JP7411190B2 - Heat-resistant platinum - Google Patents

Heat-resistant platinum Download PDF

Info

Publication number
JP7411190B2
JP7411190B2 JP2020059678A JP2020059678A JP7411190B2 JP 7411190 B2 JP7411190 B2 JP 7411190B2 JP 2020059678 A JP2020059678 A JP 2020059678A JP 2020059678 A JP2020059678 A JP 2020059678A JP 7411190 B2 JP7411190 B2 JP 7411190B2
Authority
JP
Japan
Prior art keywords
platinum
heat
oxygen
resistant
atmosphere containing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020059678A
Other languages
Japanese (ja)
Other versions
JP2021156819A (en
Inventor
浩一 長谷川
辰彦 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishifuku Metal Industry Co Ltd
Original Assignee
Ishifuku Metal Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishifuku Metal Industry Co Ltd filed Critical Ishifuku Metal Industry Co Ltd
Priority to JP2020059678A priority Critical patent/JP7411190B2/en
Publication of JP2021156819A publication Critical patent/JP2021156819A/en
Application granted granted Critical
Publication of JP7411190B2 publication Critical patent/JP7411190B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Description

本発明は、耐熱特性に優れた白金材料、特に、高温で使用される熱電対、抵抗体等の構成材料として有用な耐熱白金とその製造方法に関する。 The present invention relates to a platinum material with excellent heat resistance properties, particularly heat-resistant platinum useful as a constituent material of thermocouples, resistors, etc. used at high temperatures, and a method for producing the same.

高温で使用される熱電対、抵抗体等の構成材料として、白金が広い産業分野で用いられている。例えば、白金系熱電対には、プラス極がPt-13%Rh合金、マイナス極が白金からなるR熱電対、プラス極がPt-10%Rh合金、マイナス極が白金からなるS熱電対がある。また耐酸化性等の観点から抵抗体にも白金が多く使用されている。 Platinum is used in a wide range of industrial fields as a constituent material for thermocouples, resistors, etc. used at high temperatures. For example, platinum-based thermocouples include R thermocouples whose positive electrode is made of Pt-13%Rh alloy and negative electrode made of platinum, and S thermocouples whose positive electrode is made of Pt-10%Rh alloy and whose negative electrode is made of platinum. . Furthermore, platinum is often used in resistors from the viewpoint of oxidation resistance.

熱電対や抵抗体は、高温下で使用されるため、再結晶温度以上での使用により、結晶粒が成長し、線断面に対し1個の結晶粒の箇所が発生すると、粒界破断や、すべり面からの破壊が起こりやすくなる。
また熱電対では、Pt-Rh合金と白金との高温下での機械的強度の違いから、白金が先に断線する場合が多く、マイナス極である白金の断線により寿命が短くなる問題があった。
Thermocouples and resistors are used at high temperatures, so if they are used above the recrystallization temperature, crystal grains will grow, and if a single crystal grain occurs in a line cross section, grain boundary rupture or Failure from sliding surfaces becomes more likely.
In addition, in thermocouples, due to the difference in mechanical strength at high temperatures between Pt-Rh alloy and platinum, the platinum often breaks first, resulting in a shortened service life due to the platinum, which is the negative electrode, breaking. .

熱電対の寿命向上を目的とした白金材料の強度向上のため、酸化物分散強化白金の技術が開発されている。特許文献1には、熱電対の寿命向上を目的とした白金線の強度向上のため、白金中にジルコニア酸化物を分散させる技術が記載されている。 Oxide dispersion strengthened platinum technology has been developed to improve the strength of platinum materials with the aim of extending the lifespan of thermocouples. Patent Document 1 describes a technique of dispersing zirconia oxide in platinum in order to improve the strength of platinum wire for the purpose of extending the life of thermocouples.

特許第5308499号Patent No. 5308499

一般的に、白金の高温下での強度を向上させるために他の金属元素またはその酸化物を添加すると起電力のずれが発生しやすくなるので、なるべくそれらの添加物は少ないほうが好ましい。 Generally, when other metal elements or their oxides are added to improve the strength of platinum at high temperatures, deviations in electromotive force tend to occur, so it is preferable that the amount of these additives be as small as possible.

