JP2023047171A - Method for joining pair of metal wires comprising platinum wire - Google Patents

Method for joining pair of metal wires comprising platinum wire Download PDF

Info

Publication number
JP2023047171A
JP2023047171A JP2021156123A JP2021156123A JP2023047171A JP 2023047171 A JP2023047171 A JP 2023047171A JP 2021156123 A JP2021156123 A JP 2021156123A JP 2021156123 A JP2021156123 A JP 2021156123A JP 2023047171 A JP2023047171 A JP 2023047171A
Authority
JP
Japan
Prior art keywords
platinum
heat
wire
wires
resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021156123A
Other languages
Japanese (ja)
Inventor
浩一 長谷川
Koichi Hasegawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishifuku Metal Industry Co Ltd
Original Assignee
Ishifuku Metal Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishifuku Metal Industry Co Ltd filed Critical Ishifuku Metal Industry Co Ltd
Priority to JP2021156123A priority Critical patent/JP2023047171A/en
Publication of JP2023047171A publication Critical patent/JP2023047171A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

To provide a method for joining heat-resistant platinum wires by welding while preventing their strength from deteriorating.SOLUTION: The present invention provides a method for joining a pair of metal wires that are a combination of platinum wires or a platinum wire and an alloy wire. At least one platinum wire of the pair of metal wires is a heat-resistant platinum wire comprising oxygen of 0.020-0.20 at% and nitrogen of less than 0.014 at% with the balance being platinum and unavoidable impurities. The end faces of the pair of two metal wires are butted against each other. While the butted end faces are pressurized, a current is flowed thereto for joining together.SELECTED DRAWING: Figure 2

Description

本発明は、耐熱特性に優れた白金材料、特に、高温で使用される熱電対、抵抗体等の構成材料として有用な耐熱白金線の接合方法に関する。 TECHNICAL FIELD The present invention relates to a platinum material excellent in heat resistance, and in particular to a method for joining a heat-resistant platinum wire useful as a constituent material for thermocouples, resistors, etc. used at high temperatures.

高温で使用される熱電対、抵抗体等の構成材料として、白金が広い産業分野で用いられている。例えば、白金系熱電対には、プラス極がPt-13wt%Rh合金、マイナス極が白金からなるR熱電対、プラス極がPt-10wt%Rh合金、マイナス極が白金からなるS熱電対がある。また耐酸化性等の観点から抵抗体にも白金が多く使用されている。 Platinum is used in a wide range of industrial fields as a constituent material for thermocouples, resistors, etc., which are used at high temperatures. For example, platinum-based thermocouples include the R thermocouple, which has a positive electrode made of Pt-13wt%Rh alloy and a negative electrode made of platinum, and the S thermocouple, which has a positive electrode made of Pt-10wt%Rh alloy and a negative electrode made of platinum. . In addition, from the viewpoint of oxidation resistance, etc., platinum is often used in resistors.

熱電対や抵抗体は、高温下で使用されるため、再結晶温度以上での使用により、結晶粒が成長し、線断面に対し1個の結晶粒の箇所が発生すると、粒界破断や、すべり面からの破壊が起こりやすくなる。
また熱電対では、Pt-Rh合金と白金との高温下での機械的強度の違いから、白金が先に断線する場合が多く、マイナス極である白金の断線により寿命が短くなる問題があった。
Thermocouples and resistors are used at high temperatures, so when they are used at temperatures above the recrystallization temperature, crystal grains grow, and if a single crystal grain occurs on the line cross section, grain boundary fracture, Fracture from the slip surface is more likely to occur.
In thermocouples, due to the difference in mechanical strength between the Pt-Rh alloy and platinum at high temperatures, the platinum wire often breaks first, and the wire breakage of the negative electrode, platinum, shortens the service life. .

熱電対の寿命向上を目的とした白金材料の強度向上のため、酸化物分散強化白金の技術が開発されている。特許文献1には、熱電対の寿命向上を目的とした白金線の強度向上のため、白金中にジルコニア酸化物を分散させる技術が記載されている。 In order to improve the strength of platinum materials for the purpose of extending the life of thermocouples, technology for oxide-dispersion-strengthened platinum has been developed. Patent Literature 1 describes a technique of dispersing zirconia oxide in platinum in order to improve the strength of a platinum wire for the purpose of improving the life of a thermocouple.

