JP2023052849A - 美容的皮膚属性を決定するための機器及び方法 - Google Patents

美容的皮膚属性を決定するための機器及び方法 Download PDF

Info

Publication number
JP2023052849A
JP2023052849A JP2023014549A JP2023014549A JP2023052849A JP 2023052849 A JP2023052849 A JP 2023052849A JP 2023014549 A JP2023014549 A JP 2023014549A JP 2023014549 A JP2023014549 A JP 2023014549A JP 2023052849 A JP2023052849 A JP 2023052849A
Authority
JP
Japan
Prior art keywords
skin
entropy
image
cosmetic
cosmetic skin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2023014549A
Other languages
English (en)
Other versions
JP7553621B2 (ja
Inventor
ムディヤンセラゲ マハトマ バンダラ ディサーナーヤカ ディサーナーヤカ
Mudiyanselage Dissanayake Dissanayake
直喜 宮本
Naoki Miyamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Procter and Gamble Co
Original Assignee
Procter and Gamble Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Procter and Gamble Co filed Critical Procter and Gamble Co
Publication of JP2023052849A publication Critical patent/JP2023052849A/ja
Application granted granted Critical
Publication of JP7553621B2 publication Critical patent/JP7553621B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/56Extraction of image or video features relating to colour
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/90Determination of colour characteristics
    • AHUMAN NECESSITIES
    • A45HAND OR TRAVELLING ARTICLES
    • A45DHAIRDRESSING OR SHAVING EQUIPMENT; EQUIPMENT FOR COSMETICS OR COSMETIC TREATMENTS, e.g. FOR MANICURING OR PEDICURING
    • A45D44/00Other cosmetic or toiletry articles, e.g. for hairdressers' rooms
    • A45D44/005Other cosmetic or toiletry articles, e.g. for hairdressers' rooms for selecting or displaying personal cosmetic colours or hairstyle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0077Devices for viewing the surface of the body, e.g. camera, magnifying lens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/1032Determining colour for diagnostic purposes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/44Detecting, measuring or recording for evaluating the integumentary system, e.g. skin, hair or nails
    • A61B5/441Skin evaluation, e.g. for skin disorder diagnosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/44Detecting, measuring or recording for evaluating the integumentary system, e.g. skin, hair or nails
    • A61B5/441Skin evaluation, e.g. for skin disorder diagnosis
    • A61B5/442Evaluating skin mechanical properties, e.g. elasticity, hardness, texture, wrinkle assessment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/44Detecting, measuring or recording for evaluating the integumentary system, e.g. skin, hair or nails
    • A61B5/441Skin evaluation, e.g. for skin disorder diagnosis
    • A61B5/443Evaluating skin constituents, e.g. elastin, melanin, water
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/44Detecting, measuring or recording for evaluating the integumentary system, e.g. skin, hair or nails
    • A61B5/441Skin evaluation, e.g. for skin disorder diagnosis
    • A61B5/444Evaluating skin marks, e.g. mole, nevi, tumour, scar
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/44Detecting, measuring or recording for evaluating the integumentary system, e.g. skin, hair or nails
    • A61B5/441Skin evaluation, e.g. for skin disorder diagnosis
    • A61B5/445Evaluating skin irritation or skin trauma, e.g. rash, eczema, wound, bed sore
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7253Details of waveform analysis characterised by using transforms
    • A61B5/7257Details of waveform analysis characterised by using transforms using Fourier transforms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7253Details of waveform analysis characterised by using transforms
    • A61B5/726Details of waveform analysis characterised by using transforms using Wavelet transforms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7264Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
    • A61B5/7267Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems involving training the classification device
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/742Details of notification to user or communication with user or patient ; user input means using visual displays
    • A61B5/7435Displaying user selection data, e.g. icons in a graphical user interface
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/7475User input or interface means, e.g. keyboard, pointing device, joystick
    • A61B5/748Selection of a region of interest, e.g. using a graphics tablet
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0487Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser
    • G06F3/0488Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • G06T7/62Analysis of geometric attributes of area, perimeter, diameter or volume
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/20Image preprocessing
    • G06V10/22Image preprocessing by selection of a specific region containing or referencing a pattern; Locating or processing of specific regions to guide the detection or recognition
    • G06V10/235Image preprocessing by selection of a specific region containing or referencing a pattern; Locating or processing of specific regions to guide the detection or recognition based on user input or interaction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/16Human faces, e.g. facial parts, sketches or expressions
    • G06V40/168Feature extraction; Face representation
    • G06V40/171Local features and components; Facial parts ; Occluding parts, e.g. glasses; Geometrical relationships
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/16Human faces, e.g. facial parts, sketches or expressions
    • G06V40/178Human faces, e.g. facial parts, sketches or expressions estimating age from face image; using age information for improving recognition
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/70ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for mining of medical data, e.g. analysing previous cases of other patients
    • AHUMAN NECESSITIES
    • A45HAND OR TRAVELLING ARTICLES
    • A45DHAIRDRESSING OR SHAVING EQUIPMENT; EQUIPMENT FOR COSMETICS OR COSMETIC TREATMENTS, e.g. FOR MANICURING OR PEDICURING
    • A45D44/00Other cosmetic or toiletry articles, e.g. for hairdressers' rooms
    • A45D2044/007Devices for determining the condition of hair or skin or for selecting the appropriate cosmetic or hair treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2503/00Evaluating a particular growth phase or type of persons or animals
    • A61B2503/12Healthy persons not otherwise provided for, e.g. subjects of a marketing survey
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2576/00Medical imaging apparatus involving image processing or analysis
    • A61B2576/02Medical imaging apparatus involving image processing or analysis specially adapted for a particular organ or body part
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10024Color image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20092Interactive image processing based on input by user
    • G06T2207/20104Interactive definition of region of interest [ROI]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30196Human being; Person
    • G06T2207/30201Face

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Molecular Biology (AREA)
  • Theoretical Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Dermatology (AREA)
  • Data Mining & Analysis (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Multimedia (AREA)
  • Psychiatry (AREA)
  • Physiology (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Epidemiology (AREA)
  • Primary Health Care (AREA)
  • Human Computer Interaction (AREA)
  • Mathematical Physics (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • Fuzzy Systems (AREA)
  • Software Systems (AREA)
  • Computing Systems (AREA)
  • Geometry (AREA)
  • Image Analysis (AREA)
  • Image Processing (AREA)

Abstract

【課題】初期段階で先を見越したスキンケア処置を可能にするように、人の美容的皮膚属性を決定する。【解決手段】人の美容的皮膚属性を決定する方法であって、方法は、a)人の皮膚の少なくとも1つの部分を含む少なくとも1つのカラーチャネル画像を取得するステップと、b)エントロピー統計値を使用して少なくとも1つのカラーチャネル画像を解析して、エントロピー値を取得するステップと、c)エントロピー値に基づいて、人の皮膚の少なくとも1つの部分の美容的皮膚属性を決定するステップと、を含む。【選択図】図5