そこで高温強度が白金より高く、かつ起電力のずれが少なくなる新規な耐熱白金が求められている。本発明の目的は、高温強度が白金より高く、かつ起電力のずれが少ない新規な耐熱白金を提供することである。 Therefore, there is a need for a new heat-resistant platinum that has higher high-temperature strength than platinum and has less deviation in electromotive force. An object of the present invention is to provide a new heat-resistant platinum that has higher high-temperature strength than platinum and less deviation in electromotive force.

本発明者らは、白金粉末をあらかじめ水素を含む雰囲気中で熱処理し、粉末に吸着および/または吸蔵している窒素と酸素を除去し、その後酸素を含む雰囲気中で焼結を行うことで水素を除去し、白金粉末表面に酸素が所定量導入された焼結体が得られ、鍛造、伸線加工を行うことにより、耐熱白金が得られ、上記課題が解決できることを見出し、本発明を完成させた。 The present inventors previously heat-treated platinum powder in an atmosphere containing hydrogen to remove nitrogen and oxygen adsorbed and/or occluded in the powder, and then sintered it in an atmosphere containing oxygen. It was discovered that a sintered body with a predetermined amount of oxygen introduced to the surface of the platinum powder was obtained, and heat-resistant platinum was obtained by forging and wire drawing, and that the above problems could be solved, and the present invention was completed. I let it happen.

すなわち、本発明は、酸素0.020~0.20at%、窒素0.014at%未満、残部が白金および不可避不純物であることを特徴とする耐熱白金である。 That is, the present invention is a heat-resistant platinum characterized by containing 0.020 to 0.20 at% of oxygen, less than 0.014 at% of nitrogen, and the balance being platinum and inevitable impurities.

本発明品は、熱電対、抵抗体の用途に使用することができる。 The product of the present invention can be used for thermocouples and resistors.

また、本発明は、白金粉末を容器に充填し、
900℃~1200℃、水素を含む雰囲気中で熱処理し、
次いで1200℃~1500℃、酸素を含む雰囲気中で焼結し、
その焼結体を800℃~1100℃に加熱して熱間鍛造した後、
伸線する、
工程を含むことを特徴とする耐熱白金の製造方法である。
The present invention also provides a method for filling a container with platinum powder,
Heat treated at 900℃ to 1200℃ in an atmosphere containing hydrogen,
Then, it is sintered at 1200℃ to 1500℃ in an atmosphere containing oxygen.
After heating the sintered body to 800℃~1100℃ and hot forging,
draw wire,
This is a method for producing heat-resistant platinum, which is characterized in that it includes a step.

本発明によれば、高温強度が白金より高く、かつ起電力のずれが少ない耐熱白金を提供することができる。 According to the present invention, it is possible to provide heat-resistant platinum that has higher high-temperature strength than platinum and has less deviation in electromotive force.

実施例1の1400℃×1時間後の縦断面組織Vertical cross-sectional structure after 1 hour at 1400°C in Example 1 比較例1の1400℃×1時間後の縦断面組織Vertical cross-sectional structure of Comparative Example 1 after 1 hour at 1400℃ クリープ試験結果Creep test results 各定点での温度差(ΔT)Temperature difference at each fixed point (ΔT)

以下、本発明の実施形態について具体的に説明する。 Embodiments of the present invention will be specifically described below.

本発明の耐熱白金は、酸素0.020~0.20at%、窒素0.014at%未満、残部が白金および不可避不純物であることを特徴とする。酸素、窒素の含有量は、白金に対する原子比(at%)で表す。 The heat-resistant platinum of the present invention is characterized by containing 0.020 to 0.20 at% oxygen, less than 0.014 at% nitrogen, and the balance being platinum and inevitable impurities. The content of oxygen and nitrogen is expressed as an atomic ratio (at%) to platinum.