特許第5308499号Patent No. 5308499

一般的に、白金の高温下での強度を向上させるために他の金属元素またはその酸化物を添加すると起電力のずれが発生しやすくなるので、なるべくそれらの添加物は少ないほうが好ましい。そこで高温強度が白金より高く、かつ起電力のずれが少なくなる新規な耐熱白金が求められている。 In general, if other metal elements or their oxides are added to improve the strength of platinum at high temperatures, the electromotive force is likely to deviate. Therefore, there is a demand for a novel heat-resistant platinum that has higher high-temperature strength than platinum and less deviation in electromotive force.

また、線材で使用する場合、熱電対に代表されるように線材同士を接合して使用する場合が多い。しかしながら、例えば熱電対の場合、温度測定の対象によっては、接合箇所の形状をできるだけ小さくする必要がある。 In addition, when wire rods are used, wire rods are often joined together, as typified by thermocouples. However, in the case of thermocouples, for example, depending on the object of temperature measurement, it is necessary to minimize the shape of the junction.

接合箇所を小さくするには、溶接が好ましいが、酸水素バーナーで溶融し接合する方法では、強度が低下するため、できるだけ強度低下が起こらない溶接方法が求められている。
本発明の目的は、耐熱白金線の接合において、強度低下を抑制した溶接による接合方法を提供することである。
Welding is preferable for making joints smaller, but since the method of melting and joining with an oxyhydrogen burner reduces the strength, a welding method that minimizes the reduction in strength is desired.
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for joining heat-resistant platinum wires by welding in which reduction in strength is suppressed.

本発明者らは、白金粉末をあらかじめ水素を含む雰囲気中で熱処理し、粉末に吸着および/または吸蔵している窒素と酸素を除去し、その後酸素を含む雰囲気中で焼結を行うことで水素を除去し、白金粉末表面に酸素が所定量導入された焼結体が得られ、鍛造、伸線加工を行うことにより、耐熱白金を得た。 The present inventors heat-treated platinum powder in advance in an atmosphere containing hydrogen to remove nitrogen and oxygen adsorbed and/or occluded in the powder, and then sintered in an atmosphere containing oxygen. was removed to obtain a sintered body in which a predetermined amount of oxygen was introduced to the surface of the platinum powder, and heat-resistant platinum was obtained by forging and wire drawing.

上記に記載した方法により作製した白金線は、熱電対や抵抗線に使用する場合、PtRh合金等の線や、白金線同士、または溶解により作製した白金を接合して使用する場合がある。通常、線同士の接合は、酸水素バーナー等を使用した溶接が一般的であるが、焼結により寿命を向上させた白金線を接合する場合、溶接により接合すると接合箇所の強度が低下する問題があるため、以下の接合方法を検討した。 When the platinum wire produced by the method described above is used for a thermocouple or a resistance wire, it may be used by joining wires such as PtRh alloy, platinum wires to each other, or platinum produced by melting. Wires are generally joined together by welding using an oxyhydrogen burner, etc. However, when joining platinum wires whose service life has been improved by sintering, there is a problem that the strength of the joints decreases when joining by welding. Therefore, the following joining method was examined.

そして、本発明者らは、白金線同士、または白金線とPtRh合金等の合金線を組み合わせた金属線の対の接合方法であって、上記金属線の対のうち、すくなくとも一方の白金線が、酸素0.020~0.20at%、窒素0.014at%未満、残部が白金および不可避不純物である耐熱白金線であり、対をなす2つの金属線の端面を突き合わせ、突き合わせた面に、圧力を加えながら電流を流し、抵抗熱により突合せた面の近傍を溶融、圧力を加えることにより溶融部が外部に押し出され、押し出されずに線径内に残った溶融部を最小限にして線同士が接合する。これにより強度低下が抑えられ、上記課題が解決できることを見出し、本発明を完成させた。 The present inventors have also developed a method for joining a pair of metal wires in which platinum wires are combined or a platinum wire and an alloy wire such as a PtRh alloy are combined, wherein at least one platinum wire in the pair of metal wires is , Oxygen 0.020 to 0.20at%, Nitrogen less than 0.014at%, and the balance being platinum and unavoidable impurities. Then, the vicinity of the butted surfaces is melted by resistance heat, and the melted part is pushed out by applying pressure, and the wires are joined by minimizing the melted part that remains inside the wire diameter without being pushed out. As a result, the inventors have found that the reduction in strength can be suppressed and the above problems can be solved, and have completed the present invention.