Description

本発明は、美容的皮膚属性を決定するための機器及び方法に関する。
皮膚撮像方法は、皮膚老化の異なる表現型を研究するために広く使用されてきた。しわ、斑点、及びたるみなどの老化表現型に特に着目した老化皮膚を特徴付けるために、数多くの画像解析技術及びアルゴリズムが文献に提案されている。皮膚老化関連表現型の外観は、経時的に連続的なプロセスであることが知られている。例えば、不均一な色素沈着は、最初に視覚的に知覚不能な斑点を生じさせる場合があり、これはやがて、経時的に視認可能となり得る。したがって、より若い消費者(例えば、30歳未満)は一般に、古典的な視認可能な皮膚老化関連表現型を有さず、したがって、手遅れになるまで、そのような老化の視覚的に知覚不能な表現型を防止、遅延、及び/又は軽減する差し迫った必要がないという印象をもっている。
米国特許出願公開第2010/0284610(A1)号(「‘610公開」)は、顔領域を含む入力画像から皮膚カラーを評価するための皮膚カラー評価方法に関する。‘610公開は、予め設定された少なくとも25の領域の形成された第1の特徴点と、第1の特徴点を使用して設定される第2の特徴点とに従って、画像の顔領域を所定の領域に分割することを記載している。‘610公開は、更に、L***カラーシステムのL*、a*、b*、Cab *、及びhab、XYZカラーシステムの三刺激値X、Y、Z、並びにRGB、色相H、明度V、彩度C、メラニン量、及びヘモグロビン量の値のうちの少なくとも1つを使用する平均値に基づいて皮膚カラー分布を生成し、続いて、分割された領域に対する測定結果に基づいて評価を行い、スクリーン上に測定結果又は評価結果を表示することによって皮膚カラー分布評価を行うことを記載している。しかしながら、‘610公開は、視認可能皮膚カラー分布に焦点を当て、皮膚老化に関連する表現型を記載しておらず、したがって、視覚的に知覚不能な皮膚老化関連表現型を評価するためのいずれの方法についても記載していない。
米国特許出願公開第2010/0284610(A1)号
したがって、初期段階で先を見越したスキンケア処置を可能にするように、人の美容的皮膚属性を決定するための方法が必要とされている。
本発明は、人の美容的皮膚属性を決定する方法であって、
a)人の皮膚の少なくとも1つの部分を含む少なくとも1つのカラーチャネル画像を取得するステップと、
b)エントロピー統計値を使用して少なくとも1つのカラーチャネル画像を解析して、エントロピー値を取得するステップと、
c)エントロピー値に基づいて、人の皮膚の少なくとも1つの部分の美容的皮膚属性を決定するステップと、を含む、方法に関する。
本発明によるネットワークを介する美容的皮膚属性を決定するための例示的なシステムを示す図である。 本発明による美容的皮膚属性を決定するための代替の例示的なシステムを示す図である。 本発明による美容的皮膚属性を決定するための例示的な機器の構成要素を示すブロック図である。 本発明による美容的皮膚属性を決定するための方法を示すブロック図である。 本発明による美容的皮膚属性を決定するための方法を決定するための方法を示すフローチャートである。 本発明による美容的皮膚属性を決定するための方法を示す一連のプロセスフロー図である。 本発明による美容的皮膚属性を決定するための方法を示す一連のプロセスフロー図である。 本発明による美容的皮膚属性を決定するための方法を示す一連のプロセスフロー図である。 本発明による美容的皮膚属性を決定するための方法を示すフローチャートである。 本発明によるデジタル画像内の対象の顔の少なくとも一部分の少なくとも1つの美容的皮膚属性のエントロピー値を可視化する方法を示すプロセスフロー図である。 本発明によるデジタル画像内の対象の顔の少なくとも一部分の少なくとも1つの美容的皮膚属性のエントロピー値を可視化する方法を示すプロセスフロー図である。 本発明によるデジタル画像内の対象の顔の少なくとも一部分の少なくとも1つの美容的皮膚属性のエントロピー値を可視化する方法を示すフローチャートである。 本発明による美容的皮膚属性を決定する方法における第1のデジタル画像を取得するステップの詳細を示す一連のプロセスフロー図である。 本発明による美容的皮膚属性を決定する方法における第1のデジタル画像を取得するステップの詳細を示す一連のプロセスフロー図である。 本発明による美容的皮膚属性を決定する方法における第1のデジタル画像を取得するステップの詳細を示す一連のプロセスフロー図である。 第1のデジタル画像を取得するステップを示すフローチャートである。 本発明による美容的皮膚属性を決定する方法における複数のタイルを画定するステップを示す写真である。 複数のタイルを画定するステップを示すフローチャートである。 本発明による複数のタイルを表示するプロセスを示すプロセスフロー図である。 本発明による複数のタイルを表示するプロセスを示すプロセスフロー図である。 本発明による複数のタイルを表示するプロセスを示すプロセスフロー図である。 本発明による複数のタイルを表示するプロセスを示すフローチャートである。 本発明による少なくとも1つの美容的皮膚属性のエントロピー値を可視化する方法を示すプロセスフロー図である。 本発明による少なくとも1つの美容的皮膚属性のエントロピー値を可視化する方法を示すプロセスフロー図である。 本発明による少なくとも1つの美容的皮膚属性のエントロピー値を可視化する方法を示すプロセスフロー図である。 本発明による少なくとも1つの美容的皮膚属性のエントロピー値を可視化する方法を示すプロセスフロー図である。 本発明による少なくとも1つの美容的皮膚属性のエントロピー値を可視化する方法を示すフローチャートである。 本発明による少なくとも1つの美容的皮膚属性のエントロピー値を可視化する代替的な方法を示すフローチャートである。 本発明による少なくとも1つの美容的皮膚属性のエントロピー値を可視化するための例示的なユーザインターフェースを示すスクリーンショットである。 本発明による少なくとも1つの美容的皮膚属性のエントロピー値を可視化するための例示的なユーザインターフェースを示すスクリーンショットである。 本発明による少なくとも1つの美容的皮膚属性のエントロピー値を可視化するための例示的なユーザインターフェースを示すスクリーンショットである。 本発明による少なくとも1つの美容的皮膚属性のエントロピー値を可視化するための例示的なユーザインターフェースを示すスクリーンショットである。 本発明による少なくとも1つの美容的皮膚属性のエントロピー値を可視化するための例示的なユーザインターフェースを示すスクリーンショットである。 本発明による少なくとも1つの美容的皮膚属性を可視化するための画像記述の一例としてのヒートマップを含む例示的なユーザインターフェースを示すスクリーンショットである。 図19のユーザインターフェース内の少なくとも1つの美容的皮膚属性を可視化するための画像記述の代替的な変形例を示すスクリーンショットである。 本発明による少なくとも1つの美容的皮膚属性を可視化するための例示的なユーザインターフェースを示すスクリーンショットである。
皮膚がストレス(UV、老化、精神、環境因子によって引き起こされる)にさらされると、皮膚は、DNAレベル、細胞レベル、及び組織レベルを含む様々なレベルで損傷することが知られている。皮膚へのかかる損傷は、皮膚の欠陥をもたらす可能性がある。これらの皮膚の欠陥の存在は、以下の例に記載されるように、皮膚の光学に著しく影響を与える。
・角質層が乾燥(冬/空気状態)している場合、光は、表面(表面反射)からより多く反射して、皮膚上にしわをもたらす皮膚のマイクロテクスチャを強調する
・真皮が損傷(UV)した場合、真皮では光の散乱(真皮散乱としても知られる)が少なく、光は皮膚を透過する(下面反射が少ない)。デミス(demis)散乱が少ない場合、結果として皮膚はより暗く見える。
・皮膚が長期にわたってUVに曝露されると、皮膚は、より多くのメラニンを生成する。メラニンは光を吸収して、表面下の反射を低減し、したがって、皮膚はより暗く見える。
上記の皮膚の欠陥は、消費者の目には、皮膚の質の低い視覚的に知覚不能な信号として現れる。消費者は、潜在意識のレベルでの不純物としてこれらの欠陥を考慮することができるが、意識的な知識の欠如のために、欠陥を改善するための措置を講じることはできない。皮膚が長期にわたってストレスにさらされる及び/又は未処理にされる場合、これらの視覚的に知覚不能な不純物は、最終的に可視的な及び知覚可能な表現型(着色斑点、しわ、たるみ)につながる場合がある。
本発明は、対象の少なくとも1つの美容的皮膚属性を決定するための方法、機器、及びシステム及びグラフィカルユーザインターフェースに関する。本方法は、(a)人の皮膚の少なくとも1つの部分を含む少なくとも1つのカラーチャネル画像を取得するステップと、(b)エントロピー統計値を使用して少なくとも1つのカラーチャネル画像を解析して、エントロピー値を取得するステップと、(c)エントロピー値に基づいて、人の皮膚の少なくとも1つの部分の美容的皮膚属性を決定するステップと、を含む。
驚くべきことに、人の皮膚の少なくとも1つの部分を含むカラーチャネル画像を解析することによって取得されるエントロピー値を使用して、視覚的に知覚可能な美容的皮膚属性、並びに視覚的に知覚不能な美容的皮膚属性を決定することができることが見出された。
以下に説明するように、人の美容的皮膚属性が、エントロピー統計値を使用して、人の皮膚の少なくとも1つの部分を含むカラーチャネル画像を解析することによって取得されるエントロピー値に基づいて決定され得る場合、人が、美容的皮膚属性の状態を改善するために、先を見越したスキンケア処置を求めることができるように、有用な情報を推測することができる(例えば、美容的皮膚属性の状態)。具体的には、以下に記載されるように、人の皮膚の少なくとも1つの部分を有するカラーチャネル画像は、他の対象領域に対してより低いエントロピー値を有する皮膚の少なくとも1つの部分上に対象領域を有してもよい。対象領域におけるエントロピー値が低いほど、より良好な美容的皮膚属性の状態を示す、より低い強度変動を示す。したがって、他の対象領域におけるエントロピー値が高いほど、より大きい強度変化を示し、これは、より不良な美容的皮膚属性状態を示す。更なる利点は、先を見越したスキンケア処置が、特定の対象領域に対して標的化され得ることである。
本発明を詳細に説明する前に、以下の用語が定義され、定義されない用語は、当業者によって理解されるような通常の意味を与えられるべきである。
本明細書で使用するとき、「エントロピー」は、離散ランダム分布(p(x))のShannonエントロピー(E)を指し、以下の式によって定義され、
Figure 2023052849000002
式中、P(x)は、グレーレベルの分布である。
E(p)は、デジタル画像のカラーチャネル画像への変換後のカラーシステム内のデジタル画像又はカラーチャネル画像における情報の量を表す。本明細書で使用するとき、「エントロピー統計値」は、デジタル画像又はカラーチャネル画像を解析するための記述統計としてエントロピーを使用する統計的方法を指す。デジタル画像がRGB画像である非限定的な例では、各R(赤色)、G(緑色)、及びB(青色)チャネルについてのエントロピー(エントロピー値)を別々に計算することができる。画像のエントロピー値は、各画素位置(i,j)において、(i,j)を中心とする2次元領域内の画素値のエントロピー値を計算することによって計算することができる。2次元領域は、カラーチャネル画像の一部であってもよい。Pythonなどのプログラミングソフトウェアパッケージを使用してエントロピー値を計算することができる。
本明細書で使用するとき、「美容的皮膚属性」は、人体の領域に視覚的/審美的効果を提供するか、又は皮膚の外観及び/又は感触に影響を与える全ての皮膚属性を含む。美容的皮膚属性のいくつかの非限定的な例としては、皮膚純度、皮膚年齢、皮膚トポグラフィ、皮膚色調、皮膚色素沈着、皮膚毛穴、皮膚炎症、皮膚水和、皮膚皮脂レベル、座瘡、ほくろ、皮膚つや、皮膚光沢、皮膚くすみ、不均一な色調、又は皮膚バリアを挙げることができる。上記美容的皮膚属性が標準用語であり、美容皮膚属性の対応する定義を、以下の公開された参照文献、すなわち、「Handbook of cosmetic science and technology,3rd edition,editors Andre O.Barel,Marc Paye,Howard I.Maiback,CRC Press,2009」、「Cosmetic Science and Technology-Theoretical Principles and Applications,editors Kazutami Sakamoto Robert Y.Lochhead,Howard I.Maibach,Yuji Yamashita,Elsavier,2017」、「Cosmetic Dermatology:Products and Procedures,Editor(s):Zoe Diana Draelos,Blackwell Publishing Ltd,2010」に見出すことができることが、当業者によって理解されるだろう。美容的皮膚属性は、医学的状態又は根底にある医学的状態に関連する皮膚属性を含まない。
本明細書で使用するとき、「知覚不能な美容的皮膚属性」は、知覚者、すなわち、人、ユーザ、又は人間の対象によって知覚され得ないか、又は知覚不能である美容的皮膚属性を指す。知覚するとは、提示された情報又は環境を表し、理解するために、感覚情報の組織化、識別、及び解釈を指す「知覚」という語から派生している。全ての知覚は、神経系を通過する信号に関与し、これは次に感覚システムの物理的又は化学的刺激から生じる。例えば、視力は、眼の網膜に当たる光に関与し、匂いは臭気分子によって媒介され、聴覚は圧力波を関与する。知覚は、これらの信号の受動的受信だけでなく、受信者の学習、メモリ、期待、及び注意によっても形作られる。知覚は、2つのプロセス、すなわち、これらの低レベルの情報をより高レベルの情報(例えば、対象物認識のための形状を抽出する)に変換する、知覚入力を処理することに関連するプロセス(1)と、人の概念及び期待(又は知識)、及び知覚に影響を与える回復性及び選択的機構(注意など)と接続された処理に関連するプロセス(2)と、に分割され得る。例えば、知覚者は、プロセス(1)において対象を見ることができるが、プロセス(2)において対象物が何を表し/意味するかを知覚し、認識する知識を有していないため、対象が視覚的に知覚不能であるとみなされ得る。
本明細書で使用するとき、「視覚的に知覚不能な美容的皮膚属性」は、肉眼で検出可能ではない全ての美容的皮膚属性、又は消費者によって視覚的に検出可能であるが、消費者が美容的皮膚属性を理解しておらず、したがって、知覚不能な美容的皮膚属性とみなされる、美容的皮膚属性を含む。肉眼で視覚的に検出可能ではない視覚的に知覚不能な美容的皮膚属性のいくつかの非限定的な例としては、美容的皮膚炎症、皮膚皮脂レベル、又は任意の根底にある美容皮膚属性が挙げられる。
本明細書で使用するとき、「肉眼の」は、診断装置からの支援なしであることを意味する。
本明細書で使用するとき、「タイル」は、デジタル画像の一部を形成する、例えば画素などの単位を含み、したがって、「タイル」は、デジタル画像の全体を形成する。
本明細書で使用するとき、「デジタル画像データ」は、デジタルカメラ、写真スキャナ、デジタル画像を記憶することが可能なコンピュータ可読記憶媒体、及び撮影能力を含む任意の電子装置を含むがこれらに限定されない画像取得装置から取得される画像データを含む。デジタル画像データはまた、RGB画像からカラーシステム内のカラーチャネル画像に変換されるカラーチャネル画像を含んでもよい。
本明細書で使用するとき、「インディシアム(indicium)の単一の度合い」は、グラフィック記号、数値、カラーコード、照明技術、及びこれらの組み合わせを含むがこれらに限定されない全ての電子的視覚表現を含む。
本明細書で使用するとき、「皮膚属性インデックス」は、数学的式又は統計的方法及びデータから導出されるモデル、又はルックアップテーブル(情報のアレイ)に基づいて計算することができるスコアを指す。皮膚属性インデックスは、定義された人々の集団に対する人の皮膚の少なくとも1つの部分の美容的皮膚属性の状態を示す確率値として生成されてもよく、好ましくは、皮膚属性インデックスは、F(エントロピー値)で定義されるエントロピー値の関数として生成され、関数は、トレーニングデータセットについて確立されたモデルによって決定され、トレーニングデータセットは、(i)定義された人々の集団の複数のカラーチャネル画像であって、複数のカラーチャネル画像の各々が、定義された人々の集団内の人の顔の皮膚を含み、顔の皮膚が美容的皮膚属性を含む、複数のカラーチャネル画像と、(ii)美容的皮膚属性に基づく関連クラス定義と、を含む。
