched on in the system mixing circuit 37 shown in FIG. Then, a loopback is performed in which the normal A-system downlink line 15 is connected to the B-system downlink line 17 where the disconnection has occurred, whereby the ringing voltage signal from the disaster prevention receiver board 1 is supplied from the relay amplifier board 7c to the disconnection point. Loopback.
[0083]
On the other hand, for the response current signal from the terminal side, the current signal received from the B-system uplink 18 in the relay amplifier board 7c that detected the disconnection is the current transmission on the normal A-system uplink 16 side by the disconnection detection of FIG. By operating the circuit 26a, a normal A-system upstream line 16 is used to transmit a current signal to the relay amplifier board 7b, and the current signal is relayed bypassing the disconnected portion.
[0084]
For this reason, even if a disconnection occurs in the B-line upstream line and / or the downstream line used in a normal communication state, the supply of the voltage calling signal to the terminal device connected before and after the disconnection point and the current from there Transmission of the response signal can be continued without any problem.
[0085]
FIG. 9 shows the relay operation when address duplication occurs. In FIG. 9, for example, two fire detectors 6 connected to the B-system upstream line 18 between the relay amplifier boards 7 c and 7 d are aligned with the voltage calling signal from the disaster prevention receiver board 1 due to an incorrect address setting. Assume that a response current signal is sent to the call at the same time.
[0086]
For this reason, the upstream transmission / reception circuit 20 of the relay amplifier board 7c receives the 120 mA current signal due to the address duplication, and when the address duplication is discriminated by this, each of the upper A system up line 16 and B system up line 18 respectively. Simultaneously, a current signal of 60 mA is sent out.
[0087]
For this reason, in the next relay amplifier board 7c, a 60 mA current signal is received from each of the A-system upstream line 16 and the B-system upstream line 18, and the reception current is added, thereby address duplication due to 120mA current reception. In the same manner, a 60 mA current signal is sent to each of the upper A-system upstream line 16 and B-system upstream line 18.
[0088]
Further, in the relay amplifier board 7a, the current reception due to the address duplication of 120 mA is similarly determined, and a 60 mA current signal is sent to each of the A-system upstream line 16 and the B-system upstream line 18 to the relay amplifier board 7. .
[0089]
Thereby, in the disaster prevention receiving board 1 shown in FIG. 2, the reception of 120 mA is determined by the reception of the respective 60 mA current signals from the A-system upstream line 16 and the B-system upstream line 18, and an address duplication determination unit The address duplication is determined at 13 and an address duplication warning is displayed on the display operation unit 10 together with the set address of the terminal device that caused the address duplication.
[0090]
Furthermore, as another embodiment of the present invention, two half-duplex transmission lines for transmitting downlink signals and uplink signals by time division are drawn from the disaster prevention receiving panel 1 and connected to terminal equipment installed in the tunnel to prevent disaster prevention. The tunnel disaster prevention equipment communicates from the receiving panel 1 to the terminal equipment with a voltage signal using the downstream signal system of the transmission line, and communicates with the current signal from the terminal equipment to the disaster prevention receiving board 1 using the upstream signal system of the transmission path. The relay amplification board 7 is targeted.
[0091]