すなわち、本発明は、
白金線同士、または白金線と合金線を組み合わせた金属線の対の接合方法であって、
上記金属線の対のうち、すくなくとも一方の白金線が、酸素0.020~0.20at%、窒素0.014at%未満、残部が白金および不可避不純物である耐熱白金線であり、
対をなす2つの金属線の端面を突き合わせ、
突き合わせた端面に、圧力を加えながら、電流を流して接合することを特徴とする金属線の対の接合方法である。
That is, the present invention
A method for joining a pair of metal wires combining platinum wires or a platinum wire and an alloy wire,
At least one platinum wire of the pair of metal wires is a heat-resistant platinum wire in which oxygen is 0.020 to 0.20 at%, nitrogen is less than 0.014 at%, and the balance is platinum and inevitable impurities,
The end faces of the two metal wires forming a pair are butted against each other,
This is a method for joining a pair of metal wires, characterized by applying pressure to the butted end faces and applying an electric current to join them.

上記構成の金属線の対において、前記の酸素0.020~0.20at%、窒素0.014at%未満、残部が白金および不可避不純物である耐熱白金線の白金の製造方法が、
白金粉末を容器に充填、900℃~1200℃、水素を含む雰囲気中で熱処理し、次いで1200℃~1500℃、酸素を含む雰囲気中で焼結、その焼結体を800℃~1100℃に加熱して熱間鍛造した後、伸線する工程を含むようにしてもよい。
In the pair of metal wires having the above configuration, the method for producing platinum of the heat-resistant platinum wire containing 0.020 to 0.20 at% oxygen, less than 0.014 at% nitrogen, and the balance being platinum and inevitable impurities,
Fill a container with platinum powder, heat-treat at 900°C to 1200°C in an atmosphere containing hydrogen, then sinter at 1200°C to 1500°C in an atmosphere containing oxygen, and heat the sintered body to 800°C to 1100°C. After hot forging, a step of wire drawing may be included.

本発明によれば、耐熱白金線の接合において、強度低下を抑制した溶接による接合方法を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, in joining of a heat-resistant platinum wire, the joining method by welding which suppressed strength reduction can be provided.

溶接前の試作した耐熱白金線(比較例2)の焼鈍後の組織写真である。It is a structure photograph after annealing of the heat-resistant platinum wire (comparative example 2) which was experimentally produced before welding. 実施例1の溶接部組織写真である。4 is a photograph of the weld structure of Example 1. FIG. 実施例2の溶接部組織写真である。4 is a photograph of a weld structure of Example 2. FIG. 比較例1の溶接部組織写真である。4 is a photograph of a welded portion structure of Comparative Example 1. FIG. 比較例3の溶接部組織写真である。10 is a photograph of the weld structure of Comparative Example 3. FIG. クリープ試験結果を示すグラフである。It is a graph which shows a creep test result.

以下、本発明の実施形態について具体的に説明する。 Hereinafter, embodiments of the present invention will be specifically described.

本発明は、白金線同士、または白金線と合金線を組み合わせた金属線の対の接合方法である。上記金属線の対のうち、すくなくとも一方の白金線は、酸素0.020~0.20at%、窒素0.014at%未満、残部が白金および不可避不純物である耐熱白金線である。 The present invention is a method for joining a pair of metal wires, which is a combination of platinum wires or a combination of a platinum wire and an alloy wire. At least one platinum wire of the pair of metal wires is a heat-resistant platinum wire containing 0.020 to 0.20 at% oxygen, less than 0.014 at% nitrogen, and the balance being platinum and unavoidable impurities.

、耐熱白金線の製造方法は例えば、以下の通りである。 For example, a method for manufacturing a heat-resistant platinum wire is as follows.

先ず、白金粉末を容器に充填し、900℃~1200℃、水素を含む雰囲気中で熱処理し、次いで1200℃~1500℃、酸素を含む雰囲気中で焼結し、その焼結体を800℃~1100℃に加熱して熱間鍛造した後、伸線および熱処理を繰返し耐熱白金線を作製する。 First, platinum powder is filled in a container, heat-treated at 900°C to 1200°C in an atmosphere containing hydrogen, then sintered at 1200°C to 1500°C in an atmosphere containing oxygen, and the sintered body is After heating to 1100°C and hot forging, wire drawing and heat treatment are repeated to produce a heat-resistant platinum wire.

上記製造方法により、酸素0.020~0.20at%、窒素0.014at%未満、残部が白金および不可避不純物であることを特徴とする耐熱白金線を製造することができる。 By the above production method, a heat-resistant platinum wire characterized by containing 0.020 to 0.20 at% oxygen, less than 0.014 at% nitrogen, and the balance being platinum and unavoidable impurities can be produced.

