KR20120023164A - Waste water processing method for removing total phosphorous - Google Patents

Waste water processing method for removing total phosphorous Download PDF

Info

Publication number
KR20120023164A
KR20120023164A KR1020120011055A KR20120011055A KR20120023164A KR 20120023164 A KR20120023164 A KR 20120023164A KR 1020120011055 A KR1020120011055 A KR 1020120011055A KR 20120011055 A KR20120011055 A KR 20120011055A KR 20120023164 A KR20120023164 A KR 20120023164A
Authority
KR
South Korea
Prior art keywords
ppm
ozone
under
total phosphorus
basin
Prior art date
Application number
KR1020120011055A
Other languages
Korean (ko)
Inventor
손양래
김유종
허정욱
Original Assignee
김유종
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김유종 filed Critical 김유종
Priority to KR1020120011055A priority Critical patent/KR20120023164A/en
Publication of KR20120023164A publication Critical patent/KR20120023164A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/24Treatment of water, waste water, or sewage by flotation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5227Processes for facilitating the dissolution of solid flocculants in water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

PURPOSE: A wastewater treating method for eliminating total phosphorus is provided to improve the eliminating efficiency of total phosphorus by oxidizing introducing water in an ozone contact bath before an absorbing and mixing process. CONSTITUTION: A wastewater treating method for eliminating total phosphorus includes the following: introducing water from a second settling basin is chemically treated in an absorbing and mixing basin(S506); the chemically treated water is mixed/coagulated in a flocculation basin(S508); and floc from the water is floated in a floating and floating basin and is discharged(S510). An oxidizing process in an ozone contact basin is further implemented before the absorbing and mixing basin to convert OB-P and Poly-P components into PO_4-P components which are capable of being reacted with chemicals.

Description

총인 제거를 위한 폐수 처리 방법{Waste water processing method for removing total phosphorous}Waste water processing method for removing total phosphorous

본 발명은 폐수 처리 방법에 관한 것으로 더 상세하게는 총인 제거를 위한 폐수 처리 방법에 관한 것이다.The present invention relates to a wastewater treatment method and more particularly to a wastewater treatment method for total phosphorus removal.

총인(Total Phosphorus: 이하 TP라 칭함)은 하천, 호소등의 부영양화를 나타내는 지표의 하나로써 인구의 집중도가 큰 지역의 하천, 호소에 많으며 수중에 포함된 인 화합물의 합계를 말하며 하천의 인에 관한 환경 기준이 된다. 인은 질소와 함께 수질계를 부영양화하는 영양염류로 적조의 원인이기도 하다. 합성세제에는 조성제로 쓰이는 인 화합물이 다량 함유되어 있다. Total Phosphorus (hereinafter referred to as TP) is an indicator of eutrophication of streams and lakes. It becomes environmental standard. Phosphorus is a nutrient that eutrophizes the water system along with nitrogen, which is also the cause of red tide. Synthetic detergents contain large amounts of phosphorus compounds used as composition agents.

대한민국 정부의 정책에 따라 2012년부터 방류수질기준이 강화되어 수질 및 수생태계 보전에 관한 법률 - Ⅰ에 의거하여 지역 총인(T-P)을 0.2로 관리하기로 규정됨에 따라 하수?폐수처리장의 총인처리시설 설치사업이 전국적으로 추진되고 있다. 대부분의 종래의 일반적인 총인 처리 공법은 생물학적처리로는 총인(T-P) 제거에 한계가 있어, 물리?화학적처리로 진행되고 있다.In accordance with the Korean government's policy, the discharged water quality standards have been strengthened since 2012, and according to the Law on Water Quality and Ecosystem Conservation-Ⅰ, the local total phosphorus (TP) is regulated to 0.2 according to the I. Installation projects are being promoted nationwide. Most conventional general phosphorus treatment methods have limitations in the removal of total phosphorus (T-P) as a biological treatment, and is progressing to physical and chemical treatments.

도 1에는 총인의 구성 성분을 나타내었다. 도 1을 참조하면, 총인(이하 T-P라 칭함)의 구성 성분은 P-P + 수용성(Soluble)인 S-TP 로 이루어져 있으며, 다시 S-TP는 OB-P, Poly-P, PO4-P등으로 이루어져 있다. 이 중에서 PO4-P는 이온화되어 있으므로 응집제와 반응하여 고형화됨으로써 후단인 고액분리공정에서 제거하는 것은 가능하나, OB-P와 Poly-P는 이온화 강도가 매우 낮아 응집제와 반응이 잘 일어나지 않아 일정 농도이하로는 제거가 불가능하다는 문제점이 있다.1 shows the components of total phosphorus. Referring to Figure 1, the constituent of the total phosphorus (hereinafter referred to as TP) is composed of PP + Soluble S-TP, again S-TP consists of OB-P, Poly-P, PO4-P, etc. have. Since PO 4 -P is ionized, it is possible to solidify by reacting with the flocculant and to remove it in the solid-liquid separation process in the latter stage. There is a problem that can not be removed below.

도 2 및 도 3에는 종래의 일반적인 총인 처리 공정을 나타내었다. 도 2 및 도 3을 참조하면, 종래의 일반적인 총인 처리 방법은 2차 침전지(200)에서 유입된 물을 분배조(202)와 약품 처리에 의한 흡착 혼화지(204)와 응집지(206)에서의 혼화/응집시키고, 혼화/응집 공정을 거친 원수 중의 오염물질(플록)을 가압 부상조(208)에서 미세기포에 부착, 부상시켜 배출하는 물리, 화학적 공정으로 이루어진다. 이러한 종래의 방법은 미세기포를 통한 저비중입자 및 조류제거가 우수하고, 부상식의 경우에는 고액분리공법으로 기존처리장 부하증가 영향이 적다는 장점이 있고, 부하변동에 대한 대처가 용이하다고 알려져 있다.2 and 3 show a conventional general gun treatment process. 2 and 3, the conventional general gun treatment method is the water flowing in the secondary sedimentation basin 200 in the adsorption admixture 204 and the flocculation basin 206 by the treatment tank 202 and chemical treatment It is composed of a physical and chemical process of admixing and flocculating, and contaminants (flocs) in raw water that have undergone the process of admixing and condensation are attached to the microbubbles in the pressure flotation tank 208 and floated. This conventional method is excellent in removing low specific particles and algae through microbubbles, and in the case of floating type, it is known that the solid-liquid separation method has a small effect of increasing the load of the existing treatment plant, and it is known that it is easy to cope with the load fluctuation. .