本明細書で使用するとき、「L***」は、国際照明委員会(International Commission on Illumination、「CIE」)によって定められた一般に認められている色空間を指す。3つの座標は、(i)色の明るさ(すなわち、L*=0で黒を生じ、L*=100は拡散白(diffuse white)を示す)、(ii)マゼンタと緑との間の色の位置(すなわち、負のa*値は緑を示し、正のa*の値はマゼンタを示す)、及び(iii)黄と青との間の色の位置(すなわち、負のb*値は青を示し、正のb*値は黄を示す)、を表している。
本明細書で使用するとき、「発色団マッピング」は、全体的な皮膚色調の指標として使用され得るメラニン又はヘモグロビン濃度をマッピング及び決定するメラニン及びヘモグロビンマッピングについての一般的に認識されている発色団空間を指す。メラニン又はヘモグロビンの平均値は、発色団マップデータから計算され得る。加えて、皮膚色調の均一性は、発色団マップデータから計算され得るメラニン又はヘモグロビン均一性(標準偏差)によって決定され得る。
本明細書で使用するとき、「皮膚純度」は、人の皮膚の少なくとも一部分における皮膚の欠陥の不在の外観。皮膚の欠陥としては、皮膚トポグラフィ形態の表面反射、及び/又はメラニン、ヘモグロビン及び/又はケラチノサイト及び線維芽細胞指向細胞代謝産物などの皮膚発色団のサブ表面反射から構成される不規則な又は不均一なスペクトル特性に影響を与える美容的皮膚属性が挙げられ、皮膚つや、皮膚色調が挙げられるが、これらに限定されない。
本明細書で使用するとき、「皮膚年齢」は、身体的外観、好ましくは人の顔、好ましくは人の顔の少なくとも一部分、より好ましくは、人の顔の少なくとも一部分の少なくとも1つの関心対象の領域(region of interest、ROI)(更により好ましくは、少なくとも1つのROIは、目の周囲の皮膚領域(「眼領域」)、頬の周囲の皮膚領域(「頬領域」)、口の周囲の皮膚領域(「口領域」)、及びこれらの組み合わせからなる群から選択される)、に基づいて、基準年齢の皮膚外観と比較して、視覚的に評価又は知覚される人の皮膚の年齢を指す。
本明細書で使用するとき、「皮膚色調」は、一般に、基礎皮膚色又は色均一性の全体的な外観を指す。皮膚色調は一般に、皮膚の広い範囲にわたり特徴付けられる。その範囲は、100mm2超であり得るが、顔の皮膚又はその他の身体の皮膚表面(例えば、腕、脚、背中、手、首)の全体などの、より大きい範囲も考えられる。
本明細書で使用するとき、「皮膚しわ」は、一般に、皮膚内の折り目、隆起部又は畳み目を指し、微細小じわ、超微細小じわ、微細しわ、超微細しわ、しわ、小じわを含むが、これらに限定されない。皮膚しわは、例えば、密度及び/又は長さに関して測定され得る。
本明細書で使用するとき、「皮膚つや」は、一般に、皮膚が反射する光量を指し、皮膚の光沢と呼ばれることがある。
本明細書で使用するとき、「皮膚きめ」は、一般に、皮膚表面のトポロジー又は粗さを指す。
本明細書で使用するとき、「皮膚はり」は、一般に、皮膚の堅さ又は弾力を指す。
本明細書で使用するとき、「皮膚皮脂レベル」は、一般に、皮膚中の皮脂腺によって分泌される油性又は蝋状物質である皮脂の量を指す。
本明細書で使用するとき、「皮膚斑点」は、一般に、皮膚の変色又は不均一な色素沈着(例えば、色素沈着過剰、斑)を指す。皮膚斑点は、例えば、密度、サイズ、及び/又は変色の程度に関して評価され得る。
本明細書で使用するとき、「スキンケア製品」は、スキンケア活性物質を含み、皮膚の状態を調節及び/又は改善する製品を意味する。
本明細書で使用するとき、「デジタル画像」は、標準的なRGBなどを含むがこれらに限定されない撮像システム内の画素によって、並びに異なる照明条件及び/又はモードで得られる画像の下に形成されたデジタル画像を指す。デジタル画像の非限定的な例としては、カラー画像(RGB)、モノクロ画像、ビデオ、マルチスペクトル画像、ハイパースペクトル画像などが挙げられる。非限定的な光条件としては、白色光、青色光、UV光、IR光、特定波長の光、例えば、100~1000nm、300~700nm、400~700nm、又は上記の上限及び下限の異なる組み合わせ、又は上記に列挙した範囲内の任意の整数の組み合わせの光を発する光源などが挙げられる。デジタル画像は、デジタルカメラ、写真スキャナ、デジタル画像を記憶することが可能なコンピュータ可読記憶媒体、及び写真撮影能力を含む任意の電子装置を含むがこれらに限定されない画像取得装置によって取得されてもよい。
以下の説明において、記載される方法は、美容的皮膚属性を決定するための方法である。したがって、記載される機器は、美容的皮膚属性を決定するための機器である。機器はまた、ディスプレイのために、ディスプレイ上に、対象の顔の少なくとも一部分のデジタル画像データのエントロピー統計値を生成するように構成されてもよく、記載されるグラフィカルユーザインターフェースは、対象の顔の少なくとも一部分のデジタル画像データのエントロピー統計値を表示するためのグラフィカルユーザインターフェースである。記載されるシステムは、美容的皮膚属性を決定するためのエントロピーベースのシステムである。例示的な実施形態では、システムは、美容及びスキンケア製品を解析及び推奨する目的で小売美容カウンタに位置する独立型撮像システム(図2に示される)である。しかしながら、システム及び方法は、例えば、図1に示すように、画像取得ユニット/装置及びディスプレイを含む電子携帯装置を介して、任意の場所で使用するように構成されてもよく、電子携帯装置は、ディスプレイ上での表示を生成するための機器、ネットワークを介して美容的皮膚属性のエントロピー値を可視化するためのグラフィカルユーザインターフェースに接続されている。
図1は、本発明による美容的皮膚属性を可視化するためのシステム10を示す概略図である。システム10は、ワイドエリアネットワーク(移動電話網、公衆交換電話網、衛星ネットワーク、インターネットなど)、ローカルエリアネットワーク(ワイヤレスフィディリティ、Wi-Max、ZigBee(商標)、Bluetooth(商標)等)、及び/又は他の形態のネットワーク機能として具体化され得るネットワーク100を含んでもよい。ネットワーク100には、携帯電子装置12、及びディスプレイ上に表示を生成するための機器14、美容的皮膚属性を可視化するためのグラフィカルユーザインターフェースが結合される。機器14は、遠隔に位置し、ネットワーク100を介して携帯電子装置に接続される。携帯電子装置12は、デジタル写真などのデジタル画像を捕捉、記憶、及び/若しくは転送するように構成された携帯電話、タブレット、ラップトップ、携帯情報端末、並びに/又は他の計算装置であってもよい。したがって、携帯電子装置12は、ユーザ入力を受信するための入力装置12aと、画像を取得するためのデジタルカメラなどの画像取得装置18と、画像を表示するための出力装置12bと、を含んでもよい。携帯電子装置12はまた、ネットワーク100を介して他の計算装置と通信するように構成されてもよい。携帯電子装置12は、エントロピー統計値を使用して取得された少なくとも1つのカラーチャネル画像を解析してエントロピー値を取得し、エントロピー値に基づいて、人の皮膚の少なくとも1つの部分の美容的皮膚属性を決定するために、画像取得装置18に結合された画像処理装置(図示せず)を更に含んでもよい。画像処理装置は、好ましくは、コンピュータ実行可能命令を有するプロセッサを含む。携帯電子装置12は、決定された美容的皮膚属性を記述するコンテンツデータを表示するように、表示を生成するための表示生成ユニット(図示せず、電子LED/LCDディスプレイなど)を更に含んでもよい。
機器14は、画像取得ロジック144a、画像解析ロジック144a及びグラフィカルユーザインターフェース(以下、「GUI」)ロジック144cを記憶する、非一時的コンピュータ可読記憶媒体14a(以下、「記憶媒体」)を含んでもよい。記憶媒体14aは、ランダムアクセスメモリ(SRAM、DRAMなど)、読み出し専用メモリ(read only memory、ROM)、レジスタ、及び/又は他の形態の計算記憶ハードウェアを含んでもよい。画像取得ロジック144a、画像解析ロジック144b及びGUIロジック144cは、コンピュータ実行可能命令を定義する。プロセッサ14bは、記憶媒体14aに結合され、プロセッサ14bは、図4のブロック図及び図5のフローチャートに関して以下に記載される本発明による対象の美容的皮膚属性を決定するための方法90を実施するために、コンピュータ実行可能命令に基づいて構成される。美容的皮膚属性は、視覚的に知覚不能な美容的皮膚属性であってもよく、視覚的に知覚不能な美容的皮膚属性は、肉眼で検出可能ではない美容的皮膚属性であるか、又は消費者によって視覚的に検出可能であるが、消費者が美容的皮膚属性を理解していない美容的皮膚属性である。視覚的に知覚不能な美容的皮膚属性を決定する利点は、消費者が、視覚的に知覚不能な美容的皮膚属性の状態を改善するために、情報に基づいた決定を行い、先を見越した行動を取ることができることである。
決定方法
図4及び図5を参照すると、プロセッサ14bが開始されると、プロセッサ14bは、例えば、図6A、図6B、図6C及び図7を参照して以下に説明するカラーシステムにおけるカラーチャネル画像へのデジタル画像の変換を介して、ステップ91で取得されるべき人の皮膚の少なくとも1つの部分を含む少なくとも1つのカラーチャネル画像60Lをもたらす。少なくとも1つのカラーチャネル画像60Lは、エントロピー統計値を使用してステップ92で解析されて、解析出力80を取得し、解析出力80はエントロピー値を含む。ステップ93では、人の皮膚の少なくとも1つの部分の美容的皮膚属性は、エントロピー値に基づいて決定される。少なくとも1つのカラーチャネル画像は、L***カラーシステム、RGBカラーシステム、HSL/HSVカラーシステム、及びCMYKカラーシステムからなる群から選択されるカラーシステム内の画像であり得る。
以下の表1は、エントロピー値に基づいて決定される、対応するカラーチャネル画像及び対応する美容的皮膚属性を有する各エントロピー値を設定する。表1に記載のカラーチャネル画像は、Lチャネル画像、aチャネル画像、bチャネル画像、cチャネル画像、及びこれらの組み合わせからなる群から選択されるL***カラーシステム内の画像である。
Figure 2023052849000003
美容的皮膚属性を決定することは、定義された人々の集団に対する人の皮膚の少なくとも1つの部分の美容的皮膚属性の状態を示す確率値として皮膚属性インデックスを生成することを含んでもよい。具体的には、視覚的知覚試験では、消費者は、所定のスケールに基づいて、美容的皮膚属性について定義された人々の集団のデジタル画像(例えば、写真)をランク付けするように求められてもよい。ランク付けされたデジタル画像は、方法90に従って解析されるようにデータベースとして記憶されて、美容的皮膚属性と最も高い相関性を有するエントロピー値を決定し得る。
あるいは、皮膚属性インデックスは、関数F(エントロピー値)で定義されるエントロピー値の関数として生成されてもよく、この関数は、訓練データセットについて確立されたモデルによって決定される。トレーニングデータセットは、(i)定義された人々の集団の複数のカラーチャネル画像であって、複数のカラーチャネル画像の各々が、定義された人々の集団内の人の顔の皮膚を含み、顔の皮膚が、美容的皮膚属性を含む、複数のカラーチャネル画像と、(ii)美容的皮膚属性に基づく関連クラス定義と、を含み得る。トレーニングデータセットを構築するための技術は、画像処理方法の分野において当業者に既知であり、更に説明されない。
モデルは、回帰モデル又は分類モデル、好ましくは線形回帰モデル、より好ましくは機械学習線形回帰モデル、最も好ましくは機械学習サポートベクトル回帰(support vector regression、SVR)モデルであり得る。SVRモデルは、サポートベクトルマシン(support vector machine、SVM)モデルの具体例である。機械学習モデルはまた、サポートベクトル分類モデル又はランダムフォレスト回帰モデルであってもよい。
SVRモデルを使用することにより、携帯電子装置上のネイティブアプリケーションとして実装されたときに方法の性能における精度、再現性、速度の利点が可能である。具体的には、SVRモデルの重量により、ネイティブアプリケーションがより小さいハードウェアフットプリントを有することを可能にし、その結果、本発明による方法は、Apple(商標)電話用のiOS又はAndroid電話のAndroid OSを含むがこれらに限定されない携帯電話オペレーティングシステム(operating system、OS)などの携帯電子装置において容易に展開され得る。
分類モデルは、消費者を複数の群に分類するために使用されてもよく、各群は、皮膚属性インデックスの数値に基づいて関連するクラス定義を定義するように、同じ美容的皮膚属性の異なる状態の程度、好ましくは2つの群、より好ましくは3つの群を有する。例えば、方法は、群の各々に割り当てられた閾値に基づいて、皮膚の領域を、高レベルの美容的皮膚属性状態に分類するように構成されたヒートマップ、又は低レベルの美容的皮膚属性状態に分類するように構成されたヒートマップを表示してもよい。
少なくとも1つのカラーチャネル画像は、Lカラーチャネル画像、aチャネル画像、bチャネル画像、及びRGBカラーシステムからのcチャネル画像、及びこれらの組み合わせからなる群から選択されるL***カラーシステム内の画像であり、エントロピー値が、Lエントロピー値、aエントロピー値、bエントロピー値、cエントロピー値、及びこれらの組み合わせからなる群から選択され、関数は、下記の式を有し、
皮膚属性インデックス=A+B×(Lエントロピー値)+C×(aエントロピー値)+D×(bエントロピー値)+E×(cエントロピー)
式中、A、B、C、D、及びEは定数であり、B、C、D、及びEのうちの少なくとも1つは、0ではない。
定数A、B、C、D、及びEは、トレーニングデータセットのサイズ及びコンテンツに基づいて変化してもよく、トレーニングデータセットに基づいてモデルによって生成される任意の数値であってもよいことが理解されるであろう。
具体的には、上記のエントロピー値の各エントロピー値は、単独で、又はエントロピー値のうちの別の1つと組み合わせて使用されてもよい。例えば、単一のエントロピー値を使用することにより、より高速な計算速度が得られ、これにより、非常に基本的なハードウェアを有する小型装置を使用することが可能になり、それによって、より効率的かつ費用効率の高い製品が得られる。
少なくとも1つのカラーチャネル画像は、Lチャネル画像であってもよく、エントロピー値は、Lエントロピー値であり、式中、C、D、Eは各々、0の値を有し、生成された皮膚属性インデックスは、皮膚純度、皮膚色調、又は皮膚つやを示す。
皮膚がストレス(UV、老化、精神、環境因子によって引き起こされる)にさらされると、皮膚は、DNAレベル、細胞レベル、及び組織レベルを含む様々なレベルで損傷することが知られている。皮膚へのかかる損傷は、皮膚の欠陥をもたらす可能性がある。これらの皮膚の欠陥の存在は、以下の例に記載されるように、皮膚の光学に著しく影響を与える。
・角質層が乾燥している(冬/空気状態)場合、光は、表面(表面反射)からより多く反射して、皮膚上にしわをもたらす皮膚のマイクロテクスチャを強調する。
・真皮が損傷した場合(UV)、真皮では光の散乱(真皮散乱としても知られる)が少なく、光は皮膚を透過する(下面反射が少ない)。デミス(demis)散乱が少ない場合、結果として皮膚はより暗く見える。
・皮膚が長期にわたってUVに曝露されると、皮膚は、より多くのメラニンを生成する。メラニンは光を吸収して、表面下の反射を低減し、したがって、皮膚はより暗く見える。
上記の皮膚の欠陥は、消費者の目には、皮膚の質の知覚不能な信号として現れる。消費者は、これらの欠陥を不純物として考慮することができるが、知識の欠如により、欠陥を改善するための措置を講じることはできない。皮膚が長期にわたってストレスにさらされる及び/又は未処理にされる場合、これらの知覚不能な不純物は、最終的に可視的な及び知覚可能な表現型(着色スポット、しわ、たるみ)につながる場合がある。