本発明は、対をなす2つの金属線の端面を突き合わせ、突き合わせた端面に、圧力を加えながら、電流を流して接合することを含む。 The present invention includes matching the end surfaces of two metal wires forming a pair, and applying pressure to the butted end surfaces and applying an electric current to join them.

金属対の組み合わせは、以下の通りである。
作製した耐熱白金線同士の組み合わせ、
耐熱白金線と溶解により作製した白金線の組み合わせ、
耐熱白金線と合金線の組みわせ、である。合金線としては例えば、Pt-13wt%Rh線等のPtRh合金線を使用することができる。
Combinations of metal pairs are as follows.
Combination of heat-resistant platinum wires produced,
A combination of a heat-resistant platinum wire and a platinum wire made by melting,
It is a combination of heat-resistant platinum wire and alloy wire. As the alloy wire, for example, a PtRh alloy wire such as a Pt-13wt%Rh wire can be used.

まず、対をなす2つの金属線(耐熱白金線とそれと接合される金属線)の端面を例えば金属線の中心軸に対して直角に切断する。 First, the end faces of two metal wires forming a pair (a heat-resistant platinum wire and a metal wire joined thereto) are cut perpendicular to the center axis of the metal wire, for example.

2本の金属線を溶接機のクランプ部に固定し、2本の金属線を突き合せ、加圧装置にて加圧する。 Two metal wires are fixed to the clamp part of the welding machine, and the two metal wires are butted against each other and pressed by a pressure device.

突き合わせた2本の金属線に通電し、抵抗によって起きる発熱(ジュール熱)を利用して溶接する。 Electricity is applied to two metal wires butted against each other, and welding is performed using heat generated by resistance (Joule heat).

溶接機の印加電力は交流と直流のいずれかを用いることができる。 Either alternating current or direct current can be used as the power applied to the welder.

たとえば、0.5KVA~2.5KVA/mm、(500~2500(W/mm))の交流電流を流すことができる。1.0KVA~2.0KVA/mmが好ましい。直流であれば、電圧と電流の積が、500~2500(W/mm)となる直流電流を流すことができる。たとえば、電圧が10Vの場合、電流は50~250A/mmとなる。 For example, an alternating current of 0.5 KVA to 2.5 KVA/mm 2 (500 to 2500 (W/mm 2 )) can be applied. 1.0 KVA to 2.0 KVA/mm 2 is preferred. In the case of direct current, a direct current with a product of voltage and current of 500 to 2500 (W/mm 2 ) can flow. For example, if the voltage is 10V, the current will be 50-250A/mm 2 .

また、圧力は、通電中、2本の金属線の端面が離れないような圧力であればよい。例えば、1~40kgf/mm、(10~400MPa)とすることができる。2~20kgf/mm、(20~200MPa)が好ましい。 Moreover, the pressure should be such that the end faces of the two metal wires are not separated during the current flow. For example, it can be 1 to 40 kgf/mm 2 (10 to 400 MPa). 2 to 20 kgf/mm 2 (20 to 200 MPa) is preferable.

また、以下の溶接態様を用いることもできる。まず溶接したい金属同士の端面に小さい力(1次圧力)をかけつつ、材料が十分溶けた時に瞬間的に強力なアップセット力(2次圧力)をかける2段式圧力(ダブルアップセット)をかける方法である。 Moreover, the following welding modes can also be used. First, while applying a small force (primary pressure) to the end faces of the metals to be welded, a two-stage pressure (double upset) is applied to momentarily apply a strong upset force (secondary pressure) when the material is sufficiently melted. It is a method of calling.

さらにまた、以下の溶接態様を用いることもできる。溶接したい金属同士の端面を突き合わせた状態で電流を流し、接触部が火花になって溶融飛散した後、接触面(溶接面)が十分加熱された状態で強い加圧力を与えて接合する方法である。 Furthermore, the following welding modes can also be used. A method in which a current is applied while the end surfaces of the metals to be welded are butted against each other, and after the contact area sparks and melts and scatters, the contact surface (welding surface) is sufficiently heated and a strong pressure is applied to join. be.

耐熱白金線の溶接強度の低下を抑制する機構について下記のように推定している。 The mechanism for suppressing the decrease in the welding strength of the heat-resistant platinum wire is presumed as follows.