本発明において酸素が添加される白金としては、高純度のものが使用されるが、Fe、Au、Cu、Pd、Rh、Ir、Ru、Os等の不可避元素を不純物として含有していてもよく、その際の白金の純度は99.995重量%以上であることが好ましい。 In the present invention, platinum to which oxygen is added is of high purity, but it may also contain unavoidable elements such as Fe, Au, Cu, Pd, Rh, Ir, Ru, Os, etc. as impurities. In this case, the purity of platinum is preferably 99.995% by weight or more.

耐熱白金の酸素含有量は0.020~0.20at%(16~160ppm)である。耐熱白金の酸素含有量は0.030~0.15at%(25~110ppm)が好ましい。耐熱白金の酸素含有量は0.040~0.10at%(30~80ppm)がより好ましい。 The oxygen content of heat-resistant platinum is 0.020 to 0.20 at% (16 to 160 ppm). The oxygen content of heat-resistant platinum is preferably 0.030 to 0.15 at% (25 to 110 ppm). The oxygen content of heat-resistant platinum is more preferably 0.040 to 0.10 at% (30 to 80 ppm).

上記耐熱白金は、通常の溶解で作製した白金では再結晶化する温度である1400℃で1hr熱処理しても、等軸晶にならず、加工方向に対し、アスペクト比[=(加工方向の粒界の長さ)/(加工方向に直交する粒界の長さ)]が4以上となる組織を維持する。 The above heat-resistant platinum does not become equiaxed crystals even after being heat-treated for 1 hour at 1400℃, which is the temperature at which platinum produced by ordinary melting is recrystallized. Maintain a structure in which the ratio (length of grain boundary)/(length of grain boundary perpendicular to the processing direction) is 4 or more.

また、本発明の耐熱白金の製造方法は、白金粉末を容器に充填し、900℃~1200℃、水素を含む雰囲気中で熱処理し、次いで1200℃~1500℃、酸素を含む雰囲気中で焼結し、その焼結体を800℃~1100℃に加熱して熱間鍛造した後、伸線する、工程を含むことを特徴とする。 In addition, the method for producing heat-resistant platinum of the present invention involves filling a container with platinum powder, heat-treating it at 900°C to 1200°C in an atmosphere containing hydrogen, and then sintering it at 1200°C to 1500°C in an atmosphere containing oxygen. The sintered body is heated to 800°C to 1100°C, hot forged, and then wire drawn.

出発原料として、純度99.995%以上の白金粉末を準備する。アルミナ容器に所定量の白金粉末を無加圧で充填する。 As a starting material, platinum powder with a purity of 99.995% or more is prepared. A predetermined amount of platinum powder is filled into an alumina container without pressure.

次に、充填された白金粉末を900~1200℃、水素を含む雰囲気中で熱処理する。水素を含む雰囲気には、水素がほぼ100%の雰囲気のほか、水素に他の気体を混ぜた雰囲気も包含される。水素に他の気体を混ぜた雰囲気としては、例えば、水素を含むアルゴンを用いることができる。熱処理時間は、例えば1~5時間とすることができる。 Next, the filled platinum powder is heat treated at 900 to 1200°C in an atmosphere containing hydrogen. The atmosphere containing hydrogen includes an atmosphere containing almost 100% hydrogen as well as an atmosphere containing hydrogen mixed with other gases. As the atmosphere containing hydrogen and other gases, for example, argon containing hydrogen can be used. The heat treatment time can be, for example, 1 to 5 hours.

次に、酸素を含む雰囲気中で1200~1500℃で焼結する。酸素を含む雰囲気としては、例えば大気を用いることができる。また、酸素および窒素を含む雰囲気であって、雰囲気中の酸素が体積比で15~40%である雰囲気を用いて行うことができる。また、酸素およびアルゴンを含む雰囲気であって、雰囲気中の酸素が体積比で15~40%である雰囲気を用いて行うことができる。焼結時間は、例えば1~10時間とすることができる。 Next, it is sintered at 1200-1500°C in an atmosphere containing oxygen. As the atmosphere containing oxygen, for example, the atmosphere can be used. Further, it can be carried out using an atmosphere containing oxygen and nitrogen, where the oxygen content in the atmosphere is 15 to 40% by volume. Further, it can be carried out using an atmosphere containing oxygen and argon, in which the oxygen content in the atmosphere is 15 to 40% by volume. The sintering time can be, for example, 1 to 10 hours.