驚くべきことに、Lカラーチャネル画像のLエントロピー値は、皮膚純度と最も高い相関性を有することが見出された。
Lエントロピー値を得るために、Lエントロピー値を取得し、本発明による方法によるLエントロピー値に基づいて皮膚純度を決定する解析ステップのための少なくとも1つのカラーチャネル画像としてL-チャネル画像を選択する技術的効果は、Lエントロピー値が、カラーチャネル画像を解析することに基づいて、他のエントロピー値と比較して、皮膚の純度に対して最も高い相関性(r=0.89)を有するためである。以下は、ピアソン相関係数(r)を使用した統計解析を使用した視覚的知覚試験からの結果との相関性に基づいて生成されたデータである。相関性結果を以下の表2に示す。
Figure 2023052849000004
より高いピアソン相関係数(r)は、エントロピー値が、視覚的知覚試験において調査される美容的皮膚属性の状態により寄与する因子であることを意味する。具体的には、視覚的知覚試験は、所定数のパネリスト=302、パネリストの年齢=20~50に基づいて行われる。パネリストは、1~5のスケールで、皮膚純度について(美容的皮膚属性の例として)の人々の写真のランクが求められる。視覚的知覚試験結果及び上記相関結果に基づいて、フィルタリングされた画像のLチャネルエントロピー値(周波数フィルタによる)が皮膚純度属性と最も高い相関性を有することが見出された。したがって、デジタル画像内の人の皮膚の少なくとも一部分の皮膚純度を決定するためにLチャネルのLエントロピー値の使用が、複数の消費者に対する消費者に関連する方法で視覚的に知覚不能な美容的皮膚属性から説明可能な美容的皮膚属性に皮膚純度を変換するように使用され得る。
少なくとも1つのカラーチャネル画像は、aチャネル画像であってもよく、エントロピー値は、aエントロピー値であり、式中、B、D、Eは各々、0の値を有し、生成された皮膚属性インデックスは、皮膚炎症を示す。
少なくとも1つのカラーチャネル画像は、bチャネル画像であってもよく、エントロピー値は、bエントロピー値であり、式中、B、C、Eは各々、0の値を有し、生成された皮膚属性インデックスは、皮膚色素沈着又は皮膚くすみを示す。
少なくとも1つの色チャネル画像は、cチャネル画像であってもよく、エントロピー値は、cエントロピー値であり、式中、B、C、Dは各々、0の値を有し、生成された皮膚属性インデックスは、好ましくは、毛穴、小じわ、しわ、たるみ、皮膚弾力性、及びこれらの組み合わせからなる群から選択される皮膚トポグラフィを示す。
色チャネル画像の取得
カラーチャネル画像60a、60b、60cは、図5A、図5B、図5C、及び図6を参照して以下に説明するように、デジタル画像51から取得され得る。図1を参照すると、ネットワーク100は、携帯電子装置12からデジタル画像を取得し、デジタル画像を機器14に送信して、本発明による美容的皮膚属性を決定するための方法200で使用されるように使用され得る。入力装置12aは、プロセッサ14bを開始するためのユーザ入力を受信するために携帯電子装置12に結合されるか、又はそれと一体であってもよい。携帯電子装置12は、各々が一意に割り当てられたインディシアムの単一の度合いを有する、複数のタイルを表示するための出力装置12bを含んでもよい。入力装置12aは、マウス、タッチスクリーンディスプレイなどを含み得るが、これらに限定されない。
図1、図5A及び図6を参照する。プロセッサ14bが開始されるとき、プロセッサ14bは、例えば、ステップ202で画像取得ロジック144aを介して、対象の顔の少なくとも一部分のデジタル画像51を取得させる。取得されたデジタル画像51は、RGB XPデジタル画像又はRGB光沢デジタル画像であってもよい。RGBシステムのデジタル画像51は、RGB画像から、異なるカラーシステム内のカラーチャネル画像などのデジタル画像データに変換される。プロセッサ14bは、更に、例えば、ステップ204において、画像解析ロジック144bを介して、取得されたデジタル画像51から少なくとも1つのカラーチャネル画像60a、60b、60cを抽出させる。少なくとも1つのカラーチャネルは、例えば、0.1R+0.2G+0.7Bの式に基づいてRGBカラーチャネルの更なる処理によって得られるカラーチャネル画像であってもよい。少なくとも1つのカラーチャネル画像60a、60b、60cは、カラーシステム内のカラーチャネル60a、60b、60cのいずれか1つから選択されてもよい。ステップ206では、抽出された少なくとも1つのカラーチャネル画像60a、60b、60cは、周波数フィルタを使用してフィルタリングされる。フィルタリングされた少なくとも1つのカラーチャネル画像61a、61b、61cを、ステップ208でエントロピー統計値を使用して解析して、人の美容的皮膚属性を決定する。ステップ206で周波数フィルタを使用することによって、抽出された少なくとも1つのカラーチャネル画像60aからノイズが除去され、これはステップ208における解析の感度を増大させ、それによって、非フィルタリングカラーチャネル画像を解析することに比べて、ステップ208からの解析出力においてより高い精度がもたらされる。しかしながら、非フィルタリングカラーチャネル画像を解析することは、本発明による方法を実装するために最小限のかつ基本的なハードウェアが利用可能な場合には、ハードウェアフットプリント、データ記憶スペース、又は処理能力の低減など、コンピューティングハードウェアの使用を低減するために有利であり得る。
任意選択的に、方法200は、フィルタリングされたカラーチャネルを解析する前にフィルタリングされたカラーチャネル内のパラメータを最適化するために、フィルタリングされたカラーチャネルに画像補正係数を適用することを更に含んでもよい。パラメータとしては、照明補正、ぼやけ補正、回転補正などが挙げられ得る。
本発明による方法90、200を使用して少なくとも1つの皮膚属性を決定する技術的効果は、美容的皮膚属性の迅速かつ正確な解析を提供することである。以下の表3は、一般的に使用される撮像終了点との年齢相関性を記載しており、エントロピー統計値についての相関性は、他の撮像終了点と比較してより良好な相関性(0.81)を有する。撮像終了点はまた、皮膚特徴を解析するための撮像方法として記載されてもよい。
Figure 2023052849000005
方法90、200は、5秒未満、好ましくは0.01秒~5秒、より好ましくは0.5秒~1秒、又は上記の上限及び下限の異なる組み合わせ、又は上記に列挙した範囲内の任意の整数の組み合わせで実施されてもよい。方法90、200を1秒未満で実行することができるので、方法200は、消費者のより広いネットワークへのスケーラビリティのために商業的に有利である携帯電話を含むがこれらに限定されない携帯型ハンドヘルド電子装置などの市販のハードウェアに実装され得る。
カラーシステムは、L**bカラーシステムであってもよく、少なくとも1つのカラーチャネル画像は、図5Bに示すようにテクスチャチャネルに対応する赤色のカラーチャネル60a、黄色のカラーチャネル60b、又は青色のカラーチャネル60cであってもよい。図5Cは、フィルタリングされたカラーチャネル画像61a、61b、61cを示し、各フィルタリングされたカラーチャネル画像を分析して、分析されたカラーチャネル画像を記述するエントロピー値を得ている。フィルタリングされた赤色のカラーチャネル61aのエントロピー値は、aエントロピーとして定義されてもよく、フィルタリングされた黄色のカラーチャネル61bのエントロピー値は、bエントロピーとして定義されてもよく、フィルタリングされた青色のカラーチャネル61cのエントロピー値は、cエントロピーとして定義されてもよい。
カラーシステムは、上記の発色団マッピング空間であってもよく、少なくとも1つのカラーチャネル画像はヘモグロビンチャネル画像又はメラニンチャネル画像であってもよい。
周波数フィルタは、高速フーリエ変換フィルタ、ウェーブレット変換フィルタ、又はガウス差分(difference of gaussian、DoG)フィルタであってもよい。より好ましくは、周波数フィルタはDoGフィルタである。DoGフィルタは、ガウスフィルタ1及びガウスフィルタ2を有する。ガウスフィルタ1は、1~200、5~50、10~20、又は上記の上限及び下限の異なる組み合わせ、又は上記に列挙した範囲内の任意の整数の組み合わせでの標準偏差を含んでもよい。ガウスフィルタ2は、1~200、5~100、20~60、又は上記の上限及び下限の異なる組み合わせ、又は上記に列挙した範囲内の任意の整数の組み合わせでの標準偏差を含んでもよい。DoGフィルタのガウスフィルタ1及びガウスフィルタ2の組み合わせの非限定的な例を以下の表4に記載する。
Figure 2023052849000006
出力装置12bは、タッチスクリーンディスプレイ、非タッチスクリーンディスプレイ、プリンタ、プロジェクタであって、例えば、図2に関して以下に記載されるミラーなどの表示面上に各々が一意に割り当てられた表示のインディシアムの単一の度合いを有する複数のタイルを投影する、プロジェクタを含み得るが、これらに限定されない。
図2は、少なくとも1つの美容的皮膚属性を可視化し、可視化された少なくとも1つの美容的皮膚属性に基づいて美容及びスキンケア製品を推奨する目的で、小売化粧品カウンタに位置する独立型撮像システムとして構成されたシステム10の斜視図である。図3は、図2のシステム10のブロック図である。図2及び図3を参照すると、システム10は、少なくとも1つの美容的皮膚属性を可視化するための対象のデジタル画像を取得するための画像取得装置18に接続された図1の機器14のためのハウジング11を含む。図2を参照すると、システム10は、ミラー16を含んでもよく、画像取得装置18は、画像取得装置18が視界から隠され得るように、ハウジング11内のミラー16の背後に取り付けられてもよい。画像取得装置18は、デジタルカメラ、デジタル化回路に接続されたアナログカメラ、スキャナ、ビデオカメラなどであってもよい。システム10は、ハウジング11の周囲に配置されたLED照明などの照明30を含んで、対象のデジタル画像の生成を支援するためのLED照明システムを形成し得る。システム10は、ユーザ入力を受信するための入力装置112aを有する。システム10は、ミラー16上に表示するために顔マップ30を受信し、かつ投影するように構成されたプロジェクタなどの出力装置112bを更に含んでもよい。プロジェクタは、ハウジング11とは別個であるが、機器14に結合されてシステム10を形成する周辺構成要素であり得るため、図2には示されていない。システム10は、全体的な消費者体験を補完する及び/又は向上させるために、オーディオガイダンス出力を生成するための増幅器に任意選択的に結合された1つ以上のスピーカなどの第2の出力装置112cを更に含んでもよい。
好ましくは、少なくとも1つのカラーチャネルを得ることは、少なくとも2つの色チャネル、より好ましくは3つの色チャネルを得ることを含み得る。特に、赤色のカラーチャネル、黄色のカラーチャネル、及び青色のカラーチャネルについては、以下のように記載され得る。赤色のカラーチャネルがL***カラーシステム内にあるとき、aエントロピーは、フィルタリングされた赤色のカラーチャネルのエントロピー値である。黄色のカラーチャネルがL***カラーシステム内にあるとき、bエントロピーは、フィルタリングされた黄色のカラーチャネルのエントロピー値である。青色のカラーチャネルがテクスチャチャネルに対応するとき、cエントロピーは、青色のカラーチャネルのエントロピー値である。
方法200は、少なくとも1つの美容的属性を事前定義されたデータセットと比較して、インデックスを割り当てるステップを更に含んでもよい。インデックスは、解析された視覚的に知覚不能な消費者皮膚属性の皮膚属性インデックスとして記述され得、各タイルに表示のインディシアムの単一の度合いを一意に割り当てることは、割り当てられたインデックスに基づいている。各々一意に割り当てられたインデックスを有する複数のタイルは、比較するステップの後に、更なるステップで表示され得る。
エントロピー統計値を可視化する方法
本発明はまた、デジタル画像内の対象の顔の少なくとも一部分の、少なくとも1つの美容的皮膚属性のエントロピー統計値又はエントロピー値を可視化する方法にも関する。本方法は、エントロピー値がどのように可視化されるかを示す一連のプロセスフロー図である図8A及び図8Bを参照して説明され、図9は、デジタル画像内の対象の顔の少なくとも一部分の少なくとも1つの美容的皮膚属性のエントロピー統計値又はエントロピー値を可視化する方法300のフローチャートである。
顔の少なくとも一部分のデジタル画像51が、図8Aに示されている。デジタル画像51は、境界線52によって画定された顔1の少なくとも一部分の領域を含み、デジタル画像51を横切って複数のタイル54を含み、複数のタイル54の各々は、エントロピー統計値を使用して解析された少なくとも1つの美容的皮膚属性を有する。外周53は、第1のデジタル画像51を取り囲む境界線52を包囲する。第1のデジタル画像51は、画素の総数によって形成され、例えば、第1のデジタル画像51は、第1のデジタル画像51の全体画像サイズを定義する多数の画素を有してもよい。例えば、タイルサイズが、40×40画素~70×70画素に設定される場合、したがって、第1のデジタル画像51にわたって複数のタイル54を形成するタイル54の数は、全体画像サイズを指定されたタイルサイズで除算することによって得られる。タイル54のサイズは、水平辺(タイル幅W)上の画素数、及び垂直辺(タイル高さH)上の画素数によって定義され得ることが理解されるであろう。各タイルは、100×100画素以下、1×1画素~100×100画素、2×2画素~100×100画素、5×5画素~90画素×90画素、40×40画素~70×70画素、又は上記の上限及び下限の異なる組み合わせ、上記に列挙した範囲内の任意の整数の組み合わせ又は上記範囲の任意の整数の組み合わせのタイルサイズを含んでもよい。上記範囲のタイルサイズを有する技術的効果は、画像データの解析のためのより短い処理時間を可能にし、したがって、ディスプレイが、より短い時間で少なくとも1つの美容的皮膚属性を可視化することを可能にすることである。
図9を参照すると、方法300は、ステップ302でデジタル画像51を受信することを含み、ステップ304では、解析された少なくとも1つの美容的皮膚属性に基づいて画定された複数のタイルの各タイル54に表示40のインディシアムの単一の度合いが一意に割り当てられる。図8Bに示される少なくとも1つの美容的皮膚属性のエントロピー値を可視化するために、各々が一意的に割り当てられたインディシアムの単一の度合いを有する複数のタイルのうちの少なくとも一部が、ステップ306で表示される。
システム10及び方法90、200、300が、本発明による少なくとも1つの美容的皮膚属性を決定及び可視化するように機能する方法を説明するためには、ステップ202において、対象の顔のデジタル画像がどのように得られるか、ステップ204において、取得されたデジタル画像からカラーチャネル画像がどのように抽出されるか、ステップ206において、抽出された少なくとも1つのカラーチャネル画像がどのようにフィルタリングされるか、ステップ304において、インディシアムの単一の度合いが各タイルにどのように一意に割り当てられるか、ステップ306において、タイルがどのように表示されるかを理解することが有用である。したがって、本発明による方法200のステップ202、204、206、208及び方法300のステップ302、304及び306は、以下、各ステップを実行するための個々のプロセスとして記載される。各プロセスはまた、サブルーチン、すなわち、本発明による方法200、300による対応するステップを実行するプログラム命令のシーケンスとして説明され得る。
デジタル画像の取得
本発明による方法200によるデジタル画像を取得するステップ202について、デジタル画像データがデジタル画像からどのように取得されるかを示す一連のプロセスフロー図である、図10A、図10B及び図10Cを参照して記載され、図11は、ステップ202に対応するデジタル画像データを取得するプロセス400のフローチャートである。