또한, 상기와 같은 종래의 총인(T-P) 제거를 위한 종래의 폐수처리방법은 유입폐수가 혼화조에서 응집조를 거치면서 약품과 반응한 후 형성된 플록(FLOC)을 미세기포로 가압부상시켜 부상슬러지 제거장치로 제거하는 방법이며, 가압부상설비(공법설비) 후단에 오존접촉설비(220)를 두어 색도 및 COD를 제거하고 있다.In addition, in the conventional wastewater treatment method for removing the total phosphorus (TP) as described above, flotation (FLOC) formed after the inflow wastewater reacts with the chemicals while passing through the flocculation tank in the mixing tank is removed by pressurized with fine bubbles to remove the flotation sludge. It is a method of removing with an apparatus, and the ozone contact facility 220 is provided in the back of a pressurized flotation facility (process facility), and color and COD are removed.

도 4에는 종래의 총인 처리 방법을 사용하였을 때 수질 분석 결과를 그래프로써 나타내었다. 도 4를 참조하면, 익산 폐수종말처리장의 경우 총인(T-P)을 제거하기 위한 약품으로 PAC 17%를 사용하고 있으나, 유입폐수 내에 약품과 반응이 이루어지지 않는 OB-P, Poly-P 성분이 다량 함유(약25% - 일반적폐수 10%미만)되어 있어 유입수와 방류수에서의 2 개월 총인 평균은 0.352로 2012년부터 강화되는 법정방류수질(T-P 0.2이하)을 만족하기 어렵다는 문제점이 있다. 특히, 하수처리장과 달리 폐수처리장은 입주업체 업종에 따라 유입폐수 성상이 다양하여 종래의 인고도 처리공법으로는 법적방류수질 준수가 불가하다는 문제점이 있다.4 is a graph showing the results of water quality analysis when the conventional total phosphorus treatment method is used. Referring to FIG. 4, in the case of Iksan wastewater treatment plant, PAC 17% is used as a drug for removing total phosphorus (TP), but a large amount of OB-P and Poly-P components do not react with the chemical in the influent wastewater. It is contained (about 25%-less than 10% of general wastewater), so the average of two months in inflow and discharge water is 0.352, which is difficult to satisfy the statutory discharge water quality (TP 0.2 or less), which is strengthened from 2012. In particular, unlike the sewage treatment plant, the wastewater treatment plant has a variety of inflow wastewater characteristics according to the tenant industry, there is a problem that it is impossible to comply with the legal discharge water quality by the conventional manure treatment method.

표 1 및 표 2에는 종래의 총인 처리 방법에 의한 PAC 응집 시험에서 무기응집제를 다양한 종류로 적용하여 실험하여 본 결과를 나타내었다.Table 1 and Table 2 show the results of experiments by applying various types of inorganic coagulants in the PAC aggregation test by the conventional total phosphorus treatment method.

구분division 응집제주입량Coagulant Injection TPTP S-TPS-TP OB-P+Poly-POB-P + Poly-P PO4-PPO4-P 비고Remarks PAC 응집시험PAC flocculation test PAC
응집시험
(1차)
PAC
Coagulation test
(Primary)
1One 0ppm0 ppm 2.2262.226 2.1182.118 0.4010.401 1.7171.717
22 43ppm43 ppm 0.5410.541 0.4940.494 0.3120.312 0.1820.182 33 71ppm71 ppm 0.4090.409 0.3530.353 0.3120.312 0.0410.041 44 142ppm142 ppm 0.3470.347 0.3110.311 0.3110.311 underunder 55 284ppm284 ppm 0.3340.334 0.2930.293 0.2930.293 underunder 66 568ppm568 ppm 0.2950.295 0.3020.302 0.3020.302 underunder PAC
응집시험
(2차)
PAC
Coagulation test
(Secondary)
1One 0ppm0 ppm 2.2542.254 2.1442.144 0.4560.456 1.6881.688
22 71ppm71 ppm 0.4710.471 0.4390.439 0.4390.439 underunder 33 100ppm100 ppm 0.4310.431 0.3990.399 0.3990.399 underunder 44 128ppm128 ppm 0.4450.445 0.40.4 0.40.4 underunder 무기응집제 종류별 응집시험(1차)Coagulation test by type of inorganic coagulant (1st) AlumAlum 1One 94ppm94 ppm 0.360.36 0.230.23 0.210.21 0.020.02 22 187ppm187 ppm 0.330.33 0.210.21 0.210.21 underunder FeCl3FeCl3 33 29ppm29 ppm 0.470.47 0.360.36 0.260.26 0.100.10 44 57ppm57 ppm 0.300.30 0.220.22 0.220.22 underunder PACPAC 55 39ppm39 ppm 0.390.39 0.250.25 0.220.22 0.030.03 66 77ppm77 ppm 0.350.35 0.220.22 0.210.21 0.010.01

구분division 응집제주입량Coagulant Injection TPTP S-TPS-TP OB-P+Poly-POB-P + Poly-P PO4-PPO4-P 비고Remarks 무기응집제 종류별 응집시험(3차)Coagulation test by type of inorganic coagulant (3rd) 원수enemy 1.551.55 1.291.29 0.200.20 1.091.09 Jetchem100Jetchem100 1One 50ppm50 ppm 0.260.26 0.170.17 0.170.17 underunder 22 100ppm100 ppm 0.210.21 0.160.16 0.160.16 underunder 33 150ppm150 ppm 0.200.20 0.160.16 0.160.16 underunder 44 200ppm200 ppm 0.190.19 0.150.15 0.150.15 underunder 55 250ppm250 ppm 0.190.19 0.150.15 0.150.15 underunder Jetchem400Jetchem400 66 50ppm50 ppm 0.310.31 0.190.19 0.190.19 underunder 77 100ppm100 ppm 0.220.22 0.170.17 0.170.17 underunder 88 150ppm150 ppm 0.220.22 0.180.18 0.180.18 underunder 99 200ppm200 ppm 0.230.23 0.170.17 0.170.17 underunder 1010 250ppm250 ppm 0.220.22 0.170.17 0.170.17 underunder PACPAC 1111 50ppm50 ppm 0.230.23 0.180.18 0.180.18 underunder 1212 100ppm100 ppm 0.220.22 0.170.17 0.170.17 underunder 1313 150ppm150 ppm 0.190.19 0.160.16 0.160.16 underunder 1414 200ppm200 ppm 0.200.20 0.170.17 0.170.17 underunder 1515 250ppm250 ppm 0.220.22 0.170.17 0.170.17 underunder 구분division 응집제Flocculant PolymerPolymer TPTP S-TPS-TP OB-P+Poly-POB-P + Poly-P PO4-PPO4-P 비고Remarks 무기응집제 종류별 응집시험(4차)Coagulation test by type of inorganic coagulant (4th) Jetchem100Jetchem100 1One 250ppm250 ppm -- 0.240.24 0.170.17 0.170.17 underunder pH조정
NaOH투입
pH adjustment
NaOH input
Jetchem400Jetchem400 22 250ppm250 ppm -- 0.200.20 0.160.16 0.160.16 underunder PACPAC 33 250ppm250 ppm -- 0.210.21 0.180.18 0.180.18 underunder

