JP2023046223A - Radiator and electron device - Google Patents

Radiator and electron device Download PDF

Info

Publication number
JP2023046223A
JP2023046223A JP2022047912A JP2022047912A JP2023046223A JP 2023046223 A JP2023046223 A JP 2023046223A JP 2022047912 A JP2022047912 A JP 2022047912A JP 2022047912 A JP2022047912 A JP 2022047912A JP 2023046223 A JP2023046223 A JP 2023046223A
Authority
JP
Japan
Prior art keywords
heat
contact
bent
heat dissipation
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022047912A
Other languages
Japanese (ja)
Inventor
貴彦 井上
Takahiko Inoue
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Priority to CN202211144318.8A priority Critical patent/CN115915704A/en
Priority to US17/950,616 priority patent/US20230090230A1/en
Publication of JP2023046223A publication Critical patent/JP2023046223A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a radiator capable of radiating heat in more efficient arrangement, and an electron device.SOLUTION: A radiator (1) comprises: a heat receiving unit (11) in contact with a heat radiation object (20); a radiation unit (12) that radiates heat into the air; and a heat pipe (13) that transfers heat from the heat receiving unit (11) to the heat radiation unit (12). The heat pipe (13) has a bent part (131) that bends away from the heat radiation object (20). The heat receiving unit (11) has a portion that follows at least a part of the bent part (131) and is in contact with the bent part (131).SELECTED DRAWING: Figure 2

Description

この発明は、放熱装置及び電子機器に関する。 The present invention relates to a heat dissipation device and an electronic device.

電子機器で動作する各種電子部品は、動作に伴って発熱する一方で、温度変化により悪影響を受けることがある。そこで、発生した熱を速やかに当該電子部品から発散させる放熱装置がある。特許文献1では、電子機器に接する受熱部と熱を効率的に発散させる放熱フィンとの間をつなぐ扁平状のヒートパイプをねじって折り返すことで、熱輸送の効率を低下させずに省スペースとする技術が開示されている。 Various electronic components that operate in electronic equipment generate heat as they operate, but may also be adversely affected by temperature changes. Therefore, there is a heat dissipation device that quickly dissipates the generated heat from the electronic component. In Patent Document 1, by twisting and folding back a flat heat pipe that connects a heat receiving part in contact with an electronic device and a heat radiating fin that efficiently dissipates heat, space can be saved without lowering the efficiency of heat transport. A technique for doing so is disclosed.

特開2001-251079号公報JP-A-2001-251079

しかしながら、従来技術では、受熱部とヒートパイプを完全に接触させることで、ヒートパイプの曲げ部分の体積を放熱装置が占有することが避けられないという課題がある。 However, in the prior art, there is a problem that the heat dissipation device inevitably occupies the volume of the bent portion of the heat pipe by bringing the heat receiving part and the heat pipe into complete contact.

この発明の目的は、より効率よい配置で放熱を行うことのできる放熱装置及び電子機器を提供することにある。 SUMMARY OF THE INVENTION An object of the present invention is to provide a heat dissipation device and an electronic device that can dissipate heat in a more efficient arrangement.

上記目的を達成するため、本発明は、
放熱対象に接する受熱部と、
空気中に放熱する放熱部と、
前記受熱部から前記放熱部へ熱を伝えるヒートパイプと、
を備え、
前記ヒートパイプは、前記放熱対象から離隔する方向へ曲がる屈曲部を有し、
前記受熱部は、前記屈曲部の少なくとも一部に追従して当該屈曲部と接する部分を有する
放熱装置である。
In order to achieve the above object, the present invention
a heat-receiving part in contact with a heat-dissipating target;
a heat radiating part that dissipates heat into the air;
a heat pipe that conducts heat from the heat receiving portion to the heat radiating portion;
with
The heat pipe has a bent portion that bends in a direction away from the target of heat dissipation,
The heat-receiving section is a heat dissipation device having a portion that follows at least a portion of the bent section and is in contact with the bent section.

本発明に従うと、より効率よい配置で放熱を行うことができるという効果がある。 ADVANTAGE OF THE INVENTION According to this invention, there exists an effect that heat can be heat-dissipated by more efficient arrangement.

第1実施形態の放熱装置を含む電子機器を示す図である。It is a figure which shows the electronic device containing the thermal radiation device of 1st Embodiment. 第1実施形態の放熱装置の構造を示す図である。It is a figure which shows the structure of the heat sink of 1st Embodiment. 第2、第3実施形態の放熱装置の側面図である。It is a side view of the heat dissipation device of the second and third embodiments. 第4、第5実施形態の放熱装置について説明する図である。It is a figure explaining the heat sink of 4th, 5th embodiment. 放熱装置の断面の例を説明する図である。It is a figure explaining the example of the cross section of a thermal radiation device.

以下、本発明の実施の形態を図面に基づいて説明する。
図1は、第1実施形態の放熱装置1を含む電子機器100を示す図である。
図1(a)の外観斜視図に示すように、電子機器100は、例えば、出射レンズ41から光を照射して画像を投影する投影装置である。電子機器100は、支持板102(図1(b)参照)上に各構成が並び、当該支持板102に取り付けられるカバー部材101により覆われている。カバー部材101は、吸排気用の格子窓101aを有している。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram showing an electronic device 100 including a heat dissipation device 1 of the first embodiment.
As shown in the external perspective view of FIG. 1A, the electronic device 100 is, for example, a projection device that emits light from an output lens 41 and projects an image. In the electronic device 100, each component is arranged on a support plate 102 (see FIG. 1B) and covered with a cover member 101 attached to the support plate 102. FIG. The cover member 101 has lattice windows 101a for air intake and exhaust.

図1(b)では、カバー部材101を外した内部の斜視図を示している。ここでは、図1(a)に示した電子機器100を載置面内で180度回転させて出射レンズ41の出射方向に対して斜め後ろ側から見た図を示している。
支持板102上には、上記出射レンズ41を含む光学系40と、制御回路50と、送風部60とが並んでいる。また、主に制御回路50や光学系40の発熱部分(主に発光素子や可動ミラー(Digital Micromirror Device;DMD)など)で生じた/得た熱を放熱、発散させるための放熱装置1、2がある。放熱装置2は、大型のものであり放熱量が大きい。放熱装置1は、小型のものであり、放熱装置2に対して相対的に放熱量が小さい。
FIG. 1B shows a perspective view of the inside with the cover member 101 removed. Here, the electronic device 100 shown in FIG. 1A is rotated by 180 degrees within the mounting surface and is viewed obliquely from the rear side with respect to the emission direction of the emission lens 41. As shown in FIG.
An optical system 40 including the output lens 41, a control circuit 50, and a blower section 60 are arranged on the support plate 102. As shown in FIG. In addition, heat dissipation devices 1 and 2 for dissipating heat generated/obtained mainly in the control circuit 50 and the heat generating portion of the optical system 40 (mainly light emitting elements, movable mirrors (Digital Micromirror Device; DMD), etc.) There is The heat dissipation device 2 is large and has a large amount of heat dissipation. The heat dissipation device 1 is small and has a relatively small amount of heat dissipation compared to the heat dissipation device 2 .

光学系40は、発光部と、光を収束して導くためのレンズやミラーなどと、画素単位で収束した光の出力有無を切り替える切替素子(上記DMDなど)などを有する。発光部は、例えば、LEDやLD(レーザダイオード)などであり、特にLDは発熱量が他の部位と比較して多くなりやすい。また、DMDの動作とともに、出力されない光は光学系40内で散乱、吸収されるので、これらの光が熱に変わって光学系40が加熱される。したがって、光学系40は上記放熱装置1、2による主たる放熱対象とされる。 The optical system 40 includes a light emitting unit, lenses and mirrors for converging and guiding light, and a switching element (such as the DMD described above) for switching between output and non-output of the converged light for each pixel. The light-emitting part is, for example, an LED or an LD (laser diode), and the LD in particular tends to generate more heat than other parts. In addition, as the DMD operates, the light that is not output is scattered and absorbed in the optical system 40, so that this light turns into heat and the optical system 40 is heated. Therefore, the optical system 40 is the main target of heat dissipation by the heat dissipation devices 1 and 2 described above.

制御回路50は、制御ICやこれに付随する電子部品などを有し、投影画像に応じた光学系40(DMD)の動作の制御などを行う。制御ICなども動作に伴って発熱するので、放熱装置1などの放熱対象となり得る。 The control circuit 50 has a control IC and associated electronic components, and controls the operation of the optical system 40 (DMD) according to the projected image. Since the control IC and the like also generate heat as they operate, they can be the heat dissipation target of the heat dissipation device 1 and the like.

送風部60は、ここでは、例えばファンであり、直近の放熱装置2の放熱部付近の空気を吸引して、当該放熱装置2とは反対側の直近に位置する格子窓101aからカバー部材101の外へ送出する。送風部60によりカバー部材101の外側に送出される空気に対応してカバー部材101の外部から流入する空気のうち一部は、他の格子窓101aから流入して放熱装置1の放熱部付近を通過し、送風部60へ向かうようになっている。このために、各部品間の位置関係(すなわち、風の通り道となる隙間)が適宜定められていてもよい。 The air blowing unit 60 is, for example, a fan here, sucks the air in the vicinity of the heat radiating portion of the nearest heat radiating device 2, and blows the cover member 101 through the lattice window 101a located in the immediate vicinity on the opposite side of the heat radiating device 2. Send outside. Part of the air that flows in from the outside of the cover member 101 in response to the air that is sent to the outside of the cover member 101 by the air blower 60 flows in from other lattice windows 101a and flows around the heat dissipation portion of the heat dissipation device 1. It passes through and goes to the air blowing part 60. - 特許庁For this reason, the positional relationship between the parts (that is, the gap that serves as the passage of air) may be appropriately determined.