In this way, even when the same line is shared by the upstream signal system and the downstream signal system in a time division manner using a half-duplex transmission line, the relay amplifier board 7 of the present invention is connected to the upper side as shown in FIG. A pair of current receiving circuits 23a and 23b for individually receiving signal currents from the upstream signal system in the two transmission paths, and constant current circuits 40a and 40b for the two upstream signal systems connected to the upper side. The current values received by the pair of current transmission circuits 26a and 26b and the pair of current reception circuits 23a and 23b are individually transmitted by the operation of the constant current signal, and there is no current signal by comparison with a predetermined threshold value. Current value determination circuit 24 for determining whether there is a current signal or address duplication, and when the current value determination circuit 24 determines that there is a current signal, activates one of the predetermined current transmission circuits 26b to transmit the current signal. And again When a fault is detected, the other current transmission circuit 26a is activated to transmit a current signal, and when address duplication is determined, both the pair of current transmission circuits 26a and 26b are activated to double the normal current. The relay control circuit 25 for transmitting a signal is provided.
[0092]
In the above embodiment, the disconnection and short circuit of the line in the relay amplifier panel is detected by stopping the line switching by the line monitoring timing signal from the disaster prevention reception board. In addition, the disconnection or short circuit of the line may be detected from the communication state. Further, the present invention includes appropriate modifications that do not impair the objects and advantages thereof. Further, the present invention is not limited by the numerical values shown in the above embodiments.
[0093]
【The invention's effect】
As described above, according to the present invention, when the address duplication of the terminal device is determined, the current signal is sent using the current sending circuit at the normal time and the current sending circuit at the time of the line failure at the same time. Because it can relay a current signal having a double current value output due to address duplication and does not require a dedicated circuit for transmitting a current signal having a double current value indicating address duplication, The circuit configuration in the relay amplifier panel can be simplified and the cost can be reduced.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a tunnel disaster prevention facility to which the present invention is applied.
FIG. 2 is a block diagram of the disaster prevention reception board of FIG.
FIG. 3 is a block diagram of a relay amplifier panel according to the present invention.
4 is a circuit block diagram of an upstream transmission / reception circuit in the relay amplifier panel of FIG. 3;
5 is a circuit block diagram of a line monitoring circuit on the upstream transmission / reception circuit side in the relay amplifier panel of FIG. 3;
6 is a circuit block diagram of a line monitoring circuit on the downstream transmission / reception circuit side in the relay amplifier panel of FIG. 3;
FIG. 7 is an explanatory diagram of normal relay amplification.
FIG. 8 is an explanatory diagram of relay amplification at the time of disconnection
FIG. 9 is an explanatory diagram of relay amplification when addresses overlap.
[Explanation of symbols]
1: Disaster prevention reception board
2, 3: Transmission path
2a, 3a: A system transmission line
2b, 3b: B system transmission line
4: Fire hydrant
5: Automatic valve device
6: Fire detector
7, 7a-7n: Relay amplifier board
8: MPU
9a: Transmission control unit for upstream tunnel
9b: Downstream tunnel transmission control unit
10: Display operation unit
11: Transfer department
12: Call response part
13: Address duplication judgment part
15: A system up line
16: A system down line
17: B system down line
18: B system up line
19: Downstream transmission / reception circuit
20: Upstream transmission / reception circuit
21 and 22: Line monitoring circuit
23a, 23b: current receiving circuit
24: Current value determination circuit
25: Relay control circuit
26a. 26b: current transmission circuit
27: Disconnection / short circuit detection circuit for upstream line
28a-28c: Comparator
29: Flip-flop
30, 31: AND circuit
32: Inversion circuit
33, 34: OR circuit
35a to 35d: Line monitoring circuit
36a to 36d: monitoring switching circuit
37: System mixing circuit
40a, 40b: constant current circuit
100A: Up tunnel
100B: Down tunnel