유기성 고분자응집제 첨가 응집시험(1차)Coagulation test with organic polymer coagulant (1st) AlumAlum 1One 94ppm94 ppm 2ppm2 ppm 0.480.48 0.290.29 0.210.21 0.080.08 22 187ppm187 ppm 2ppm2 ppm 0.280.28 0.190.19 0.190.19 underunder FeCl3FeCl3 33 29ppm29 ppm 2ppm2 ppm 0.720.72 0.530.53 0.230.23 0.30.3 44 57ppm57 ppm 2ppm2 ppm 0.40.4 0.220.22 0.180.18 0.040.04 PACPAC 55 39ppm39 ppm 2ppm2 ppm 0.560.56 0.430.43 0.200.20 0.230.23 66 77ppm77 ppm 2ppm2 ppm 0.260.26 0.210.21 0.210.21 underunder 유기성 고분자응집제 첨가 응집시험(2차)Coagulation test with organic polymer coagulant (secondary) 원수enemy 1.5641.564 1.2601.260 0.3270.327 0.9330.933 Jetchem+KCDJetchem + KCD 1One 2400ppm2400 ppm 100ppm100 ppm 0.4500.450 0.3760.376 0.3520.352 0.0240.024 코오롱생명과학약품Kolon Life Sciences 22 2400ppm2400 ppm 300ppm300 ppm 0.5640.564 0.5040.504 0.4520.452 0.0520.052 Jetchem+KCEJetchem + KCE 33 2400ppm2400 ppm 100ppm100 ppm 0.0290.029 0.0270.027 0.0270.027 underunder 44 2400ppm2400 ppm 300ppm300 ppm 0.4130.413 0.3210.321 0.2610.261 0.0600.060 Jetchem+KCFJetchem + KCF 55 2400ppm2400 ppm 100ppm100 ppm 0.3590.359 0.3190.319 0.3190.319 underunder 66 2400ppm2400 ppm 300ppm300 ppm 0.4180.418 0.3350.335 0.3350.335 underunder

유기성 고분자응집제 첨가 응집시험(3차)Coagulation test with organic polymer coagulant (3rd) 원수enemy 1.8101.810 1.5631.563 0.2900.290 1.2731.273 Jetchem+KCEJetchem + KCE 1One 2400ppm2400 ppm 50ppm50 ppm 0.0250.025 0.0190.019 0.0190.019 underunder 22 2400ppm2400 ppm 100ppm100 ppm 0.0200.020 0.0120.012 0.0120.012 underunder 33 2400ppm2400 ppm 150ppm150 ppm 0.0310.031 0.0210.021 0.0070.007 0.0140.014 44 2400ppm2400 ppm 200ppm200 ppm 0.0340.034 0.0250.025 0.0080.008 0.0170.017 55 2400ppm2400 ppm 250ppm250 ppm 0.3520.352 0.2820.282 0.2450.245 0.0370.037 66 2400ppm2400 ppm 300ppm300 ppm 0.3480.348 0.2700.270 0.2240.224 0.0460.046 유기성 고분자응집제 첨가 응집시험(4차)Organic polymer coagulant addition flocculation test (4th) 원수enemy 1.941.94 1.671.67 0.270.27 1.401.40 Jetchem+KCEJetchem + KCE 1One 70ppm70 ppm 0ppm0 ppm 0.460.46 0.280.28 0.280.28 underunder 22 70ppm70 ppm 20ppm20 ppm 0.300.30 0.280.28 0.280.28 underunder 33 70ppm70 ppm 30ppm30 ppm 0.320.32 0.310.31 0.280.28 0.030.03 44 70ppm70 ppm 40ppm40 ppm 0.340.34 0.280.28 0.270.27 0.010.01 55 70ppm70 ppm 50ppm50 ppm 0.420.42 0.280.28 0.280.28 underunder 66 70ppm70 ppm 100ppm100 ppm 0.620.62 0.270.27 0.270.27 underunder 유기성 고분자응집제 첨가 응집시험(5차)Organic polymer coagulant addition flocculation test (5th) 원수enemy 1.661.66 1.371.37 0.260.26 1.111.11 PAC+KCEPAC + KCE 1One 70ppm70 ppm 0ppm0 ppm 0.30.3 0.250.25 0.250.25 underunder 22 70ppm70 ppm 20ppm20 ppm 0.240.24 0.250.25 0.250.25 underunder 33 70ppm70 ppm 30ppm30 ppm 0.260.26 0.230.23 0.230.23 underunder 44 70ppm70 ppm 40ppm40 ppm 0.280.28 0.220.22 0.220.22 underunder 55 70ppm70 ppm 50ppm50 ppm 0.300.30 0.220.22 0.220.22 underunder 66 70ppm70 ppm 100ppm100 ppm 0.300.30 0.210.21 0.210.21 underunder

