JP2023045790A - Treatment method of raw water for purified water production - Google Patents

Treatment method of raw water for purified water production Download PDF

Info

Publication number
JP2023045790A
JP2023045790A JP2021154361A JP2021154361A JP2023045790A JP 2023045790 A JP2023045790 A JP 2023045790A JP 2021154361 A JP2021154361 A JP 2021154361A JP 2021154361 A JP2021154361 A JP 2021154361A JP 2023045790 A JP2023045790 A JP 2023045790A
Authority
JP
Japan
Prior art keywords
raw water
ion exchange
ozone
water
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021154361A
Other languages
Japanese (ja)
Inventor
彰 大場
Akira Oba
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2021154361A priority Critical patent/JP2023045790A/en
Priority to PCT/JP2022/025089 priority patent/WO2023047732A1/en
Priority to TW111124809A priority patent/TW202313486A/en
Publication of JP2023045790A publication Critical patent/JP2023045790A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone

Abstract

To provide a method for treating raw water for producing pure water capable of sufficiently removing corrosive organic matter and reducing adverse effects on ion exchange resins even if a use of chemicals such as coagulants and pH adjusters is eliminated or reduced in quantity.SOLUTION: A method for treating raw water for producing pure water by treating raw water containing corrosive organic matter to produce pure water, in which a raw water containing corrosive organic matter is treated by ozone oxidation followed by ion exchange treatment. Preferably, after ozone oxidation treatment, reduction treatment is performed, followed by the ion exchange treatment. The amount of ozone added is preferably 1 to 10 mg/L for 1 mg/L of TOC in the raw water.SELECTED DRAWING: Figure 1

Description

本発明は、純水製造用原水の処理方法に係り、特に腐食様有機物を含む純水製造用原水の処理方法に関する。 The present invention relates to a method of treating raw water for pure water production, and more particularly to a method of treating raw water for pure water production containing corrosion-like organic matter.

半導体・電子材料洗浄用の超純水製造装置は、通常、前処理システム、一次純水システム、サブシステム等から構成されている。各システムはそれぞれ濁質、塩類、TOCなど様々な不純物を除去する装置で成り立っている。 An ultrapure water production system for cleaning semiconductors and electronic materials usually consists of a pretreatment system, a primary pure water system, subsystems, and the like. Each system consists of devices that remove various impurities such as turbidity, salts, and TOC.

図2は超純水製造装置の一例を示すフロー図である。図示の通り、超純水は、前処理装置10、一次純水製造装置11、二次純水製造装置(サブシステム)12から構成される超純水製造設備で原水(工業用水、市水、井水等)を処理することにより製造される。 FIG. 2 is a flowchart showing an example of an ultrapure water production system. As shown in the figure, ultrapure water is produced from raw water (industrial water, city water, well water, etc.).

凝集、加圧浮上(または沈殿)、濾過(例えば膜濾過)装置などよりなる前処理装置10は、原水中の懸濁物質やコロイド物質の除去を行う。また、この過程では高分子系有機物、疎水性有機物などの除去も可能である。 A pretreatment device 10 comprising a flocculation, pressure flotation (or sedimentation), filtration (eg, membrane filtration) device, etc. removes suspended solids and colloidal substances in the raw water. In this process, it is also possible to remove polymeric organic substances, hydrophobic organic substances, and the like.

逆浸透膜分離装置、脱気装置及びイオン交換装置(混床式又は4床5塔式など)を備える一次純水製造装置11では、原水中のイオンや有機成分の除去を行う。なお、逆浸透膜分離装置では、塩類を除去すると共に、イオン性、コロイド性のTOCを除去する。イオン交換装置では、塩類を除去すると共にイオン交換樹脂によって吸着又はイオン交換されるTOC成分の除去を行う。脱気装置では無機系炭素(IC)、溶存酸素の除去を行う。 A primary pure water production apparatus 11 equipped with a reverse osmosis membrane separation apparatus, a degassing apparatus, and an ion exchange apparatus (mixed bed type, 4-bed 5-tower type, etc.) removes ions and organic components from raw water. In addition, the reverse osmosis membrane separator removes salts as well as ionic and colloidal TOC. The ion exchange device removes salts and TOC components adsorbed or ion-exchanged by the ion exchange resin. The deaerator removes inorganic carbon (IC) and dissolved oxygen.