作製した耐熱白金線は、高温条件下の使用において白金の粒成長が抑制され、粒界破断や、すべり面からの破壊が起こり難くなり、高温強度が向上する。
一方、耐熱白金線を酸水素バーナーを用いた方法等の溶接で接合すると、溶融部が溶解で作製した白金と特性的に差がなくなり強度が低下する。
しかしながら、耐熱白金線をその端面で突き合わせ、突き合わせた端面に、圧力を加えながら電流を流してその抵抗熱で溶接すると、抵抗熱により突合せた面の近傍を溶融、圧力を加えることにより溶融部が外部に押し出され、押し出されずに線径内に残った溶融部を最小限にして線同士が接合する。これにより、強度低下を抑えられる。また押し出された溶融白金は、接合部を覆うため、断面積が大きくなり、接合箇所の溶接強度の向上に寄与する。これらにより、通常の溶接と比較して、接合箇所の破断が起こり難くなり、強度の低下が抑制されたと考える。
The produced heat-resistant platinum wire has suppressed grain growth of platinum when used under high-temperature conditions, making it difficult for grain boundary rupture and fracture from slip surfaces to occur, and high-temperature strength is improved.
On the other hand, when a heat-resistant platinum wire is joined by welding such as a method using an oxyhydrogen burner, there is no difference in the characteristics of the molten part from platinum produced by melting, and the strength decreases.
However, when heat-resistant platinum wires are butted against each other at their end faces and an electric current is passed through the butted end faces while applying pressure to weld them by the resistance heat, the vicinity of the butted faces is melted by the resistance heat, and the melted part is formed by applying pressure. The wires are joined by minimizing the melted portion that is extruded to the outside and remains within the wire diameter without being extruded. As a result, a decrease in strength can be suppressed. In addition, since the extruded molten platinum covers the joint, the cross-sectional area increases, contributing to the improvement of the welding strength of the joint. As a result, it is believed that fractures at the joints are less likely to occur and the decrease in strength is suppressed compared to normal welding.

本発明を以下の実施例にて説明するが、実施の形態で限定されるものではない。 The present invention is illustrated by the following examples, which are not intended to be limiting.

耐熱白金線およびPt-13wt%Rh線を以下の通り作製した。 A heat-resistant platinum wire and a Pt-13wt%Rh wire were produced as follows.

高純度の白金粉末(白金純度99.995%以上)を350g準備し、白金粉末をアルミナ容器に無加圧充填し、水素雰囲気中で1000℃×4時間熱処理、その後大気中1450℃×1時間で焼結した。その焼結体を1000℃に加熱し、熱間鍛造により棒状に白金塊を形成、該白金塊を1000℃×30分で熱処理後、溝ロールにて加工し、再度1000℃×30分熱処理後、ダイス伸線にてφ0.5mmまで伸線してφ0.5mmの耐熱白金線を作製した。 Prepare 350g of high-purity platinum powder (platinum purity of 99.995% or more), fill the platinum powder into an alumina container without pressure, heat treat at 1000°C for 4 hours in a hydrogen atmosphere, and then bake at 1450°C for 1 hour in the air. tied. The sintered body is heated to 1000°C, hot forged to form a rod-shaped platinum ingot, heat-treated at 1000°C for 30 minutes, processed with grooved rolls, and heat-treated again at 1000°C for 30 minutes. A heat-resistant platinum wire of φ0.5 mm was prepared by drawing to φ0.5 mm using a wire drawing die.

所定量のPtおよびRhを秤量し、高周波溶解炉にてAr雰囲気中で溶解した。溶解した溶湯を、銅鋳型に鋳湯し、インゴットを作製した。作製したインゴットを熱間鍛造にて棒状のインゴットに加工し、熱処理と溝ロール加工およびダイス伸線を繰返し、φ0.5mmまで伸線して、φ0.5mmのPt-13wt%Rh線を作製した。 Predetermined amounts of Pt and Rh were weighed and melted in an Ar atmosphere in a high-frequency melting furnace. The molten metal was cast into a copper mold to produce an ingot. The produced ingot was processed into a rod-shaped ingot by hot forging, heat treatment, grooved roll processing, and die wire drawing were repeated, and drawn to φ0.5 mm to produce a Pt-13wt%Rh wire of φ0.5 mm. .

(ガス分析)
作製した白金線のガス分析を行った。分析は、LECO社の酸素・窒素・水素分析装置を用いた。酸素・窒素の分析結果を表1に示す。
(gas analysis)
Gas analysis of the produced platinum wire was performed. For the analysis, an oxygen/nitrogen/hydrogen analyzer manufactured by LECO was used. Table 1 shows the analysis results of oxygen and nitrogen.