次に、その焼結体を800℃~1100℃で加熱し熱間鍛造により白金塊を形成する。例えば、焼結体を1000℃に加熱し、熱間鍛造することができる。 Next, the sintered body is heated at 800°C to 1100°C and hot forged to form a platinum ingot. For example, the sintered body can be heated to 1000°C and hot forged.

次に伸線を行う。例えば、冷間伸線および800℃~1100℃の熱処理を繰り返して行う、または、800℃~1100℃ の熱処理および冷間伸線を繰り返し行い、耐熱白金を製造する。伸線は、溝ロール加工による伸線、ダイス伸線を含む。上記耐熱白金の材料形状を線にすることにより、熱電対のマイナス極や抵抗体が実現できる。 Next, wire drawing is performed. For example, heat-resistant platinum is produced by repeatedly performing cold wire drawing and heat treatment at 800°C to 1100°C, or by repeatedly performing heat treatment at 800°C to 1100°C and cold wire drawing. Wire drawing includes wire drawing by groove roll processing and die wire drawing. By making the heat-resistant platinum material into a wire shape, a negative electrode of a thermocouple or a resistor can be realized.

上記製造法で耐熱白金のクリープ強度が高くなるメカニズムは以下の様に推定している。 The mechanism by which the creep strength of heat-resistant platinum is increased by the above manufacturing method is estimated as follows.

900℃~1200℃水素を含む雰囲気中で白金粉末を熱処理することにより、白金粉末に吸着および/または吸蔵している窒素と酸素が除去される。その後、1200℃~1500℃、酸素を含む雰囲気中で白金粉末を焼結させることで、焼結と同時に、白金粉末に吸着および/または吸蔵している水素の除去と白金粉末表面への酸素の吸着がなされる。上記二つの熱処理工程を経ることで、原子レベルの酸素だけが塑性加工後の粒界部の一部になる白金粉末表面に吸着させた状態が得られる。すなわち、原子レベルの酸化白金(酸素原子が吸着している白金原子)が高分散状態となっていると考えられる。
それにより高温条件下の使用において白金の粒成長が抑制され、粒界破断や、すべり面からの破壊が起こり難くなり、クリープ強度が大きくなったと考える。
By heat-treating the platinum powder in an atmosphere containing hydrogen at 900°C to 1200°C, nitrogen and oxygen adsorbed and/or occluded in the platinum powder are removed. After that, the platinum powder is sintered at 1200°C to 1500°C in an atmosphere containing oxygen. At the same time as sintering, hydrogen adsorbed and/or occluded in the platinum powder is removed and oxygen is transferred to the surface of the platinum powder. Adsorption is performed. By going through the above two heat treatment steps, a state is obtained in which only atomic level oxygen is adsorbed on the surface of the platinum powder, which becomes part of the grain boundary after plastic working. That is, it is thought that platinum oxide (platinum atoms to which oxygen atoms are adsorbed) at the atomic level is in a highly dispersed state.
It is believed that this suppresses platinum grain growth when used under high-temperature conditions, making grain boundary fractures and fractures from sliding surfaces less likely to occur, resulting in increased creep strength.

本発明を以下の実施例にて説明するが、実施の形態で限定されるものではない。 The present invention will be explained with reference to the following examples, but is not limited to the embodiments.