一次純水製造装置11からの一次純水は、サブシステム12において、タンク14からポンプ15により熱交換器16に通水され、次いで紫外線(UV)照射装置(図4では低圧UV酸化装置)17、イオン交換装置18及び限外濾過(UF)膜分離装置19で処理されて、超純水が製造される。低圧UV酸化装置17では、UVランプより照射される185nmのUVによりTOCを有機酸、さらにはCO2まで分解する。分解により生成した有機物及びCO2は後段のイオン交換装置(通常は混床式イオン交換装置)18で除去される。UF膜分離装置19では微粒子が除去され、イオン交換装置18から流出するイオン交換樹脂の破片等も除去される。 Primary pure water from the primary pure water production device 11 is passed from a tank 14 to a heat exchanger 16 by a pump 15 in a subsystem 12, and then an ultraviolet (UV) irradiation device (low-pressure UV oxidation device in FIG. 4) 17. , an ion exchanger 18 and an ultrafiltration (UF) membrane separator 19 to produce ultrapure water. In the low-pressure UV oxidizer 17, TOC is decomposed into organic acids and further CO2 by 185 nm UV emitted from a UV lamp. The organic substances and CO2 generated by the decomposition are removed by an ion exchange device (usually a mixed bed type ion exchange device) 18 in the latter stage. Fine particles are removed in the UF membrane separation device 19, and fragments of the ion exchange resin flowing out of the ion exchange device 18 are also removed.

このようにして得られた超純水は、配管20よりユースポイント21に送給され、余剰の超純水が配管22よりタンク14に戻される。 The ultrapure water obtained in this way is supplied to the point of use 21 through the pipe 20 , and excess ultrapure water is returned to the tank 14 through the pipe 22 .

特開2019-107631号公報JP 2019-107631 A

地下水、市水など、フミン酸、フルボ酸等の腐食様有機物を含む原水を処理して純水を製造する場合、凝集固液分離によって腐食様有機物を十分に除去する必要がある。 When raw water containing corrosive organic matter such as humic acid and fulvic acid, such as groundwater and city water, is treated to produce pure water, it is necessary to sufficiently remove the corrosive organic matter by solid-liquid separation.

即ち、イオン交換により純水を製造するプロセスにおいて、原水中にフミン酸、フルボ酸などの腐食様有機物が含まれる場合、腐食様有機物による汚染でイオン交換樹脂の交換容量が低下する。そのため、従来では、上記のような原水をイオン交換樹脂に通水する前処理として、TOCに対して数十倍以上の濃度の凝集剤を用いて凝集および固液分離(加圧浮上や濾過)を行うことにより腐食様有機物を除去する。なお、フミン酸、フルボ酸などの腐食様有機物は、それ自身が凝集効果を低下させる因子にもなる。 That is, in the process of producing pure water by ion exchange, if the raw water contains corrosive organic substances such as humic acid and fulvic acid, contamination with the corrosive organic substances reduces the exchange capacity of the ion exchange resin. Therefore, conventionally, as a pretreatment for passing the above raw water through an ion exchange resin, flocculation and solid-liquid separation (pressure flotation and filtration) using a flocculant with a concentration of several tens of times or more that of TOC to remove corrosion-like organic matter. Corrosion-like organic substances such as humic acid and fulvic acid themselves are also factors that reduce the aggregation effect.

凝集処理により生じたフロックは、加圧浮上や濾過器などの固液分離装置で除去される。この固液分離で発生したスカムや汚泥は、産業廃棄物として処分される場合、処分コストが発生する。 Flocs generated by the flocculation treatment are removed by a solid-liquid separation device such as pressure flotation or a filter. When the scum and sludge generated by this solid-liquid separation are disposed of as industrial waste, disposal costs are incurred.

また、凝集pHは酸性側で行うことが多く、原水の緩衝作用が大きい場合には酸薬品の消費量も多くなる。 In addition, the coagulation pH is often carried out on the acidic side, and when the raw water has a large buffering effect, the consumption of acid chemicals increases.

本発明は、凝集剤やpH調整剤等の薬剤の使用を無くしたり、使用量を少なくしたりしても腐食様有機物を十分に除去し、イオン交換樹脂への悪影響を低減することができる純水製造用原水の処理方法を提供することを課題とする。 The present invention can eliminate the use of agents such as flocculants and pH adjusters, or even if the amount used is reduced, can sufficiently remove corrosion-like organic substances and reduce the adverse effects on ion exchange resins. An object of the present invention is to provide a method for treating raw water for water production.

本発明の純水製造用原水の処理方法は、腐食様有機物を含む原水を処理して純水を製造する純水製造用原水の処理方法において、腐食様有機物を含む原水をオゾン酸化処理した後、イオン交換処理することを特徴とする。 The method for treating raw water for producing pure water according to the present invention is a method for treating raw water for producing pure water by treating raw water containing corrosive-like organic substances to produce pure water. , is characterized by ion exchange treatment.

本発明の一態様では、前記オゾン酸化処理後、還元処理し、その後前記イオン交換処理を行う。 In one aspect of the present invention, after the ozone oxidation treatment, the reduction treatment is performed, and then the ion exchange treatment is performed.

本発明の一態様では、前記オゾン酸化処理を行うに際して、原水中のTOC1mg/Lに対してオゾンを1~10mg/L添加する。 In one aspect of the present invention, when performing the ozone oxidation treatment, 1 to 10 mg/L of ozone is added to 1 mg/L of TOC in the raw water.

本発明によると、フミン酸、フルボ酸などの腐食様有機物がオゾンにより酸化分解されるので、イオン交換樹脂の汚染が低減される。 According to the present invention, since corrosion-like organic substances such as humic acid and fulvic acid are oxidatively decomposed by ozone, contamination of the ion exchange resin is reduced.

本発明の一態様では、オゾン処理後段で還元処理(活性炭塔への通水や重亜硫酸ソーダの注入など)を行うことにより、イオン交換樹脂に酸化剤が流入することが防止される。 In one aspect of the present invention, reduction treatment (such as passing water through an activated carbon tower or injecting sodium bisulfite) is performed after the ozone treatment, thereby preventing the oxidant from flowing into the ion exchange resin.

実施の形態に係る純水製造用原水の処理方法のフロー図である。1 is a flowchart of a method for treating raw water for manufacturing pure water according to an embodiment; FIG. 超純水製造システムの一例を示すフロー図である。It is a flow chart showing an example of an ultrapure water production system.

以下、図1を参照して実施の形態について説明する。 An embodiment will be described below with reference to FIG.

フミン酸やフルボ酸等の腐食様有機物を含む原水は、オゾン酸化工程1にてオゾン添加により腐食様有機物の分解処理が行われた後、還元処理工程2において残留するオゾンの還元処理が行われ、次いでイオン交換工程3にてイオン交換処理される。 Raw water containing corrosive organic matter such as humic acid and fulvic acid is subjected to decomposition treatment of the corrosive organic matter by addition of ozone in the ozone oxidation step 1, and then subjected to reduction treatment of remaining ozone in the reduction treatment step 2. Then, in ion exchange step 3, ion exchange treatment is performed.

原水としては、腐食様有機物を含む地下水、市水、河川水、工業用水、工場排水などが例示されるが、これに限定されない。原水中の腐食様有機物としては、フミン酸やフルボ酸などが例示されるが、これに限定されない。原水のTOC濃度は0.5~3mg/L特に0.8~1.5mg/L程度であるが、これよりも少なくても、また多くてもよい。 Examples of raw water include, but are not limited to, groundwater containing corrosive organic matter, city water, river water, industrial water, and factory wastewater. Examples of corrosion-like organic substances in raw water include humic acid and fulvic acid, but are not limited to these. The TOC concentration of raw water is about 0.5-3 mg/L, especially about 0.8-1.5 mg/L, but it may be less or more than this.

なお、必要であれば、原水を凝集及び固液分離処理した後、オゾン酸化工程1に送ってもよい。 If necessary, the raw water may be sent to the ozone oxidation step 1 after undergoing aggregation and solid-liquid separation treatment.

オゾン酸化工程1でのオゾン添加は、原水中のTOC1mg/Lに対しオゾンを1~10mg/L特に2~6mg/L程度の割合で添加するように行われることが好ましい。 The addition of ozone in the ozone oxidation step 1 is preferably carried out at a rate of 1 to 10 mg/L, especially 2 to 6 mg/L of ozone per 1 mg/L of TOC in the raw water.