上記のように、電子機器100のサイズに比して、放熱装置1、2が示す体積が無視できないほど大きいことが分かる。一方で、無制限に電子機器100のサイズを大きくするのは好ましくないので、放熱装置1、2の実効性を確保しつつ、なるべく効率的な配置と小型化が望まれる。 As described above, it can be seen that the volumes of the heat dissipation devices 1 and 2 are so large that they cannot be ignored compared to the size of the electronic device 100 . On the other hand, it is not preferable to increase the size of the electronic device 100 indefinitely. Therefore, it is desired that the heat dissipation devices 1 and 2 be arranged as efficiently as possible and miniaturized while ensuring their effectiveness.

図2は、第1実施形態の放熱装置1の構造を示す図である。図2(a)は斜視図であり、図2(b)は、横から見た側面図である。
図2(a)に示すように、放熱装置1は、放熱対象20に接する受熱部11と、空気中に放熱して発散する放熱部12と、受熱部11から放熱部12へ熱を伝えるヒートパイプ13と、支持板15などを備える。
FIG. 2 is a diagram showing the structure of the heat dissipation device 1 of the first embodiment. FIG. 2(a) is a perspective view, and FIG. 2(b) is a side view seen from the side.
As shown in FIG. 2( a ), the heat dissipation device 1 includes a heat receiving part 11 in contact with a heat dissipating target 20 , a heat dissipating part 12 dissipating the heat into the air, and a heat transmitting part 12 from the heat receiving part 11 to the heat dissipating part 12 . A pipe 13, a support plate 15, and the like are provided.

受熱部11は、基礎部材と接合部材114とを含む。ここでは、基礎部材は、例えば板状の伝熱部111と、当該伝熱部111から突出する突出部112とを有し、突出部112の伝熱部111のある側とは反対側の面である突出面112sが放熱対象20と接する接触面である。
基礎部材及び支持板15は、それぞれ熱伝導度の高い導体金属であり、例えば、アルミ材又は銅材のような熱伝導率が100W/(m・K)を超えるようなものである。基礎部材は、例えば、アルミニウム合金などの溶融金属を金型内に圧入して瞬時に成形するアルミダイカスト、又は加熱融解された樹脂を型の中から押し出し、冷却、固化させて連続的に成形する押出成形、又は外形に沿った切削などにより形成される。これにより、基礎部材は、基本形状に比して変形量が十分に小さくほぼ無視できる略剛体構造となる。受熱部11には、放熱対象20とヒートパイプ13とが接しており、放熱対象20の発した熱が受熱部11を介してヒートパイプ13に伝わる。
The heat receiving portion 11 includes a base member and a joint member 114 . Here, the base member has, for example, a plate-shaped heat transfer portion 111 and a protruding portion 112 protruding from the heat transfer portion 111. The surface of the protruding portion 112 opposite to the heat transfer portion 111 is 112 s of protruding surfaces are contact surfaces that come into contact with the heat dissipating target 20 .
The base member and the support plate 15 are each made of a conductive metal having a high thermal conductivity, such as aluminum or copper having a thermal conductivity exceeding 100 W/(m·K). The base member is, for example, aluminum die-casting, in which molten metal such as an aluminum alloy is pressed into a mold and molded instantly, or heat-melted resin is extruded from the mold, cooled, solidified, and continuously molded. It is formed by extrusion molding, cutting along the outer shape, or the like. As a result, the base member has a substantially rigid structure in which the amount of deformation is sufficiently small compared to the basic shape and can be almost ignored. A heat-dissipating target 20 and a heat pipe 13 are in contact with the heat-receiving part 11 , and the heat generated by the heat-dissipating target 20 is transferred to the heat pipe 13 via the heat-receiving part 11 .

放熱部12は、ヒートパイプ13から受けた熱を空気中に放射発散(放熱)する。放熱部12は、複数の導体板(放熱フィン)を有し、当該放熱板が支持板15上に平行に並んで空気との接触面積を増やすことにより効率的に放熱する。なお、ここではヒートパイプ13を一本だけ示しているが、ヒートパイプ13は複数本であってもよい。この場合、各ヒートパイプ13は、異なる放熱部12に接続されていてもよいし、共通の放熱部12に接続されていてもよい。放熱部12は、熱伝導度の高い導体金属であり、例えば、アルミ材又は銅材である。放熱部12の材質は、受熱部11の基礎部材の材質と同一であってもよいし、異なっていてもよい。 The radiator 12 radiates (radiates) the heat received from the heat pipe 13 into the air. The heat dissipation part 12 has a plurality of conductor plates (heat dissipation fins), and the heat dissipation plates are arranged in parallel on the support plate 15 to increase the contact area with the air, thereby efficiently dissipating heat. Although only one heat pipe 13 is shown here, a plurality of heat pipes 13 may be provided. In this case, each heat pipe 13 may be connected to a different heat radiating section 12 or may be connected to a common heat radiating section 12 . The heat radiating portion 12 is a conductive metal with high thermal conductivity, such as an aluminum material or a copper material. The material of the heat radiating portion 12 may be the same as or different from that of the base member of the heat receiving portion 11 .

なお、放熱部12は、上述のように送風部60による空気の流れの経路上に位置するのが望ましいが、放熱装置1自体が送風部を備え、当該送風部が放熱部12付近で加熱された空気を移動させる風を生じさせるのであってもよい。 In addition, although it is desirable that the heat radiation unit 12 is positioned on the path of the air flow by the blower unit 60 as described above, the heat radiation device 1 itself includes the blower unit, and the blower unit is heated near the heat radiation unit 12. It may also create a wind that moves the air.

図2(b)に示すように、ここでは、伝熱部111と支持板15とは直角に位置しており、支持板15の下部が受熱部11(伝熱部111)に接しているが、これに限られるものではない。また、受熱部11と放熱部12及び支持板15との間をヒートパイプ13が接続している。 As shown in FIG. 2B, here, the heat transfer portion 111 and the support plate 15 are positioned at right angles, and the lower portion of the support plate 15 is in contact with the heat receiving portion 11 (heat transfer portion 111). , but not limited to these. A heat pipe 13 connects the heat receiving portion 11 , the heat radiating portion 12 and the support plate 15 .

ここでは、受熱部11は、伝熱部111の突出部112のある側とは反対側の面である上面111s(第1の面)には、レール状の一対の突起1111(ガイド部)が位置し、当該突起1111の間にヒートパイプ13が延びている。突起1111の側面及びその間の上面111sと、ヒートパイプ13とが接合部材114により接合されている。突起1111の高さは、ヒートパイプ13の高さと同程度であってもよいが、これよりも高くても低くてもよい。これにより、突起1111の側面がヒートパイプ13の両側面を覆い(上記のようにヒートパイプ13よりも低い突起1111などにより不完全に覆う場合を含む)、熱が伝わる面積を増大させているとともに、当該ヒートパイプ13が空気と直接接触する面積を減少させている。また、伝熱部111は、ガイド部として一対の突起1111の代わりに、上面111sに溝を有していてもよい。また、突起1111の間の上面111sの形状や溝の内部の形状は、ヒートパイプ13の断面形状に合わせられていてもよい。接合部材114は、ヒートパイプ13と伝熱部111との間の隙間の一部又は全部に埋め込まれていてもよい。 Here, the heat receiving portion 11 has a pair of rail-shaped projections 1111 (guide portions) on an upper surface 111s (first surface), which is the surface opposite to the side of the heat transfer portion 111 on which the projecting portion 112 is provided. , and the heat pipe 13 extends between the protrusions 1111 . A joint member 114 joins the side surface of the projection 1111 and the upper surface 111 s between the protrusions 1111 and the heat pipe 13 . The height of the protrusion 1111 may be approximately the same as the height of the heat pipe 13, but may be higher or lower than this. As a result, the side surfaces of the protrusions 1111 cover both side surfaces of the heat pipe 13 (including the case where the protrusions 1111 that are lower than the heat pipe 13 imperfectly cover the heat pipes 13 as described above), thereby increasing the heat transfer area. , the area of the heat pipe 13 in direct contact with the air is reduced. Also, the heat transfer portion 111 may have a groove on the upper surface 111s instead of the pair of projections 1111 as a guide portion. Also, the shape of the upper surface 111 s between the protrusions 1111 and the shape of the inside of the groove may match the cross-sectional shape of the heat pipe 13 . The joining member 114 may be embedded in part or all of the gap between the heat pipe 13 and the heat transfer section 111 .

接合部材114は、熱伝導率の高いもの(熱伝導性接合部材)である。これにより、受熱部11からヒートパイプ13へ速やかに熱が受け渡される。このような接合部材114は、導電性を有する態様で導体金属などを含むものなどであり、少なくとも10W/(m・K)以上程度の熱伝導率を有するもの、例えば、はんだである。あるいは、接合部材114は、はんだと同程度の熱伝導率を有するろう材や、金属フィラー(銀など)を含有する導電性接着剤であってもよい。 The joining member 114 is a member having a high thermal conductivity (a thermally conductive joining member). As a result, heat is quickly transferred from the heat receiving portion 11 to the heat pipe 13 . Such a joining member 114 contains a conductive metal or the like in an electrically conductive manner, and has a thermal conductivity of at least about 10 W/(m·K) or more, such as solder. Alternatively, the joining member 114 may be a brazing material having thermal conductivity similar to that of solder, or a conductive adhesive containing a metal filler (such as silver).

ヒートパイプ13は、中空構造の内部に毛細管構造を有する熱伝導率の高い材質、例えば銅などのパイプと、当該パイプの中空構造部分に封入された揮発性の作動液とを有する。この作動液が熱源側で蒸発して潜熱を吸収し、毛細管に沿ってヒートシンク側に速やかに移動した後に凝縮して潜熱を放出することにより熱の移動を促進する。パイプの断面外形は、円状又は幅広扁平状である。この構造により、ヒートパイプ13は、上記熱伝導率の高い受熱部11や放熱部12に比較して顕著に大きい熱輸送効率(例えば、1~2桁以上、10000W/(m・K)以上など)を有する。したがって、ヒートパイプ13は、受熱部11が放熱対象20から得た熱を受熱部11から速やかに放熱部12へ放出させることができる。このヒートパイプ13は、屈曲部131と、その一端に接続する直線部132と、当該一端とは反対側の端に接続する直線部133とを有し、直線部132(接触部)が受熱部11に接する(上面111s上に位置する)ことで熱が受熱部11からヒートパイプ13に伝わる。また、直線部133は、放熱部12に接しており、ヒートパイプ13から放熱部12へ熱が伝わる。この部分では直線部132、133(作動液)と受熱部11、放熱部12との間での熱の受け渡しが十分に行われるように、通常最低限の長さ(基準最小値)が必要である。 The heat pipe 13 has a pipe made of a material with high thermal conductivity, such as copper, which has a capillary structure inside the hollow structure, and a volatile working fluid enclosed in the hollow structure portion of the pipe. This working fluid evaporates on the heat source side, absorbs latent heat, quickly moves along the capillary tube to the heat sink side, and then condenses to release the latent heat, thereby promoting heat transfer. The cross-sectional shape of the pipe is circular or wide and flat. With this structure, the heat pipe 13 has a significantly higher heat transfer efficiency (for example, 1 to 2 orders of magnitude or more, 10000 W / (m K) or more, etc.) compared to the heat receiving portion 11 and the heat radiating portion 12 having high thermal conductivity. ). Therefore, the heat pipe 13 can quickly release the heat received by the heat receiving section 11 from the heat radiating target 20 to the heat radiating section 12 from the heat receiving section 11 . The heat pipe 13 has a bent portion 131, a straight portion 132 connected to one end thereof, and a straight portion 133 connected to an end opposite to the one end. 11 (located on the upper surface 111 s), heat is transmitted from the heat receiving portion 11 to the heat pipe 13 . Further, the straight portion 133 is in contact with the heat radiating portion 12 , and heat is transferred from the heat pipe 13 to the heat radiating portion 12 . In this portion, a minimum length (reference minimum value) is normally required so that heat can be sufficiently transferred between the linear portions 132 and 133 (working fluid) and the heat receiving portion 11 and heat radiating portion 12. be.

屈曲部131は、受熱部11と放熱部12とがヒートパイプ13の作動液の移動を妨げないために、必要最小限以上のある曲率半径R(基準最小径)の曲線形状(折れ曲がりではない。例えば、基準最小径は、円柱状のヒートパイプの外径や扁平管の厚みの3倍など)となっている。ここでは屈曲部131は、直線部132の上面111sに沿う方向から90度屈曲(曲がり角度)して、当該上面111sから離隔する方向(ここでは上面111sの基準面(突起1111などの凹凸部分を除いた部分)と突出部112の突出面112sとは平行であるので、すなわち放熱対象20から離隔する方向である)へ向きを変化させ、上面111sに垂直な方向に向いた直線部133につなげて、受熱部11から放熱部12へ熱を伝えている。この屈曲部131は、伝熱部111の表面から浮いて位置しており、放熱装置1では、この伝熱部111と屈曲部131との間に接合部材114が位置して各々に接合していることで、受熱部11が屈曲部131の屈曲に追従して接し、ヒートパイプ13と受熱部11とが物理的にかつ熱的につながっている。ここでいう追従とは、屈曲部131の底面(円筒形状の場合には、最下部をなす線)の各位置と受熱部11との距離が少なくとも一部の範囲で連続的又は複数点で断続的に、曲率半径Rに比して十分に小さい(例えば、10%以下、より好ましくは2-3%以下)基準距離以下であることを意味する。そして、この追従部分の少なくとも一部が接する、すなわち距離がゼロである(物理的につながっている)ことで、受熱部11から屈曲部131へ熱が速やかに伝わり得る(熱的につながっている)。 In order that the heat receiving portion 11 and the heat radiating portion 12 do not interfere with the movement of the working fluid in the heat pipe 13, the bent portion 131 has a curve shape (not a bend) with a curvature radius R (reference minimum diameter) greater than or equal to the necessary minimum. For example, the reference minimum diameter is three times the outer diameter of a cylindrical heat pipe or the thickness of a flat tube. Here, the bent portion 131 is bent (bending angle) by 90 degrees from the direction along the upper surface 111s of the linear portion 132, and is separated from the upper surface 111s (here, the reference surface of the upper surface 111s (the uneven portion such as the protrusion 1111). ) and the protruding surface 112s of the protruding portion 112 are parallel to each other, that is, in a direction away from the heat dissipating target 20), and connected to a straight portion 133 directed in a direction perpendicular to the upper surface 111s. , the heat is transferred from the heat receiving portion 11 to the heat radiating portion 12 . The bent portion 131 is positioned floating from the surface of the heat transfer portion 111, and in the heat dissipation device 1, the joint member 114 is positioned between the heat transfer portion 111 and the bent portion 131 to join them. As a result, the heat receiving portion 11 follows the bending of the bending portion 131 and comes into contact with the heat pipe 13 and the heat receiving portion 11 physically and thermally. The follow-up here means that the distance between each position of the bottom surface of the bent portion 131 (in the case of a cylindrical shape, the line forming the bottom) and the heat receiving portion 11 is continuous or intermittent in at least a part of the range. Specifically, it means that the distance is below a reference distance which is sufficiently smaller than the radius of curvature R (for example, 10% or less, more preferably 2-3% or less). At least a part of the following portion is in contact, that is, the distance is zero (physically connected), so that heat can be quickly transmitted from the heat receiving portion 11 to the bending portion 131 (thermally connected). ).

このとき、伝熱部111を上方(放熱装置1の放熱対象20とは反対側であって、ここでは、放熱対象20と接触する突出面112sに垂直な方向)から見た平面視で屈曲部131の位置の下にも突起1111が延びていることで、接合部材114を当該突起1111の間に限定して外側にはみ出しにくくすることができる。この部分の突起1111の高さは、直線部132と接している部分の突起1111の高さと同一であってもよいし、これよりも高くても低くてもよい。 At this time, when the heat transfer portion 111 is viewed from above (on the opposite side of the heat dissipation target 20 of the heat dissipation device 1, here, in a direction perpendicular to the projecting surface 112s in contact with the heat dissipation target 20), the bent portion Since the protrusions 1111 extend below the position of 131, it is possible to limit the joint member 114 between the protrusions 1111 and make it difficult to protrude outward. The height of the protrusion 1111 at this portion may be the same as the height of the protrusion 1111 at the portion in contact with the straight portion 132, or it may be higher or lower than this.

このように、屈曲部131と受熱部11とが直接接して熱伝導が可能である(熱的に接続される)ことで、直線部132の長さは、従来(基準最小値)より短くてもよい。例えば、当該伝熱部111に接続されているヒートパイプ13の長さ、すなわち、直線部132と屈曲部131の長さの合計(平面視長さでもよい)が上記基準最小値以上となっていればよい。放熱対象20や受熱部11のサイズに比して基準最小径が無視できない大きさである場合に、このように屈曲部131も受熱部11との接触部分となるように構成することで、放熱装置1の平面視サイズが当該屈曲部131の分大きくなるのを抑制する。 In this way, since the bent portion 131 and the heat receiving portion 11 are in direct contact with each other to enable heat conduction (thermally connected), the length of the straight portion 132 is shorter than the conventional (standard minimum value). good too. For example, the length of the heat pipe 13 connected to the heat transfer portion 111, that is, the total length of the linear portion 132 and the bent portion 131 (the length in plan view may be acceptable) is equal to or greater than the reference minimum value. All you have to do is When the reference minimum diameter is a size that cannot be ignored compared to the size of the heat-dissipating target 20 or the heat-receiving part 11, by configuring the bent part 131 as well as the contact part with the heat-receiving part 11 in this way, the heat is dissipated. This prevents the plan view size of the device 1 from increasing by the bending portion 131 .

ここでは、支持板15に溝が延びており、ヒートパイプ13は、当該溝の中を延びている。溝の深さは、ヒートパイプ13の厚さ(例えば、円形の外形断面の直径)程度であって、ここでは、ヒートパイプ13と放熱部12の各放熱フィンとは接触する。あるいは、ヒートパイプ13は、各放熱フィンの板面の向きに応じて当該板面をそれぞれ貫通(ここでいう貫通は、周囲が全て板面で囲まれた閉領域の場合に限らず、一部が板の境界にかかって開放された切り込み状であってもよい)して接触していてもよい。また、溝の底面の当該溝に沿った方向に垂直な断面形状は、ヒートパイプ13の外形と一致していても(すなわち半円形であっても)よい。あるいは、溝の中で当該溝の壁面とヒートパイプ13との隙間は、接合部材114(上記熱伝導性接合部材と同一であってもよい)により埋められていてもよい。これらの場合、支持板15自体も放熱部12の一部として機能してもよく、また、一部の熱は、支持板15を介して放熱部12の各放熱フィンに伝わる。 Here, a groove extends through the support plate 15 and the heat pipe 13 extends through the groove. The depth of the groove is approximately the thickness of the heat pipe 13 (for example, the diameter of the circular outer cross section), and here, the heat pipe 13 and each heat radiating fin of the heat radiating section 12 are in contact with each other. Alternatively, the heat pipe 13 penetrates through the plate surface of each heat dissipating fin according to the direction of the plate surface (the penetration here is not limited to the case of a closed area surrounded entirely by the plate surface, but also partially may be in the form of a notch that is open across the border of the plate). Also, the cross-sectional shape of the bottom surface of the groove perpendicular to the direction along the groove may match the outer shape of the heat pipe 13 (that is, may be semicircular). Alternatively, the gap between the wall surface of the groove and the heat pipe 13 in the groove may be filled with a bonding member 114 (which may be the same as the thermally conductive bonding member described above). In these cases, the support plate 15 itself may also function as a part of the heat radiating section 12 , and part of the heat is transmitted to the heat radiating fins of the heat radiating section 12 via the support plate 15 .

伝熱部111の側面と支持板15の下端部分とが接しているので、ヒートパイプ13は、平面視でその端部の少なくとも一部が伝熱部111の平面視境界位置と接して(境界線上又は当該境界線の内側に位置して)いる。すなわち、ヒートパイプ13は、伝熱部111(受熱部11)の平面視の範囲から大きくはみ出さないので、従来よりコンパクトな配置が可能となる。さらに、ヒートパイプ13が伝熱部111、支持板15又は放熱部12に接している割合が高く、空気に直接露出する面積が少ない。特に、平面視で受熱部11からはみ出す部分がない(従来よりも少ない)ことで、ヒートパイプ13が上記送風部60への空気の流れ(風)に直接面しにくくなる。その結果、この放熱装置1では、ヒートパイプ13から空気中へ直接放熱する熱量が従来よりも少ない。ヒートパイプ13では、受熱部11(伝熱部111に接する部分)と放熱部12との間での温度勾配が大きいほど効率的に熱が輸送されるので、ヒートパイプ13の途中で空気中への放熱が多いとこの温度勾配が乱されて熱の輸送効率が低下する。したがって、この放熱装置1は、従来よりも高い放熱効率が得られやすい構造を有する。 Since the side surface of the heat transfer section 111 and the lower end portion of the support plate 15 are in contact with each other, at least a part of the end portion of the heat pipe 13 is in contact with the boundary position of the heat transfer section 111 in plan view (boundary). line or inside the boundary). That is, since the heat pipe 13 does not protrude greatly from the planar view range of the heat transfer section 111 (heat receiving section 11), it is possible to arrange the heat pipe 13 more compactly than before. Furthermore, the proportion of the heat pipe 13 in contact with the heat transfer portion 111, the support plate 15, or the heat dissipation portion 12 is high, and the area directly exposed to the air is small. In particular, since there is no part protruding from the heat receiving part 11 in plan view (smaller than in the conventional case), the heat pipe 13 is less likely to directly face the flow of air (wind) to the air blowing part 60 . As a result, in this heat dissipation device 1, the amount of heat that is directly radiated from the heat pipe 13 into the air is smaller than in the conventional case. In the heat pipe 13, heat is transported more efficiently as the temperature gradient between the heat receiving portion 11 (the portion in contact with the heat transfer portion 111) and the heat radiating portion 12 increases. If the amount of heat released is large, this temperature gradient will be disturbed and the heat transport efficiency will decrease. Therefore, the heat dissipation device 1 has a structure that facilitates obtaining a higher heat dissipation efficiency than the conventional one.

図3は、(a)第2実施形態の放熱装置1aの側面図と、(b)第3実施形態の放熱装置1bの側面図である。
図3(a)に示す放熱装置1aでは、受熱部11aの上面111sが屈曲部131に沿って曲面状であって、屈曲部131と直接接して又は薄い接合部材の層を介して接し、これにより物理的にかつ熱的につながっている。このように伝熱部111a(基礎部材)自体が屈曲部131を含むヒートパイプ13の延在方向に沿った形状に合わせた曲面形状の部分(曲面部分)を有する(追従している)ことで、受熱部11とヒートパイプ13との接合は通常のように容易に行われ、熱が確実かつ速やかに屈曲部131においてヒートパイプ13へ伝わる。この場合、図3(a)の左右方向について屈曲部131に対応する上面111sの部分が図3(a)の奥行き方向について全体で曲面状(直線部であってもよいし、上面111sのうちヒートパイプ13に沿った範囲を含む一部、例えば、突起1111及びその間の範囲でのみ平面から突出し、ヒートパイプ13に沿って曲がる(追従する)曲面状であってもよい。
FIG. 3 is (a) a side view of the heat dissipation device 1a of the second embodiment, and (b) a side view of the heat dissipation device 1b of the third embodiment.
In the heat dissipation device 1a shown in FIG. 3(a), the upper surface 111s of the heat receiving portion 11a is curved along the bent portion 131, and is in direct contact with the bent portion 131 or via a layer of a thin bonding member. physically and thermally connected by In this way, the heat transfer portion 111a (base member) itself has (follows) a curved portion (curved portion) matching the shape along the extending direction of the heat pipe 13 including the bent portion 131. , the heat receiving portion 11 and the heat pipe 13 are easily joined as usual, and the heat is reliably and quickly transmitted to the heat pipe 13 at the bent portion 131 . In this case, the portion of the upper surface 111s corresponding to the bent portion 131 in the horizontal direction of FIG. A part including the range along the heat pipe 13 , for example, only the projection 1111 and the range therebetween may protrude from the plane and may be curved (following) along the heat pipe 13 .

図3(b)に示す放熱装置1bでは、受熱部11bの伝熱部111bが溝を有さず、屈曲部131に沿った(追従する)曲面形状の伝熱部111bに沿って位置するヒートパイプ13が、直接又は接合部材114を介して当該伝熱部111bと接していてもよい。 In the heat dissipation device 1b shown in FIG. 3B, the heat transfer portion 111b of the heat receiving portion 11b does not have a groove, and the heat transfer portion 111b is positioned along the curved heat transfer portion 111b along (following) the bent portion 131. The pipe 13 may be in contact with the heat transfer section 111b either directly or via the joint member 114. As shown in FIG.

図4は、(a)第4実施形態の放熱装置1cにおける受熱部11cとヒートパイプ13cとを示す斜視図、及び(b)第5実施形態の放熱装置1dの側面図である。
図4(a)に示すように、放熱装置1cのヒートパイプ13cは、180度屈曲したU字形状である。受熱部11cの伝熱部111cは、当該U字形状に沿った2列の突起1111c及びこれらに挟まれてヒートパイプ13cが収まる(追従する形状を有して接する)溝部を有する。この場合、ヒートパイプ13cは、2列の突起1111cの間の溝部内でU字の底面から両端側の屈曲部にかけての中央付近で伝熱部111cから熱を受けて吸熱して、両端側の屈曲部をそれぞれ熱が流れて支持板15c及び放熱部12cへ放熱されてもよい。すなわち、放熱部12cは、破線で示すように、ヒートパイプ13cの両端(両側の支持板15c)にわたって共通のものが位置していてもよいし、あるいは、ヒートパイプ13cの両端(両側の支持板15c)に対してそれぞれ別個に接する複数を有していてもよい。この形状では、受熱部11cの平面視での面積に比してヒートパイプ13cが受熱部11cと接している長さが従来よりも増加する。これにより、より効率的に熱が放熱部12cへ伝えられる。また、ヒートパイプ13cが屈曲の内面側でしか空気に露出しないので、特に風に当たりにくくなり、より効率的に熱が受熱部11cから放熱部12cへと伝えられる。
FIG. 4 is (a) a perspective view showing a heat receiving portion 11c and a heat pipe 13c in a heat dissipation device 1c of the fourth embodiment, and (b) a side view of a heat dissipation device 1d of the fifth embodiment.
As shown in FIG. 4A, the heat pipe 13c of the heat dissipation device 1c has a U-shape bent 180 degrees. The heat transfer portion 111c of the heat receiving portion 11c has two rows of protrusions 1111c along the U-shape and a groove portion in which the heat pipe 13c is sandwiched between the protrusions 1111c (having a shape to follow and contact). In this case, the heat pipe 13c receives and absorbs heat from the heat transfer portion 111c near the center from the bottom of the U shape to the bent portions on both ends in the groove between the two rows of protrusions 1111c. Heat may flow through each of the bent portions and be radiated to the support plate 15c and the heat radiating portion 12c. That is, the heat radiating portion 12c may be positioned in common across both ends (both supporting plates 15c) of the heat pipe 13c, as indicated by the dashed line, or may be positioned at both ends (both supporting plates 15c) of the heat pipe 13c. 15c) may have a plurality of each contacting separately. In this shape, the length of the heat pipe 13c in contact with the heat receiving portion 11c is longer than in the conventional case compared to the area of the heat receiving portion 11c in plan view. As a result, heat is more efficiently transferred to the heat radiating portion 12c. Moreover, since the heat pipe 13c is exposed to air only on the inner surface side of the bend, it is particularly difficult to be exposed to the wind, and heat is more efficiently transferred from the heat receiving portion 11c to the heat radiating portion 12c.

あるいは、図4(b)に示すように、第5実施形態の放熱装置1dのヒートパイプ13dは、直線部132を挟んで屈曲部131、134でそれぞれ90度ずつ合計で180度屈曲していてもよい。伝熱部111dは、ヒートパイプ13dの形状に合わせて(追従して)上面がU字形状であり、当該屈曲部131、134と直接又は接合部材を介して接触している。これにより、受熱部11dの平面視での面積に比してヒートパイプ13dが受熱部11dと接している長さが従来よりも増加する。ヒートパイプ13dは、一端でそのまま上方に伸びる直線部133に接続されたJ字形状を有する。直線部133は、支持板15に固定されて放熱部12に熱を伝える。この場合、熱の輸送時と戻り時とで作動液が単調な上昇/下降の切り替わりにならないので、ヒートパイプ13dは、上下動に依存しやすい構造や作動液ではないことが望ましい。 Alternatively, as shown in FIG. 4(b), the heat pipe 13d of the heat dissipation device 1d of the fifth embodiment is bent 90 degrees at each of the bent portions 131 and 134 with the straight portion 132 interposed therebetween for a total of 180 degrees. good too. The heat transfer portion 111d has a U-shaped upper surface that matches (follows) the shape of the heat pipe 13d, and is in contact with the bent portions 131 and 134 directly or via a joining member. As a result, the length of the heat pipe 13d in contact with the heat receiving portion 11d increases compared to the area of the heat receiving portion 11d in plan view. The heat pipe 13d has a J-shape with one end connected to a straight portion 133 that extends upward. The linear portion 133 is fixed to the support plate 15 and conducts heat to the heat radiating portion 12 . In this case, the working fluid does not monotonously rise and fall when heat is transported and returned.

図5は、図4(b)の断面線AAにおける断面の例(a)~(d)、及び図3(b)の断面線AAにおける断面(e)の例をそれぞれ示す図である。
例えば、図5(a)のように、ヒートパイプ13dの屈曲部131は、溝部内で全体が接合部材114を介して伝熱部111dに接していてもよい。また、図5(b)のように、ヒートパイプ13dの一部分、例えば、底面が接合部材114を介して伝熱部114と接し、ヒートパイプ13dの側面は伝熱部114と直接接していてもよい。反対に、図5(c)のように、溝部の底面で伝熱部111dとヒートパイプ13d(屈曲部131)とが直接接し、溝部の側面では伝熱部111dとヒートパイプ13d(屈曲部131)とが接合部材114を介して接していてもよい。
5A to 5D are diagrams showing examples of cross sections (a) to (d) taken along the section line AA in FIG. 4(b) and examples of a cross section (e) taken along the section line AA in FIG. 3(b).
For example, as shown in FIG. 5A, the bent portion 131 of the heat pipe 13d may be entirely in contact with the heat transfer portion 111d via the joining member 114 within the groove. Also, as shown in FIG. 5B, even if a part of the heat pipe 13d, for example, the bottom surface is in contact with the heat transfer section 114 via the joining member 114, and the side surface of the heat pipe 13d is in direct contact with the heat transfer section 114, good. On the contrary, as shown in FIG. 5C, the heat transfer portion 111d and the heat pipe 13d (bent portion 131) are in direct contact with each other on the bottom surface of the groove, and the heat transfer portion 111d and the heat pipe 13d (bent portion 131) are in direct contact with each other on the side surface of the groove. ) may be in contact with each other via the joining member 114 .

あるいは、図5(d)のように、接合部材114は、ヒートパイプ13dの上面側(溝部の外。すなわち、伝熱部111dとヒートパイプ13dの間の位置以外)に接していてもよい。さらに、図5(e)に示したように、ヒートパイプ13の側面に沿って伝熱部111bの突起がない場合には、ヒートパイプ13の底面が直接伝熱部111cと接して、ヒートパイプ13の側面が伝熱部111c上で盛り上がった接合部材114と接合されていてもよい。 Alternatively, as shown in FIG. 5D, the joining member 114 may be in contact with the upper surface side of the heat pipe 13d (outside the groove, ie, other than the position between the heat transfer portion 111d and the heat pipe 13d). Furthermore, as shown in FIG. 5E, when there is no protrusion of the heat transfer portion 111b along the side surface of the heat pipe 13, the bottom surface of the heat pipe 13 is in direct contact with the heat transfer portion 111c, and the heat pipe 13 may be joined to the joining member 114 which rises on the heat transfer part 111c.

以上のように、上記実施形態の放熱装置1は、放熱対象20に接する受熱部11と、空気中に放熱する放熱部12と、受熱部11から放熱部12へ熱を伝えるヒートパイプ13と、を備える。ヒートパイプ13は、放熱対象20から離隔する方向へ曲がる屈曲部131を有し、受熱部11は、屈曲部131の少なくとも一部に追従して屈曲部131と接する部分を有する。
このように、放熱装置1では、放熱対象20から離れる方向へ屈曲する屈曲部131に対しても受熱部11から熱を伝えることができるので、従来、上面111s上などで必要とされている直線部132の長さを短縮してもヒートパイプ13の伝熱能力に応じた熱を受熱部11からヒートパイプ13へ伝えて、効率的に放熱することができる。また、これにより、屈曲部131を平面視で受熱部11の外側へ大きくはみ出させなくてもよいことになるので、放熱量を下げずに放熱装置1のサイズをよりコンパクトにして、放熱効率を向上させることができる。さらに、ヒートパイプ13がこのように受熱部11の外側に大きくはみ出さないことで、空気への露出面積が減り、当該ヒートパイプ13の受熱部11と放熱部12との間での温度勾配が適切に維持されやすくなるので、より効率よく熱輸送がなされる。
As described above, the heat dissipation device 1 of the above embodiment includes the heat receiving part 11 that contacts the heat dissipation target 20, the heat dissipation part 12 that dissipates heat into the air, the heat pipe 13 that transfers heat from the heat receiving part 11 to the heat dissipation part 12, Prepare. The heat pipe 13 has a bent portion 131 that bends away from the heat radiating target 20 , and the heat receiving portion 11 has a portion that follows at least a portion of the bent portion 131 and contacts the bent portion 131 .
As described above, in the heat dissipation device 1, heat can be transferred from the heat receiving part 11 to the bent part 131 bent in the direction away from the heat dissipating target 20. Even if the length of the portion 132 is shortened, the heat corresponding to the heat transfer capability of the heat pipe 13 can be transferred from the heat receiving portion 11 to the heat pipe 13 and the heat can be efficiently radiated. In addition, this eliminates the need for the bent portion 131 to protrude greatly outside the heat receiving portion 11 in a plan view. can be improved. Furthermore, since the heat pipe 13 does not protrude greatly outside the heat receiving portion 11 in this manner, the area exposed to the air is reduced, and the temperature gradient between the heat receiving portion 11 and the heat radiating portion 12 of the heat pipe 13 is reduced. Since it becomes easy to maintain appropriately, heat transport is performed more efficiently.

また、受熱部11は、伝熱部111及び突出部112を含む基礎部材と、接合部材114とを含む。接合部材114は、屈曲部131の少なくとも一部と接していてもよい。これにより、放熱装置1aでは、相対的に固定された受熱部11から屈曲部131へ確実に直接熱を伝えることができる。また、受熱部11からヒートパイプ13への熱の移動が直線部132に限られないので、曲率半径Rによる屈曲部131の部分を無駄なスペースとせずに効率よい熱の移動が可能になる。 The heat receiving section 11 also includes a base member including the heat transfer section 111 and the projecting section 112 and a joining member 114 . The joining member 114 may be in contact with at least part of the bent portion 131 . Thus, in the heat dissipation device 1a, heat can be reliably and directly transferred from the relatively fixed heat receiving portion 11 to the bent portion 131. As shown in FIG. In addition, since the transfer of heat from the heat receiving portion 11 to the heat pipe 13 is not limited to the linear portion 132, efficient heat transfer is possible without using the curved portion 131 with the radius of curvature R as a wasteful space.

また、基礎部材(伝熱部111)は、屈曲部131の上記少なくとも一部に対して少なくとも一部で追従する曲面部分を有し、当該曲面部分の少なくとも一部がヒートパイプ13と(直接及び/又は薄い接合部材114の層を介して)接していてもよい。このように伝熱部111の形状自体を屈曲部131の屈曲形状に合わせることで、当該部分でも高い熱伝導度で受熱部11からヒートパイプ13に直接又は至近距離まで熱を伝えることができるので、当該ヒートパイプ13による熱輸送を平面視サイズでよりコンパクトに行うことが可能となる。 In addition, the base member (heat transfer section 111) has a curved surface portion that at least partially follows the at least a portion of the bent portion 131, and at least a portion of the curved surface portion is connected to the heat pipe 13 (directly and /or through a layer of thin bonding member 114). By matching the shape of the heat transfer portion 111 itself to the bent shape of the bent portion 131 in this way, the heat can be transferred from the heat receiving portion 11 directly or to a short distance to the heat pipe 13 with high thermal conductivity even at this portion. , the heat transport by the heat pipe 13 can be made more compact in plan view size.

また、接合部材114は、屈曲部131の少なくとも一部と基礎部材(伝熱部111)との間の隙間に位置して、屈曲部131と伝熱部111とに接していてもよい。これらの少なくとも一部が熱伝導度(率)の高い接合部材114により接続されている。ヒートパイプ13の管径が小さく、これに応じて屈曲部131の曲率半径Rもあまり大きくない場合には、上記隙間を接合部材114で埋め込んでしまうことで、容易に屈曲部131と伝熱部111との間を物理的にかつ熱的につなぐことができる。これにより、受熱部11の上面111sが単純な平面又はガイド部を有する程度あっても受熱部11と屈曲部131との間で熱の送受が可能となり、直線部132を従来よりも短縮して放熱装置1を小型化しても、熱輸送効率を低下させない。 Also, the joining member 114 may be positioned in a gap between at least a portion of the bent portion 131 and the base member (heat transfer portion 111 ), and may be in contact with the bent portion 131 and the heat transfer portion 111 . At least part of them are connected by a joint member 114 having a high thermal conductivity (rate). When the diameter of the heat pipe 13 is small and accordingly the radius of curvature R of the bent portion 131 is not so large, by filling the gap with the joining member 114, the bent portion 131 and the heat transfer portion can be easily connected. 111 can be physically and thermally connected. As a result, heat can be transmitted and received between the heat receiving portion 11 and the bent portion 131 even if the upper surface 111s of the heat receiving portion 11 has a simple flat surface or a guide portion. Even if the radiator 1 is miniaturized, the heat transport efficiency is not lowered.

また、接合部材114は、はんだ、ろう材又は導電性接着剤である。これらのように従来用いられる熱伝導度の高い接合部材114を利用することで、低コストで容易に屈曲部131に受熱部11を追従させて、屈曲部131と受熱部11と物理的にかつ熱的に接続することができる。 Also, the joining member 114 is solder, brazing material, or conductive adhesive. By using the conventionally used bonding member 114 having high thermal conductivity as described above, the heat receiving portion 11 can easily follow the bending portion 131 at low cost, and the bending portion 131 and the heat receiving portion 11 are physically and can be thermally connected.

また、ヒートパイプ13は、屈曲部131の一端に接続する直線部132を有し、直線部132は、伝熱部111上に位置している。放熱装置1では、このような従来の位置関係を維持しつつ、この直線部132を短くしても、上記のように、よりコンパクトに十分な熱輸送を行うことができる。 The heat pipe 13 also has a straight portion 132 connected to one end of the bent portion 131 , and the straight portion 132 is positioned on the heat transfer portion 111 . In the heat dissipation device 1, even if the linear portion 132 is shortened while maintaining such a conventional positional relationship, it is possible to perform sufficient heat transport in a more compact manner as described above.

また、受熱部11(伝熱部111)は、ヒートパイプ13の延在方向に沿って当該ヒートパイプ13の両側面を覆う突起1111を有していてもよい。これにより、ヒートパイプ13の底面側だけではなく3方向から熱を当該ヒートパイプ13に熱を伝えることができるので、輸送効率が改善する。一方で、ヒートパイプ13の外部(空気)への露出面積を減らすことができるので、放熱部12以外での不要な放熱を抑えることができる。これにより、ヒートパイプ13の受熱部11の側と放熱部12の側との間での温度勾配が適切に維持されて、より効率よく熱輸送が行われる。また、接合部材114が突起1111の間からはみ出すのを抑制することができるので、接合部材114の消費量を適切な範囲にとどめることができる。 Further, the heat receiving portion 11 (heat transfer portion 111) may have projections 1111 covering both side surfaces of the heat pipe 13 along the extending direction of the heat pipe 13. As shown in FIG. As a result, heat can be transferred to the heat pipe 13 not only from the bottom side of the heat pipe 13 but also from three directions, thereby improving the transportation efficiency. On the other hand, since the exposed area of the heat pipe 13 to the outside (air) can be reduced, unnecessary heat radiation other than the heat radiation portion 12 can be suppressed. As a result, the temperature gradient between the heat receiving portion 11 side and the heat radiating portion 12 side of the heat pipe 13 is appropriately maintained, and heat is transported more efficiently. In addition, since it is possible to prevent the joint member 114 from protruding from between the projections 1111, the consumption amount of the joint member 114 can be kept within an appropriate range.

また、屈曲部131のうち少なくとも一部が放熱対象20を上方(放熱装置1の側)から見た平面視で受熱部11の範囲内にあり、この少なくとも一部の屈曲部131の少なくとも一部が、受熱部11と接している。
このように、平面視で受熱部11の範囲に屈曲部131をなるべく含めることで、受熱部11から放熱部12への熱輸送の効率の低下を抑えつつ、従来よりもコンパクトな放熱装置1を得ることができる。
In addition, at least part of the bent portion 131 is within the range of the heat receiving portion 11 in a plan view of the heat dissipating target 20 viewed from above (the side of the heat dissipation device 1), and at least part of the bent portion 131 is at least part of the bent portion 131. is in contact with the heat receiving portion 11 .
In this way, by including the bent portion 131 as much as possible in the range of the heat receiving portion 11 in plan view, the heat dissipation device 1 that is more compact than the conventional one can be realized while suppressing a decrease in the efficiency of heat transport from the heat receiving portion 11 to the heat dissipating portion 12. Obtainable.

また、屈曲部131は90度の曲がり角度を有していてもよい。これにより、平面視で受熱部11の範囲から大きくはみ出すことなく受熱部11の直上に放熱部12を配置することができるので、スペースを効率に利用して効果的に熱を輸送、放熱することができる。 Also, the bent portion 131 may have a bending angle of 90 degrees. As a result, the heat radiating part 12 can be arranged directly above the heat receiving part 11 without protruding greatly from the range of the heat receiving part 11 in plan view, so that the space can be efficiently used to effectively transport and radiate heat. can be done.

また、ヒートパイプ13は、屈曲部131の一端が上面111sに垂直な方向を向いており、この一端の少なくとも一部は、上面111sを上方から見た平面視で当該上面111s(受熱部11)の境界線上又は当該境界線の内側に位置する。このように、屈曲部131、すなわちヒートパイプ13が平面視で受熱部11の範囲から明らかに外側に飛び出さない範囲にとどまるので、放熱装置1は、熱輸送量を維持しつつ場所を取らずにコンパクトな形状とすることができる。 One end of the bent portion 131 of the heat pipe 13 faces in a direction perpendicular to the upper surface 111s, and at least a part of this one end extends from the upper surface 111s (heat receiving portion 11) when viewed from above. located on or inside the boundary of In this way, since the bent portion 131, that is, the heat pipe 13 is kept within a range that does not protrude outwardly from the range of the heat receiving portion 11 in a plan view, the heat dissipation device 1 can maintain the amount of heat transported while saving space. compact shape.

また、本実施形態の電子機器100は、上記の放熱装置1と、当該放熱装置1の受熱部11に接する放熱対象20(ここでは、光学系40や制御回路50)と、を備える。このような電子機器100における放熱をコンパクトな放熱装置1により行うことで、電子機器100の過熱を防ぎつつ電子機器100全体のサイズの増大や内部の不要なスペースの発生を適切に抑制することができる。 Further, the electronic device 100 of the present embodiment includes the heat dissipation device 1 described above and a heat dissipation target 20 (here, the optical system 40 and the control circuit 50) in contact with the heat receiving portion 11 of the heat dissipation device 1. By dissipating heat from the electronic device 100 using the compact heat dissipation device 1, it is possible to prevent the electronic device 100 from overheating while appropriately suppressing an increase in the overall size of the electronic device 100 and generation of unnecessary internal space. can.

なお、本発明は、上記実施の形態に限られるものではなく、様々な変更が可能である。
例えば、上記実施の形態では、ヒートパイプ13が受熱部11、11a~11dの上面111s上に接するものと上面111sに延びる突起1111間(又は溝内)に位置するものとを説明したが、ヒートパイプ13は、受熱部11の内部に貫入していてもよい。この場合、屈曲部131が全て埋まっていてもよいし、一部が受熱部11の外に出ている場合には、外に出ている部分が接合部材114により上面111sと接合されていてもよい。
It should be noted that the present invention is not limited to the above embodiments, and various modifications are possible.
For example, in the above embodiments, the heat pipes 13 are in contact with the upper surfaces 111s of the heat receiving portions 11, 11a to 11d and are positioned between the protrusions 1111 extending on the upper surfaces 111s (or within grooves). The pipe 13 may penetrate inside the heat receiving portion 11 . In this case, the bent portion 131 may be completely buried, or if a portion of the heat receiving portion 11 is protruding, the protruding portion may be joined to the upper surface 111s by the joining member 114. good.

また、上記実施の形態では、屈曲部131全体に対して受熱部11が追従して上面111sに接合されるものとして説明したが、これに限られるものではない。屈曲部131の一部のみに対して受熱部11が追従するように、上面111sと接合されていてもよい。また、受熱部11の屈曲部131に追従して接する部分は一続きでなくてもよく、複数部分に分かれていてもよい。すなわち、屈曲部131のうち少なくとも一部の範囲が受熱部11とつながることで、従来よりもコンパクトな範囲でより効率よく熱を受熱部11からヒートパイプ13へ伝えることができる。
また、受熱部11は、平面又は曲面状ではなく、折れ曲がり形状(例えば、複数の面が屈曲部131に漸近するように並んで当該屈曲部131に追従する凹状構造や、各角が屈曲部131に追従する階段形状)を有し、飛び飛びに屈曲部131と接していてもよい。また、直接接しない部分の一部又は全部を接合部材114により埋め込んで接触面積を増大させてもよい。
Further, in the above-described embodiment, the heat receiving portion 11 follows the entire bending portion 131 and is joined to the upper surface 111s, but the present invention is not limited to this. It may be joined to the upper surface 111 s so that the heat receiving portion 11 follows only a part of the bent portion 131 . Further, the portion of the heat-receiving portion 11 that follows and contacts the bent portion 131 may not be continuous, and may be divided into a plurality of portions. That is, since at least a part of the bent portion 131 is connected to the heat receiving portion 11, heat can be efficiently transferred from the heat receiving portion 11 to the heat pipe 13 in a more compact range than in the past.
In addition, the heat receiving portion 11 is not flat or curved, but has a bent shape (for example, a concave structure in which a plurality of surfaces are arranged so as to approach the bent portion 131 and follow the bent portion 131, or a concave structure in which each corner , and may be in contact with the bent portion 131 at intervals. Also, part or all of the portion not in direct contact may be embedded with the bonding member 114 to increase the contact area.