(実施例1)
高純度の白金粉末(白金純度99.995%以上)を350g準備し、白金粉末をアルミナ容器に無加圧充填し、水素(純度99.95vol%)雰囲気中で1000℃×4時間熱処理、その後大気中1450℃×1時間で焼結した。その焼結体を1000℃に加熱し、熱間鍛造により棒状に白金塊を形成、該白金塊を1000℃×30分で熱処理後、溝ロールにて加工し、再度1000℃×30分熱処理後、ダイス伸線にてφ0.5mmまで伸線して白金線を作製した。
(Example 1)
Prepare 350g of high-purity platinum powder (platinum purity 99.995% or higher), fill the platinum powder into an alumina container without pressure, heat treat it in a hydrogen (purity 99.95vol%) atmosphere at 1000℃ for 4 hours, and then heat it in the air at 1450℃ Sintering was performed at ℃×1 hour. The sintered body is heated to 1000℃ and hot forged to form a platinum ingot into a bar shape.The platinum ingot is heat-treated at 1000℃ for 30 minutes, processed with a groove roll, and then heat-treated again at 1000℃ for 30 minutes. A platinum wire was produced by drawing the wire to φ0.5 mm using die wire drawing.

(実施例2)
実施例1と同じ方法で別ロットで行い、ダイス伸線にてφ0.5mmまで伸線して白金線を作製した。
(Example 2)
A separate lot was produced in the same manner as in Example 1, and a platinum wire was produced by drawing to a diameter of 0.5 mm using die wire drawing.

(比較例1)
高純度の白金(白金純度99.995%以上)を2000g準備し、高周波にて溶解、銅鋳型に鋳造し白金塊を得た。白金塊を1000℃に加熱し、熱間鍛造により棒状に白金塊を形成、該白金塊を1000℃×30分で熱処理後、溝ロールにて加工およびダイス伸線にてφ0.5mmまで伸線して白金線を作製した。
(Comparative example 1)
2000g of high-purity platinum (platinum purity of 99.995% or higher) was prepared, melted using high frequency, and cast into a copper mold to obtain a platinum ingot. The platinum ingot is heated to 1000℃ and hot forged to form a platinum ingot into a rod shape.The platinum ingot is heat-treated at 1000℃ for 30 minutes, then processed with grooved rolls and wire-drawn to φ0.5mm with wire drawing dies. A platinum wire was produced.

(比較例2)
高純度の白金粉末(白金純度99.995%以上)を350g準備し、白金粉末をアルミナ容器に無加圧充填し、大気中1000℃×1時間で焼結した。その焼結体を1000℃に加熱し、熱間鍛造により棒状に白金塊を形成、該白金塊を1000℃×30分で熱処理後、溝ロールにて加工し、再度1000℃×30分熱処理後、ダイス伸線にてφ0.5mmまで伸線して白金線を作製した。
(Comparative example 2)
350 g of high-purity platinum powder (platinum purity of 99.995% or more) was prepared, and the platinum powder was filled into an alumina container without pressure and sintered at 1000° C. for 1 hour in the atmosphere. The sintered body is heated to 1000℃ and hot forged to form a platinum ingot into a bar shape.The platinum ingot is heat-treated at 1000℃ for 30 minutes, processed with a groove roll, and then heat-treated again at 1000℃ for 30 minutes. A platinum wire was produced by drawing the wire to a diameter of 0.5 mm using die wire drawing.

(比較例3)
焼結を1400℃×1時間とした以外は比較例2と同様に行いダイス伸線にてφ0.5mまで伸線して白金線を作製した。
(Comparative example 3)
A platinum wire was produced in the same manner as in Comparative Example 2 except that the sintering was carried out at 1400° C. for 1 hour, and the wire was drawn to a diameter of 0.5 m using die wire drawing.

(ガス分析)
実施例1、2および比較例1~3の白金線のガス分析を行った。分析は、LECO社の酸素・窒素・水素分析装置を用いた。実施例1、2および比較例1~3の酸素・窒素の分析結果を表1に示す。
(Gas analysis)
Gas analysis of the platinum wires of Examples 1 and 2 and Comparative Examples 1 to 3 was conducted. The analysis used an oxygen/nitrogen/hydrogen analyzer manufactured by LECO. Table 1 shows the analysis results of oxygen and nitrogen in Examples 1 and 2 and Comparative Examples 1 to 3.