유기성 고분자응집제 첨가 응집시험(6차)Organic polymer coagulant addition flocculation test (6th) 원수enemy 1.551.55 1.291.29 0.200.20 1.091.09 Jetchem+KCEJetchem + KCE 1One 250ppm250 ppm 0ppm0 ppm 0.260.26 0.150.15 0.150.15 underunder 22 250ppm250 ppm 20ppm20 ppm 0.190.19 0.140.14 0.140.14 underunder 33 250ppm250 ppm 30ppm30 ppm 0.200.20 0.150.15 0.150.15 underunder 44 250ppm250 ppm 40ppm40 ppm 0.230.23 0.150.15 0.150.15 underunder 55 250ppm250 ppm 50ppm50 ppm 0.270.27 0.140.14 0.140.14 underunder 66 250ppm250 ppm 100ppm100 ppm 0.330.33 0.150.15 0.150.15 underunder 유기성 고분자응집제 첨가 응집시험(7차)Organic polymer coagulant addition flocculation test (7th) 원수enemy 1.551.55 1.291.29 0.200.20 1.091.09 Jetchem+KCEJetchem + KCE 1One 250ppm250 ppm 0ppm0 ppm 0.260.26 0.150.15 0.150.15 underunder 22 250ppm250 ppm 20ppm20 ppm 0.190.19 0.140.14 0.140.14 underunder 33 250ppm250 ppm 30ppm30 ppm 0.200.20 0.150.15 0.150.15 underunder 44 250ppm250 ppm 40ppm40 ppm 0.230.23 0.150.15 0.150.15 underunder 55 250ppm250 ppm 50ppm50 ppm 0.270.27 0.140.14 0.140.14 underunder 66 250ppm250 ppm 100ppm100 ppm 0.330.33 0.150.15 0.150.15 underunder

구분division 응집제
주입량
Flocculant
Injection volume
Polymer
주입량
Polymer
Injection volume
TPTP S-TPS-TP OB-P+Poly-POB-P + Poly-P PO4-PPO4-P 비고Remarks
유기성 고분자응집제 첨가 응집시험(8차)Coagulation test with organic polymer coagulant (8th) 원수enemy 1.551.55 1.291.29 0.200.20 1.091.09 PAC+KCEPAC + KCE 1One 250ppm250 ppm 0ppm0 ppm 0.190.19 0.140.14 0.140.14 underunder 22 250ppm250 ppm 20ppm20 ppm 0.210.21 0.140.14 0.140.14 underunder 33 250ppm250 ppm 30ppm30 ppm 0.190.19 0.150.15 0.150.15 underunder 44 250ppm250 ppm 40ppm40 ppm 0.200.20 0.140.14 0.140.14 underunder 55 250ppm250 ppm 50ppm50 ppm 0.190.19 0.140.14 0.140.14 underunder 66 250ppm250 ppm 100ppm100 ppm 0.200.20 0.140.14 0.140.14 underunder 유기성 고분자응집제 첨가 응집시험(9차)Organic polymer coagulant addition flocculation test (9th) 원수enemy 1.551.55 1.291.29 0.200.20 1.091.09 PAC+
NalcoR8123
PAC +
NalcoR8123
1One 250ppm250 ppm 0ppm0 ppm 0.240.24 0.150.15 0.150.15 underunder
22 250ppm250 ppm 20ppm20 ppm 0.170.17 0.150.15 0.150.15 underunder 33 250ppm250 ppm 30ppm30 ppm 0.170.17 0.150.15 0.150.15 underunder 44 250ppm250 ppm 40ppm40 ppm 0.150.15 0.150.15 0.150.15 underunder 55 250ppm250 ppm 50ppm50 ppm 0.150.15 0.150.15 0.150.15 underunder 66 250ppm250 ppm 100ppm100 ppm 0.150.15 0.140.14 0.140.14 underunder 유기성 고분자응집제 첨가 응집시험(10차)Coagulation test with organic polymer coagulant (10th) 원수enemy 1.551.55 1.291.29 0.200.20 1.091.09 PAC+MPE50PAC + MPE50 1One 250ppm250 ppm 0ppm0 ppm 0.210.21 0.160.16 0.160.16 underunder 22 250ppm250 ppm 20ppm20 ppm 0.230.23 0.170.17 0.170.17 underunder 33 250ppm250 ppm 30ppm30 ppm 0.210.21 0.160.16 0.160.16 underunder 44 250ppm250 ppm 40ppm40 ppm 0.200.20 0.160.16 0.160.16 underunder 55 250ppm250 ppm 50ppm50 ppm 0.210.21 0.170.17 0.170.17 underunder 66 250ppm250 ppm 100ppm100 ppm 0.210.21 0.170.17 0.170.17 underunder

지르코늄 첨가 응집시험 (Zetchem50은 고농도 지르코늄 솔루션으로 코오롱생명과학이 제안한 인흡착제)Agglomeration test with zirconium (Zetchem50 is a high concentration zirconium solution and phosphorus adsorbent proposed by Kolon Life Science) 원수enemy 1.661.66 1.371.37 0.260.26 1.111.11 PAC +
Jetchem50
PAC +
Jetchem50
1One 70ppm70 ppm 7ppm7 ppm 0.410.41 0.230.23 0.230.23 underunder
22 70ppm70 ppm 21ppm21 ppm 0.270.27 0.210.21 0.210.21 underunder 33 70ppm70 ppm 35ppm35 ppm 0.210.21 0.210.21 0.210.21 underunder 44 70ppm70 ppm 49ppm49 ppm 0.190.19 0.190.19 0.190.19 underunder 원수개질을 위한 전처리 후 응집시험(1차) : pH4.5 조정하여 15분간 산처리Coagulation test after pretreatment for raw water reforming (primary): Acid treatment for 15 minutes by adjusting pH4.5 원수enemy 1.551.55 1.291.29 0.200.20 1.091.09 Jetchem100
+ KCE
Jetchem100
+ KCE
1One 100ppm100 ppm 50ppm50 ppm 0.670.67 0.230.23 0.220.22 0.010.01
22 100ppm100 ppm 50ppm50 ppm 0.310.31 0.160.16 0.160.16 underunder 33 100ppm100 ppm 50ppm50 ppm 0.270.27 0.170.17 0.170.17 underunder