顔1の入力画像50aを、図10Aに示す。入力画像50aは、例えば、図11に示すように、プロセス400のステップ402においてカメラ18を使用して、ユーザによって捕捉されてもよい。図10Bは、入力画像50aをトリミングして、顔の少なくとも一部分を含む編集済み画像データ50bを取得するステップ404を示す。入力画像50aは、顔のアンカー特徴1aを識別することによってトリミングされてもよく、これには、目、鼻、鼻孔、口の角などの顔の特徴、及びそれに応じたトリミングが含まれるが、これらに限定されない。図10Bに示されるように、目がアンカー特徴1aとして示されているが、これは単なる例であり、任意の顕著な又は検出可能な顔の特徴がアンカー特徴であってもよいことが理解されるであろう。編集済み画像データ50bは、ステップ404で取得される第1のデジタル画像51であってもよい。あるいは、図10Cに示すように、編集済み画像データ50bは、入力画像50aの1つ以上の不必要な部分を除去するためにトリミングによって更に処理され、それによって、ステップ408において境界線52によって画定された顔1の少なくとも一部分を含む第1のデジタル画像データ51を取得してもよい。取得された第1のデジタル画像51は、境界線52によって画定される顔1の少なくとも一部分の少なくとも1つの関心領域(ROI)2を含んでもよい。ROI2は、顔1の全体、好ましくは、顔の少なくとも一部分、より好ましくは、顔1の少なくとも一部分を画定する1つ以上の皮膚領域であってもよい。皮膚領域がどのように画定されるかの詳細は、図14A~図14C及び図15のフローチャートを参照して以下に記載される。
任意選択的に、プロセス400は、ROI 2が、目の周囲の皮膚領域(「眼領域2a」)、頬の周囲の皮膚領域(「頬領域2b」)、口の周囲の皮膚領域(「口領域2c」)、及びこれらの組み合わせからなる群から選択されてもよりステップ406を含んでもよく、好ましくは、ROI 2は、対象の顔1の少なくとも一部分の一部であり、より好ましくは、取得された第1のデジタル画像データは、顔1の左側又は右側を画定する。ROI 2は、取得された第1デジタル画像の少なくとも5%、10%~100%、25%~90%の領域を含んでもよい。
タイルの画定
図12は、第1のデジタル画像データ51上の複数のタイル54を示す写真である。図13は、第1のデジタル画像データ51上の複数のタイル54を画定するプロセス500を示すフローチャートである。図12を参照すると、第1のデジタル画像51は、図10Cを参照して上述したように、境界線52によって画定された顔1の少なくとも一部分を含む。図13を参照すると、プロセス500は、取得された第1のデジタル画像を取り囲む境界線52を包囲する外周53を画定すること(ステップ502)を含む。取得された第1のデジタル画像51は、画素の総数によって形成され、例えば、取得された第1のデジタル画像51は、入力画像50aのトリミング後の画像サイズに応じて、ステップ404又はステップ406で決定される画素数を有してもよい。したがって、取得された第1のデジタル画像51に基づく全体画像サイズは、ステップ504で画定されてもよい。例えば、タイルサイズが、40×40画素~70×70画素に設定される場合、ステップ506において、取得された第1のデジタル画像51にわたって複数のタイル54を形成するタイル54の数は、全体の画像サイズを特定のタイルサイズで除算することによって得られる。
表示
本発明による方法は、美容的皮膚状態を可視化するために上述した生成された皮膚属性インデックスに対応する画像記述を生成するステップを更に含んでもよい。画像記述は、ヒートマップ(図8B、図21に示されるような)、集計スコア(図19Dにおける第4の領域194、図22における特徴934に示される皮膚年齢)、及びこれらの組み合わせを含んでもよい。集計スコアは、上述した生成された皮膚属性インデックスに基づいて計算されてもよい。
図14A~図14Cは、本発明の方法300のステップ306による複数のタイルの表示プロセスの詳細を示すプロセスフロー図である。図15は、複数のタイルを表示するプロセス600を示すフローチャートである。図14Aは、第1のデジタル画像データ51上に介在された第2のデジタル画像60を示す写真である。第2のデジタル画像60は、各々が一意的に割り当てられたインディシアムの単一の度合い40を有する複数のタイル54を表示した対象の顔の少なくとも一部分を含む。図14Bは、各々が一意に割り当てられたインディシアムの単一の度合いを有する複数のタイル54に基づいて、取得された第1のデジタル画像上に表示された第1のゾーン110、第2のゾーン120、第3のゾーン130を示す。各ゾーン110、120、130は、図9A~図9C及び図10を参照して上述した対象の顔1上のそれぞれの関心領域(ROI)2を特定する。図14Cは、境界線52及び外周53が図14Bの第2のデジタル画像データ60に表示されているが、図14Cの第2のデジタル画像60には表示されない点で、図14Bとは異なる。第1ゾーン110は、第1ゾーンカラー110aを有する第1ゾーンラインを含んでもよく、第2ゾーン120は第2ゾーンカラー120aを有する第2ゾーンラインを含んでもよく、第3ゾーン130は第3ゾーンカラー130aを有する第3ゾーンラインを含んでもよい。各ゾーンにおけるタイル54の解析された画像データに基づいて、各ゾーンラインのカラーは、例えば、図19Dの例示的なユーザインターフェースに示されるように、対象の他のゾーンに対して通常の、美しい、又は脆弱な状態であり得る美容的皮膚属性を可視化するタイルをより視覚的に区別するために異なっていてもよい。
図15は、本発明による方法300のステップ306において複数のタイルを表示するプロセス600を示すフローチャートである。プロセス600は、プロセッサが各タイル54の解析された画像データを読み取り、タイル54の解析された少なくとも1つの視覚的に美容的な皮膚属性に基づいて、複数のタイルの各タイル54に対して一意にインディシアムの単一の度合いを割り当てる(ステップ604)ステップ602から開始してもよい。インディシアムの単一の度合いが照明であるとき、タイルの各々の解析された画像データは、ステップ606において各タイルでの照明の対応する明るさの程度を反映するように変換されてもよい。例示的な例では、ゾーン110は、ゾーン120内のタイルの各々での照明の程度に対して、ゾーン110内のタイルの各々においてより低い照明の程度を有してもよい。更に、ステップ608において、ゾーンは、第1のゾーン110が目ゾーンに対応し得、第2のゾーン120が頬ゾーンに対応し得、第3のゾーン130が口ゾーンに対応し得るように画定されてもよい。ゾーン内の表示された美容的皮膚属性を処置するためのゾーンに製品推奨項目を割り当てるように、各ゾーンのタイルの平均インデックスを計算して、それぞれのゾーンに従って表示された美容的皮膚属性に相関する皮膚状態の診断を生成してもよい。具体的には、方法300は、表示された美容的皮膚属性を処置するための少なくとも1つの製品推奨項目を表示することを更に含んでもよい。
図16A~図16Dは、本発明による少なくとも1つの美容的皮膚属性を可視化する方法を示すプロセスフロー図である。図17は、本発明による少なくとも1つの美容的皮膚属性を可視化する方法700を示すフローチャートである。図16Aは、図17の方法700のステップ702で表示される対象の顔の少なくとも一部分の第1のデジタル画像を示すカラー写真である。図16Bは、対象の顔の少なくとも一部分の第2のデジタル画像、及び各々が一意に割り当てられたインディシアムの単一の度合いを有する複数のタイルを示すカラー画像であり、第2のデジタル画像が、ステップ704で第1のデジタル画像上に介在されている。任意選択的に、第1のデジタル画像は、図16Cに示すようにグレースケールに変換されて、各々が一意に割り当てられたインディシアムの単一の度合い及び第1のデジタル画像を有する複数のタイルの間でより良好なコントラストを提供し得る。ステップ706では、各々が一意に割り当てられたインディシアムの単一の度合いを有する複数のタイルに基づいて、3つのゾーンが第2のデジタル画像上に表示される。
図18は、図17に示すような少なくとも1つの美容的皮膚属性を可視化する方法700の変形例を示すフローチャートである。図17の方法700のステップ706に続いて、少なくとも1つの製品推奨項目が、ステップ708で表示される。ステップ710において、ユーザは、方法700を終了するように選択するよう促され、方法700は、ユーザがはいを選択した場合に、ステップ712で終了する。ユーザがいいえを選択した場合、図6の方法200のステップが実行され、方法700はステップ708に戻る。
ヒューマンマシンユーザインターフェース
本発明はまた、少なくとも1つの美容的皮膚属性を処置するための製品推奨を提供するためのヒューマンマシンユーザインターフェース(以下、「ユーザインターフェース」)にも関する。ユーザインターフェースは、タッチスクリーンディスプレイ/入力装置を有するディスプレイと、画像取得装置とを含む携帯電子機器上のグラフィカルユーザインターフェースであってもよい。ユーザインターフェースは、画像取得装置から取得された対象の顔の少なくとも一部分の第1のデジタル画像及び第1のデジタル画像上に介在された第2のデジタル画像を表示するタッチスクリーンディスプレイの第1の領域を含み得、第2のデジタル画像は、対象の顔の少なくとも一部分を有し、表示された複数のタイルは各々、一意に割り当てられたインディシアムの単一の度合いを有する。ユーザインターフェースは、第1の領域とは異なるタッチスクリーンディスプレイの第2の領域を更に含んでもよく、第2の領域は、ユーザ入力を受信するための選択可能なアイコンを表示し、表示された美容的皮膚属性を処置するための少なくとも1つの製品推奨アイテムの画像が、ユーザが選択可能なアイコンをアクティブ化した場合にタッチスクリーンディスプレイ上に表示される。
図19A~図19Eは、本発明による美容的皮膚属性を可視化するための、互いに協働する例示的なユーザインターフェースを各々が示すスクリーンショットである。図19A~図19Eは、先行するユーザインターフェースに応答して連続的に提供される一連のユーザインターフェースとして記載され、図19A~図19Eのユーザインターフェースは、上述されるように、本発明による方法による少なくとも1つの美容的皮膚属性を可視化するための全体的なユーザインターフェースを規定するために、複数の方法でプログラムされ得ることが理解されるであろう。好ましくは、図19A~図19Eのユーザインターフェースの全てが、本発明による美容的皮膚属性を可視化するための例示的なユーザインターフェースを規定する。
図19Aは、第1のユーザ入力を受信するためのユーザインターフェース160を示し、好ましくは、第1のユーザ入力はユーザの年齢である。ユーザインターフェース160は、第1のユーザ入力を受信するための第1の領域162を含んでもよい。第1の領域162は、第1のユーザ入力を受信するための1つ以上のユーザ入力特徴164を含んでもよい。ユーザ入力特徴164は、例えば、図19Aに示されるようなユーザの年齢などの所定のユーザ特徴に対応する選択可能な入力アイコンなどであってもよい。ユーザインターフェース160は、第1のユーザ入力を提供するために、ユーザに対応する命令を含む第2の領域166を更に含んでもよい。第2の領域166は、より多くのユーザフレンドリーなインターフェースを提供するように、第1の領域162の上方に配置されてもよい。ユーザインターフェース160は、本発明による方法200を開始するための開始オプションの一部であってもよい。
図19Bは、第2のユーザ入力を受信するためのユーザインターフェース170を示し、好ましくは、第2のユーザ入力は、ユーザに懸念を与える美容的皮膚属性である。美容的皮膚属性は、ユーザの皮膚の懸念として記述され得る。ユーザインターフェース170は、図19Aのユーザ入力特徴164からの第1のユーザ入力の選択に応じて提供されてもよい。ユーザインターフェース170は、第2のユーザ入力を受信するための第1の領域172を含んでもよい。第1の領域172は、第2のユーザ入力を受信するための1つ以上のユーザ入力特徴174を含んでもよい。ユーザ入力特徴部174は、例えば、所定の皮膚の懸念に対応する選択可能な入力アイコンなどであってもよい。第1の領域172は、1つ以上の入力特徴174に対応する説明領域173を更に含んでもよく、説明領域173は、美容的皮膚属性又は皮膚の懸念の簡単な記述を含む。ユーザインターフェース170は、ユーザ入力を提供するためのユーザに対する対応する命令を含む第2の領域176を更に含んでもよい。第2の領域176は、より多くのユーザフレンドリーなインターフェースを提供するように、第1の領域172の上方に配置されてもよい。
図19Cは、ユーザの入力画像を取得するためのユーザインターフェース180を示す。ユーザインターフェース180は、図11に記載されるように、プロセス400に従って第1のデジタル画像データを取得するためにアンカー特徴(目など)を整列させるための命令を有する第1の領域182を含んでもよい。ユーザインターフェース180は、図19Bの1つ以上のユーザ入力特徴174を介して第2のユーザ入力の選択に応じて提供されてもよい。
図19Dは、少なくとも1つの美容的皮膚属性を表示するためのユーザインターフェース190を示す。ユーザインターフェース190は、ユーザの入力画像が図19Cのユーザインターフェース180内で取得された後に、提供されてもよい。図19Dに示すように、人の皮膚の少なくとも1つの部分は、顔の皮膚であり、顔の皮膚が、好ましくは、頬領域/ゾーン、目領域/ゾーン、額領域/ゾーン、鼻領域/ゾーン、及びこれらの組み合わせからなる群から選択される少なくとも1つの関心領域(ROI)を含み、画像記述は、少なくとも1つのROIにおける改善の必要性、又は第1のROIと第2のROIとの間の美容的皮膚属性の差分を可視化する。
ユーザインターフェース190は、本発明の方法に従って少なくとも1つの美容的皮膚属性を可視化するために、各々が一意に割り当てられたインディシアムの単一の度合いを有する複数のタイルを表示する第1の領域191を含んでもよい。第1の領域191は、図18Dに示されるような類似の特徴を表示し得るが、複数のタイルを画定する線が消され、及び/又は不可視層として設定されてもよい点のみで異なっている。第1の領域191は、ユーザの顔の少なくとも一部分の目ゾーンに対応する第1のゾーン110と、ユーザの顔の少なくとも一部分の頬ゾーンに対応する第2のゾーン120と、ユーザの顔の少なくとも一部分の口ゾーンに対応する第3のゾーン130とを含んでもよい。図19Dに示されるように、ゾーン結果は、第3の領域193内に表示されてもよく、それにより、ゾーン結果は、ユーザの顔の少なくとも一部分内のゾーンのインデックスの相対比較に基づいて、各ゾーンに対して生成され得るインデックスを含む。例示的な実施形態では、ゾーン結果に応じて、第1のゾーン110は、正常/美容/脆弱ゾーンとして記述されてもよく、第2ゾーン120は、正常/美容/脆弱ゾーンとして記述されてもよく、第3ゾーン130は、正常/美容/脆弱ゾーンとして記載されてもよい。好ましくは、各ゾーンは、ゾーン結果の相対的差に基づk異なる記述を有してもよい。ユーザインターフェース190はまた、第3のユーザ入力を受信するための第2の領域192を含む。第2の領域192は、第3のユーザ入力を受信するための1つ以上のユーザ入力特徴1921を含んでもよい。ユーザ入力特徴1921は、例えば、本発明による方法の次のステップに進むための選択可能な入力アイコンなどであってもよい。任意選択的に、ユーザインターフェース190は、ユーザの顔の少なくとも一部分の取得された第1のデジタル画像データに基づいて、複数のタイルの各タイルの解析された少なくとも1つの美容的皮膚属性に基づいて、ユーザの皮膚年齢を表示するための第4の領域194を含んでもよい。
図19Eは、製品推奨項目210を表示するための第1の領域801を含むユーザインターフェース800を示す。ユーザインターフェース800は、図19Dのユーザインターフェース190からのユーザ入力特徴1921の選択に応じて提供されてもよい。任意選択的に、ユーザインターフェース800は、製品推奨項目210の詳細を提供するための第2の領域802を含んでもよい。好ましくは、ユーザインターフェース800は、例えば、製品推奨項目210.の問い合わせ及び/又は購入のための製品コンサルタントからの支援の要求などの第4のユーザ入力を受信するための第3の領域803を含んでもよい。第3の領域803は、第4のユーザ入力を受信するための1つ以上のユーザ入力特徴2031を含んでもよい。ユーザ入力特徴2031は、例えば、本発明による方法の次のステップに進むための選択可能な入力アイコンなどであってもよい。