Figure 0007411190000001
Figure 0007411190000001

分析した結果、実施例1、2は、酸素0.020~0.20at%、窒素0.014at%未満を満たしている。なお、実施例1、2の水素含有量は0.06at%(3ppm)以下であった。水素の含有量は、白金に対する原子比(at%)で表した。 As a result of analysis, Examples 1 and 2 satisfied 0.020 to 0.20 at% of oxygen and less than 0.014 at% of nitrogen. Note that the hydrogen content in Examples 1 and 2 was 0.06 at% (3 ppm) or less. The hydrogen content was expressed as an atomic ratio (at%) to platinum.

(組織観察)
実施例1および比較例1の白金線を1400℃×1時間熱処理し、縦断面組織を観察した。縦断面組織写真を図1、2に示す。
(organizational observation)
The platinum wires of Example 1 and Comparative Example 1 were heat treated at 1400° C. for 1 hour, and their longitudinal cross-sectional structures were observed. Photographs of longitudinal cross-sectional structures are shown in Figures 1 and 2.

実施例1は伸線方向に長い組織を維持しており、アスペクト比〔=伸線方向の組織の長さ/伸線方向に直交する組織の長さ〕で4以上だった。一方、比較例1は再結晶化し、線に対し1個の結晶粒まで成長している。 Example 1 maintained a long structure in the wire drawing direction, and the aspect ratio [=length of the structure in the wire drawing direction/length of the structure orthogonal to the wire drawing direction] was 4 or more. On the other hand, Comparative Example 1 was recrystallized and grew to one crystal grain per line.

(クリープ試験)
実施例1、2、比較例2、3の白金線に対してクリープ試験を行った。試験は、大気中1300℃で実施した。また、参考例として、白金板(純度99.99重量%、断面寸法はt0.5mm×w3mm)の例を示す。
(Creep test)
A creep test was conducted on the platinum wires of Examples 1 and 2 and Comparative Examples 2 and 3. The test was conducted at 1300°C in air. In addition, as a reference example, an example of a platinum plate (purity 99.99% by weight, cross-sectional dimensions t0.5mm x w3mm) is shown.

クリープ試験結果を図3に示す。参考例の白金板のクリープ試験結果と比較して、実施例1、2は約4倍の応力が必要となり、クリープ強度が向上している。また、実施例1、2、比較例2、3より、「焼結工程」の前に「水素雰囲気中で熱処理する工程」を入れるとクリープ強度が大きく向上することが分かる。 Figure 3 shows the creep test results. Compared to the creep test results of the platinum plate of the reference example, Examples 1 and 2 require about 4 times as much stress and have improved creep strength. Furthermore, from Examples 1 and 2 and Comparative Examples 2 and 3, it can be seen that the creep strength is greatly improved when the ``step of heat treatment in a hydrogen atmosphere'' is performed before the ``sintering step''.

(起電力測定)
プラス極にPt-13%Rh合金を使用し、作製した線材をマイナス極として熱電対を作製した。作製した白金線は、実施例1は14A×10分、比較例1は12A×90秒通電加熱によるアニールを行い、Al点、Au点、Pd点で定点校正を行った。定点校正の結果を図4に示す。
(Electromotive force measurement)
A thermocouple was fabricated using a Pt-13%Rh alloy as the positive electrode and the fabricated wire as the negative electrode. The prepared platinum wires were annealed by electrical heating at 14 A for 10 minutes in Example 1 and 12 A for 90 seconds in Comparative Example 1, and fixed-point calibration was performed at the Al point, Au point, and Pd point. Figure 4 shows the results of fixed-point calibration.

実施例1、比較例1ともにクラス1内に入った。実施例1は10分という比較的短時間でクラス1に入った。 Both Example 1 and Comparative Example 1 fell within class 1. Example 1 entered class 1 in a relatively short time of 10 minutes.