Figure 2023047171000002
Figure 2023047171000002

(実施例1)
上記工程で作製した耐熱白金線(φ0.5mm)同士で溶接した。
溶接に関しては、マイクロバット溶接機BMS-0.1(日本溶接機株式会社製)を使用した。装置の最大印加電力(交流)は0.5KVA、周波数は50Hzである。
(Example 1)
The heat-resistant platinum wires (φ0.5 mm) produced in the above process were welded together.
For welding, a microbutt welder BMS-0.1 (manufactured by Nippon Welder Co., Ltd.) was used. The maximum applied power (AC) of the device is 0.5 KVA and the frequency is 50 Hz.

2本の耐熱白金線をマイクロバット溶接機のクランプ部に手動レバーで固定し、2本の白金線を突き合せた。線材の突合せ加圧はスプリング式の加圧機構で手動クランプ固定して行った。 Two heat-resistant platinum wires were fixed to the clamp portion of the microbutt welder with a manual lever, and the two platinum wires were butted against each other. The butt pressurization of the wires was performed by manually clamping and fixing with a spring pressurization mechanism.

耐熱白金線同士を上記の通り加圧しながら約0.3KVA(300W)(1.5KVA/mm)て交流電流を1秒間通電した。線材同士は溶融して接合された。 An alternating current of about 0.3 KVA (300 W) (1.5 KVA/mm 2 ) was applied for 1 second while the heat-resistant platinum wires were pressurized together as described above. The wires were melted and joined together.

(実施例2)
上記工程で作製した耐熱白金線(φ0.5mm)とPt-13wt%Rh線(φ0.5mm)を溶接した。
溶接に関しては、マイクロバット溶接機BMS-0.1(日本溶接機株式会社製)を使用した。装置の最大印加電力(交流)は0.5KVA、周波数は50Hzである。
(Example 2)
A heat-resistant platinum wire (φ0.5 mm) and a Pt-13wt%Rh wire (φ0.5 mm) prepared by the above process were welded.
For welding, a microbutt welder BMS-0.1 (manufactured by Nippon Welder Co., Ltd.) was used. The maximum applied power (AC) of the device is 0.5 KVA and the frequency is 50 Hz.

耐熱白金線とPt-13wt%Rh線をマイクロバット溶接機のクランプ部に手動レバーで固定し、2本の白金線を突き合せた。線材の突合せ加圧はスプリング式の加圧機構で手動クランプ固定して行った。 A heat-resistant platinum wire and a Pt-13wt%Rh wire were fixed to the clamp of a microbutt welder with a manual lever, and the two platinum wires were butted together. The butt pressurization of the wires was performed by manually clamping and fixing with a spring pressurization mechanism.

耐熱白金線とPt-13wt%Rh線を上記の通り加圧しながら約0.3KVA(300W)(1.5KVA/mm)にて交流電流を1秒間通電した。線材同士は溶融して接合された。 An alternating current of about 0.3 KVA (300 W) (1.5 KVA/mm 2 ) was applied for 1 second while the heat-resistant platinum wire and the Pt-13 wt% Rh wire were pressurized as described above. The wires were melted and joined together.

(比較例1)
耐熱白金線(φ0.5mm)同士を重なるように接触させ、接触した個所を酸水素バーナーを用い、溶融させ、接合した。
(Comparative example 1)
Heat-resistant platinum wires (φ0.5 mm) were brought into contact with each other so as to overlap each other, and the contact points were melted and joined by using an oxyhydrogen burner.

(比較例2)
溶接していない耐熱白金線を比較用サンプルとした。
(Comparative example 2)
A non-welded heat-resistant platinum wire was used as a comparative sample.

(比較例3)
耐熱白金線(φ0.5mm)とPt-13wt%Rh線(φ0.5mm)を重なるように接触させ、接触した個所を酸水素バーナーを用い、溶融させ、接合した。
(Comparative Example 3)
A heat-resistant platinum wire (φ0.5 mm) and a Pt-13wt%Rh wire (φ0.5 mm) were brought into contact so as to overlap each other, and the contact points were melted and joined using an oxyhydrogen burner.

(溶接部組織観察)
実施例1~2,比較例1ないし3の溶接部の組織観察を行った。
(Observation of weld structure)
The structures of the welded portions of Examples 1 and 2 and Comparative Examples 1 and 3 were observed.