図20は、本発明による少なくとも1つの美容的皮膚属性を可視化するためのデジタル画像51上に重ね合わされた画像記述901を含む、例示的なユーザインターフェース900の部分図を示す。画像記述902は、上記の方法90から出力されたエントロピー値に基づいて生成されたヒートマップを含む。ヒートマップは、より良好な美容的皮膚属性条件に対応する低エントロピー値に基づく第1のヒートマップ部906を含む。ヒートマップ904は、より不良な美容皮膚属性条件に対応する高いエントロピー値に基づく第2のヒートマップ部908を更に含む。第1のヒートマップセクション906は、第2のヒートマップセクション908における第2の複数のタイルとは視覚的に異なる第1の複数のタイルから形成される。例えば、第1の複数のタイルは、第2の複数のタイルの色とは異なる色を表示するように変換される。表示されていないヒートマップセクション910(以下、「非表示ヒートマップセクション910」)は、高エントロピー値と低エントロピー値との間のエントロピー値に対応する。ヒートマップセクションは、以下の表5に概説されるように、美容的皮膚属性状態及び皮膚属性インデックスに関連するエントロピー情報を表示するように、下記のとおりに、構成されてもよい。
Figure 2023052849000007
図21は、図19のユーザインターフェース900内の少なくとも1つの美容的皮膚属性を可視化するための画像記述920の代替的な変形例を示す。画像記述920は、画像記述920が表示された関心領域(ROI)922を含み、表示されたROI 922が、より良好な美容的皮膚属性状態に対応する他の非表示関心領域(ROI)924に対して、より不良な美容的皮膚属性条件を示す色を表示するように変換されるという点で、図19の画像記述902とは異なる。単一のヒートマップセクション(図20を参照されたい)又はROIのみを表示する利点は、ユーザインターフェースを見る消費者が過度に多くの視覚情報で過負荷されないことである。
図22は、少なくとも1つの美容的皮膚属性が皮膚純度である、本発明による少なくとも1つの美容的皮膚属性を可視化するための例示的なユーザインターフェース930を示すスクリーンショットである。ユーザインターフェース930は、ユーザインターフェース930が、生成された皮膚属性インデックスに基づいて、美容的皮膚属性及び集計スコア934を記述する代替のテキスト932を含むという点で、図19のユーザインターフェース902とは異なる。ユーザインターフェース930は、メーター936と、メーター936に沿って0~100のスケールで集計スコアを表すためのメーターマーカー938とを更に含んでもよい。メーター936は、集計スコア934を可視化する異なる方法であり、任意であってもよい。メーター936の色は、第1のヒートマップセクション904及び第2のヒートマップセクション906を表す色の勾配を示すように構成されてもよい。
上記の本発明による美容的皮膚状態を決定するための方法は、所定の期間にわたって美容的皮膚属性を追跡するステップを更に含んでもよい。例えば、図21に示されるユーザインターフェース930は、選択時に、美容的皮膚属性ダイアリーを生成するカレンダー又はスケジュールを生成して、美容的皮膚属性の改善を追跡するために、命令がプロセッサによって受信され、ステップがプロセッサによって実行される第1の選択可能なアイコン940を含んでもよい。例えば、消費者が1日目に使用するとき、日付及び顔分析が記録され、メモリに保存される。続いて、消費者が、将来(所定期間、1週間、1ヶ月、6ヶ月後)に本発明による方法を使用する場合はいつでも、消費者の顔の皮膚を再び解析し、消費者は、1日目に対して所定期間後に彼/彼女の顔の皮膚がどのように見えるかを比較することができる。本発明による方法は、携帯電子装置又は消費者に特有のログインアカウントを介してアクセスすることができるウェブアプリケーション上のネイティブアプリケーションとして記憶されるダウンロード可能なソフトウェアアプリケーションであるように構成されてもよく、そのため、消費者は、本発明による方法に基づいて自己皮膚解析を実施することができ、ある期間にわたる改善(より不良な美容皮膚属性状態を有するROIの減少)を見る及び/又は監視することができる。
ユーザインターフェース930は、選択時に、本発明による美容的皮膚属性を決定するための方法が反復されるのを可能にする第2の選択可能なアイコン942を更に含んでもよい。例えば、上記の方法90が繰り返され得る。
上述した本開示の代表的な実施形態が、以下に記載しているとおりに記載され得る。
A.人の視覚的に知覚不能な美容的皮膚属性を決定する方法であって、
a)人のデジタル画像を取得するステップであって、デジタル画像がカラーチャネルを含む、取得するステップと、
b)取得されたデジタル画像から少なくとも1つのカラーチャネルを抽出して、抽出されたカラーチャネル画像を提供するステップと、
c)抽出されたカラーチャネル画像をフィルタリングするステップと、
d)エントロピー統計値を使用してフィルタリングされたカラーチャネル画像を解析して、人の視覚的に知覚不能な美容的皮膚属性を決定するステップと、を含むことを特徴とする方法。
B.カラーチャネル画像が、周波数フィルタを使用してステップ(b)でフィルタリングされ、好ましくは、周波数フィルタは、フーリエ変換フィルタ、ウェーブレット変換、ガウス差分(DoG)フィルタからなる群から選択され、より好ましくは、周波数フィルタはDoGフィルタであり、更により好ましくは、DoGフィルタは、1~200、好ましくは5~50、より好ましくは10~20の標準偏差を有するガウスフィルタ1と、1~200、好ましくは5~100、より好ましくは20~60の標準偏差を有するガウスフィルタ2と、を含むことを特徴とするパラグラフAに記載の方法。
C.視覚的に知覚不能な美容的皮膚属性が、皮膚トポグラフィ、皮膚弾力性、皮膚色調、皮膚色素沈着、皮膚きめ、皮膚毛穴、美容的皮膚炎症、皮膚水和、皮膚皮脂レベル、座瘡、ほくろ、皮膚つや、皮膚光沢、皮膚くすみ、不均一色調、又は皮膚バリアからなる群から選択されることを特徴とするパラグラフA又はBに記載の方法。
D.少なくとも1つのカラーチャネルが、赤色のカラーチャネル、黄色のカラーチャネル、及び青色のカラーチャネル、好ましくは少なくとも2つの色チャネル、より好ましくは3つのカラーチャネルのうちの1つであり、
赤色のカラーチャネルが、L***色空間内にあり、aエントロピーが、フィルタリングされた赤色のカラーチャネルのエントロピー値であり、
黄色の色チャネルが、L***カラーシステム内にあり、bエントロピーが、フィルタリングされた黄色のカラーチャネルのエントロピー値であり、
青色のカラーチャネルが、テクスチャチャネルに対応し、cエントロピーが、青色のカラーチャネルのエントロピー値である、パラグラフA~Cのいずれか1つに記載の方法。
E.少なくとも1つのカラーチャネル画像が、赤色の色チャネルであり、好ましくは、視覚的に知覚不能な美容的皮膚属性が皮膚炎症であり、皮膚炎症に関連する皮膚属性インデックスが赤色のチャネルのaエントロピーに基づくことを特徴とするパラグラフDに記載の方法。
F.少なくとも1つのカラーチャネルが黄色のカラーチャネルであり、好ましくは、視覚的に知覚不能な美容的皮膚属性が、皮膚色素沈着/くすみであり、皮膚色素沈着/くすみに関連する皮膚属性インデックスが、黄色のカラーチャネルのbエントロピーに基づくことを特徴とするパラグラフDに記載の方法。
G.少なくとも1つのカラーチャネルがテクスチャチャネルであり、
好ましくは、視覚的に知覚不能な美容的皮膚属性が、皮膚トポグラフィであり、より好ましくは、皮膚トポグラフィが、毛穴、小じわ、しわ、たるみ、皮膚弾力性からなる群から選択され、皮膚トポグラフィに関連する皮膚属性インデックスが、青色のカラーチャネルのcエントロピーに基づくことを特徴とするパラグラフDに記載の方法。
H.少なくとも1つのカラーチャネルが、メラニンチャネル又はヘモグロビンチャネル、好ましくは、少なくとも2つのカラーチャネルであり、
ヘモグロビンチャネルは、発色団マッピング空間内にあり、エントロピー値を有し、
メラニンチャネルは、発色団マッピング空間内にあり、エントロピー値を有することを特徴とするパラグラフA~Dのいずれか1つに記載の方法。
I.少なくとも1つのカラーチャネル画像がヘモグロビンチャネルであり、好ましくは、視覚的に知覚不能な属性美容的皮膚属性が皮膚炎症であり、皮膚炎症に関連する皮膚属性インデックスがヘモグロビンチャネルのエントロピーに基づくことを特徴とするパラグラフHに記載の方法。
J.少なくとも1つのカラーチャネルがメラニンチャネルであり、好ましくは、視覚的に知覚不能な美容的皮膚属性が、皮膚色素沈着/くすみであり、皮膚色素沈着/くすみに関連する皮膚属性インデックスが、メラニンチャネルのエントロピーに基づくことを特徴とするパラグラフHに記載の方法。
K.画像データを解析する前に、画像補正係数をフィルタリングされたカラーチャネル画像に適用することを更に含むことを特徴とするパラグラフA~Jのいずれか1つに記載の方法。
L.方法が、5秒未満、好ましくは0.01秒~5秒、より好ましくは0.5秒~1秒で行われることを特徴とするパラグラフA~Kのいずれか1つに記載の方法。
M.取得された画像データが、対象の顔の少なくとも一部分の少なくとも1つの対象領域(ROI)、好ましくは1つ~3つのROI、より好ましくは取得された画像データ上に3つのROIを含み、各ROIは、取得された画像データ上に表示されるゾーン線を含むゾーンによって画定されることを特徴とするA~Lに記載の方法。
N.取得された画像データが3つのROIを含み、方法が、
a)3つのROIのうちの別の1つの第2のゾーンに対して、3つのROIのうちの1つの第1のゾーンにおいて、人の決定された視覚的に知覚不能な美容的皮膚属性の皮膚属性インデックスをスコアリングするステップと、
b)皮膚属性インデックスをディスプレイに出力して、人の視覚的に知覚不能な美容的皮膚属性のエントロピー統計値を可視化するステップと、を更に含むことを特徴とするパラグラフМに記載の方法。
O.
a)定義された集団の視覚的に知覚不能な美容的皮膚属性に対して、人の決定された視覚的に知覚不能な美容的皮膚属性の皮膚属性インデックスをスコアリングするステップと、
b)皮膚属性インデックスをディスプレイに出力して、人の視覚的に知覚不能な美容的皮膚属性のエントロピー統計値を可視化するステップと、を更に含むことを特徴とするパラグラフA~Nのいずれか1つに記載の方法。
P.人の平均年齢及び定義された人の集団が、18~40歳、好ましくは20~40歳、より好ましくは25~35歳、更により好ましくは28~32歳であることを特徴とするパラグラフOに記載の方法。
Q.少なくとも1つの製品推奨項目を表示することを更に含むことを特徴とするパラグラフA~Pのいずれか1つに記載の方法。
R.人の視覚的に知覚不能な美容的皮膚属性を決定するための機器であって、
人のデジタル画像を記憶するように構成された非一時的コンピュータ可読記憶媒体であって、デジタル画像が、カラーチャネル、及びコンピュータ実行可能命令を含む、非一時的コンピュータ可読記憶媒体と、
記憶媒体に連結されたプロセッサであって、プロセッサが、コンピュータ実行可能命令に基づいて、
a)デジタル画像を取得し、
b)取得されたデジタル画像から少なくとも1つのカラーチャネルを抽出して、カラーチャネル画像が美容的皮膚属性を含むカラーチャネル画像を提供し、
c)カラーチャネル画像をフィルタリングし、
d)エントロピー統計値を使用してフィルタリングされたカラーチャネル画像を解析して、視覚的に知覚不能な美容的皮膚属性を決定するように構成されている、プロセッサと、を含むことを特徴とする機器。
S.プロセッサが、コンピュータ実行可能命令に基づいて、
所定のエントロピー値に対するフィルタリングされたカラーチャネル画像のエントロピー値に基づいて、視覚的に知覚不能な美容的皮膚属性の皮膚属性インデックスをスコアリングすることであって、所定のエントロピー値が人々の集団と関連付けられている、スコアリングすることと、
皮膚属性インデックスを出力することを行うように構成されていることを特徴とするパラグラフRに記載の機器。
T.視覚的に知覚不能な美容的皮膚属性を決定するためのシステムであって、システムが、パラグラフR又はSによる機器と、皮膚属性インデックスを含む人の顔画像を表示するためのディスプレイと、を含み、好ましくは、皮膚属性インデックスは、数字、図形記号、スケール、又はこれらの組み合わせのうちの1つとして表示されることを特徴とするシステム。
U.人の美容的皮膚属性を決定する方法であって、
a)ユーザ入力を受信するステップであって、ユーザ入力が美容的皮膚属性を含む、受信するステップと、
b)人のデジタル画像を取得するステップであって、デジタル画像がカラーチャネルを含む、取得するステップと、
c)取得されたデジタル画像から少なくとも1つのカラーチャネルを抽出して、抽出されたカラーチャネル画像を提供するステップと、
d)抽出されたカラーチャネル画像をフィルタリングするステップと、
e)エントロピー統計値を使用してフィルタリングされたカラーチャネル画像を解析して、人の美容的皮膚属性を決定するステップと、を含むことを特徴とする方法。
V.人の美容的皮膚属性を決定する方法であって、
a)顔認識を使用して、人の顔の少なくとも一部分を検出するステップと、
b)人のデジタル画像を取得するステップであって、デジタル画像がカラーチャネルを含む、取得するステップと、
c)取得されたデジタル画像から少なくとも1つのカラーチャネルを抽出して、抽出されたカラーチャネル画像を提供するステップと、
d)抽出されたカラーチャネル画像をフィルタリングするステップと、
e)エントロピー統計値を使用してフィルタリングされたカラーチャネル画像を解析して、人の美容的皮膚属性を決定するステップと、を含むことを特徴とする方法。
W.デジタル画像内の対象の顔の少なくとも一部分の少なくとも1つの美容的皮膚属性のエントロピー値を可視化する方法であって、
a)対象の顔の少なくとも一部分のデジタル画像データを受信することであって、デジタル画像データが複数のタイルを含み、複数のタイルの各々が、エントロピー統計値を使用して解析された少なくとも1つの美容的皮膚属性を有する、受信することと、
b)解析された少なくとも1つの美容的皮膚属性に基づいて、複数のタイルの各タイルに対してインディシアムの単一の度合いを一意に割り当てることと、
c)各々が一意に割り当てられたインディシアムの単一の度合いを有する複数のタイルの少なくとも一部を表示して、少なくとも1つの美容的皮膚属性のエントロピー値を可視化することと、を含むことを特徴とする方法。
X.少なくとも1つの視覚的に知覚不能な美容的皮膚属性を決定するためのグラフィカルユーザインターフェースであって、グラフィカルユーザインターフェースが、タッチスクリーンディスプレイ/入力装置を有するディスプレイと、画像取得装置とを含む携帯電子機器上にあり、グラフィカルユーザインターフェースが、
美容的皮膚属性を記述するコンテンツデータを表示するディスプレイの第1の領域と、 第1の領域とは異なるディスプレイの第2の領域であって、第2の領域が、ユーザ入力を受信するための選択可能なアイコンを表示し、パラグラフA~Wのうちのいずれか1つによる方法が、ユーザが選択可能なアイコンをアクティブ化する場合に、機器とデジタル通信するプロセッサによって開始される,第2の領域と、を含むことを特徴とするグラフィカルユーザインターフェース。
相互参照される又は関連する任意の特許又は特許出願、及び本願が優先権又はその利益を主張する任意の特許出願又は特許を含む、本明細書に引用される全ての文書は、除外又は限定することを明言しない限りにおいて、参照によりその全体が本明細書に組み込まれる。いかなる文献の引用も、本明細書中で開示又は特許請求される任意の発明に対する先行技術であるとはみなされず、あるいはそれを単独で又は他の任意の参考文献(単数又は複数)と組み合わせたときに、そのようないかなる発明も教示、示唆又は開示するとはみなされない。更に、本文書における用語の任意の意味又は定義が、参照により組み込まれた文書内の同じ用語の任意の意味又は定義と矛盾する場合、本文書においてその用語に与えられた意味又は定義が適用されるものとする。
本発明の特定の実施形態を例示及び説明してきたが、本発明の趣旨及び範囲から逸脱することなく様々な他の変更及び修正を行うことができる点は当業者には明白であろう。したがって、本発明の範囲内にある全てのそのような変更及び修正を添付の特許請求の範囲に網羅することが意図される。