Claims (2)

酸素0.040.10at%、窒素0.007at%以上、0.014at%未満、残部が白金および不可避不純物であることを特徴とする耐熱白金。 A heat-resistant platinum comprising 0.04 to 0.10 at% oxygen , 0.007 at% or more but less than 0.014 at% nitrogen, and the balance being platinum and inevitable impurities. 白金粉末を容器に充填し、
900℃~1200℃、水素を含む雰囲気中で熱処理し、
次いで1200℃~1500℃、酸素を含む雰囲気中で焼結し、
その焼結体を800℃~1100℃に加熱して熱間鍛造した後、
伸線する、
工程を含むことを特徴とする耐熱白金の製造方法。
Fill a container with platinum powder,
Heat treated at 900℃ to 1200℃ in an atmosphere containing hydrogen,
Then, it is sintered at 1200°C to 1500°C in an atmosphere containing oxygen.
After heating the sintered body to 800℃~1100℃ and hot forging,
draw wire,
A method for producing heat-resistant platinum, comprising the steps of:
JP2020059678A 2020-03-30 2020-03-30 Heat-resistant platinum Active JP7411190B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020059678A JP7411190B2 (en) 2020-03-30 2020-03-30 Heat-resistant platinum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020059678A JP7411190B2 (en) 2020-03-30 2020-03-30 Heat-resistant platinum

Publications (2)

Publication Number Publication Date
JP2021156819A JP2021156819A (en) 2021-10-07
JP7411190B2 true JP7411190B2 (en) 2024-01-11

Family

ID=77918017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020059678A Active JP7411190B2 (en) 2020-03-30 2020-03-30 Heat-resistant platinum

Country Status (1)

Country Link
JP (1) JP7411190B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015200014A (en) 2014-04-04 2015-11-12 株式会社フルヤ金属 Platinum thermo couple single wire

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4223765B2 (en) * 2002-08-29 2009-02-12 石福金属興業株式会社 Method for producing platinum material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015200014A (en) 2014-04-04 2015-11-12 株式会社フルヤ金属 Platinum thermo couple single wire

Also Published As

Publication number Publication date
JP2021156819A (en) 2021-10-07

Similar Documents

Publication Publication Date Title
KR100236429B1 (en) Wrought tantalum or niobium alloy having silicon and a compound dopant
KR101138051B1 (en) Doped iridium with improved high-temperature properties
KR101627056B1 (en) Platinum-based Thermocouple and Method for Manufacturing Pt wire of the Pt-PtRh based Thermocouple
CN102892908A (en) Copper alloy for electronic device, method for producing copper alloy for electronic device, and copper alloy rolled material for electronic device
JP6156600B1 (en) Copper alloy for electronic and electric equipment, copper alloy plastic working material for electronic and electric equipment, parts for electronic and electric equipment, terminals, and bus bars
JP6432619B2 (en) Aluminum alloy conductor, insulated wire using the conductor, and method for producing the insulated wire
WO2011030898A1 (en) Copper alloy wire and process for producing same
JP2011225986A (en) Copper-gallium alloy and manufacturing method therefor
KR101288592B1 (en) Method of manufacturing an oxide dispersion strengthened platinum-rhodium alloy
CN110438364B (en) Palladium-vanadium precision high-resistance alloy and preparation method thereof
EP3647441B1 (en) Metal member
JP7411190B2 (en) Heat-resistant platinum
CN110453105B (en) Palladium-molybdenum precision resistance alloy and preparation method thereof
JP7158658B2 (en) Aluminum alloy, aluminum alloy wire, and method for producing aluminum alloy
JP6308672B2 (en) Platinum rhodium alloy and method for producing the same
JP2010198873A (en) Conductor for electric wire
CN117646142B (en) Nickel-doped tungsten alloy wire and preparation method and application thereof
JP7120389B1 (en) Copper alloy plastic working materials, copper alloy wire rods, parts for electronic and electrical equipment, terminals
CN113322394B (en) High-performance bonded platinum alloy fine material for packaging and preparation method thereof
CN115976354B (en) High-precision beryllium copper wire and preparation method thereof
CN116590568A (en) High Wen Boji high-entropy resistance strain material, preparation method and application
JPH0419287B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230712

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20231102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231215

R150 Certificate of patent or registration of utility model

Ref document number: 7411190

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150