また、接合部材114は、はんだ、ろう材又は導電性接着剤以外のものであってもよい。熱伝導度の高いものであれば、ここでは、電気伝導性などは考慮する必要がなく、適宜なものが選択されてよい。
また、接合部材114は、直線部132と受熱部11との間のみを接合し、屈曲部131と伝熱部111との間は接合されずに単に接しているだけであってもよい。この場合、振動や経時的な歪みなどで屈曲部131と伝熱部111とが離隔しないように互いに押し当てられるような構造であってもよい。
Also, the joining member 114 may be other than solder, brazing material, or conductive adhesive. As long as the material has a high thermal conductivity, it is not necessary to consider the electrical conductivity here, and an appropriate material may be selected.
Alternatively, the joining member 114 may join only the straight portion 132 and the heat receiving portion 11 and may simply contact the bent portion 131 and the heat transfer portion 111 without being joined. In this case, the structure may be such that the bent portion 131 and the heat transfer portion 111 are pressed against each other so that they are not separated from each other due to vibration, distortion over time, or the like.

また、上記実施形態では、直線部132が従来通り受熱部11の上面111sと接するものとして説明したが、直線部132の代わりに上記のように上向の屈曲を有していてもよいし、上面111sに沿った面内や上面111sに垂直な面内などの任意の向きで蛇行していてもよい。 In the above embodiment, the straight portion 132 is in contact with the upper surface 111s of the heat receiving portion 11 as in the conventional case. It may meander in any direction, such as in a plane along the top surface 111s or in a plane perpendicular to the top surface 111s.

また、上記実施の形態では、屈曲部131は、90度又は合計で180度曲がるものとして説明したが、これに限られない。これら以外の任意の角度の屈曲であってもよい。これに応じてフィンの配置や形状なども適宜調整されてよい。また、屈曲部131のある曲率半径Rは一定でなくてもよい。基準最小径以上の曲率半径の範囲で角度θに応じて曲率半径R(θ)が変化するものであってもよい。 Further, in the above-described embodiment, the bent portion 131 has been described as bent by 90 degrees or a total of 180 degrees, but the present invention is not limited to this. It may be bent at any angle other than these. Accordingly, the arrangement and shape of the fins may be appropriately adjusted. Also, the curvature radius R of the bent portion 131 may not be constant. The curvature radius R(θ) may vary according to the angle θ within the range of curvature radii equal to or larger than the reference minimum diameter.

また、上記実施の形態では、突起1111はヒートパイプ13の両側に一対位置するものとして説明したが、ヒートパイプ13の片側だけに1本あるものであってもよい。 Further, in the above-described embodiment, a pair of protrusions 1111 are positioned on both sides of the heat pipe 13, but one protrusion 1111 may be provided on only one side of the heat pipe 13. FIG.

また、上記の実施の形態では、直線部132を従来よりも短くし、平面視で屈曲部131の一端(直線部133)の少なくとも一部が受熱部11の範囲内又は境界線上にあるものとして説明したが、これに限られない。直線部132を短くしなくても、屈曲部131と受熱部11の上面111sとを物理的/熱的に接続することで、放熱に係る熱輸送量を増大させることができる。あるいは、上面111sの平面視面積を多少縮小して、従来よりは小型化しつつ直線部133の平面視位置が上面111sの平面視での範囲外となっていてもよい。 Further, in the above embodiment, the linear portion 132 is made shorter than the conventional one, and at least a part of one end of the bent portion 131 (the linear portion 133) is within the range or on the boundary line of the heat receiving portion 11 in plan view. Illustrated, but not limited to. By physically/thermally connecting the bent portion 131 and the upper surface 111s of the heat receiving portion 11 without shortening the straight portion 132, the amount of heat transport related to heat dissipation can be increased. Alternatively, the planar view area of the upper surface 111s may be slightly reduced, and the planar view position of the linear portion 133 may be outside the planar view range of the upper surface 111s while the size is reduced compared to the conventional art.

また、上記実施の形態では、電子機器100として投影装置を例に挙げて説明したが、これに限られない。CPU、グラフィックボード、発光部(赤外線やUVを含む)、モータ、内部の支持構造や基板などの各部の放熱に放熱装置1を利用可能な電子機器100であってもよい。
その他、上記実施の形態で示した具体的な構成、処理動作の内容及び手順などは、本発明の趣旨を逸脱しない範囲において適宜変更可能である。
Further, in the above embodiment, the electronic device 100 is described as an example of a projection device, but the electronic device 100 is not limited to this. The electronic device 100 may be an electronic device 100 that can use the heat dissipation device 1 for heat dissipation of each part such as a CPU, a graphic board, a light emitting part (including infrared rays and UV), a motor, an internal support structure and a substrate.
In addition, the specific configurations, contents and procedures of processing operations, etc. shown in the above embodiments can be changed as appropriate without departing from the scope of the present invention.

本発明のいくつかの実施形態を説明したが、本発明の範囲は、上述の実施の形態に限定するものではなく、特許請求の範囲に記載された発明の範囲とその均等の範囲を含む。
以下に、この出願の願書に最初に添付した特許請求の範囲に記載した発明を付記する。付記に記載した請求項の項番は、この出願の願書に最初に添付した特許請求の範囲の通りである。
Although several embodiments of the present invention have been described, the scope of the present invention is not limited to the embodiments described above, but includes the scope of the invention described in the claims and equivalents thereof.
The invention described in the scope of claims originally attached to the application form of this application is additionally described below. The claim numbers in the appendix are as in the claims originally attached to the filing of this application.

[付記]
<請求項1>
放熱対象に接する受熱部と、
空気中に放熱する放熱部と、
前記受熱部から前記放熱部へ熱を伝えるヒートパイプと、
を備え、
前記ヒートパイプは、前記放熱対象から離隔する方向へ曲がる屈曲部を有し、
前記受熱部は、前記屈曲部の少なくとも一部に追従して当該屈曲部と接する部分を有する
放熱装置。
<請求項2>
前記受熱部は、基礎部材と、当該基礎部材と前記ヒートパイプとを接合する接合部材と、を有し、
前記接合部材は、前記屈曲部の前記少なくとも一部と接している
請求項1記載の放熱装置。
<請求項3>
前記受熱部は、基礎部材と、当該基礎部材と前記ヒートパイプとを接合する接合部材と、を有し、
前記基礎部材は、前記屈曲部の前記少なくとも一部に対して少なくとも一部で追従する曲面部分を有し、当該曲面部分の少なくとも一部が前記ヒートパイプと接している請求項1又は2記載の放熱装置。
<請求項4>
前記接合部材は、前記屈曲部の前記少なくとも一部と前記基礎部材との間の隙間に位置して前記屈曲部及び前記基礎部材に接している
請求項2又は3記載の放熱装置。
<請求項5>
前記接合部材は、はんだ、ろう材又は導電性接着剤である請求項2~4のいずれか一項に記載の放熱装置。
<請求項6>
前記ヒートパイプは、前記屈曲部の一端に接続する直線部を有し、
前記直線部は、前記基礎部材上に位置している
請求項2~5のいずれか一項に記載の放熱装置。
<請求項7>
前記受熱部は、前記ヒートパイプの延在方向に沿って当該ヒートパイプの両側面を覆うガイド部を有する請求項1~6のいずれか一項に記載の放熱装置。
<請求項8>
前記屈曲部のうち少なくとも一部が前記基礎部材の前記放熱対象との接触面に垂直な方向から見た平面視で前記受熱部の範囲内にあり、前記少なくとも一部の前記屈曲部の少なくとも一部が、前記受熱部と接している
請求項1~7のいずれか一項に記載の放熱装置。
<請求項9>
前記屈曲部は90度の曲がり角度を有する請求項1~8のいずれか一項に記載の放熱装置。
<請求項10>
前記ヒートパイプは、前記屈曲部の一端が前記基礎部材の前記放熱対象との接触面に垂直な方向を向いており、
前記一端の少なくとも一部は、前記接触面に垂直な方向から見た平面視で前記基礎部材の境界線上又は当該境界線の内側に位置する請求項1~9のいずれか一項に記載の放熱装置。
<請求項11>
前記ヒートパイプは、両端側にそれぞれ屈曲部を有し、前記受熱部は当該屈曲部の各々に追従してそれぞれ少なくとも一部が接している請求項1~10のいずれか一項に記載の放熱装置。
<請求項12>
請求項1~11のいずれか一項に記載の放熱装置と、
前記受熱部に接する放熱対象と、
を備える電子機器。
[Appendix]
<Claim 1>
a heat-receiving part in contact with a heat-dissipating target;
a heat radiating part that dissipates heat into the air;
a heat pipe that conducts heat from the heat receiving portion to the heat radiating portion;
with
The heat pipe has a bent portion that bends in a direction away from the target of heat dissipation,
The heat radiation device, wherein the heat receiving portion has a portion that follows at least a portion of the bent portion and is in contact with the bent portion.
<Claim 2>
The heat receiving section has a base member and a joining member that joins the base member and the heat pipe,
The heat dissipation device according to claim 1, wherein the joint member is in contact with the at least part of the bent portion.
<Claim 3>
The heat receiving section has a base member and a joining member that joins the base member and the heat pipe,
3. The base member according to claim 1, wherein the base member has a curved surface portion that at least partially follows the at least one portion of the bent portion, and at least a portion of the curved surface portion is in contact with the heat pipe. Heat dissipation device.
<Claim 4>
4. The heat dissipation device according to claim 2, wherein the joint member is positioned in a gap between the at least part of the bent portion and the base member and is in contact with the bent portion and the base member.
<Claim 5>
The heat dissipation device according to any one of claims 2 to 4, wherein the joining member is solder, brazing material or conductive adhesive.
<Claim 6>
The heat pipe has a straight portion connected to one end of the bent portion,
The heat dissipation device according to any one of claims 2 to 5, wherein the straight portion is positioned on the base member.
<Claim 7>
The heat dissipation device according to any one of claims 1 to 6, wherein the heat receiving portion has guide portions that cover both side surfaces of the heat pipe along the extending direction of the heat pipe.
<Claim 8>
At least a portion of the bent portion is within the range of the heat receiving portion in a plan view viewed from a direction perpendicular to the contact surface of the base member with the heat-dissipating target, and at least one of the at least a portion of the bent portion The heat dissipation device according to any one of claims 1 to 7, wherein a portion is in contact with the heat receiving portion.
<Claim 9>
The heat dissipation device according to any one of claims 1 to 8, wherein the bent portion has a bending angle of 90 degrees.
<Claim 10>
one end of the bent portion of the heat pipe is oriented in a direction perpendicular to a contact surface of the base member with the target of heat dissipation;
10. The heat sink according to any one of claims 1 to 9, wherein at least part of said one end is positioned on or inside a boundary line of said base member in a plan view seen in a direction perpendicular to said contact surface. Device.
<Claim 11>
The heat dissipation according to any one of claims 1 to 10, wherein the heat pipe has bent portions on both end sides, and the heat receiving portion follows each of the bent portions and is in contact with at least a portion thereof. Device.
<Claim 12>
a heat dissipation device according to any one of claims 1 to 11;
a heat dissipating target in contact with the heat receiving part;
electronic equipment.