(比較例2)
溶接前の試作した耐熱白金線の焼鈍後の組織写真を図1に示す。伸線方向に長いアスペクト比が大きい組織を維持している。
(Comparative example 2)
Fig. 1 shows a photograph of the structure of the heat-resistant platinum wire prototyped before welding and after annealing. It maintains a structure with a large aspect ratio that is long in the drawing direction.

(実施例1)
実施例1の溶接部組織写真を図2に示す。マイクロバット溶接機を使用した溶接の組織は、溶接前の組織を維持している。残存溶融部が突合せ面の近傍(約130μmの範囲)だけに抑制できている。
(Example 1)
A micrograph of the weld zone structure of Example 1 is shown in FIG. Welding using a Microbutt welder maintains the structure prior to welding. The remaining melted portion can be suppressed only in the vicinity of the butt surfaces (in the range of about 130 μm).

(実施例2)
実施例2の溶接部組織写真を図3に示す。マイクロバット溶接機を使用した溶接の組織は、Pt-13wt%Rhと耐熱白金線の溶接界面を境に、Pt-13wt%Rh線は結晶粒が粗大化しているが、耐熱白金線側は、溶接前の組織から若干崩れているが、組織の粗大化や等軸晶のような組織変化は起こっていない。残存溶融部が認められなかった。
(Example 2)
FIG. 3 shows a photograph of the weld structure of Example 2. In the structure of welding using a micro butt welder, the crystal grains of the Pt-13wt%Rh wire are coarsened at the weld interface between the Pt-13wt%Rh and the heat-resistant platinum wire, but the heat-resistant platinum wire side has Although the structure before welding is slightly collapsed, no coarsening of the structure or change in structure such as equiaxed crystals has occurred. No residual fusion zone was observed.

(比較例1)
比較例1の耐熱白金線同士の酸水素バーナーを用いた溶接部の組織写真を図4に示す。
写真左側が1mm以上の溶融部であり、その溶接領域の右側に非溶融部がある。
(Comparative example 1)
FIG. 4 shows a photograph of the structure of the weld between the heat-resistant platinum wires of Comparative Example 1 using an oxyhydrogen burner.
On the left side of the photograph is a melted portion of 1 mm or more, and on the right side of the welded area is a non-melted portion.

(比較例3)
比較例3の耐熱白金線とPt-13wt%Rh線の酸水素バーナーを用いた溶接部の組織写真を図5に示す。マイクロバット溶接機を使用した溶接と異なり、溶融部が1mm以上になり組織も溶融部から崩れ、溶融部が等軸晶を形成している。
(Comparative Example 3)
Fig. 5 shows a photograph of the structure of the welded portion of the heat-resistant platinum wire and the Pt-13wt%Rh wire of Comparative Example 3 using an oxyhydrogen burner. Unlike welding using a micro butt welder, the fusion zone is 1 mm or more, the structure collapses from the fusion zone, and the fusion zone forms equiaxed crystals.

(クリープ試験)
実施例1、比較例1の溶接した耐熱白金線および溶接していない比較例2の耐熱白金線に対してクリープ試験を行った。試験は、大気中1300℃で実施した。また、比較として溶解して作製した白金板のクリープ結果を参考例として示す。
(creep test)
A creep test was performed on the welded heat-resistant platinum wires of Example 1 and Comparative Example 1 and the heat-resistant platinum wire of Comparative Example 2 that was not welded. The test was performed at 1300°C in air. For comparison, the creep results of a platinum plate prepared by melting are shown as a reference example.

クリープ試験結果を図6に示す。
溶接していない比較例2と比較して実施例1のクリープ強度は、ほぼ差は無く、強度の低下を抑制している。一方、酸水素バーナーで溶接した比較例1は、実施例1と比較すると強度が低下している。

Fig. 6 shows the creep test results.
The creep strength of Example 1 is almost the same as that of Comparative Example 2, which is not welded, and the decrease in strength is suppressed. On the other hand, in Comparative Example 1 welded with an oxyhydrogen burner, the strength is lower than in Example 1.