オゾン酸化工程では、原水を反応槽内に下降流で通水し、該反応槽の下部にオゾン含有ガスを散気ノズルによって吹き込むように構成されたオゾン添加手段等によりオゾンが添加される。反応槽内の滞留時間は1~10min特に3~7min程度が好適である。ただし、オゾン添加手段はこれに限定されない。オゾン含有ガスは、空気をオゾン発生器に通気することにより生成させたものが好ましい。 In the ozone oxidation step, raw water is passed through the reaction tank in a downward flow, and ozone is added by an ozone adding means or the like configured to blow an ozone-containing gas into the lower part of the reaction tank through an aeration nozzle. The residence time in the reaction tank is preferably about 1 to 10 minutes, especially about 3 to 7 minutes. However, the ozone adding means is not limited to this. The ozone-containing gas is preferably produced by passing air through an ozone generator.

このオゾン酸化処理により、腐食様有機物が低分子化されるが、COまで酸化される必要はない。 By this ozone oxidation treatment, corrosion-like organic substances are reduced in molecular weight, but they do not need to be oxidized to CO2 .

オゾン酸化処理水中には、オゾンが残留するので、還元処理工程2にてオゾンを還元処理することが好ましい。この還元処理は、活性炭塔への通水、あるいは重亜硫酸ナトリウム等の還元剤の添加などにより行われる。 Since ozone remains in the ozone-oxidized water, it is preferable to reduce the ozone in the reduction treatment step 2 . This reduction treatment is carried out by passing water through an activated carbon tower or by adding a reducing agent such as sodium bisulfite.

このように腐食様有機物をオゾン酸化処理し、その後必要に応じ還元処理した後、イオン交換工程3にてイオン交換処理することにより純水が製造される。 In this way, the corrosion-like organic substances are subjected to ozone oxidation treatment, and then reduction treatment if necessary, followed by ion exchange treatment in the ion exchange step 3 to produce pure water.

イオン交換工程は、被処理水をイオン交換設備に通水することにより行われるのが好ましい。イオン交換設備としては、混床式イオン交換塔、2床3塔式イオン交換装置、3床4塔式イオン交換装置、4床5塔式イオン交換装置などを用いることができる。通水方式としては、上向流式、下向流式のどちらも用いることができる。再生方式としては、並流再生式、向流再生式のどちらも用いることができる。 The ion exchange step is preferably carried out by passing the water to be treated through an ion exchange facility. As the ion exchange equipment, a mixed bed ion exchange tower, a 2-bed 3-tower ion exchanger, a 3-bed 4-tower ion exchange equipment, a 4-bed 5-tower ion exchange equipment and the like can be used. As a water flow system, either an upward flow system or a downward flow system can be used. As a regeneration method, both a cocurrent regeneration method and a countercurrent regeneration method can be used.

かかる本発明の純水製造用原水の処理方法によると、原水中に含まれる腐食様有機物由来のTOC成分をオゾンにより酸化分解することで、イオン交換樹脂への悪影響を低減することができる。腐食様有機物由来のTOCをCOまで酸化分解する必要はないため、注入量はTOC1mg/L程度に対して数mg/L as O程度でも効果がある。 According to the method for treating raw water for pure water production of the present invention, the TOC component derived from corrosion-like organic matter contained in the raw water is oxidatively decomposed by ozone, thereby reducing adverse effects on the ion exchange resin. Since it is not necessary to oxidatively decompose TOC derived from corrosion-like organic substances into CO 2 , even an injection amount of about several mg/L as O 3 for about 1 mg/L of TOC is effective.

また、本発明の純水製造用原水の処理方法によると、従来法に比べてpH調整剤や凝集剤の添加が不要又は少量となり、薬品コストが低減可能である。また、従来法に比べ汚泥の発生量が少なく、汚泥処理コストが下がる。 Moreover, according to the method of treating raw water for producing pure water according to the present invention, the addition of a pH adjuster or a flocculating agent becomes unnecessary or less than in the conventional method, and chemical costs can be reduced. In addition, the amount of sludge generated is less than that of the conventional method, and the cost of sludge treatment is reduced.

オゾンによる腐食様有機物の分解効果を確認するために、以下の試験を行った In order to confirm the decomposition effect of corrosion-like organic matter by ozone, the following tests were conducted.