Claims (1)

  1. 人の美容的皮膚属性を決定するためのグラフィカルユーザインターフェースであって、前記グラフィカルユーザインターフェースは、タッチスクリーンディスプレイ/入力装置を有するディスプレイと、前記人の皮膚の少なくとも一部分を含む少なくとも1つのカラーチャネル画像を取得するための画像取得装置と、を含む携帯電子機器上にあり、
    前記グラフィカルユーザインターフェースは、
    前記人の皮膚の前記少なくとも1つの部分の美容的皮膚属性を記述するコンテンツデータを表示する前記ディスプレイの第1の領域と、
    前記第1の領域とは異なる前記ディスプレイの第2の領域であって、前記第2の領域はユーザ入力を受信するための選択可能なアイコンを表示する、前記第2の領域と、
    前記機器をエントロピー解析ユニットにデジタル的に結合するネットワークインターフェースと、を含み、前記エントロピー解析ユニットは、前記エントロピー解析ユニットに記憶されているコンピュータ実行可能命令に基づいて、
    エントロピー統計値を使用して前記少なくとも1つのカラーチャネル画像を解析して、エントロピー値を取得し、
    前記ユーザが前記選択可能なアイコンをアクティブ化する場合に、前記エントロピー値に基づいて、前記人の皮膚の前記少なくとも1つの部分の前記美容的皮膚属性を決定するように、構成されたことを特徴とするグラフィカルユーザインターフェース。
JP2023014549A 2019-04-23 2023-02-02 美容的皮膚属性を決定するための機器及び方法 Active JP7553621B2 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201962837207P 2019-04-23 2019-04-23
US62/837,207 2019-04-23
PCT/US2020/029423 WO2020219613A1 (en) 2019-04-23 2020-04-23 Apparatus and method for determining cosmetic skin attributes
JP2021561968A JP7248820B2 (ja) 2019-04-23 2020-04-23 美容的皮膚属性を決定するための機器及び方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2021561968A Division JP7248820B2 (ja) 2019-04-23 2020-04-23 美容的皮膚属性を決定するための機器及び方法