Claims (4)

防災受信盤から下り線路と上り線路を個別に備えた伝送路を2系統引出してトンネル内に設置した端末機器を接続し、前記防災受信盤から端末機器へは前記下り線路を用いて電圧信号で通信し、前記端末機器から防災受信盤へは前記上り線路を用いて電流信号で通信するトンネル防災設備の中継増幅盤に於いて、
下位側に接続している2系統の上り線路からの信号電流を個別に受信する一対の電流受信回路と、
上位側に接続している2系統の上り線に定電流回路の作動により一定の電流信号を個別に送信する一対の電流送信回路と、
前記一対の電流受信回路で受信した電流値を加算し、所定の閾値との比較により電流信号なし、電流信号あり、又はアドレス重複を判定する電流値判定回路と、
前記電流値判定回路で電流信号ありと判定された時は予め定めた一方の電流送信回路を作動して電流信号を送信させ、また線路障害の検出時は他方の電流送信回路を作動して電流信号を送信させ、更に、アドレス重複が判定された時には前記一対の電流送信回路の両方を作動して通常の2倍の電流信号を送信させる中継制御回路と、
を備えたことを特徴とするトンネル防災設備の中継増幅盤。
The terminal equipment installed in the tunnel is drawn out from the disaster prevention receiving board with two transmission lines individually provided with the down line and the up line, and a voltage signal is transmitted from the disaster prevention receiving board to the terminal apparatus using the down line. In the relay amplifying panel of the tunnel disaster prevention equipment that communicates with the current signal using the upstream line from the terminal device to the disaster prevention receiving board,
A pair of current receiving circuits for individually receiving signal currents from two upstream lines connected to the lower side;
A pair of current transmission circuits that individually transmit a constant current signal to the two upstream lines connected to the upper side by the operation of the constant current circuit;
A current value determination circuit that adds the current values received by the pair of current reception circuits and determines whether there is no current signal, whether there is a current signal, or address overlap by comparison with a predetermined threshold;
When it is determined by the current value determination circuit that there is a current signal, one of the predetermined current transmission circuits is activated to transmit the current signal, and when a line fault is detected, the other current transmission circuit is activated to activate the current. A relay control circuit for transmitting a signal and further operating both of the pair of current transmission circuits to transmit a current signal twice as high as that when address duplication is determined;
A relay amplifying panel for tunnel disaster prevention equipment, characterized by comprising
時分割により下り信号と上り信号を伝送する半二重の伝送路を防災受信盤から2系統引出してトンネル内に設置した端末機器を接続し、前記防災受信盤から端末機器へは前記伝送路の下り信号系を用いて電圧信号で通信し、前記端末機器から防災受信盤へは前記伝送路の上り信号系を用いて電流信号で通信するトンネル防災設備の中継増幅盤に於いて、
下位側に接続している2系統の伝送路における上り信号系からの信号電流を個別に受信する一対の電流受信回路と、
上位側に接続している2系統の上り信号系に定電流回路の作動により一定の電流信号を個別に送信する一対の電流送信回路と、
前記一対の電流受信回路で受信した電流値を加算し、所定の閾値との比較により電流信号なし、電流信号あり、又はアドレス重複を判定する電流値判定回路と、
前記電流値判定回路で電流信号ありと判定された時は予め定めた一方の電流送信回路を作動して電流信号を送信させ、また線路障害の検出時は他方の電流送信回路を作動して電流信号を送信させ、更に、アドレス重複が判定された時には前記一対の電流送信回路の両方を作動して通常の2倍の電流信号を送信させる中継制御回路と、
を備えたことを特徴とするトンネル防災設備の中継増幅盤。
The terminal equipment installed in the tunnel by connecting two systems of half-duplex transmission lines for transmitting downstream signals and upstream signals by time division from the disaster prevention reception board is connected to the terminal equipment from the disaster prevention reception board. In the relay amplification panel of the tunnel disaster prevention equipment that communicates with the voltage signal using the downstream signal system, and communicates with the current signal using the upstream signal system of the transmission path from the terminal device to the disaster prevention receiving panel,
A pair of current receiving circuits that individually receive the signal current from the upstream signal system in the two transmission lines connected to the lower side;
A pair of current transmission circuits for individually transmitting a constant current signal to the two upstream signal systems connected to the upper side by the operation of the constant current circuit;
A current value determination circuit that adds the current values received by the pair of current reception circuits and determines whether there is no current signal, whether there is a current signal, or address overlap by comparison with a predetermined threshold;
When it is determined by the current value determination circuit that there is a current signal, one of the predetermined current transmission circuits is activated to transmit the current signal, and when a line fault is detected, the other current transmission circuit is activated to activate the current. A relay control circuit for transmitting a signal and further operating both of the pair of current transmission circuits to transmit a current signal twice as high as that when address duplication is determined;
A relay amplifying panel for tunnel disaster prevention equipment, characterized by comprising
請求項1又は2記載のトンネル防災設備の中継増幅盤に於いて、前記電流値判定回路は、電流信号なしを判定する第1閾値、電流信号ありを判定する第1閾値より高い第2閾値、アドレス重複を判定する第2閾値より高い第3閾値を設定して加算した電流値を判定することを特徴とするトンネル防災設備の中継増幅盤。The relay amplifying panel of the tunnel disaster prevention equipment according to claim 1 or 2, wherein the current value determination circuit is a first threshold value for determining the absence of a current signal, a second threshold value higher than a first threshold value for determining the presence of a current signal, A relay amplifying panel for a tunnel disaster prevention facility, wherein a current value obtained by setting and adding a third threshold value higher than a second threshold value for determining address duplication is determined. 請求項1又は2記載のトンネル防災設備の中継増幅盤に於いて、前記2系統の伝送路に優先順位を設定した場合、前記中継制御回路は、優先順位の高い系統の上り線路に対応した電流送信回路を作動して電流信号を送信させ、線路障害の検出時には優先順位の低い系統の上り線路に対応した電流送信回路を作動して電流信号を送信させることを特徴とするトンネル防災設備の中継増幅盤。3. The relay amplifying panel of the tunnel disaster prevention equipment according to claim 1 or 2, wherein when the priority is set for the two transmission lines, the relay control circuit has a current corresponding to an upstream line having a higher priority. A relay for a tunnel disaster prevention facility, wherein a current signal is transmitted by operating a transmission circuit and a current signal is transmitted by operating a current transmission circuit corresponding to an upstream line of a lower priority system when a line fault is detected. Amplification board.
JP2000174957A 2000-06-12 2000-06-12 Relay amplification panel for tunnel disaster prevention equipment Expired - Fee Related JP3681959B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000174957A JP3681959B2 (en) 2000-06-12 2000-06-12 Relay amplification panel for tunnel disaster prevention equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000174957A JP3681959B2 (en) 2000-06-12 2000-06-12 Relay amplification panel for tunnel disaster prevention equipment