구분division 응집제
주입량
Flocculant
Injection volume
Polymer
주입량
Polymer
Injection volume
TPTP S-TPS-TP OB-P+Poly-POB-P + Poly-P PO4-PPO4-P 비고Remarks
원수개질을 위한 전처리 후 응집시험(1차) : 오존처리 전?후 시험Coagulation test after pretreatment for raw water reforming (primary): pre and post ozone treatment 오전처리전Before morning treatment 1One 00 00 0.270.27 0.240.24 0.240.24 underunder 오전처리전+PACBefore morning treatment + PAC 22 15ppm15 ppm 00 0.260.26 0.230.23 0.230.23 underunder 오존처리전+KCEBefore ozone treatment + KCE 33 00 5ppm5 ppm 0.220.22 0.210.21 0.210.21 underunder 오전처리후After morning treatment 44 00 00 0.210.21 0.160.16 0.100.10 0.060.06 오전처리후+PACAfter morning treatment + PAC 55 15ppm15 ppm 00 0.230.23 0.100.10 0.100.10 underunder 오전처리후+KCEAfter morning treatment + KCE 66 00 5ppm5 ppm 0.210.21 0.170.17 0.110.11 underunder

표 1 내지 표 8을 참조하면, 종래의 총인 처리 방법에 의거한 PAC 응집 시험에서 무기응집제를 다양한 종류로 적용하여 실험하여도 PO4-P 성분은 상당한 수준으로 감소되나 OB-P, Poly-P 성분이 여전히 적지 않게 잔류하는 것으로 나타났다. 이와 같이 종래의 처리 방법에 따른 총인처리시설이 보증수질을 충족시키지 못하는 가장 큰 원인은 폐수에 화학적 응집방법으로 처리하기가 매우 어려운 인성분의 함량이 높기 때문이며, 응집에 의하여 총인을 안정적으로 처리하기가 곤란한 것으로 사료된다.Referring to Tables 1 to 8, even in the case of experiments using various kinds of inorganic coagulants in the PAC flocculation test based on the conventional total phosphorus treatment method, the PO 4 -P component is significantly reduced, but OB-P and Poly-P It was found that the components still remained insignificant. As such, the biggest reason why the conventional phosphorus treatment facility does not satisfy the guarantee water quality is that the phosphorus content is very difficult to treat by chemical flocculation method in the wastewater, and it is possible to stably treat the phosphorus by aggregation. Is considered difficult.

따라서, 종래의 폐수처리방법에 따르면 문제가 되는 인성분을 배출하는 개별배출업소를 컨트롤하거나 총인처리시설에 새로운 물리/화학적 공정을 추가하는 방안 등이 필요한 실정인 것이다.Therefore, according to the conventional wastewater treatment method, there is a need for a method of controlling an individual discharger emitting a phosphorus component in question or adding a new physical / chemical process to a total phosphorus treatment facility.

본 발명이 이루고자 하는 기술적 과제는 이차침전지로부터 총인처리설비로 유입되는 폐수에 포함되는 총인(T-P) 구성성분 중 약품과 반응되지 않는 OB-P, Poly-P 성분이 다량 함유되어 있는데 이를 약품과 반응시켜 미세기포로 가압부상 혹은 응집 침전시켜 발생되는 플록을 제거함으로써 총인을 법적 규정 수치 이내로 관리할 수 있는 폐수 처리 방법을 제공하는 것이다.The technical problem to be achieved by the present invention contains a large amount of OB-P, Poly-P components that do not react with the drug of the total phosphorus (TP) components contained in the wastewater flowing into the total phosphorus treatment facility from the secondary sedimentation battery and reacts with the drug It is to provide a wastewater treatment method that can control the total phosphorus within the legal regulation value by removing flocs generated by pressurized flotation or flocculation sedimentation with microbubbles.

상기 기술적 과제를 이루기 위한 본 발명에 따른 총인 제거를 위한 폐수 처리 방법은, Wastewater treatment method for phosphorus removal according to the present invention for achieving the above technical problem,

2차 침전지에서 유입된 물을 약품 처리에 의한 흡착 혼화지에서 약품 처리하고 응집지에서 혼화/응집시키며, 혼화/응집 공정을 거친 원수 중의 오염물질인 플록을 가압 부상조에서 미세기포에 부착, 부상시켜 배출하는 총인 제거를 위한 폐수 처리 방법으로,Adsorption of water from the secondary sedimentation basin by chemical treatment, chemical treatment in the mixing basin, and mixing / agglomeration in the flocculation basin Wastewater treatment method for removal of phosphorus discharged by

유입수에 대하여 흡착 혼화 처리하기 이전에 오존접촉조를 거쳐 산화처리함으로써 OB-P, Poly-P성분을 약품 반응 가능한 PO4-P로 전환시키는 과정을 포함하는 것을 특징으로 한다.It characterized in that it comprises the step of converting the OB-P, Poly-P components into chemically reactive PO 4 -P by the oxidation treatment through the ozone contact tank prior to the adsorption mixing treatment for the influent.

또한, 상기 오존 접촉 과정은,In addition, the ozone contact process,

유입 및 방류량에 지장이 없도록 유입부에서 가압용해탱크로 이송하고, 오존과 접촉시킨 후 오존접촉조로 펌핑하는 과정을 포함하는 것을 특징으로 한다.It is characterized in that it comprises a process of pumping to the ozone contact tank after the transfer to the pressurized melting tank in the inlet so as not to interfere with the inflow and discharge amount.

또한, 상기 오존접촉조는 4지 이상으로 구성된 것이 보다 바람직하다.Moreover, it is more preferable that the said ozone contact tank consists of four papers or more.

본 발명에 따른 총인 제거를 위한 폐수 처리 방법은 유입수에 대하여 흡착 혼화 처리하기 이전에 오존접촉조를 거쳐 산화처리함으로써 OB-P, Poly-P성분을 약품 반응 가능한 PO4-P로 전환시켜 총인(T-P)이 종래의 폐수 처리 방법에 비하여 총인 제거 효율이 2배 정도로 향상된다. OB-P, Poly-P를 제거하기 위하여 다양한 반응 가능 약품을 연구하였으나 모두 실패하였고, 여러 약품제조업체에 폐수샘플을 보내어 의뢰하였으나, 총인(T-P)이 0.25이하로는 낮아지지 않아 시험을 포기한 상태에서 발견한 결과로서 의미가 있다.Wastewater treatment method for total phosphorus removal according to the present invention by converting the OB-P, Poly-P components into chemically reactive PO 4 -P by oxidizing through an ozone contact tank prior to the adsorption and mixing treatment for influent water. TP) is about 2 times the total removal efficiency compared to the conventional wastewater treatment method. In order to remove OB-P and Poly-P, various reaction capable chemicals were studied, but all failed. The samples were sent to various drug manufacturers, but the total phosphorus (TP) was not lowered below 0.25. It is meaningful as a result of discovery.