Claims (2)

白金線同士、または白金線と合金線を組み合わせた金属線の対の接合方法であって、
上記金属線の対のうち、すくなくとも一方の白金線が、酸素0.020~0.20at%、窒素0.014at%未満、残部が白金および不可避不純物である耐熱白金線であり、
対をなす2つの金属線の端面を突き合わせ、
突き合わせた端面に、圧力を加えながら、電流を流して接合することを特徴とする金属線の対の接合方法。
A method for joining a pair of metal wires combining platinum wires or a platinum wire and an alloy wire,
At least one platinum wire of the pair of metal wires is a heat-resistant platinum wire in which oxygen is 0.020 to 0.20 at%, nitrogen is less than 0.014 at%, and the balance is platinum and inevitable impurities,
The end faces of the two metal wires forming a pair are butted against each other,
A method for joining a pair of metal wires, characterized in that a current is applied to the butted end faces while applying pressure to join them.
請求項1に記載の酸素0.020~0.20at%、窒素0.014at%未満、残部が白金および不可避不純物である耐熱白金線の白金の製造方法が、
白金粉末を容器に充填、900℃~1200℃、水素を含む雰囲気中で熱処理し、次いで1200℃~1500℃、酸素を含む雰囲気中で焼結、その焼結体を800℃~1100℃に加熱して熱間鍛造した後、伸線する工程を含む、
ことを特徴とする耐熱白金線の製造方法。
The method for producing platinum of a heat-resistant platinum wire having 0.020 to 0.20 at% oxygen, less than 0.014 at% nitrogen, and the balance being platinum and inevitable impurities according to claim 1,
Fill a container with platinum powder, heat-treat at 900°C to 1200°C in an atmosphere containing hydrogen, then sinter at 1200°C to 1500°C in an atmosphere containing oxygen, and heat the sintered body to 800°C to 1100°C. including a step of drawing after hot forging,
A method for producing a heat-resistant platinum wire, characterized by:
JP2021156123A 2021-09-24 2021-09-24 Method for joining pair of metal wires comprising platinum wire Pending JP2023047171A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021156123A JP2023047171A (en) 2021-09-24 2021-09-24 Method for joining pair of metal wires comprising platinum wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021156123A JP2023047171A (en) 2021-09-24 2021-09-24 Method for joining pair of metal wires comprising platinum wire

Publications (1)

Publication Number Publication Date
JP2023047171A true JP2023047171A (en) 2023-04-05

Family

ID=85778598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021156123A Pending JP2023047171A (en) 2021-09-24 2021-09-24 Method for joining pair of metal wires comprising platinum wire

Country Status (1)

Country Link
JP (1) JP2023047171A (en)

Similar Documents

Publication Publication Date Title
CN112481513B (en) Process for preparing copper-chromium alloy electrical contact consumable electrode by using CuCr metal powder
RU2666822C2 (en) Ductile boron-bearing nickel based welding material
CN110364930B (en) Spark plug and method of manufacturing the same
JP2023047171A (en) Method for joining pair of metal wires comprising platinum wire
CN102319966B (en) Brazing filler metal for braze welding of titanium and titanium alloy, preparation method and braze welding method
EP2464491B1 (en) Process of connecting oxide-dispersed precious metal sheet using hammer welding
US3811028A (en) Thermostat metal and method of making
JPH05174611A (en) Conductor
JP4868304B2 (en) Manufacturing method of stainless steel clad copper wire
JP2997697B2 (en) High melting point metal joined body, ion gun component for ion implantation apparatus, and method of manufacturing these
JP3309309B2 (en) Brazing electrode parts and brazing electrodes for discharge lamps
JP2536200B2 (en) Method for joining metal sintered materials, metal sintered material-made pool and method for manufacturing
US3777111A (en) Method of making greatly elongated tungsten or molybdenum members
JP6308672B2 (en) Platinum rhodium alloy and method for producing the same
JP7411190B2 (en) Heat-resistant platinum
JPH10244363A (en) High melting point metal brazed cylindrical member and manufacture thereof
CN104201020B (en) Manufacturing process of siller tin oxide calcium oxide electrical contact and products thereof
JP4253216B2 (en) Composite material of copper-tungsten alloy and copper and method for producing the same
JP3568150B2 (en) Electrode for resistance welding, resistance welding apparatus, resistance welding method, and method for manufacturing electrode for resistance welding
JP4340041B2 (en) Electrode for discharge lamp
JP2008147129A (en) Cold-cathode electrode, cold-cathode fluorescent lamp, and liquid crystal display using it
JP2011036906A (en) Method for joining wire gauge
TW201804000A (en) Gold-silver alloy bonding wires and preparation method of the same especially containing trace element of beryllium to increase loading weight and stretching rate
JP2003277872A (en) Mo-W ALLOY, AND LEAD AND LIGHT EMITTING DEVICE, AND COPYING MACHINE USING THE SAME
CN104201018B (en) Manufacturing process of Agcdo zirconia electrical contact and products thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240611