Publications (2)

Publication Number Publication Date
JP2001358783A JP2001358783A (en) 2001-12-26
JP3681959B2 true JP3681959B2 (en) 2005-08-10

Family

ID=18676905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000174957A Expired - Fee Related JP3681959B2 (en) 2000-06-12 2000-06-12 Relay amplification panel for tunnel disaster prevention equipment

Country Status (1)

Country Link
JP (1) JP3681959B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6924651B2 (en) 2017-08-18 2021-08-25 ホーチキ株式会社 Tunnel emergency equipment
JP7270351B2 (en) * 2018-09-19 2023-05-10 ニッタン株式会社 fire alarm system
JP7341764B2 (en) * 2019-07-16 2023-09-11 ホーチキ株式会社 fire alarm equipment

Also Published As

Publication number Publication date
JP2001358783A (en) 2001-12-26

Similar Documents

Publication Publication Date Title
CA1164065A (en) Automatic shunt device
JPS60117939A (en) Information transmission system
JP2024016274A (en) booster
JP3681959B2 (en) Relay amplification panel for tunnel disaster prevention equipment
JP3768781B2 (en) Tunnel disaster prevention equipment
JP3988108B2 (en) Fire alarm repeater
US11501631B2 (en) Fire alarm system and booster
JP2863067B2 (en) Data transmission method
JPS59114929A (en) Fault detecting system for transmission line
JP2830484B2 (en) Relay amplifier
JPS5970029A (en) Supervisory circuit of repeater
JPS61228742A (en) Remote supervisory and controlling equipment
JP3261266B2 (en) Fire detector
JPS587091B2 (en) Subscriber line monitoring method
JP2747475B2 (en) Transmitter / receiver monitoring method
JPH0728241B2 (en) 1: 1 standby hot standby communication device
JPH07123030A (en) Fault diagnostic device
JPH01101754A (en) Transmission system
JPH05236639A (en) Compensator for transmission line
JPH0250520B2 (en)
JPH05235803A (en) Transmission line termination circuit
JPS61161047A (en) Communication system
JPH08212481A (en) Fire alarming facility
JPS61270930A (en) Wireless transmission system
JPH04280399A (en) Disaster prevention monitor system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050519

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3681959

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090527

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100527

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100527

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110527

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120527

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130527

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130527

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees