JP2023049197A - 磁気記録媒体、磁気テープカートリッジおよび磁気記録再生装置 - Google Patents

磁気記録媒体、磁気テープカートリッジおよび磁気記録再生装置 Download PDF

Info

Publication number
JP2023049197A
JP2023049197A JP2021158800A JP2021158800A JP2023049197A JP 2023049197 A JP2023049197 A JP 2023049197A JP 2021158800 A JP2021158800 A JP 2021158800A JP 2021158800 A JP2021158800 A JP 2021158800A JP 2023049197 A JP2023049197 A JP 2023049197A
Authority
JP
Japan
Prior art keywords
magnetic
recording medium
magnetic recording
layer
iron oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021158800A
Other languages
English (en)
Inventor
貴士 藤本
Takashi Fujimoto
栄貴 小沢
Eiki Ozawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2021158800A priority Critical patent/JP2023049197A/ja
Priority to US17/955,137 priority patent/US20230100028A1/en
Publication of JP2023049197A publication Critical patent/JP2023049197A/ja
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/706Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material
    • G11B5/70626Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material containing non-metallic substances
    • G11B5/70642Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material containing non-metallic substances iron oxides
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/714Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the dimension of the magnetic particles
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/735Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer characterised by the back layer
    • G11B5/7356Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer characterised by the back layer comprising non-magnetic particles in the back layer, e.g. particles of TiO2, ZnO or SiO2

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

【課題】ε-酸化鉄粉末を含む磁性層を有する磁気記録媒体であって、面内記録方式で記録されたデータを再生する際に優れた電磁変換特性を示すことができる磁気記録媒体の提供。【解決手段】強磁性粉末を含む磁性層を有する磁気記録媒体。強磁性粉末はε-酸化鉄粉末であり、Hr(0°)とHr(45°)との比率(Hr(45°)/Hr(0°))が0.50以下である。Hr(0°)は、磁気記録媒体の面内方向にパルス幅0.76msのパルス磁界を印加することによって求められる残留保磁力Hrであり、Hr(45°)は、磁気記録媒体の面内方向の角度を0°として、垂直方向の角度を90°として、面内方向から垂直方向に向かって45°傾いた方向から入射させて磁気記録媒体にパルス幅0.76msのパルス磁界を印加することによって求められる残留保磁力Hrである。この磁気記録媒体を含む磁気テープカートリッジおよび磁気記録再生装置。【選択図】なし

Description

本発明は、磁気記録媒体、磁気テープカートリッジおよび磁気記録再生装置に関する。
各種データを記録し保管するためのデータストレージ用記録媒体として、磁気記録媒体が広く用いられている(例えば特許文献1の段落0089等参照)。
特許第6010181号明細書
磁気記録媒体では、通常、非磁性支持体の上に強磁性粉末を含む磁性層が設けられる。強磁性粉末に関しては、例えば特許文献1に記載されているように、ε-酸化鉄粉末が近年注目を集めている。
磁気記録の記録方式には、面内記録方式と垂直記録方式とがあり、例えば磁気テープ等の磁気記録媒体については、記録方式は面内記録方式が主流である。したがって、ε-酸化鉄粉末を含む磁性層を有する磁気記録媒体であって、面内記録適性に優れる磁気記録媒体は望ましい。例えば、面内記録方式で記録されたデータを再生する際に優れた電磁変換特性を示すことができる磁気記録媒体は、面内記録適性に優れる磁気記録媒体ということができる。
以上に鑑み、本発明の一態様は、ε-酸化鉄粉末を含む磁性層を有する磁気記録媒体であって、面内記録方式で記録されたデータを再生する際に優れた電磁変換特性を示すことができる磁気記録媒体を提供することを目的とする。
本発明の一態様は、
非磁性支持体と、強磁性粉末を含む磁性層と、を有する磁気記録媒体であって、
上記強磁性粉末はε-酸化鉄粉末であり、
Hr(0°)とHr(45°)との比率(Hr(45°)/Hr(0°))が0.50以下である磁気テープ、
に関する
上記Hr(0°)は、上記磁気記録媒体の面内方向にパルス幅0.76msのパルス磁界を印加することによって求められる残留保磁力Hrであり、
上記Hr(45°)は、上記磁気記録媒体の面内方向の角度を0°として、上記磁気記録媒体の垂直方向の角度を90°として、面内方向から垂直方向に向かって45°傾いた方向から入射させて上記磁気記録媒体にパルス幅0.76msのパルス磁界を印加することによって求められる残留保磁力Hrである。
一形態では、上記比率(Hr(45°)/Hr(0°))は、0.45以下であることができる。
一形態では、上記比率(Hr(45°)/Hr(0°))は、0.40以下であることができる。
一形態では、上記比率(Hr(45°)/Hr(0°))は、0.35以下であることができる。
一形態では、上記比率(Hr(45°)/Hr(0°))は、 0.10以上0.35以下であることができる。
一形態では、上記ε-酸化鉄粉末は、コバルト元素と、ガリウム元素およびアルミニウム元素からなる群から選択される元素と、チタン元素と、を含むことができる。
一形態では、上記磁気記録媒体は、上記非磁性支持体と上記磁性層との間に、非磁性粉末を含む非磁性層を更に有することができる。
一形態では、上記磁気記録媒体は、上記非磁性支持体の上記磁性層を有する表面側とは反対の表面側に、非磁性粉末を含むバックコート層を更に有することができる。
一形態では、上記磁気記録媒体は、磁気テープであることができる。
本発明の一態様は、上記磁気テープを含む磁気テープカートリッジに関する。
本発明の一態様は、上記磁気記録媒体を含む磁気記録再生装置に関する。
本発明の一態様によれば、ε-酸化鉄粉末を含む磁性層を有する磁気記録媒体であって、面内記録方式で記録されたデータを再生する際に優れた電磁変換特性を示すことができる磁気記録媒体を提供することができる。また、本発明の一態様によれば、かかる磁気記録媒体を含む磁気テープカートリッジおよび磁気記録再生装置を提供することができる。
[磁気テープ]
本発明の一態様は、非磁性支持体と、強磁性粉末を含む磁性層と、を有する磁気記録媒体に関する。上記強磁性粉末はε-酸化鉄粉末であり、上記磁気記録媒体において、Hr(0°)とHr(45°)との比率(Hr(45°)/Hr(0°))は、0.50以下である。本発明および本明細書において、上記Hr(0°)は、上記磁気記録媒体の面内方向にパルス幅0.76msのパルス磁界を印加することによって求められる残留保磁力Hrである。上記Hr(45°)は、上記磁気記録媒体の面内方向の角度を0°として、上記磁気記録媒体の垂直方向の角度を90°として、面内方向から垂直方向(後述する飽和磁化方向とは逆方向)に向かって45°傾いた方向から入射させて上記磁気記録媒体にパルス幅0.76msのパルス磁界を印加することによって求められる残留保磁力Hrである。単位「ms」は、ミリセカンド(ミリ秒)である。また、本発明および本明細書において、「磁気記録媒体の面内方向」とは、テープ状の磁気記録媒体、即ち磁気テープについては、長手方向であり、ディスク状の磁気記録媒体、即ち磁気ディスクについては、半径方向である。「磁気記録媒体の垂直方向」とは、磁気記録媒体の厚み方向において、磁気記録媒体の面内方向と直交する方向である。「磁性層(の)表面」とは、磁気記録媒体の磁性層側表面と同義である。
上記Hr(0°)および上記Hr(45°)は、以下の方法によって求められる。
測定対象の磁気記録媒体からサンプル片を2つ切り出し、一方をHr(0°)の測定のために使用し、他方をHr(45°)の測定のために使用する。サンプル片のサイズは、測定に使用する振動試料型磁束計に導入可能なサイズであればよい。以下のサンプル片の面内方向および垂直方向とは、サンプル片が磁気記録媒体に含まれていた状態で面内方向および垂直方向であった方向をいうものとする。以下のパルス磁界は、単発パルス磁界である。また、以下の残留磁化量の測定は、23℃の測定温度において行われる。かかる測定温度は、サンプル片の温度である。サンプル片の周囲の雰囲気温度を測定温度(23℃)にすることにより、温度平衡が成り立つことによってサンプル片の温度を測定温度にすることができる。
Hr(0°)測定用サンプル片については、以下の方法によってHr(0°)を測定する。
(1)まず、パルス磁界発生器を用いて、40kOeの直流磁界をサンプル片の垂直方向に10秒間印加してサンプル片の磁性層に含まれる強磁性粉末を飽和磁化させた後、印加磁界を取り除く。ここで垂直方向に印加する直流磁界は、サンプル片の磁性層表面側から入射させてもよく、他方の表面側から入射させてもよい。なお、単位に関して、1[kOe]=10/4π[A/m]である。パルス磁界発生器としては、例えば東英工業社製MPM-04を使用することができ、後述の実施例では東英工業社製MPM-04を使用した。この点は、Hr(45°)の測定についても同様である。
(2)上記の飽和磁化から20秒以内に、同パルス磁界発生器を用いて、サンプル片に対して、面内方向(面内方向であれば前後どちらの方向からでも構わない)にパルス幅0.76msのパルス磁界を任意の磁界強度にて印加する。
(3)上記のパルス磁界の印加終了から20秒以内に、振動試料型磁束計を用いて、サンプル片の残留磁化量を測定する。振動試料型磁束計としては、例えば東英工業社製P2SHを使用することができ、後述の実施例では東英工業社製P2SHを使用した。この点は、Hr(45°)の測定についても同様である。
(4)上記の(1)~(3)の過程を様々なパルス磁界強度で繰り返し、残留磁化が0Am/kgとなるときのパルス磁界の値を求め、これを、Hr(0°)とする。
Hr(45°)測定用サンプル片については、以下の方法によってHr(45°)を測定する。
(1)まず、パルス磁界発生器を用いて、40kOeの直流磁界をサンプル片の垂直方向に10秒間印加してサンプル片の磁性層に含まれる強磁性粉末を飽和磁化させた後、印加磁界を取り除く。ここで垂直方向に印加する直流磁界は、サンプル片の磁性層表面側から入射させてもよく、他方の表面側から入射させてもよい。
(2)上記の飽和磁化から20秒以内に、同パルス磁界発生器を用いて、サンプル片の面内方向の角度を0°とし、サンプル片の上記飽和磁化方向とは逆方向の垂直方向の角度を90°として、面内方向から垂直方向(上記飽和磁化方向とは逆方向)に向かって45°傾いた方向、即ち角度45°の方向、から入射させて(角度45°の方向であれば前後どちらの方向からでも構わない)、パルス幅0.76msのパルス磁界を任意の磁界強度にてサンプル片に対して印加する。
(3)上記のパルス磁界の印加終了から20秒以内に、振動試料型磁束計を用いて、サンプル片の残留磁化量を測定する。
(4)上記の(1)~(3)の過程を様々なパルス磁界強度で繰り返し、残留磁化が0Am/kgとなるときのパルス磁界の値を求め、これを、Hr(45°)とする。
上記の方法で求められたHr(45°)とHr(0°)とから、Hr(45°)をHr(0°)で除した値として、比率(Hr(45°)/Hr(0°))を算出する。
上記磁気記録媒体では、上記のように求められる比率(Hr(45°)/Hr(0°))が0.50以下である。これにより、上記磁気記録媒体は、面内記録方式で記録されたデータを再生する際に優れた電磁変換特性を示すことができる。この点について、本発明者は以下のように推察している。ただし、本発明は、以下の推察をはじめとする本明細書に記載の推察によって限定されるものではない。
磁気記録媒体の磁性層へのデータの記録は、磁気ヘッドから磁界(以下、「記録磁界」とも記載する。)を印加して磁性層内の強磁性粉末の粒子を磁化反転させることによって行われる。記録磁界を磁気ヘッドから印加する際、面内方向に対して傾いた方向(斜め方向)から記録磁界を磁性層に入射させることによって、磁性層に入射した記録磁界は、磁性層内で面内方向に対して水平になる経路を辿った後に磁性層から斜め方向に出射して記録ヘッドに回収される。こうして磁化反転のために記録層に印加される記録磁界の向きを面内方向に対して水平になるように制御する記録方式が、面内記録方式である。面内記録方式は、一般に、水平記録方式、長手記録方式等とも呼ばれる。なお、磁化反転のために磁性層に印加される記録磁界の向きを磁性層表面に対して垂直になるように制御する記録方式が、垂直記録方式である。ここで、記録磁界の向きに関して、「垂直」とは、必ずしも厳密な意味の垂直のみを意味するものではなく、本発明が属する技術分野において許容される誤差の範囲を含むものとする。誤差の範囲とは、例えば、厳密な垂直±10°未満の範囲を意味することができる。この点は、「水平」についても同様である。
面内記録方式の磁気記録では、上記のように斜め方向から磁性層に記録磁界を入射させる。本発明者は、ε-酸化鉄粉末を含む磁性層を有する磁気記録媒体の面内記録適性の向上について検討する中で、ε-酸化鉄粉末を含む磁性層を有する磁気記録媒体において、斜め方向から磁性層に入射する磁界に対してε-酸化鉄粉末の粒子の磁化反転を生じ易くすることが、面内記録方式で記録されたデータを再生する際の電磁変換特性向上に寄与し得ると考えた。そして更に検討を重ねる中で、上記比率(Hr(45°)/Hr(0°))が、上記の磁化反転の生じ易さの指標になり得ると考え鋭意検討を重ねた。その結果、ε-酸化鉄粉末を含む磁性層を有する磁気記録媒体であって、上記比率(Hr(45°)/Hr(0°))が0.50以下である磁気記録媒体が、面内記録方式で記録されたデータを再生する際に優れた電磁変換特性を示すこと、詳しくは高いSNR(Signal-to-Noise Ratio)を示すことが可能であることを新たに見出すに至った。なお、上記比率(Hr(45°)/Hr(0°))を求めるにあたり、角度45°を採用した理由は、斜め方向から磁性層に入射する記録磁界の入射角度の一例として採用したものであって、上記磁気記録媒体の磁性層へのデータの記録のために印加される記録磁界の入射角度は、45°に限定されるものではない。また、パルス幅については、近年の磁気記録における一般的な記録条件を考慮して0.76msを採用したに過ぎず、上記磁気記録媒体の磁性層へのデータの記録時の記録条件は特に限定されるものではない。
以下、上記磁気記録媒体について、更に詳細に説明する。
<比率(Hr(45°)/Hr(0°))>
上記磁気記録媒体において、比率(Hr(45°)/Hr(0°))は、面内記録方式で記録されたデータを再生する際の電磁変換特性向上の観点から、0.50以下である。本発明者は、比率(Hr(45°)/Hr(0°))の値が小さいほど、斜め方向から磁性層に入射する磁界に対してε-酸化鉄粉末の粒子が磁化反転し易いと考えている。上記の電磁変換特性の更なる向上の観点から、比率(Hr(45°)/Hr(0°))は、0.48以下であることが好ましく、0.45以下であることがより好ましく、0.43以下であることが一層好ましく、0.40以下であることがより一層好ましく、0.38以下であることが更に一層好ましく、0.35以下であることがなお一層好ましい。比率(Hr(45°)/Hr(0°))は、例えば、0.10以上もしくは0.20以上であることができ、またはここに例示した値を下回ることもできる。比率(Hr(45°)/Hr(0°))の制御方法については後述する。
Hr(45°)およびHr(0°)については、比率(Hr(45°)/Hr(0°))が0.50以下であればよく、特に限定されるものではない。一形態では、Hr(45°)は、例えば3000Oe以上もしくは3500Oe以上であることができ、また、例えば8000Oe以下もしくは7000Oe以下であることができる。また、一形態では、Hr(0°)は、例えば8000Oe以上もしくは10000Oe以上であることができ、また、例えば20000Oe以下もしくは15000Oe以下であることができる。
<磁性層>
<<ε-酸化鉄粉末>>
上記磁気記録媒体は、磁性層に強磁性粉末としてε-酸化鉄粉末を含む。本発明および本明細書において、「ε-酸化鉄粉末」とは、X線回折分析によって、主相としてε-酸化鉄の結晶構造(ε相)が検出される強磁性粉末をいうものとする。例えば、X線回折分析によって得られるX線回折スペクトルにおいて最も高強度の回折ピークがε-酸化鉄の結晶構造(ε相)に帰属される場合、ε-酸化鉄の結晶構造が主相として検出されたと判断するものとする。主相のε相に加えてα相および/またはγ相が含まれていてもよく、含まれなくてもよい。本発明および本明細書におけるε-酸化鉄粉末には、鉄と酸素から構成される所謂無置換型のε-酸化鉄の粉末と、鉄を置換する1種以上の置換元素を含む所謂置換型のε-酸化鉄の粉末とが包含される。
(ε-酸化鉄粉末の製造方法)
ε-酸化鉄粉末の製造方法としては、ゲーサイトから作製する方法、逆ミセル法等が知られている。上記製造方法は、いずれも公知である。また、鉄の一部が置換元素によって置換されたε-酸化鉄粉末を製造する方法については、例えば、J. Jpn. Soc. Powder Metallurgy Vol. 61 Supplement, No. S1, pp. S280-S284、J. Mater. Chem. C, 2013, 1, pp.5200-5206等を参照できる。
一例として、例えば、上記磁気記録媒体の磁性層に含まれるε-酸化鉄粉末は、
ε-酸化鉄の前駆体を調製すること(以下、「前駆体調製工程」とも記載する。)、
上記前駆体を被膜形成処理に付すこと(以下、「被膜形成工程」とも記載する。)、
上記被膜形成処理後の上記前駆体に熱処理を施すことにより、上記前駆体をε-酸化鉄に転換すること(以下、「熱処理工程」とも記載する。)、および
上記ε-酸化鉄を被膜除去処理に付すこと(以下、「被膜除去工程」とも記載する。)、
を経てε-酸化鉄粉末を得る製造方法によって得ることができる。以下に、かかる製造方法について更に説明する。ただし以下に記載する製造方法は例示であって、上記ε-酸化鉄粉末は、以下に例示する製造方法によって製造されたものに限定されるものではない。
前駆体調製工程
ε-酸化鉄の前駆体とは、加熱されることによりε-酸化鉄の結晶構造を主相として含むものとなる物質をいう。前駆体は、例えば、鉄および結晶構造において鉄の一部を置換し得る元素を含有する水酸化物、オキシ水酸化物(酸化水酸化物)等であることができる。前駆体調製工程は、共沈法、逆ミセル法等を利用して行うことができる。かかる前駆体の調製方法は公知であり、上記製造方法における前駆体調製工程は、公知の方法によって行うことができる。例えば、前駆体の調製方法については、特開2008-174405号公報の段落0017~0021および同公報の実施例、WO2016/047559A1の段落0025~0046および同公報の実施例、WO2008/149785A1の段落0038~0040、0042、0044、0045および同公報の実施例等の公知技術を参照できる。
鉄(Fe)の一部を置換する置換元素を含まないε-酸化鉄は、組成式:Feにより表すことができる。一方、鉄の一部が、例えば1種以上の元素により置換されたε-酸化鉄は、組成式:A Fe(2-x-y-z)により表すことができる。A およびAはそれぞれ独立に鉄を置換する置換元素の1種以上を表し、x、yおよびzは、それぞれ独立に0以上2未満であり、ただし少なくとも1つが0超であり、x+y+zは2未満である。上記ε-酸化鉄粉末は、鉄を置換する置換元素を含まなくてもよく、含んでもよく、含むことが好ましい。置換元素の種類は、1種以上であることができ、1種~3種、1種~5種または1種~6種であることもできる。置換元素の種類および置換量によって、ε-酸化鉄粉末の磁気特性を調整することができる。例えば、こうしてε-酸化鉄粉末の磁気特性を調整することによってHr(0°)の値を調整することができる。置換元素が含まれる場合、置換元素としては、Ga、Al、In、Rh、Mn、Co、Ni、Zn、Ti、Sn等の1種以上を挙げることができる。例えば、上記組成式において、AはGa、Al、InおよびRhからなる群から選ばれる1種以上であることができ、AはCo、Mn、NiおよびZnからなる群から選ばれる1種以上であることができ、AはTiおよびSnからなる群から選ばれる1種以上であることができる。ε-酸化鉄粉末としては、コバルト元素(Co)を含むものが好ましく、コバルト元素と、ガリウム元素(Ga)、アルミニウム元素(Al)、インジウム元素(In)およびロジウム元素(Rh)からなる群から選ばれる1種以上と、チタン元素(Ti)およびスズ元素(Sn)からなる群から選ばれる1種以上と、を含むものがより好ましく、コバルト元素と、ガリウム元素および/またはアルミニウム元素と、チタン元素および/またはスズ元素と、を含むものが更に好ましく、コバルト元素と、ガリウム元素および/またはアルミニウム元素と、チタン元素と、を含むものが一層好ましい。鉄を置換する置換元素を含むε-酸化鉄粉末を製造する場合、ε-酸化鉄における鉄の供給源となる化合物の一部を、置換元素の化合物に置き換えればよい。その置換量によって、得られるε-酸化鉄粉末の組成を制御することができる。鉄および各種置換元素の供給源となる化合物としては、例えば、硝酸塩、硫酸塩、塩化物等の無機塩(水和物であってもよい。)、ペンタキス(シュウ酸水素)塩等の有機塩(水和物であってもよい。)、水酸化物、オキシ水酸化物等を挙げることができる。
被膜形成工程
前駆体を被膜形成処理後に加熱すると、前駆体がε-酸化鉄に転換する反応を被膜下で進行させることができる。また、被膜は、加熱時に焼結が起こることを防ぐ役割を果たすこともできると考えられる。被膜形成処理は、被膜形成の容易性の観点からは、溶液中で行うことが好ましく、前駆体を含む溶液に被膜形成剤(被膜形成のための化合物)を添加して行うことがより好ましい。例えば、前駆体調製に引き続き同じ溶液中で被膜形成処理を行う場合には、前駆体調製後の溶液に被膜形成剤を添加し撹拌することにより、前駆体に被膜を形成することができる。溶液中で前駆体に被膜を形成することが容易な点で好ましい被膜としては、ケイ素含有被膜を挙げることができる。ケイ素含有被膜を形成するための被膜形成剤としては、例えば、アルコキシシラン等のシラン化合物を挙げることができる。シラン化合物の加水分解によって、好ましくはゾル-ゲル法を利用して、前駆体にケイ素含有被膜を形成することができる。シラン化合物の具体例としては、テトラエトキシシラン(TEOS:Tetraethyl orthosilicate)、テトラメトキシシランおよび各種シランカップリング剤を例示できる。被膜形成処理については、例えば、特開2008-174405号公報の段落0022および同公報の実施例、WO2016/047559A1の段落0047~0049および同公報の実施例、WO2008/149785A1の段落0041、0043および同公報の実施例等の公知技術を参照できる。例えば、被膜形成処理は、前駆体および被膜形成剤を含む50~90℃の液温の溶液を撹拌することによって行うことができる。撹拌時間は、例えば5~36時間とすることができる。なお、被膜は前駆体の表面の全部を覆ってもよく、前駆体表面の一部に被膜によって被覆されていない部分があってもよい。
熱処理工程
上記被膜形成処理後の前駆体に熱処理を施すことにより、前駆体をε-酸化鉄に転換することができる。熱処理は、例えば被膜形成処理を行った溶液から採取した粉末(被膜を有する前駆体の粉末)に対して行うことができる。熱処理工程については、例えば、特開2008-174405号公報の段落0023および同公報の実施例、WO2016/047559A1の段落0050および同公報の実施例、WO2008/149785A1の段落0041、0043および同公報の実施例等の公知技術を参照できる。熱処理工程は、例えば、炉内温度900~1200℃の加熱炉において、3~6時間程度行うことができる。熱処理工程をより高温で行うほど、および/または、熱処理時間がより長いほど、得られるε-酸化鉄粉末の粒子のサイズはより大きくなる傾向がある。
被膜除去工程
上記熱処理工程を行うことにより、被膜を有する前駆体をε-酸化鉄に転換することができる。こうして得られるε-酸化鉄には被膜が残留しているため、好ましくは、被膜除去処理を行う。被膜除去処理については、例えば、特開2008-174405号公報の段落0025および同公報の実施例、WO2008/149785A1の段落0053および同公報の実施例等の公知技術を参照できる。被膜除去処理は、例えば、被膜を有するε-酸化鉄を、1~5mol/L程度の濃度の液温60~90℃程度の水酸化ナトリウム水溶液中で5~36時間程度撹拌することによって行うことができる。ただし上記磁気記録媒体の磁性層に含まれるε-酸化鉄粉末は、被膜除去処理を経ずに製造されたものでもよく被膜除去処理において完全に被膜が除去されず、一部の被膜が残留しているものでもよい。
以上記載した各種工程の前および/または後に、公知の工程を任意に実施することもできる。かかる工程としては、例えば、分級、遠心分離、ろ過、洗浄、乾燥等の各種の公知の工程を挙げることができる。
(平均粒子サイズ)
上記磁気記録媒体の磁性層に含まれるε-酸化鉄粉末の平均粒子サイズは、磁化の安定性の観点からは、5.0nm以上であることが好ましく、6.0nm以上であることがより好ましく、7.0nm以上であることが更に好ましく、8.0nm以上であることが一層好ましく、9.0nm以上であることがより一層好ましい。また、高密度記録化の観点からは、ε-酸化鉄粉末の平均粒子サイズは、20.0nm以下であることが好ましく、19.0nm以下であることがより好ましく、18.0nm以下であることが更に好ましく、17.0nm以下であることが一層好ましく、16.0nm以下であることがより一層好ましく、15.0nm以下であることが更に一層好ましい。平均粒子サイズが小さいε-酸化鉄粉末を含む磁性層を有する磁気記録媒体は、Hr(0°)の値が小さくなる傾向がある。
本発明および本明細書において、特記しない限り、ε-酸化鉄粉末等の各種粉末の平均粒子サイズは、透過型電子顕微鏡を用いて、以下の方法により測定される値とする。
粉末を、透過型電子顕微鏡を用いて撮影倍率100000倍で撮影し、総倍率500000倍になるように印画紙にプリントするか、ディスプレイに表示する等して、粉末を構成する粒子の写真を得る。得られた粒子の写真から目的の粒子を選びデジタイザーで粒子の輪郭をトレースし粒子(一次粒子)のサイズを測定する。一次粒子とは、凝集のない独立した粒子をいう。
以上の測定を、無作為に抽出した500個の粒子について行う。こうして得られた500個の粒子の粒子サイズの算術平均を、粉末の平均粒子サイズとする。
上記透過型電子顕微鏡としては、例えば日立製透過型電子顕微鏡H-9000型を用いることができる。また、粒子サイズの測定は、公知の画像解析ソフト、例えばカールツァイス製画像解析ソフトKS-400を用いて行うことができる。後述の実施例に示す平均粒子サイズは、特記しない限り、透過型電子顕微鏡として日立製透過型電子顕微鏡H-9000型、画像解析ソフトとしてカールツァイス製画像解析ソフトKS-400を用いて測定された値である。本発明および本明細書において、粉末とは、複数の粒子の集合を意味する。例えば、強磁性粉末とは、複数の強磁性粒子の集合を意味する。また、複数の粒子の集合とは、集合を構成する粒子が直接接触している形態に限定されず、後述する結合剤、添加剤等が、粒子同士の間に介在している形態も包含される。粒子との語が、粉末を表すために用いられることもある。
粒子サイズ測定のために磁気記録媒体から試料粉末を採取する方法としては、例えば特開2011-048878号公報の段落0015に記載の方法を採用することができる。
本発明および本明細書において、特記しない限り、粉末を構成する粒子のサイズ(粒子サイズ)は、上記の粒子写真において観察される粒子の形状が、
(1)針状、紡錘状、柱状(ただし、高さが底面の最大長径より大きい)等の場合は、粒子を構成する長軸の長さ、即ち長軸長で表され、
(2)板状または柱状(ただし、厚みまたは高さが板面または底面の最大長径より小さい)の場合は、その板面または底面の最大長径で表され、
(3)球形、多面体状、不定形等であって、かつ形状から粒子を構成する長軸を特定できない場合は、円相当径で表される。円相当径とは、円投影法で求められるものをいう。
また、粉末の平均針状比は、上記測定において粒子の短軸の長さ、即ち短軸長を測定し、各粒子の(長軸長/短軸長)の値を求め、上記500個の粒子について得た値の算術平均を指す。ここで、特記しない限り、短軸長とは、上記粒子サイズの定義で(1)の場合は、粒子を構成する短軸の長さを、同じく(2)の場合は、厚みまたは高さを各々指し、(3)の場合は、長軸と短軸の区別がないから、(長軸長/短軸長)は、便宜上1とみなす。
そして、特記しない限り、粒子の形状が特定の場合、例えば、上記粒子サイズの定義(1)の場合、平均粒子サイズは平均長軸長であり、同定義(2)の場合、平均粒子サイズは平均板径である。同定義(3)の場合、平均粒子サイズは、平均直径(平均粒径、平均粒子径ともいう)である。
磁性層における強磁性粉末の含有率(充填率)は、磁性層の全質量に対して、好ましくは50~90質量%の範囲であり、より好ましくは60~90質量%の範囲である。磁性層において強磁性粉末の充填率が高いことは、記録密度向上の観点から好ましい。
<<結合剤>>
上記磁気記録媒体は、塗布型磁気記録媒体であることができ、磁性層に結合剤を含むことができる。結合剤とは、1種以上の樹脂である。結合剤としては、塗布型磁気記録媒体の結合剤として通常使用される各種樹脂を用いることができる。例えば、結合剤としては、ポリウレタン樹脂、ポリエステル樹脂、ポリアミド樹脂、塩化ビニル樹脂、スチレン、アクリロニトリル、メチルメタクリレート等を共重合したアクリル樹脂、ニトロセルロース等のセルロース樹脂、エポキシ樹脂、フェノキシ樹脂、ポリビニルアセタール、ポリビニルブチラール等のポリビニルアルキラール樹脂等から選ばれる樹脂を単独で用いるか、または複数の樹脂を混合して用いることができる。これらの中で好ましいものはポリウレタン樹脂、アクリル樹脂、セルロース樹脂、および塩化ビニル樹脂である。これらの樹脂は、ホモポリマーでもよく、コポリマー(共重合体)でもよい。これらの樹脂は、後述する非磁性層および/またはバックコート層においても結合剤として使用することができる。
以上の結合剤については、特開2010-24113号公報の段落0028~0031を参照できる。また、結合剤は、電子線硬化型樹脂等の放射線硬化型樹脂であってもよい。放射線硬化型樹脂については、特開2011-048878号公報の段落0044~0045を参照できる。結合剤として使用される樹脂の平均分子量は、重量平均分子量として、例えば10,000以上200,000以下であることができる。本発明および本明細書における重量平均分子量とは、ゲルパーミエーションクロマトグラフィー(GPC)によって、下記測定条件により測定された値をポリスチレン換算して求められる値である。後述の実施例に示す結合剤の重量平均分子量は、下記測定条件によって測定された値をポリスチレン換算して求めた値である。結合剤は、強磁性粉末100.0質量部に対して、例えば1.0~30.0質量部の量で使用することができる。
GPC装置:HLC-8120(東ソー社製)
カラム:TSK gel Multipore HXL-M(東ソー社製、7.8mmID(Inner Diameter)×30.0cm)
溶離液:テトラヒドロフラン(THF)
また、結合剤として使用可能な樹脂とともに硬化剤を使用することもできる。硬化剤は、一形態では加熱により硬化反応(架橋反応)が進行する化合物である熱硬化性化合物であることができ、他の一形態では光照射により硬化反応(架橋反応)が進行する光硬化性化合物であることができる。硬化剤は、磁性層形成工程の中で硬化反応が進行することにより、少なくとも一部は、結合剤等の他の成分と反応(架橋)した状態で磁性層に含まれ得る。この点は、他の層を形成するために用いられる組成物が硬化剤を含む場合に、この組成物を用いて形成される層についても同様である。好ましい硬化剤は、熱硬化性化合物であり、ポリイソシアネートが好適である。ポリイソシアネートの詳細については、特開2011-216149号公報の段落0124~0125を参照できる。硬化剤は、磁性層形成用組成物中に、結合剤100.0質量部に対して例えば0~80.0質量部、磁性層の強度向上の観点からは、好ましくは10.0~80.0質量部、より好ましくは50.0~80.0質量部の量で使用することができる。
以上の結合剤および硬化剤に関する記載は、非磁性層および/またはバックコート層についても適用することができる。その場合、含有量に関する上記記載は、強磁性粉末を非磁性粉末に読み替えて適用することができる。
<<添加剤>>
磁性層には、必要に応じて1種以上の添加剤が含まれていてもよい。添加剤としては、一例として、上記の硬化剤が挙げられる。また、磁性層に含まれる添加剤としては、非磁性粉末(例えば無機粉末、カーボンブラック等)、潤滑剤、分散剤、分散助剤、防黴剤、帯電防止剤、酸化防止剤等を挙げることができる。例えば、潤滑剤については、特開2016-126817号公報の段落0030~0033、0035および0036を参照できる。後述する非磁性層に潤滑剤が含まれていてもよい。非磁性層に含まれ得る潤滑剤については、特開2016-126817号公報の段落0030~0031、0034、0035および0036を参照できる。分散剤については、特開2012-133837号公報の段落0061および0071を参照できる。分散剤を非磁性層形成用組成物に添加してもよい。非磁性層形成用組成物に添加し得る分散剤については、特開2012-133837号公報の段落0061を参照できる。また、磁性層に含まれ得る非磁性粉末としては、研磨剤として機能することができる非磁性粉末、磁性層表面に適度に突出する突起を形成する突起形成剤として機能することができる非磁性粉末(例えば非磁性コロイド粒子等)等が挙げられる。なお、後述の実施例に示すコロイダルシリカ(シリカコロイド粒子)の平均粒子サイズは、特開2011-048878号公報の段落0015に平均粒径の測定方法として記載されている方法により求められた値である。添加剤は、所望の性質に応じて市販品を適宜選択して、または公知の方法で製造して、任意の量で使用することができる。研磨剤を含む磁性層に研磨剤の分散性を向上させるために使用され得る添加剤の一例としては、特開2013-131285号公報の段落0012~0022に記載の分散剤を挙げることができる。
以上説明した磁性層は、非磁性支持体表面上に直接、または非磁性層を介して間接的に、設けることができる。
<非磁性層>
非磁性層に使用される非磁性粉末は、無機物質の粉末でも有機物質の粉末でもよい。また、カーボンブラック等も使用できる。無機物質としては、例えば金属、金属酸化物、金属炭酸塩、金属硫酸塩、金属窒化物、金属炭化物、金属硫化物等が挙げられる。これらの非磁性粉末は、市販品として入手可能であり、公知の方法で製造することもできる。その詳細については、特開2011-216149号公報の段落0146~0150を参照できる。非磁性層に使用可能なカーボンブラックについては、特開2010-24113号公報の段落0040~0041も参照できる。非磁性層における非磁性粉末の含有率(充填率)は、非磁性層の全質量に対して、好ましくは50~90質量%の範囲であり、より好ましくは60~90質量%の範囲である。
非磁性層は、結合剤を含むことができ、添加剤を含むこともできる。非磁性層の結合剤、添加剤等のその他詳細については、非磁性層に関する公知技術を適用できる。また、例えば、結合剤の種類および含有量、添加剤の種類および含有量等に関しては、磁性層に関する公知技術も適用できる。
本発明および本明細書において、非磁性層には、非磁性粉末とともに、例えば不純物として、または意図的に、少量の強磁性粉末を含む実質的に非磁性な層も包含されるものとする。ここで実質的に非磁性な層とは、この層の残留磁束密度が10mT以下であるか、保磁力が7.96kA/m(100Oe)以下であるか、または、残留磁束密度が10mT以下であり、かつ保磁力が7.96kA/m(100Oe)以下である層をいうものとする。非磁性層は、残留磁束密度および保磁力を持たないことが好ましい。
<非磁性支持体>
次に、非磁性支持体について説明する。非磁性支持体(以下、単に「支持体」とも記載する。)としては、二軸延伸を行ったポリエチレンテレフタレート、ポリエチレンナフタレート、芳香族ポリアミド等のポリアミド、ポリアミドイミド等の公知のものが挙げられる。これらの中でもポリエチレンテレフタレート、ポリエチレンナフタレートおよびポリアミドが好ましい。これらの支持体には、あらかじめコロナ放電、プラズマ処理、易接着処理、熱処理等を行ってもよい。
<バックコート層>
上記磁気記録媒体は、一形態では、非磁性支持体の磁性層を有する表面側とは反対の表面側に非磁性粉末を含むバックコート層を有することができ、他の一形態では、バックコート層を有さないものであることができる。バックコート層には、カーボンブラックおよび無機粉末の一方または両方が含有されていることが好ましい。バックコート層は、結合剤を含むことができ、添加剤を含むこともできる。バックコート層の結合剤および添加剤については、バックコート層に関する公知技術を適用することができ、磁性層および/または非磁性層の処方に関する公知技術を適用することもできる。例えば、特開2006-331625号公報の段落0018~0020および米国特許第7,029,774号明細書の第4欄65行目~第5欄38行目の記載を、バックコート層について参照できる。
<各種厚み>
非磁性支持体の厚みは、好ましくは3.0~6.0μmである。
磁性層の厚みは、近年求められている高密度記録化の観点からは200nm以下であることが好ましく、8~200nmの範囲であることがより好ましく、10~200nmの範囲であることが更に好ましい。磁性層は少なくとも1層あればよく、磁性層を異なる磁気特性を有する2層以上に分離してもかまわず、公知の重層磁性層に関する構成が適用できる。2層以上に分離する場合の磁性層の厚みとは、これらの層の合計厚みである。
非磁性層の厚みは、例えば0.1~1.5μmであり、0.1~1.0μmであることが好ましい。
バックコート層の厚みは、0.9μm以下であることが好ましく、0.1~0.7μmであることがより好ましい。
磁気記録媒体の各層および非磁性支持体の厚みは、公知の膜厚測定法により求めることができる。一例として、例えば、磁気記録媒体の厚み方向の断面を、イオンビーム、ミクロトーム等の公知の手法により露出させた後、露出した断面において透過型電子顕微鏡または走査型電子顕微鏡を用いて断面観察を行う。断面観察において1箇所において求められた厚み、または無作為に選択した2箇所以上の複数箇所において求められた厚みの算術平均として、各種厚みを求めることができる。または、各層の厚みは、製造条件から算出される設計厚みとして求めてもよい。
<製造工程>
磁性層、非磁性層またはバックコート層を形成するための組成物を調製する工程は、通常、少なくとも混練工程、分散工程、およびこれらの工程の前後に必要に応じて設けた混合工程を含むことができる。個々の工程はそれぞれ二段階以上に分かれていてもかまわない。各層形成用組成物の調製に用いられる成分は、どの工程の最初または途中で添加してもかまわない。溶媒としては、塗布型磁気記録媒体の製造に通常用いられる各種溶媒の1種または2種以上を用いることができる。溶媒については、例えば特開2011-216149号公報の段落0153を参照できる。また、個々の成分を2つ以上の工程で分割して添加することもできる。上記磁気記録媒体を製造するためには、従来の公知の製造技術を各種工程において用いることができる。混練工程ではオープンニーダ、連続ニーダ、加圧ニーダ、エクストルーダ等の強い混練力をもつものを使用することが好ましい。これらの混練処理の詳細については特開平1-106338号公報および特開平1-79274号公報を参照できる。分散機は公知のものを使用することができる。各層形成用組成物を、塗布工程に付す前に公知の方法によってろ過してもよい。ろ過は、例えばフィルタろ過によって行うことができる。ろ過に用いるフィルタとしては、例えば孔径0.01~3μmのフィルタ(例えばガラス繊維製フィルタ、ポリプロピレン製フィルタ等)を用いることができる。
磁性層は、磁性層形成用組成物を、非磁性支持体上に直接塗布するか、または非磁性層形成用組成物と逐次もしくは同時に重層塗布することにより形成することができる。各層形成のための塗布の詳細については、特開2010-231843号公報の段落0066を参照できる。
塗布工程後には、乾燥処理、磁性層の配向処理、表面平滑化処理(カレンダ処理)等の各種処理を行うことができる。各種処理については、例えば特開2010-24113号公報の段落0052~0057等の公知技術を参照できる。例えば、磁性層形成用組成物の塗布層には、この塗布層が湿潤状態にあるうちに配向処理を施すことができる。配向処理については、特開2010-231843号公報の段落0067の記載をはじめとする各種公知技術を適用することができる。例えば、垂直配向処理は、異極対向磁石を用いる方法等の公知の方法によって行うことができる。配向ゾーンでは、乾燥風の温度、風量および/または配向ゾーンにおける上記塗布層を形成した非磁性支持体の搬送速度によって塗布層の乾燥速度を制御することができる。また、配向ゾーンに搬送する前に塗布層を予備乾燥させてもよい。
比率(Hr(45°)/Hr(0°))の制御に関して、垂直配向処理後、磁性層形成用組成物の塗布層が湿潤状態にあるうちに交流磁界印加処理を行うことを、比率(Hr(45°)/Hr(0°))の制御方法の一例として挙げることができる。交流磁界の印加は、磁性層形成用組成物の塗布層に対して、最終的に形成される磁性層において面内方向となる方向に印加することが好ましい。このように垂直配向処理後に交流磁界印加処理を行うことによって比率(Hr(45°)/Hr(0°))を制御できる理由について、本発明者は以下のように推察している。なお、以下に記載の配向方向に関して、「垂直」とは、必ずしも厳密な意味の垂直のみを意味するものではなく、本発明が属する技術分野において許容される誤差の範囲を含むものとする。誤差の範囲とは、例えば、厳密な垂直±10°未満の範囲を意味することができる。この点は、「水平」についても同様である。
垂直配向処理を施すことによって、磁性層形成用組成物の塗布層(以下、単に「塗布層」とも記載する。)において、ε-酸化鉄粉末を構成する様々なサイズの粒子を塗布層表面に対して垂直方向に配向させることができる。その後、最終的に形成される磁性層において面内方向となる方向に交流磁界を印加すると、塗布層に含まれるε-酸化鉄粉末の様々なサイズの粒子の中で、サイズが比較的小さい粒子を選択的に塗布層表面に対して水平方向(最終的に形成される磁性層において面内方向となる方向)に配向させることができると推察される。そのように推察される理由は、サイズが小さい粒子は異方性磁界Hkが低い低Hk粒子であるため交流磁界の印加によって磁化反転し易いのに対し、サイズが大きい粒子は異方性磁界Hkが高い高Hk粒子であるため磁化反転し難いからである。そのため、垂直配向処理および交流磁界印加処理が施された塗布層を乾燥させて形成された磁性層では、ε-酸化鉄粉末の様々なサイズの粒子の中で、データの記録に主に関与する高Hk粒子は垂直方向に配向した状態にあり、低Hk粒子は面内方向に配向した状態にある。かかる状態のε-酸化鉄粉末を含む磁性層に対して面内記録方式でデータを記録するために記録磁界を印加すると、面内方向に配向した低Hk粒子が、垂直方向に配向した高Hk粒子の磁化反転をアシストする役割を果たすことができ、その結果、データの記録に主に関与する高Hk粒子の磁化反転を生じさせ易くすることができると考えられる。低Hk粒子が、面内記録方式でのデータの記録のために斜め方向から磁性層に入射する記録磁界の入射方向に対して傾いた方向に配向していることが、低Hk粒子が高Hk粒子の磁化反転をアシストできる理由と推察される。そして低Hk粒子によって高Hk粒子の磁化反転がより強くアシストされるほど、比率(Hr(45°)/Hr(0°))の値は小さくなると考えられる。例えば、印加する交流磁界の磁界強度を高めるほど、Hr(45°)の値を小さくすることができ、その結果、比率(Hr(45°)/Hr(0°))の値を小さくすることができる。交流磁界の磁界強度は、例えば150Oe以上700Oeの範囲とすることができる。また、交流磁界の周波数は、例えば20Hz以上200Hz以下とすることができる。
本発明の一態様にかかる磁気記録媒体は、テープ状の磁気記録媒体(磁気テープ)であることができ、ディスク状の磁気記録媒体(磁気ディスク)であることもできる。例えば磁気テープは、通常、磁気テープカートリッジに収容され、磁気テープカートリッジが磁気記録再生装置に装着される。磁気記録媒体には、磁気記録再生装置においてヘッドトラッキングを行うことを可能とするために、公知の方法によってサーボパターンを形成することもできる。「サーボパターンの形成」は、「サーボ信号の記録」ということもできる。以下に、磁気テープを例として、サーボパターンの形成について説明する。
サーボパターンは、通常、磁気テープの長手方向に沿って形成される。サーボ信号を利用する制御(サーボ制御)の方式としては、タイミングベースサーボ(TBS)、アンプリチュードサーボ、周波数サーボ等が挙げられる。
ECMA(European Computer Manufacturers Association)―319(June 2001)に示される通り、LTO(Linear Tape-Open)規格に準拠した磁気テープ(一般に「LTOテープ」と呼ばれる。)では、タイミングベースサーボ方式が採用されている。このタイミングベースサーボ方式において、サーボパターンは、互いに非平行な一対の磁気ストライプ(「サーボストライプ」とも呼ばれる。)が、磁気テープの長手方向に連続的に複数配置されることによって構成されている。上記のように、サーボパターンが互いに非平行な一対の磁気ストライプにより構成される理由は、サーボパターン上を通過するサーボ信号読み取り素子に、その通過位置を教えるためである。具体的には、上記の一対の磁気ストライプは、その間隔が磁気テープの幅方向に沿って連続的に変化するように形成されており、サーボ信号読み取り素子がその間隔を読み取ることによって、サーボパターンとサーボ信号読み取り素子との相対位置を知ることができる。この相対位置の情報が、データトラックのトラッキングを可能にする。そのために、サーボパターン上には、通常、磁気テープの幅方向に沿って、複数のサーボトラックが設定されている。
サーボバンドは、磁気テープの長手方向に連続するサーボ信号により構成される。このサーボバンドは、通常、磁気テープに複数本設けられる。例えば、LTOテープにおいて、その数は5本である。隣接する2本のサーボバンドに挟まれた領域は、データバンドと呼ばれる。データバンドは、複数のデータトラックで構成されており、各データトラックは、各サーボトラックに対応している。
また、一形態では、特開2004-318983号公報に示されているように、各サーボバンドには、サーボバンドの番号を示す情報(「サーボバンドID(identification)」または「UDIM(Unique DataBand Identification Method)情報」とも呼ばれる。)が埋め込まれている。このサーボバンドIDは、サーボバンド中に複数ある一対のサーボストライプのうちの特定のものを、その位置が磁気テープの長手方向に相対的に変位するように、ずらすことによって記録されている。具体的には、複数ある一対のサーボストライプのうちの特定のもののずらし方を、サーボバンド毎に変えている。これにより、記録されたサーボバンドIDはサーボバンド毎にユニークなものとなるため、一つのサーボバンドをサーボ信号読み取り素子で読み取るだけで、そのサーボバンドを一意に(uniquely)特定することができる。
なお、サーボバンドを一意に特定する方法には、ECMA―319(June 2001)に示されているようなスタッガード方式を用いたものもある。このスタッガード方式では、磁気テープの長手方向に連続的に複数配置された、互いに非平行な一対の磁気ストライプ(サーボストライプ)の群を、サーボバンド毎に磁気テープの長手方向にずらすように記録する。隣接するサーボバンド間における、このずらし方の組み合わせは、磁気テープ全体においてユニークなものとされているため、2つのサーボ信号読み取り素子によりサーボパターンを読み取る際に、サーボバンドを一意に特定することも可能となっている。
また、各サーボバンドには、ECMA―319(June 2001)に示されている通り、通常、磁気テープの長手方向の位置を示す情報(「LPOS(Longitudinal Position)情報」とも呼ばれる。)も埋め込まれている。このLPOS情報も、UDIM情報と同様に、一対のサーボストライプの位置を、磁気テープの長手方向にずらすことによって記録されている。ただし、UDIM情報とは異なり、このLPOS情報では、各サーボバンドに同じ信号が記録されている。
上記のUDIM情報およびLPOS情報とは異なる他の情報を、サーボバンドに埋め込むことも可能である。この場合、埋め込まれる情報は、UDIM情報のようにサーボバンド毎に異なるものであってもよいし、LPOS情報のようにすべてのサーボバンドに共通のものであってもよい。
また、サーボバンドに情報を埋め込む方法としては、上記以外の方法を採用することも可能である。例えば、一対のサーボストライプの群の中から、所定の対を間引くことによって、所定のコードを記録するようにしてもよい。
サーボパターン形成用ヘッドは、サーボライトヘッドと呼ばれる。サーボライトヘッドは、上記一対の磁気ストライプに対応した一対のギャップを、サーボバンドの数だけ有する。通常、各一対のギャップには、それぞれコアとコイルが接続されており、コイルに電流パルスを供給することによって、コアに発生した磁界が、一対のギャップに漏れ磁界を生じさせることができる。サーボパターンの形成の際には、サーボライトヘッド上に磁気テープを走行させながら電流パルスを入力することによって、一対のギャップに対応した磁気パターンを磁気テープに転写させて、サーボパターンを形成することができる。各ギャップの幅は、形成されるサーボパターンの密度に応じて適宜設定することができる。各ギャップの幅は、例えば、1μm以下、1~10μm、10μm以上等に設定可能である。
磁気テープにサーボパターンを形成する前には、磁気テープに対して、通常、消磁(イレース)処理が施される。このイレース処理は、直流磁石または交流磁石を用いて、磁気テープに一様な磁界を加えることによって行うことができる。イレース処理には、DC(Direct Current)イレースとAC(Alternating Current)イレースとがある。ACイレースは、磁気テープに印加する磁界の方向を反転させながら、その磁界の強度を徐々に下げることによって行われる。一方、DCイレースは、磁気テープに一方向の磁界を加えることによって行われる。DCイレースには、更に2つの方法がある。第一の方法は、磁気テープの長手方向に沿って一方向の磁界を加える、水平DCイレースである。第二の方法は、磁気テープの厚み方向に沿って一方向の磁界を加える、垂直DCイレースである。イレース処理は、磁気テープ全体に対して行ってもよいし、磁気テープのサーボバンド毎に行ってもよい。
形成されるサーボパターンの磁界の向きは、イレースの向きに応じて決まる。例えば、磁気テープに水平DCイレースが施されている場合、サーボパターンの形成は、磁界の向きがイレースの向きと反対になるように行われる。これにより、サーボパターンが読み取られて得られるサーボ信号の出力を、大きくすることができる。なお、特開2012-53940号公報に示されている通り、垂直DCイレースされた磁気テープに、上記ギャップを用いた磁気パターンの転写を行った場合、形成されたサーボパターンが読み取られて得られるサーボ信号は、単極パルス形状となる。一方、水平DCイレースされた磁気テープに、上記ギャップを用いた磁気パターンの転写を行った場合、形成されたサーボパターンが読み取られて得られるサーボ信号は、双極パルス形状となる。
磁気テープは、例えば、磁気テープカートリッジに収容され、磁気テープカートリッジが磁気記録再生装置に装着される。
上記磁気記録媒体は、面内記録方式で記録されたデータを再生する際に優れた電磁変換特性を示すことができるため、面内記録用磁気記録媒体として好適である。ただし、上記磁気記録媒体に垂直記録方式によって磁気記録が行われることが排除されるものではない。
[磁気テープカートリッジ]
本発明の一態様は、テープ状の上記磁気記録媒体(即ち磁気テープ)を含む磁気テープカートリッジに関する。
上記磁気テープカートリッジに含まれる磁気テープの詳細は、先に記載した通りである。
磁気テープカートリッジでは、一般に、カートリッジ本体内部に磁気テープがリールに巻き取られた状態で収容されている。リールは、カートリッジ本体内部に回転可能に備えられている。磁気テープカートリッジとしては、カートリッジ本体内部にリールを1つ具備する単リール型の磁気テープカートリッジおよびカートリッジ本体内部にリールを2つ具備する双リール型の磁気テープカートリッジが広く用いられている。単リール型の磁気テープカートリッジは、磁気テープへのデータの記録および/または再生のために磁気記録再生装置に装着されると、磁気テープカートリッジから磁気テープが引き出されて磁気記録再生装置側のリールに巻き取られる。磁気テープカートリッジから巻き取りリールまでの磁気テープ搬送経路には、磁気ヘッドが配置されている。磁気テープカートリッジ側のリール(供給リール)と磁気記録再生装置側のリール(巻き取りリール)との間で、磁気テープの送り出しと巻き取りが行われる。この間、磁気ヘッドと磁気テープの磁性層側の表面とが接触し摺動することにより、データの記録および/または再生が行われる。これに対し、双リール型の磁気テープカートリッジは、供給リールと巻き取りリールの両リールが、磁気テープカートリッジ内部に具備されている。上記磁気テープカートリッジは、単リール型および双リール型のいずれの磁気テープカートリッジであってもよい。上記磁気テープカートリッジは、本発明の一態様にかかる磁気テープを含むものであればよく、その他については公知技術を適用することができる。磁気テープカートリッジに収容される磁気テープの全長は、例えば800m以上であることができ、800m~2000m程度の範囲であることもできる。磁気テープカートリッジに収容されるテープ全長が長いことは、磁気テープカートリッジの高容量化の観点から好ましい。
[磁気記録再生装置]
本発明の一態様は、上記磁気記録媒体を含む磁気記録再生装置に関する。
本発明および本明細書において、「磁気記録再生装置」とは、磁気記録媒体へのデータの記録および磁気記録媒体に記録されたデータの再生の少なくとも一方を行うことができる装置を意味するものとする。かかる装置は、一般にドライブと呼ばれる。上記磁気記録再生装置は、例えば、摺動型の磁気記録再生装置であることができる。摺動型の磁気記録再生装置とは、磁気記録媒体へのデータの記録および/または記録されたデータの再生を行う際に磁性層側の表面と磁気ヘッドとが接触し摺動する装置をいう。例えば、上記磁気記録再生装置は、上記磁気テープカートリッジを着脱可能に含むことができる。
上記磁気記録再生装置は磁気ヘッドを含むことができる。磁気ヘッドは、磁気テープへのデータの記録を行うことができる記録ヘッドであることができ、磁気テープに記録されたデータの再生を行うことができる再生ヘッドであることもできる。また、上記磁気記録再生装置は、一形態では、別々の磁気ヘッドとして、記録ヘッドと再生ヘッドの両方を含むことができる。他の一形態では、上記磁気記録再生装置に含まれる磁気ヘッドは、データの記録のための素子(記録素子)とデータの再生のための素子(再生素子)の両方を1つの磁気ヘッドに備えた構成を有することもできる。
記録ヘッドは、面内記録用磁気ヘッドまたは垂直記録用磁気ヘッドであることができる。面内記録用磁気ヘッドおよび垂直記録用磁気ヘッドについては、それらヘッドに関する公知技術を適用できる。上記磁気記録媒体は、面内記録方式で記録されたデータを再生する際、優れた電磁変換特性を発揮することができる。したがって、上記磁気記録再生装置に含まれる記録ヘッドは、面内記録用磁気ヘッドであることが好ましい。
再生ヘッドとしては、磁気テープに記録されたデータを感度よく読み取ることができる磁気抵抗効果型(MR:Magnetoresistive)素子を再生素子として含む磁気ヘッド(MRヘッド)が好ましい。MRヘッドとしては、AMR(Anisotropic Magnetoresistive)ヘッド、GMR(Giant Magnetoresistive)ヘッド、TMR(Tunnel Magnetoresistive)ヘッド等の公知の各種MRヘッドを用いることができる。また、データの記録および/またはデータの再生を行う磁気ヘッドには、サーボ信号読み取り素子が含まれていてもよい。または、データの記録および/またはデータの再生を行う磁気ヘッドとは別のヘッドとして、サーボ信号読み取り素子を備えた磁気ヘッド(サーボヘッド)が上記磁気記録再生装置に含まれていてもよい。例えば、データの記録および/または記録されたデータの再生を行う磁気ヘッド(以下、「記録再生ヘッド」とも呼ぶ。)は、サーボ信号読み取り素子を2つ含むことができ、2つのサーボ信号読み取り素子のそれぞれが、隣接する2つのサーボバンドを同時に読み取ることができる。2つのサーボ信号読み取り素子の間に、1つまたは複数のデータ用素子を配置することができる。データの記録のための素子および再生のための素子を、「データ用素子」と総称する。
上記磁気記録再生装置において、磁気記録媒体へのデータの記録および/または磁気記録媒体に記録されたデータの再生は、例えば、磁気記録媒体の磁性層表面と磁気ヘッドとを接触させて摺動させることにより行うことができる。上記磁気記録再生装置は、本発明の一態様にかかる磁気記録媒体を含むものであればよく、その他については公知技術を適用することができる。
例えば、データの記録および/または記録されたデータの再生の際には、まず、サーボ信号を用いたトラッキングが行われる。即ち、サーボ信号読み取り素子を所定のサーボトラックに追従させることによって、データ用素子が、目的とするデータトラック上を通過するように制御される。データトラックの移動は、サーボ信号読み取り素子が読み取るサーボトラックを、テープ幅方向に変更することにより行われる。
また、記録再生ヘッドは、他のデータバンドに対する記録および/または再生を行うことも可能である。その際には、先に記載したUDIM情報を利用してサーボ信号読み取り素子を所定のサーボバンドに移動させ、そのサーボバンドに対するトラッキングを開始すればよい。
以下に、本発明を実施例に基づき説明する。ただし、本発明は実施例に示す実施形態に限定されるものではない。以下に記載の「部」、「%」は、特に断らない限り、「質量部」、「質量%」を示す。「eq」は、当量(equivalent)であり、SI単位に換算不可の単位である。また、以下に記載の工程および評価は、特記しない限り、雰囲気温度23℃±1℃の環境において行った。
[ε-酸化鉄粉末No.1~No.6の作製]
純水90gに、硝酸鉄(III)9水和物(添加量:表1中、「硝酸Fe量」)、硝酸ガリウム(III)8水和物(添加量:表1中、「硝酸Ga量」)または硝酸アルミニウム(III)9水和物(添加量:表1中、「硝酸Al量」)、硝酸コバルト(II)6水和物(添加量:表1中、「硝酸Co量」)、硫酸チタン(IV)(添加量:表1中「硫酸Ti量」)、およびポリビニルピロリドン(PVP)16.7gを溶解させたものを、マグネチックスターラーを用いて撹拌しながら、大気雰囲気中、雰囲気温度25℃の条件下で、濃度25%のアンモニア水溶液44.0gを添加し、雰囲気温度25℃の温度条件のまま2時間撹拌した。得られた溶液に、クエン酸11gを純水100gに溶解させて得たクエン酸水溶液を加え、1時間撹拌した。撹拌後に沈殿した粉末を遠心分離によって採集し、純水で洗浄し、炉内温度80℃の加熱炉内で乾燥させた。
乾燥させた粉末に純水8900gを加えて再度粉末を水に分散させて分散液を得た。得られた分散液を液温50℃に昇温し、撹拌しながら濃度25%アンモニア水溶液を440g滴下した。50℃の温度を保ったまま1時間撹拌した後、テトラエトキシシラン(TEOS)160mLを滴下し、24時間撹拌した。得られた反応溶液に、硫酸アンモニウム500gを加え、沈殿した粉末を遠心分離によって採集し、純水で洗浄し、炉内温度80℃の加熱炉内で24時間乾燥させ、強磁性粉末の前駆体を得た。
得られた強磁性粉末の前駆体を、大気雰囲気下、表1に記載の炉内温度(表1中、「熱処理温度」)の加熱炉内に装填し、4時間の熱処理を施した。
熱処理後の粉末を、4mol/Lの水酸化ナトリウム(NaOH)水溶液中に投入し、液温を75℃に維持して24時間撹拌して、被膜除去工程を実施した。
その後、遠心分離処理により、被膜除去処理が施された強磁性粉末を採集し、純水で洗浄を行い、炉内温度95℃の加熱炉内で乾燥させた。
上記乾燥後に得られた強磁性粉末について、高周波誘導結合プラズマ発光分光分析(ICP-OES:Inductively Coupled Plasma-Optical Emission Spectrometry)を行い組成を確認したところ、表1に示す組成を有する置換型ε-酸化鉄であることが確認された。組成について表1に記載の値は、組成式:A Fe(2-x-y-z)における各元素の数(x、y、z、(2-x-y-z))である。また、CuKα線を電圧45kVかつ強度40mAの条件で走査し、下記条件でX線回折パターンを測定し(X線回折分析)、X線回折パターンのピークから、得られた強磁性粉末が、いずれもα相およびγ相の結晶構造を含まない、ε相の単相の結晶構造(ε-酸化鉄の結晶構造)を有することを確認した。
PANalytical X’Pert Pro回折計、PIXcel検出器
入射ビームおよび回折ビームのSollerスリット:0.017ラジアン
分散スリットの固定角:1/4度
マスク:10mm
散乱防止スリット:1/4度
測定モード:連続
1段階あたりの測定時間:3秒
測定速度:毎秒0.017度
測定ステップ:0.05度
上記強磁性粉末の平均粒子サイズを、透過型電子顕微鏡として日立製透過型電子顕微鏡H-9000型を使用し、画像解析ソフトとしてカールツァイス製画像解析ソフトKS-400を使用して、先に記載の方法によって求めた。求められた平均粒子サイズを表1に示す。
[実施例1]
<磁性層形成用組成物>
(磁性液)
ε-酸化鉄粉末(表1参照):100.0部
スルホン酸基含有ポリウレタン樹脂:15.0部
シクロヘキサノン:150.0部
メチルエチルケトン:150.0部
(研磨剤液)
α-アルミナ(平均粒子サイズ:110nm):9.0部
塩化ビニル共重合体(カネカ社製MR110):0.7部
シクロヘキサノン:20.0部
(突起形成剤液)
コロイダルシリカ(平均粒子サイズ100nm):1.3部
メチルエチルケトン:9.0部
シクロヘキサノン:6.0部
(その他の成分)
ブチルステアレート:1.0部
ステアリン酸:1.0部
ポリイソシアネート(東ソー社製コロネート):2.5部
(仕上げ添加溶媒)
シクロヘキサノン:180.0部
メチルエチルケトン:180.0部
<非磁性層形成用組成物>
非磁性無機粉末(α-酸化鉄):80.0部
(平均粒子サイズ:0.15μm、平均針状比:7、BET(Brunauer-Emmett-Teller)比表面積:52m/g)
カーボンブラック(平均粒子サイズ:20nm):20.0部
電子線硬化型塩化ビニル共重合体:13.0部
電子線硬化型ポリウレタン樹脂:6.0部
フェニルホスホン酸:3.0部
シクロヘキサノン:140.0部
メチルエチルケトン:170.0部
ブチルステアレート:4.0部
ステアリン酸:1.0部
<バックコート層形成用組成物>
非磁性無機粉末(α-酸化鉄):80.0部
(平均粒子サイズ:0.15μm、平均針状比:7、BET比表面積:52m/g)
カーボンブラック(平均粒子サイズ:20nm):20.0部
カーボンブラック(平均粒子サイズ:100nm):3.0部
塩化ビニル共重合体:13.0部
スルホン酸基含有ポリウレタン樹脂:6.0部
フェニルホスホン酸:3.0部
シクロヘキサノン:140.0部
メチルエチルケトン:170.0部
ステアリン酸:3.0部
ポリイソシアネート(東ソー社製コロネート):5.0部
メチルエチルケトン:400.0部
<各層形成用組成物の調製>
磁性層形成用組成物を、以下の方法によって調製した。
上記磁性液の各種成分を分散させて磁性液を調製した。分散処理は、バッチ式縦型サンドミルを用い、分散ビーズとしてはジルコニアビーズを使用した。
上記研磨剤液の各種成分を混合した後、ビーズ径1mmのジルコニアビーズとともに縦型サンドミル分散機に入れ、研磨剤液体積とビーズ体積との合計に対するビーズ体積の割合が60%になるように調整し、180分間サンドミル分散処理を行った。サンドミル分散処理後の液を取り出し、フロー式の超音波分散ろ過装置を用いて、超音波分散ろ過処理を施すことにより、研磨剤液を調製した。
磁性液、突起形成剤液、研磨剤液、その他の成分および仕上げ添加溶媒をディゾルバー撹拌機に導入し、周速10m/秒で30分間撹拌した。その後、フロー式超音波分散機により流量7.5kg/分で、パス回数2回で処理を行った後に、1.0μmの孔径のフィルタで1回ろ過して磁性層形成用組成物を調製した。
非磁性層形成用組成物を、以下の方法によって調製した。
潤滑剤(ブチルステアレートおよびステアリン酸)を除く上記成分をオープンニーダにより混練および希釈処理した後、横型ビーズミル分散機により分散処理を実施した。その後、潤滑剤(ブチルステアレートおよびステアリン酸)を添加して、ディゾルバー撹拌機にて撹拌および混合処理を施して非磁性層形成用組成物を調製した。
バックコート層形成用組成物を、以下の方法によって調製した。
潤滑剤(ステアリン酸)、ポリイソシアネートおよびメチルエチルケトン(400.0部)を除く上記成分をオープンニーダにより混練および希釈処理した後、横型ビーズミル分散機により分散処理を実施した。その後、潤滑剤(ステアリン酸)、ポリイソシアネートおよびメチルエチルケトン(400.0部)を添加して、ディゾルバー撹拌機にて撹拌および混合処理を施し、バックコート層形成用組成物を調製した。
<磁気テープの作製>
厚み5.0μmの二軸延伸ポリエチレンナフタレート製支持体の表面上に、乾燥後の厚みが1.0μmになるように非磁性層形成用組成物を塗布し乾燥させた後、125kVの加速電圧で40kGyのエネルギーとなるように電子線を照射して非磁性層を形成した。
形成した非磁性層上に、乾燥後の厚みが50nmになるように磁性層形成用組成物を塗布して塗布層を形成した。この塗布層が湿潤状態にあるうちに、配向ゾーンにおいて永久磁石を用いて磁界強度0.6Tの磁界を上記塗布層の表面に対して垂直方向に印加し垂直配向処理を行った。その直後に、表1に記載の磁界強度で、周波数50Hzの交流磁界を、交流磁界印加装置を用いて上記塗布層の長手方向(詳しくは、最終的に形成される磁気テープにおいて長手方向となる方向)に印加した後、乾燥させて磁性層を形成した。
その後、上記支持体の非磁性層および磁性層を形成した表面とは反対の表面に乾燥後の厚みが0.5μmになるようにバックコート層形成用組成物を塗布し乾燥させてバックコート層を形成した。
その後、金属ロールのみから構成されるカレンダロールを用いて、カレンダ処理速度80m/分、線圧300kg/cm(294kN/m)、およびカレンダロールの表面温度110℃にて、表面平滑化処理(カレンダ処理)を行った。
その後、雰囲気温度70℃の環境で36時間熱処理を行った。熱処理後、1/2インチ(0.0127メートル)幅にスリットし、スリット品の送り出しおよび巻き取り装置を持った装置に不織布とカミソリブレードが磁性層表面に押し当たるように取り付けたテープクリーニング装置で磁性層の表面のクリーニングを行った後、磁気テープの磁性層を消磁した状態で、サーボライターに搭載されたサーボライトヘッドによって、LTO(Linear Tape-Open) Ultriumフォーマットにしたがう配置および形状のサーボパターンを磁性層に形成した。こうして、磁性層に、LTO Ultriumフォーマットにしたがう配置でデータバンド、サーボバンド、およびガイドバンドを有し、かつサーボバンド上にLTO Ultriumフォーマットにしたがう配置および形状のサーボパターンを有する磁気テープを得た。
[実施例2~9、比較例1、2]
表1に示す項目を表1に記載のように変更した点以外、実施例1について記載した方法によって磁気テープを作製した。
比較例1については、垂直配向処理後の交流磁界印加処理を行わなかったため、交流磁界の磁界強度の欄には「-」と表記した。
上記実施例および比較例について、それぞれ磁気テープを2つ作製し、1つをSNR(Signal-to-Noise Ratio)に関する評価のために使用し、もう1つをその他の評価のために使用した。
[物性評価方法]
<比率(Hr(45°)/Hr(0°))>
実施例および比較例の各磁気テープからHr(0°)測定用サンプル片およびHr(45°)測定用サンプル片を切り出した。切り出したサンプル片を用いて、先に記載した方法によって、Hr(0°)およびHr(45°)を測定した。測定により求められたHr(45°)をHr(0°)で除することによって、比率(Hr(45°)/Hr(0°))を算出した。
[性能評価方法]
<面内記録適性(SNR)>
雰囲気温度23℃±1℃かつ相対湿度50%の環境下にて、記録ヘッド(MIG(Metal-in-gap)ヘッド、ギャップ長0.15μm、1.8T)と再生用GMR(Giant Magnetoresistive)ヘッド(再生トラック幅1μm)をループテスターに取り付けて、線記録密度325kfciの信号を面内記録方式(先に記載したように磁化反転のために記録層に印加される記録磁界の向きを面内方向に対して水平になるように制御する記録方式)で記録し、その後、再生信号をアドバンテスト社製のスペクトラムアナライザーで測定した。なお、単位kfciは、線記録密度の単位(SI単位系に換算不可)である。キャリア信号の出力値と、スペクトル全帯域の積分ノイズと、の比をSNRとした。SNR測定のためには、磁気テープの走行を開始してから信号が十分に安定した部分の信号を使用した。こうして求められたSNRを、比較例1の値に対する相対値として表1に示す。
以上の結果を、表1(表1-1~表1-3)に示す。
Figure 2023049197000001
Figure 2023049197000002
Figure 2023049197000003
表1に示す結果から、実施例の磁気テープが、ε-酸化鉄粉末を含む磁性層を有する磁気テープであって、面内記録方式で記録されたデータを再生する際に優れた電磁変換特性(高SNR)を示す磁気テープであることが確認できる。
本発明の一態様は、データストレージ用途において有用である。

Claims (11)

  1. 非磁性支持体と、強磁性粉末を含む磁性層と、を有する磁気記録媒体であって、
    前記強磁性粉末はε-酸化鉄粉末であり、
    Hr(0°)とHr(45°)との比率、Hr(45°)/Hr(0°)、が0.50以下であり、
    前記Hr(0°)は、前記磁気記録媒体の面内方向にパルス幅0.76msのパルス磁界を印加することによって求められる残留保磁力Hrであり、
    前記Hr(45°)は、前記磁気記録媒体の面内方向の角度を0°として、前記磁気記録媒体の垂直方向の角度を90°として、面内方向から垂直方向に向かって45°傾いた方向から入射させて前記磁気記録媒体にパルス幅0.76msのパルス磁界を印加することによって求められる残留保磁力Hrである、磁気記録媒体。
  2. 前記比率、Hr(45°)/Hr(0°)、が0.45以下である、請求項1に記載の磁気記録媒体。
  3. 前記比率、Hr(45°)/Hr(0°)、が0.40以下である、請求項1または2に記載の磁気記録媒体。
  4. 前記比率、Hr(45°)/Hr(0°)、が0.35以下である、請求項1~3のいずれか1項に記載の磁気記録媒体。
  5. 前記比率、Hr(45°)/Hr(0°)、が0.10以上0.35以下である、請求項1~4のいずれか1項に記載の磁気記録媒体。

  6. 前記ε-酸化鉄粉末は、コバルト元素と、ガリウム元素およびアルミニウム元素からなる群から選択される元素と、チタン元素と、を含む、請求項1~5のいずれか1項に記載の磁気記録媒体。
  7. 前記非磁性支持体と前記磁性層との間に、非磁性粉末を含む非磁性層を更に有する、請求項1~6のいずれか1項に記載の磁気記録媒体。
  8. 前記非磁性支持体の前記磁性層を有する表面側とは反対の表面側に、非磁性粉末を含むバックコート層を更に有する、請求項1~7のいずれか1項に記載の磁気記録媒体。
  9. 磁気テープである、請求項1~8のいずれか1項に記載の磁気記録媒体。
  10. 請求項9に記載の磁気テープを含む磁気テープカートリッジ。
  11. 請求項1~9のいずれか1項に記載の磁気記録媒体を含む磁気記録再生装置。
JP2021158800A 2021-09-29 2021-09-29 磁気記録媒体、磁気テープカートリッジおよび磁気記録再生装置 Pending JP2023049197A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021158800A JP2023049197A (ja) 2021-09-29 2021-09-29 磁気記録媒体、磁気テープカートリッジおよび磁気記録再生装置
US17/955,137 US20230100028A1 (en) 2021-09-29 2022-09-28 Magnetic recording medium, magnetic tape cartridge, and magnetic recording and reproducing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021158800A JP2023049197A (ja) 2021-09-29 2021-09-29 磁気記録媒体、磁気テープカートリッジおよび磁気記録再生装置

Publications (1)

Publication Number Publication Date
JP2023049197A true JP2023049197A (ja) 2023-04-10

Family

ID=85722208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021158800A Pending JP2023049197A (ja) 2021-09-29 2021-09-29 磁気記録媒体、磁気テープカートリッジおよび磁気記録再生装置

Country Status (2)

Country Link
US (1) US20230100028A1 (ja)
JP (1) JP2023049197A (ja)

Also Published As

Publication number Publication date
US20230100028A1 (en) 2023-03-30

Similar Documents

Publication Publication Date Title
JP7303769B2 (ja) 磁気テープ、磁気テープカートリッジおよび磁気記録再生装置
JP7106481B2 (ja) 磁気記録媒体および磁気記録再生装置
US20210287713A1 (en) Magnetic recording medium, magnetic tape cartridge, and magnetic recording and reproducing device
JP7271466B2 (ja) 磁気記録媒体、磁気テープカートリッジおよび磁気記録再生装置
JP7232207B2 (ja) 磁気記録媒体、磁気テープカートリッジおよび磁気記録再生装置
JP7249969B2 (ja) 磁気テープ、磁気テープカートリッジおよび磁気記録再生装置
JP7441963B2 (ja) 磁気記録媒体、磁気テープカートリッジおよび磁気記録再生装置
JP7303770B2 (ja) 磁気テープ、磁気テープカートリッジおよび磁気記録再生装置
JP7406648B2 (ja) 磁気記録媒体、磁気テープカートリッジおよび磁気記録再生装置
JP7406647B2 (ja) 磁気記録媒体、磁気テープカートリッジおよび磁気記録再生装置
JP7441964B2 (ja) 磁気記録媒体、磁気テープカートリッジおよび磁気記録再生装置
JP2023049197A (ja) 磁気記録媒体、磁気テープカートリッジおよび磁気記録再生装置
JP7303768B2 (ja) 磁気テープ、磁気テープカートリッジおよび磁気記録再生装置
JP2023049196A (ja) 磁気記録媒体、磁気テープカートリッジおよび磁気記録再生装置
JP7197440B2 (ja) 磁気記録媒体、磁気記録再生装置およびε-酸化鉄粉末
JP7277408B2 (ja) 磁気記録媒体、磁気テープカートリッジおよび磁気記録再生装置
JP7197442B2 (ja) 磁気記録媒体、磁気記録再生装置およびε-酸化鉄粉末
WO2022181703A1 (ja) 磁気記録媒体、磁気テープカートリッジおよび磁気記録再生装置
WO2022181704A1 (ja) 磁気記録媒体、磁気テープカートリッジおよび磁気記録再生装置
JP2023133919A (ja) 磁気記録媒体、磁気テープカートリッジおよび磁気記録再生装置
JP2023133920A (ja) 磁気記録媒体、磁気テープカートリッジおよび磁気記録再生装置
US20210287708A1 (en) Magnetic recording medium, magnetic tape cartridge, and magnetic recording and reproducing device
JP2021144777A (ja) 磁気記録媒体、磁気テープカートリッジおよび磁気記録再生装置