Publications (2)

Publication Number Publication Date
JP2023052849A true JP2023052849A (ja) 2023-04-12
JP7553621B2 JP7553621B2 (ja) 2024-09-18

Family

ID=70614683

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2021561968A Active JP7248820B2 (ja) 2019-04-23 2020-04-23 美容的皮膚属性を決定するための機器及び方法
JP2023014549A Active JP7553621B2 (ja) 2019-04-23 2023-02-02 美容的皮膚属性を決定するための機器及び方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2021561968A Active JP7248820B2 (ja) 2019-04-23 2020-04-23 美容的皮膚属性を決定するための機器及び方法

Country Status (6)

Country Link
US (2) US11348366B2 (ja)
EP (1) EP3959651A1 (ja)
JP (2) JP7248820B2 (ja)
KR (1) KR102653079B1 (ja)
CN (1) CN113711277A (ja)
WO (1) WO2020219613A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD944402S1 (en) * 2019-04-23 2022-02-22 The Procter & Gamble Company Skin age identifier
WO2020219612A1 (en) 2019-04-23 2020-10-29 The Procter & Gamble Company Apparatus and method for visualizing cosmetic skin attributes
JP7248820B2 (ja) 2019-04-23 2023-03-29 ザ プロクター アンド ギャンブル カンパニー 美容的皮膚属性を決定するための機器及び方法
USD968441S1 (en) 2020-04-30 2022-11-01 The Procter & Gamble Company Display screen with graphical user interface
USD962256S1 (en) 2020-05-14 2022-08-30 The Procter & Gamble Company Display screen with graphical user interface
USD963178S1 (en) * 2021-03-18 2022-09-06 Shenzhen Moreme Smart Tech Co., Ltd Full face skin detector
US20240298960A1 (en) * 2021-04-30 2024-09-12 L'oreal Predicting aging treatment outcomes based on a skin ageotype
KR102436130B1 (ko) * 2022-04-25 2022-08-26 주식회사 룰루랩 피부 분석 영상에 대한 적합도를 판단하는 방법 및 장치
US11638553B1 (en) * 2022-04-29 2023-05-02 Lululab Inc. Skin condition analyzing and skin disease diagnosis device
FR3135556A1 (fr) * 2022-05-10 2023-11-17 L'oreal Détection et visualisation de signes cutanés au moyen d’une carte thermique

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5917929A (en) 1996-07-23 1999-06-29 R2 Technology, Inc. User interface for computer aided diagnosis system
AU5233099A (en) 1998-07-24 2000-02-14 Jarg Corporation Search system and method based on multiple ontologies
WO2000005663A2 (en) * 1998-07-24 2000-02-03 Jarg Corporation Distributed computer database system and method for performing object search
KR100408829B1 (ko) 1998-12-29 2004-01-24 주식회사 대우일렉트로닉스 모델 기반 부호화 시스템에서의 얼굴 영상 세그멘테이션 방법
US6571003B1 (en) 1999-06-14 2003-05-27 The Procter & Gamble Company Skin imaging and analysis systems and methods
JP2003024306A (ja) 2001-07-13 2003-01-28 Shiseido Co Ltd 皮膚のはり評価システム
US7039222B2 (en) * 2003-02-28 2006-05-02 Eastman Kodak Company Method and system for enhancing portrait images that are processed in a batch mode
EP1938274A2 (en) * 2005-09-12 2008-07-02 D.V.P. Technologies Ltd. Medical image processing
US7558416B2 (en) * 2006-10-02 2009-07-07 Johnson & Johnson Consumer Companies, Inc. Apparatus and method for measuring photodamage to skin
US20090245603A1 (en) * 2007-01-05 2009-10-01 Djuro Koruga System and method for analysis of light-matter interaction based on spectral convolution
US20100185064A1 (en) * 2007-01-05 2010-07-22 Jadran Bandic Skin analysis methods
EP2042095A1 (en) 2007-09-26 2009-04-01 Astron Clinica Limited Methods and apparatus for quantifying photo-damage
JP2009082338A (ja) 2007-09-28 2009-04-23 Masahiro Nakagawa エントロピーを用いた肌の鑑別方法
CA2711519A1 (en) 2008-01-07 2009-07-16 Myskin, Inc. System and method for analysis of light-matter interaction based on spectral convolution
JP5290585B2 (ja) 2008-01-17 2013-09-18 株式会社 資生堂 肌色評価方法、肌色評価装置、肌色評価プログラム、及び該プログラムが記録された記録媒体
US8837832B2 (en) * 2010-05-18 2014-09-16 Skin Of Mine Dot Com, Llc Systems and methods for monitoring the condition of the skin
JP4831259B1 (ja) 2011-03-10 2011-12-07 オムロン株式会社 画像処理装置、画像処理方法、および制御プログラム
FR2975804B1 (fr) * 2011-05-27 2022-06-17 Lvmh Rech Procede de caracterisation du teint de la peau ou des phaneres
JP2013212177A (ja) 2012-03-30 2013-10-17 Shiseido Co Ltd 画像解析方法、画像解析装置、及び画像解析プログラム
EP2781191A1 (en) 2013-03-19 2014-09-24 Schnidar, Harald Methods for assessing erythema
US20140378810A1 (en) * 2013-04-18 2014-12-25 Digimarc Corporation Physiologic data acquisition and analysis
JP6131732B2 (ja) 2013-06-18 2017-05-24 沖電気工業株式会社 人物属性提示装置及び人物属性提示方法
WO2014208067A1 (ja) 2013-06-28 2014-12-31 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 肌の官能評価装置および肌の評価方法
CA2921704A1 (en) 2013-09-25 2015-04-02 The Procter & Gamble Company Method and system for skin care consultation
US20150099947A1 (en) * 2013-10-04 2015-04-09 Access Business Group International Llc Skin youthfulness index, methods and applications thereof
CN104156947B (zh) 2014-07-23 2018-03-16 小米科技有限责任公司 图像分割方法、装置及设备
KR101701210B1 (ko) 2014-10-02 2017-02-01 주식회사 엘지유플러스 피부 분석 결과 출력 방법, 이를 위한 장치 및 어플리케이션
CN104299011A (zh) 2014-10-13 2015-01-21 吴亮 一种基于人脸图像识别的肤质与皮肤问题识别检测方法
CA2958003C (en) 2016-02-19 2022-04-05 Paul Stanley Addison System and methods for video-based monitoring of vital signs
CN108701323B (zh) 2016-03-21 2023-11-10 宝洁公司 用于提供定制的产品推荐的系统和方法
CN115568818A (zh) 2016-04-22 2023-01-06 菲特斯津公司 使用电子设备进行皮肤分析的系统和方法
US10531825B2 (en) 2016-10-14 2020-01-14 Stoecker & Associates, LLC Thresholding methods for lesion segmentation in dermoscopy images
EP3631679B1 (en) 2017-05-31 2023-09-13 The Procter & Gamble Company Systems and methods for determining apparent skin age
US10719729B2 (en) * 2018-06-06 2020-07-21 Perfect Corp. Systems and methods for generating skin tone profiles
CN114502061B (zh) * 2018-12-04 2024-05-28 巴黎欧莱雅 使用深度学习的基于图像的自动皮肤诊断
WO2020219612A1 (en) * 2019-04-23 2020-10-29 The Procter & Gamble Company Apparatus and method for visualizing cosmetic skin attributes
JP7248820B2 (ja) 2019-04-23 2023-03-29 ザ プロクター アンド ギャンブル カンパニー 美容的皮膚属性を決定するための機器及び方法

Also Published As

Publication number Publication date
EP3959651A1 (en) 2022-03-02
US20200342213A1 (en) 2020-10-29
JP7248820B2 (ja) 2023-03-29
US20220254189A1 (en) 2022-08-11
KR20210135580A (ko) 2021-11-15
KR102653079B1 (ko) 2024-04-01
JP7553621B2 (ja) 2024-09-18
CN113711277A (zh) 2021-11-26
WO2020219613A1 (en) 2020-10-29
JP2022529676A (ja) 2022-06-23
US11605243B2 (en) 2023-03-14
US11348366B2 (en) 2022-05-31

Similar Documents

Publication Publication Date Title
JP7248820B2 (ja) 美容的皮膚属性を決定するための機器及び方法
JP7235895B2 (ja) 美容的皮膚特性を視覚化するための装置及び方法
CA2751549C (en) Method and apparatus for simulation of facial skin aging and de-aging
US9445087B2 (en) Systems, devices, and methods for providing products and consultations
US20120044335A1 (en) Makeup simulation system, makeup simulation apparatus, makeup simulation method, and makeup simulation program
CN108024719B (zh) 肌肤的光泽评价装置、光泽评价方法及记录介质
JP7108127B2 (ja) 毛穴の色を特定する方法
US20080304736A1 (en) Method of estimating a visual evaluation value of skin beauty
JP5426475B2 (ja) 肌の色ムラ解析装置、肌の色ムラ解析方法、及び肌の色ムラ解析プログラム
JP2007252891A (ja) 肌の美しさの目視評価値の推定方法
CN117440849A (zh) 护肤设备
US20240265433A1 (en) Interactive system and method for recommending one or more lifestyle products
JP5399874B2 (ja) 画像処理装置および画像処理方法
CN117480570A (zh) 护肤设备
CN117425516A (zh) 护肤设备
JP6730051B2 (ja) 肌状態評価方法
FR3135556A1 (fr) Détection et visualisation de signes cutanés au moyen d’une carte thermique
KR20230052341A (ko) 민감성 피부를 위한 맞춤형 화장품 제조 시스템 및 그 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240905

R150 Certificate of patent or registration of utility model

Ref document number: 7553621

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150