1、1a~1d、2 放熱装置
11、11a~11d 受熱部
111、111a~111d 伝熱部
1111、1111c 突起
111s 上面
112s 突出面
112 突出部
114 接合部材
12、12c 放熱部
13、13c、13d ヒートパイプ
131、134 屈曲部
132、133 直線部
15、15c 支持板
20 放熱対象
40 光学系
41 出射レンズ
50 制御回路
60 送風部
100 電子機器
101 カバー部材
101a 格子窓
102 支持板
1, 1a to 1d, 2 heat dissipation device 11, 11a to 11d heat receiving portion 111, 111a to 111d heat transfer portion 1111, 1111c protrusion 111s upper surface 112s protrusion surface 112 protrusion 114 joining member 12, 12c heat dissipation portion 13, 13c, 13d heat Pipes 131, 134 Bending portions 132, 133 Straight portions 15, 15c Supporting plate 20 Heat dissipation object 40 Optical system 41 Output lens 50 Control circuit 60 Air blowing unit 100 Electronic device 101 Cover member 101a Lattice window 102 Supporting plate

Claims (12)

放熱対象に接する受熱部と、
空気中に放熱する放熱部と、
前記受熱部から前記放熱部へ熱を伝えるヒートパイプと、
を備え、
前記ヒートパイプは、前記放熱対象から離隔する方向へ曲がる屈曲部を有し、
前記受熱部は、前記屈曲部の少なくとも一部に追従して当該屈曲部と接する部分を有する
放熱装置。
a heat-receiving part in contact with a heat-dissipating target;
a heat radiating part that dissipates heat into the air;
a heat pipe that conducts heat from the heat receiving portion to the heat radiating portion;
with
The heat pipe has a bent portion that bends in a direction away from the target of heat dissipation,
The heat radiation device, wherein the heat receiving portion has a portion that follows at least a portion of the bent portion and is in contact with the bent portion.
前記受熱部は、基礎部材と、当該基礎部材と前記ヒートパイプとを接合する接合部材と、を有し、
前記接合部材は、前記屈曲部の前記少なくとも一部と接している
請求項1記載の放熱装置。
The heat receiving section has a base member and a joining member that joins the base member and the heat pipe,
The heat dissipation device according to claim 1, wherein the joint member is in contact with the at least part of the bent portion.
前記受熱部は、基礎部材と、当該基礎部材と前記ヒートパイプとを接合する接合部材と、を有し、
前記基礎部材は、前記屈曲部の前記少なくとも一部に対して少なくとも一部で追従する曲面部分を有し、当該曲面部分の少なくとも一部が前記ヒートパイプと接している請求項1又は2記載の放熱装置。
The heat receiving section has a base member and a joining member that joins the base member and the heat pipe,
3. The base member according to claim 1, wherein the base member has a curved surface portion that at least partially follows the at least one portion of the bent portion, and at least a portion of the curved surface portion is in contact with the heat pipe. Heat dissipation device.
前記接合部材は、前記屈曲部の前記少なくとも一部と前記基礎部材との間の隙間に位置して前記屈曲部及び前記基礎部材に接している
請求項2又は3記載の放熱装置。
4. The heat dissipation device according to claim 2, wherein the joint member is positioned in a gap between the at least part of the bent portion and the base member and is in contact with the bent portion and the base member.
前記接合部材は、はんだ、ろう材又は導電性接着剤である請求項2~4のいずれか一項に記載の放熱装置。 The heat dissipation device according to any one of claims 2 to 4, wherein the joining member is solder, brazing material or conductive adhesive. 前記ヒートパイプは、前記屈曲部の一端に接続する直線部を有し、
前記直線部は、前記基礎部材上に位置している
請求項2~5のいずれか一項に記載の放熱装置。
The heat pipe has a straight portion connected to one end of the bent portion,
The heat dissipation device according to any one of claims 2 to 5, wherein the straight portion is positioned on the base member.
前記受熱部は、前記ヒートパイプの延在方向に沿って当該ヒートパイプの両側面を覆うガイド部を有する請求項1~6のいずれか一項に記載の放熱装置。 The heat dissipation device according to any one of claims 1 to 6, wherein the heat receiving portion has guide portions that cover both side surfaces of the heat pipe along the extending direction of the heat pipe. 前記屈曲部のうち少なくとも一部が前記受熱部の前記放熱対象との接触面に垂直な方向から見た平面視で前記受熱部の範囲内にあり、前記少なくとも一部の前記屈曲部の少なくとも一部が、前記受熱部と接している
請求項1~7のいずれか一項に記載の放熱装置。
At least a portion of the bent portions is within the range of the heat receiving portion when viewed from above in a direction perpendicular to a contact surface of the heat receiving portion with the heat radiating target, and at least one of the at least a portion of the bent portions The heat dissipation device according to any one of claims 1 to 7, wherein a portion is in contact with the heat receiving portion.
前記屈曲部は90度の曲がり角度を有する請求項1~8のいずれか一項に記載の放熱装置。 The heat dissipation device according to any one of claims 1 to 8, wherein the bent portion has a bending angle of 90 degrees. 前記ヒートパイプは、前記屈曲部の一端が前記受熱部の前記放熱対象との接触面に垂直な方向を向いており、
前記一端の少なくとも一部は、前記接触面に垂直な方向から見た平面視で前記受熱部の境界線上又は当該境界線の内側に位置する請求項1~9のいずれか一項に記載の放熱装置。
one end of the bent portion of the heat pipe is directed in a direction perpendicular to a contact surface of the heat receiving portion with the target of heat dissipation;
The heat sink according to any one of claims 1 to 9, wherein at least part of the one end is positioned on or inside the boundary line of the heat receiving portion in a plan view seen in a direction perpendicular to the contact surface. Device.
前記ヒートパイプは、両端側にそれぞれ屈曲部を有し、前記受熱部は当該屈曲部の各々に追従してそれぞれ少なくとも一部が接している請求項1~10のいずれか一項に記載の放熱装置。 The heat dissipation according to any one of claims 1 to 10, wherein the heat pipe has bent portions on both end sides, and the heat receiving portion follows each of the bent portions and is in contact with at least a portion thereof. Device. 請求項1~11のいずれか一項に記載の放熱装置と、
前記受熱部に接する放熱対象と、
を備える電子機器。
a heat dissipation device according to any one of claims 1 to 11;
a heat dissipating target in contact with the heat receiving part;
electronic equipment.
JP2022047912A 2021-09-22 2022-03-24 Radiator and electron device Pending JP2023046223A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202211144318.8A CN115915704A (en) 2021-09-22 2022-09-20 Heat dissipation device and electronic equipment
US17/950,616 US20230090230A1 (en) 2021-09-22 2022-09-22 Heat radiation device and electronic equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021153710 2021-09-22
JP2021153710 2021-09-22

Publications (1)

Publication Number Publication Date
JP2023046223A true JP2023046223A (en) 2023-04-03

Family

ID=85777186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022047912A Pending JP2023046223A (en) 2021-09-22 2022-03-24 Radiator and electron device

Country Status (1)

Country Link
JP (1) JP2023046223A (en)

Similar Documents

Publication Publication Date Title
WO2017056469A1 (en) Light source device and projection device
JP5597500B2 (en) Light emitting module and vehicle lamp
TWI787425B (en) heat sink
EP2123974B1 (en) Vehicle lamp
US9188305B2 (en) Cooling device for vehicle headlights
JP2008047383A (en) Lighting tool for vehicle
JP2018180107A5 (en)
CN209909794U (en) Cooling unit and vehicle lamp
US20230090230A1 (en) Heat radiation device and electronic equipment
JP5333765B2 (en) Printed circuit board for light emitting module
JP2017033779A (en) Light source device, display device and electronic apparatus
JP2009200144A (en) Cooling apparatus
JP5240869B2 (en) projector
JP2008034640A (en) Semiconductor device, and heat radiation method therein
JP2023046223A (en) Radiator and electron device
JP5390781B2 (en) Light source cooling device
JP5177794B2 (en) Radiator
JP2007274565A (en) Imaging apparatus
JP2006237464A (en) Semiconductor light emitting device
JP2006207935A (en) Electronic cooling device
JP2009016456A (en) Ld heat radiation structure
CN112262334B (en) Optical transceiver
JP2006179777A (en) Reflection type light emitting diode
JP2012023166A (en) Flexible printed wiring board and heater element radiation structure
JP2005235838A (en) Heat radiator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230815

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240305