도 1은 총인의 구성 성분을 나타낸 도면,
도 2 및 도 3은 종래의 일반적인 총인 처리 공정을 나타낸 도면,
도 4는 종래의 총인 처리 방법을 사용하였을 때 수질 분석 결과를 나타낸 그래프, 및
도 5 및 도 6은 본 발명에 따른 총인 제거를 위한 폐수 처리 방법의 주요
1 is a view showing the components of the total phosphorus,
2 and 3 is a view showing a conventional general gun treatment process,
Figure 4 is a graph showing the water quality analysis results when using the conventional gross phosphorus treatment method, and
5 and 6 are the main of the wastewater treatment method for total phosphorus removal according to the present invention

이하 첨부된 도면들을 참조하여 본 발명의 실시예를 보다 상세히 설명하기로 한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 5 및 도 6에는 본 발명의 실시예에 따른 총인 제거를 위한 폐수 처리 방법의 주요 과정을 나타내었다. 도 5를 참조하면, 본 발명에 따른 총인 제거를 위한 폐수 처리 방법은, 2차 침전지(500)에서 유입된 물을 분배조(502)를 거쳐 약품 처리에 의한 흡착 혼화지(506)에서 약품 처리하고 응집지(508)에서 혼화/응집시키며, 혼화/응집 공정을 거친 원수 중의 오염물질인 플록을 가압 부상조 또는 침전조(510)에서 미세기포에 부착, 부상시켜 배출하는 총인 제거를 위한 폐수 처리 방법으로,5 and 6 show the main process of the wastewater treatment method for total phosphorus removal according to an embodiment of the present invention. Referring to FIG. 5, in the wastewater treatment method for removing phosphorus according to the present invention, the water introduced from the secondary sedimentation basin 500 is treated with chemicals in the adsorption admixture 506 by a chemical treatment via a distribution tank 502. And flocculation / agglomeration in the flocculation paper 508, and floc, which is a contaminant in the raw water that has undergone the mixing / aggregation process, is attached to the microbubbles in the pressure flotation tank or the settling tank 510, and the wastewater treatment method for removing the phosphorus discharged by flotation. to,

즉, 유입수에 대하여 흡착 혼화지(506)에서 흡착 혼화 처리하기 이전에 오존접촉조(504)를 거쳐 산화처리함으로써 OB-P, Poly-P성분을 약품 반응 가능한 PO4-P로 전환시키는 과정을 포함하여 이루어진다. 이와 같이 이차침전지로부터 총인처리설비로 유입되는 총인(T-P) 구성성분 중 약품과 반응되지 않는 OB-P, Poly-P 성분이 다량 함유되어 있어 약품과 반응가능한 PO4-P로 분해시키기 위하여 오존접촉에 의한 산화처리 후 약품과 반응시키고, 미세기포로 가압부상 혹은 응집침전시켜서 발생된 플록(Floc)을 제거하게 되는 것이다.
That is, before the adsorption admixing process in the adsorption admixture paper 506, the inflow water is oxidized through the ozone contacting tank 504 to convert the OB-P and Poly-P components into PO 4 -P capable of chemical reaction. It is made to include. Thus, in order to ozone decomposition treatment plant phosphorus to total phosphorus (TP) ingredient is a drug that does not react OB-P, Poly-P component is large amount of the drug's reactive and PO 4 -P flowing in from the secondary clarifier contact After the oxidation treatment by the reaction with the chemicals, it is to remove the flocs (Floc) generated by pressure flotation or flocculation sedimentation with fine bubbles.

표 9에는 본 발명에 따른 폐수 처리 방법에 의한 처리수 중 총인(T-P) 구성성분 분석 결과를 나타내었다.Table 9 shows the analysis results of the total phosphorus (T-P) component in the treated water by the wastewater treatment method according to the present invention.

T-P 측정 결과T-P measurement result DateDate TimeTime 투입량
(ppm)
input
(ppm)
Sampling pointSampling point
유입 inflow DF 후단DF trailing 방류Discharge T-PT-P PO4PO4 OBOB -P-P T-PT-P PO4PO4 OBOB -P-P T-PT-P PO4PO4 OBOB -P-P 11/711/7 11:0011:00 150150 2.032.03 1.521.52 0.510.51 0.540.54 0.210.21 0.330.33 0.520.52 0.320.32 0.200.20 13:0013:00 1.991.99 1.471.47 0.520.52 0.370.37 0.040.04 0.330.33 0.380.38 0.210.21 0.170.17 14:3014:30 200200 1.961.96 1.541.54 0.420.42 0.410.41 0.040.04 0.370.37 0.420.42 0.220.22 0.200.20 17:0017:00 2.122.12 1.581.58 0.540.54 0.420.42 0.040.04 0.380.38 0.420.42 0.200.20 0.220.22 19:0019:00 2.102.10 1.691.69 0.410.41 0.430.43 0.070.07 0.360.36 0.430.43 0.200.20 0.230.23 11/811/8 9:009:00 250250 2.232.23 1.841.84 0.390.39 0.390.39 0.080.08 0.310.31 0.500.50 0.320.32 0.180.18 10:0010:00 2.132.13 1.771.77 0.360.36       0.390.39 0.240.24 0.160.16 11:0011:00 2.172.17 1.931.93 0.240.24       0.380.38 0.200.20 0.180.18 13:0013:00 2.122.12 1.761.76 0.360.36 0.370.37 0.10.1 0.270.27 0.350.35 0.180.18 0.170.17 15:0015:00 2.172.17 1.911.91 0.260.26 0.340.34 00 0.340.34 0.330.33 0.210.21 0.120.12 17:0017:00 2.172.17 1.851.85 0.320.32 0.190.19 00 0.190.19 0.270.27 0.210.21 0.060.06 19:0019:00 2.132.13 1.821.82 0.290.29 0.180.18 00 0.180.18 0.190.19 0.110.11 0.080.08

표 9를 참조하면, 본 발명에 따른 폐수 처리 방법에 의하여 PO4-P성분은 약품과 반응가능한 성분으로, 오존접촉 후 OB-P성분이 PO4-P로 약60% ~ 80% 전환됨을 알 수 있다. 즉, 종래의 총인 제거를 위한 폐수처리방법에서는 오존접촉조가 총인설비 최후단에 설치되어 있지만 폐수원수가 오존접촉이 먼저 되어야 OB-P, Poly-P성분이 PO4-P성분으로 전환되기 때문에 유입전단에 오존접촉조를 설치한 것에 주목할 필요가 있다.Referring to Table 9, the wastewater treatment method according to the present invention can be seen that the PO4-P component is a component that can react with the drug, the OB-P component is converted to about 60% ~ 80% to PO4-P after ozone contact. . In other words, in the conventional wastewater treatment method for the removal of phosphorus, the ozone contact tank is installed at the end of the phosphorus installation, but the inflow of wastewater is required to be made by ozone contact first, so the OB-P and Poly-P components are converted into PO 4 -P components. It is worth noting that the ozone contact tank is installed at the front end.