[試験方法]
下記水質の井水に対して、空気をオゾン発生器に通気することにより生成させた、オゾン濃度4.5vol%のオゾン含有ガスを散気ノズルから散気することにより添加した。オゾン注入量を0,1,3,5,7mg/Lと変化させて酸化反応させ、その処理水を0.45μmのメンブレンフィルターで濾過し、処理水を三次元励起蛍光分光法(EEM)により分析した。EEMでの分析結果をPARAFAC解析(EEM-PARAFAC解析)し、TOC成分がイオン交換樹脂へ悪影響を与える度合を数値化した。
<井水の水質>
pH:7.5
導電率:30mS/m
濁度:4度
色度:60度
SS:3mg/L
Mアルカリ度:130mg/L as CaCO
全硬度:60mg/L
ナトリウム濃度:30mg/L
TOC:1.5mg/L
UV260:1.3(-logT)
[Test method]
An ozone-containing gas having an ozone concentration of 4.5 vol %, which was generated by passing air through an ozone generator, was added to well water having the following water quality by diffusing from an aeration nozzle. The amount of ozone injected was changed to 0, 1, 3, 5, and 7 mg/L for an oxidation reaction, the treated water was filtered through a 0.45 μm membrane filter, and the treated water was subjected to three-dimensional excitation fluorescence spectroscopy (EEM). analyzed. The EEM analysis results were subjected to PARAFAC analysis (EEM-PARAFAC analysis) to quantify the extent to which the TOC components adversely affect the ion exchange resin.
<Well water quality>
pH: 7.5
Conductivity: 30mS/m
Turbidity: 4 degrees Chromaticity: 60 degrees SS: 3 mg/L
M alkalinity: 130mg/L as CaCO3
Total hardness: 60mg/L
Sodium concentration: 30mg/L
TOC: 1.5 mg/L
UV260: 1.3 (-logT)

<TOC成分がイオン交換樹脂へ悪影響を与える度合の測定及び指数値化>
TOC成分がイオン交換樹脂に与える悪影響度を次のようにして測定及び指数値化した。すなわち、イオン交換樹脂に悪影響を与える蛍光性溶存有機物の種類によるピーク出現位置を定義し、測定して得られたピークを成分ごとに分離して解析した。結果は次の通りである。
<Measurement and Indexation of Degree of Adverse Effects of TOC Components on Ion Exchange Resin>
The adverse effect of the TOC component on the ion exchange resin was measured and indexed as follows. That is, the peak appearance positions were defined according to the types of fluorescent dissolved organic substances that adversely affect the ion exchange resin, and the peaks obtained by measurement were separated and analyzed for each component. The results are as follows.

<悪影響度指数値>
原水(オゾン処理なし):577
オゾン1mg/L注入時:171
オゾン3mg/L注入時:52
オゾン5mg/L注入時:31
オゾン7mg/L注入時:31
<Adverse effect index value>
Raw water (no ozone treatment): 577
When ozone 1 mg/L is injected: 171
When ozone 3 mg/L is injected: 52
When ozone 5 mg/L is injected: 31
When ozone 7mg/L is injected: 31

[考察]
オゾンの添加量が増加するに従い、腐食物質の樹脂への悪影響度の指数は低下した。今回の原水のTOC濃度は約1.5mg/Lであり、オゾン添加量を約5ppm程度添加することで、十分に樹脂の悪影響度が低下することが明らかとなった。
[Discussion]
As the amount of ozone added increased, the index of the degree of adverse effect of corrosive substances on the resin decreased. The TOC concentration of the raw water this time was about 1.5 mg/L, and it was found that adding about 5 ppm of ozone sufficiently reduced the adverse effect of the resin.

1 オゾン酸化工程
2 還元処理工程
3 イオン交換工程
10 前処理装置
11 一次純水製造装置
12 サブシステム
REFERENCE SIGNS LIST 1 ozone oxidation process 2 reduction treatment process 3 ion exchange process 10 pretreatment device 11 primary pure water production device 12 subsystem

Claims (3)