또한, 본 발명에 따른 폐수처리 방법에서는 오존발생설비가 폐수(발생폐수의 약50%)와 오존성분을 서로 용해시켜 오존접촉조에서 분사시켜주기 때문에 유입 및 방류량에 지장이 없도록 유입부에서 가압용해탱크로 이송하고, 오존과 접촉시킨 후 오존접촉조로 펌핑하도록 하는 것이 보다 바람직하다.
In addition, in the wastewater treatment method according to the present invention, since the ozone generating equipment dissolves the wastewater (about 50% of the generated wastewater) and the ozone component and injects them in an ozone contacting tank, it is pressurized and dissolved at the inlet so that the inflow and discharge amount is not affected. More preferably, it is transferred to a tank, brought into contact with ozone, and then pumped into an ozone contact bath.

또한, 기자재(혼화기, 응집교반기)의 내구성 저하를 예방하고, 오존성분의 반감기인 0.5 ~ 1 시간을 충족시키기 위하여 오존접촉조는 4지 이상으로 구성하는 것이 바람직하다.
In addition, the ozone contact tank is preferably composed of four or more in order to prevent degradation of durability of the equipment (mixer, flocculator) and to satisfy the half life of the ozone component, which is 0.5 to 1 hour.

본 발명에 따른 폐수 처리 방법은 기존 방법의 경우에는 오존처리 과정이 색도 및 COD를 제거하기 위한 것으로 처리공정 최후단에서 이루어지는 것인데 반하여, 본 발명에서는 오존 접촉 과정이 산화처리하기 위한 것이고 폐수 유입부인 처리공정 전단에 오존접촉조를 설치하여 처리한다는데 주목할 필요가 있다. 또한, 폐수일부(유입폐수량의 50%)를 오존과 용해시켜 폐수와 접촉시켜야 하므로 전체 물 량의 변화가 발생되지 않도록 하기 위하여 유입분배조 바로 후단에 오존접촉조를 위치시킨다.
Wastewater treatment method according to the present invention is the ozone treatment process to remove the color and COD in the case of the existing method, but is performed at the end of the treatment process, in the present invention, the ozone contact process is for oxidation treatment and the wastewater inlet treatment It is worth noting that an ozone contacting tank is installed and treated at the front end of the process. In addition, since some of the wastewater (50% of the influent wastewater) must be dissolved in ozone to be in contact with the wastewater, an ozone contacting tank is placed immediately after the inlet distribution tank in order to prevent a change in the total amount of the wastewater.

또한, 기존 수처리 공법 중 DOF공법에서는 가압부상설비 중 마이크로기포발생을 오존으로 활용하는 공법이 있으나, 이는 약품 반응후 가압 부상을 촉진시키기 위한 것으로 본 발명에서의 산화 과정과는 무관하며 약품과 반응이 어려운 OB-P, Poly-P를 제거하기 위해서 약품반응 전단계에서 오존을 접촉시킨다는 점에서 목적과 구성 및 작용 효과가 전혀 상이한 것이다.
In addition, in the DOF method of the existing water treatment method there is a method that utilizes the micro-bubble generation in the pressurized flotation equipment as ozone, this is to promote the pressure injury after the chemical reaction is irrelevant to the oxidation process in the present invention and the reaction with the chemical In order to remove difficult OB-P and Poly-P, the purpose, composition, and effect are completely different in that ozone is contacted at the stage of chemical reaction.

상기와 같은 본 발명에 따른 총인 제거를 위한 폐수 처리 방법의 작용 효과를 평가하기 위하여 의뢰시험(울산대학교)과, 현장 파일럿 테스트를 시행하였다. 시험에서는 유입폐수(원수)의 전처리(오존산화처리) 후 약품반응 시 수질을 비교 분석하였다.
In order to evaluate the effect of the wastewater treatment method for total phosphorus removal according to the present invention as described above was commissioned test (Ulsan University) and field pilot test. In the test, water quality was compared and analyzed in the chemical reaction after pretreatment (ozone oxidation treatment) of influent wastewater (raw water).

표 10에는 의뢰시험(울산대학교) 결과를 나타내었으며, 표 11에는 현장 파일럿 테스트 결과를 나타내었다. 표 12에는 본 발명에 따른 폐수 처리 방법을 적용하여 폐수원수에 오존을 접촉시키기 위하여 시설보완작업 완료 후 수질 분석 결과를 비교 도시하였다.       Table 10 shows the results of the commissioned test (Ulsan University), and Table 11 shows the field pilot test results. Table 12 shows the comparison of the results of the water quality analysis after the completion of the facility supplement work in order to contact ozone to the wastewater source by applying the wastewater treatment method according to the present invention.