腐食様有機物を含む原水を処理して純水を製造する純水製造用原水の処理方法において、
腐食様有機物を含む原水をオゾン酸化処理した後、イオン交換処理することを特徴とする純水製造用原水の処理方法。
In a method for treating raw water for producing pure water for producing pure water by treating raw water containing corrosive organic matter,
A method for treating raw water for producing pure water, comprising subjecting raw water containing corrosive organic matter to ozone oxidation treatment and then to ion exchange treatment.
前記オゾン酸化処理後、還元処理し、その後、前記イオン交換処理を行う請求項1の純水製造用原水の処理方法。 2. The method of treating raw water for pure water production according to claim 1, wherein after said ozone oxidation treatment, said reduction treatment is carried out, and then said ion exchange treatment is carried out. 前記オゾン酸化処理を行うに際して、原水中のTOC1mg/Lに対してオゾンを1~10mg/L添加する請求項1又は2の純水製造用原水の処理方法。
3. The method for treating raw water for producing pure water according to claim 1, wherein ozone is added in an amount of 1 to 10 mg/L per 1 mg/L of TOC in the raw water when the ozone oxidation treatment is carried out.
JP2021154361A 2021-09-22 2021-09-22 Treatment method of raw water for purified water production Pending JP2023045790A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021154361A JP2023045790A (en) 2021-09-22 2021-09-22 Treatment method of raw water for purified water production
PCT/JP2022/025089 WO2023047732A1 (en) 2021-09-22 2022-06-23 Method for treating raw water for producing purified water
TW111124809A TW202313486A (en) 2021-09-22 2022-07-01 Method for treating raw water for producing purified water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021154361A JP2023045790A (en) 2021-09-22 2021-09-22 Treatment method of raw water for purified water production

Publications (1)

Publication Number Publication Date
JP2023045790A true JP2023045790A (en) 2023-04-03

Family

ID=85720443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021154361A Pending JP2023045790A (en) 2021-09-22 2021-09-22 Treatment method of raw water for purified water production

Country Status (3)

Country Link
JP (1) JP2023045790A (en)
TW (1) TW202313486A (en)
WO (1) WO2023047732A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07241598A (en) * 1994-03-04 1995-09-19 Nomura Micro Sci Co Ltd Water treatment apparatus
JPH11262783A (en) * 1998-03-17 1999-09-28 Japan Organo Co Ltd Removal of organic matter in water
JPH11290878A (en) * 1998-02-16 1999-10-26 Japan Organo Co Ltd Control method for removing toc component

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07241598A (en) * 1994-03-04 1995-09-19 Nomura Micro Sci Co Ltd Water treatment apparatus
JPH11290878A (en) * 1998-02-16 1999-10-26 Japan Organo Co Ltd Control method for removing toc component
JPH11262783A (en) * 1998-03-17 1999-09-28 Japan Organo Co Ltd Removal of organic matter in water

Also Published As

Publication number Publication date
TW202313486A (en) 2023-04-01
WO2023047732A1 (en) 2023-03-30

Similar Documents

Publication Publication Date Title
JP3883445B2 (en) Sewage treatment equipment
KR100951200B1 (en) Method for treating wastewater or produced water
KR100976903B1 (en) Method and apparatus for fluid treatment by reverse osmosis under acidic conditions
KR20130115785A (en) Method and apparatus for treating fluoride ion contained wastewater and regenerating the wastewater
KR100877805B1 (en) Advanced water purification system and method using ultraviolet absorbance
KR20170014568A (en) Methods for electronic wastewater treatment at an ultra-low concentration of contaminants adapting microfiltration membrane bioreactor process and selective heavy metal removal process
TWI540103B (en) Method for removing boron from a boron-containing wastewater
JP2002011498A (en) Device for treating leachate
JP6228471B2 (en) To-be-treated water processing apparatus, pure water production apparatus and to-be-treated water processing method
CN104724842A (en) Reverse osmosis water treatment system and water treatment method
JP5962135B2 (en) Ultrapure water production equipment
KR20120023164A (en) Waste water processing method for removing total phosphorous
WO2023047732A1 (en) Method for treating raw water for producing purified water
TW202100227A (en) Pure water production device and operation method of pure water production device
KR20030089219A (en) Discharged water treatment method
US20060201882A1 (en) Method and system for treating wastewater containing hydrogen peroxide
JP2002355683A (en) Ultrapure water making method and apparatus
JP3444202B2 (en) Water treatment equipment
KR101065940B1 (en) Treatment and reuse system for wastewater containing high concentrations of hydrofluoric acid, phosphoric acid and nitric acid
RU2790709C1 (en) Method of cleaning the filtrate in smw landfills
KR101054613B1 (en) Apparatus for waste water single reactor composed of biological and membrane process
CN101891325A (en) Method for treating recycled water by combining chemical oxidation method and double-membrane method
Kiashemshaki et al. Investigation of the efficiency of the conventional water treatment processes employed to eliminate TOC in Jalaliyeh water treatment plant, Tehran
JPH1128482A (en) Production of pure water
JP3543435B2 (en) Ultrapure water production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220823

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230307