날짜date 구분division Conc.
(㎎/ℓ)
Conc.
(Mg / l)
PAC 17% 주입량 (ppm)PAC 17% Dose (ppm) 비고Remarks
7070 8080 9090 100100 110110 120120 11/1411/14 O3 10ppmO 3 10ppm T-PT-P 1.9931.993 0.3520.352 0.2650.265 0.1880.188 0.1520.152 0.1170.117 수분석Water analysis 11/1711/17 O3 5ppmO3 5ppm T-PT-P 2.4532.453 -- 0.3510.351 0.2600.260 0.1950.195 0.1900.190 0.1830.183 수분석Water analysis O3 10ppmO3 10ppm T-PT-P 2.2372.237 0.3520.352 0.2650.265 0.1880.188 0.1520.152 0.1170.117 -- O3 15ppmO3 15 ppm T-PT-P 2.4122.412 -- 0.2550.255 0.2190.219 0.1890.189 0.1790.179 0.1680.168

일시Pause 오존투입Ozone injection PAC투입PAC input T-PT-P 일시Pause 오존투입Ozone injection PAC투입PAC input T-PT-P 11/21
11/21
25 ppm25 ppm 0 ppm0 ppm 2.102.10 11/24
(16:00)
11/24
(16:00)
25 ppm25 ppm 0 ppm0 ppm 1.421.42
150 ppm150 ppm 0.060.06 150 ppm150 ppm 0.090.09 11/23
(15:30)
11/23
(15:30)
25 ppm25 ppm 0 ppm0 ppm 1.791.79 11/24
(18:00)
11/24
(18:00)
25 ppm25 ppm 0 ppm0 ppm 1.651.65
150 ppm150 ppm 0.100.10 150 ppm150 ppm 0.080.08 11/24
(11:30)
11/24
(11:30)
25 ppm25 ppm 0 ppm0 ppm 1.471.47 11/25
(09:30)
11/25
(09:30)
25 ppm25 ppm 0 ppm0 ppm 1.581.58
150 ppm150 ppm 0.110.11 150 ppm150 ppm 0.090.09 11/24
(12:00)
11/24
(12:00)
10 ppm10 ppm 0 ppm0 ppm 1.671.67 11/25
(09:30)
11/25
(09:30)
50 ppm50 ppm 0 ppm0 ppm 1.521.52
150 ppm150 ppm 0.190.19 150 ppm150 ppm 0.060.06

구 분division 총인(T-P)비고(조건)Total Person (T-P) Remarks (Condition) 구 분division 유입수Influent 가압Pressure 여과percolation 방류수Effluent 비고(조건)Remarks (condition) 12/2212/22 2.2292.229 0.220 0.220 0.1660.166 0.1860.186 오존 10ppm-PAC130Ozone 10ppm-PAC130 12/2312/23 2.1002.100 0.1800.180 0.1670.167 0.1640.164 오존 20ppm-PAC130Ozone 20ppm-PAC130 12/2412/24 1.8771.877 0.1320.132 0.1500.150 0.1440.144 오존 20ppm-PAC130Ozone 20ppm-PAC130 12/2612/26 1.7901.790 0.1210.121 0.1380.138 0.1130.113 오존 20ppm-PAC120Ozone 20ppm-PAC120 12/2712/27 2.0142.014 0.1220.122 0.1220.122 0.1060.106 오존 20ppm-PAC120Ozone 20ppm-PAC120

표 12를 참조하면, 폐수성상 중 OB-P, Poly-P 성분이 다량 함유되어 있을 경우, 약품으로는 T-P를 제거하는데 한계가 있어, 오존접촉조를 거친 후 OB-P, Poly-P성분이 약품반응 가능한 PO4-P로 전환됨으로써 총인(T-P)이 방류수에서 0.1 ~ 0.186으로 기존대비 약 2배 추가 제거되는 획기적인 결과를 얻게 된 것이다.Referring to Table 12, when a large amount of OB-P and Poly-P components are contained in the wastewater phase, there is a limit in removing TP as a chemical. By converting into chemically reactive PO4-P, the total phosphorus (TP) was removed 0.1 ~ 0.186 from the effluent, which is about twice as much as before.

표 13에는 폐수원수에 오존을 접촉시키기 위하여 시설 보완 작업을 완료한 후의 수질 분석 현황을 나타내었다.Table 13 shows the status of water quality analysis after the completion of the facility's complementary work to bring ozone into contact with the wastewater.

구 분division 총인(T-P)비고(조건)Total Person (T-P) Remarks (Condition) 구 분division 유입수Influent 가압Pressure 여과percolation 방류수Effluent 비고(조건)Remarks (condition) 12/22 (16:00)12/22 (16:00) 2.2292.229 0.220 0.220 0.1660.166 0.1860.186 오존 15ppm-PAC130Ozone 15ppm-PAC130 12/23 (09:00)12/23 (09:00) 1.9911.991 0.1980.198 0.1870.187 0.1640.164 오존 20ppm-PAC130Ozone 20ppm-PAC130 12/23 (12:00)12/23 (12:00) 2.0232.023 0.1560.156 0.1660.166 0.1640.164 오존 20ppm-PAC150Ozone 20ppm-PAC150 12/23 (15:00)12/23 (15:00) 1.8731.873 0.1520.152 0.1320.132 0.1520.152 오존 20ppm-PAC150Ozone 20ppm-PAC150 12/24 (16:00)12/24 (16:00) 1.8771.877 0.13260.1326 0.1500.150 0.1440.144 오존 20ppm-PAC150Ozone 20ppm-PAC150 12/26 (09:00)12/26 (09:00) 1.7301.730 0.1260.126 0.1230.123 0.1090.109 오존 20ppm-PAC150Ozone 20ppm-PAC150 12/27 (09:00)12/27 (09:00) 2.0142.014 0.1220.122 0.1220.122 0.1060.106 오존 20ppm-PAC120Ozone 20ppm-PAC120 12/2812/28 2.5192.519 0.1210.121 0.1140.114 0.1250.125 오존 20ppm-PAC120Ozone 20ppm-PAC120 12/2912/29 2.3242.324 0.1700.170 0.1520.152 0.1640.164 오존 20ppm-PAC120Ozone 20ppm-PAC120 12/3012/30 2.1192.119 0.1720.172 0.1610.161 0.1530.153 오존 20ppm-PAC120Ozone 20ppm-PAC120 12/3112/31 1.9921.992 0.1700.170 0.1630.163 0.1550.155 오존 20ppm-PAC120Ozone 20ppm-PAC120 01/0101/01 2.1002.100 0.1930.193 0.1830.183 0.1740.174 오존 20ppm-PAC120Ozone 20ppm-PAC120 01/0201/02 2.2362.236 0.0960.096 0.0940.094 0.0900.090 오존 20ppm-PAC120Ozone 20ppm-PAC120 01/0301/03 2.5192.519 0.1210.121 0.1140.114 0.1250.125 오존 20ppm-PAC120Ozone 20ppm-PAC120 01/0401/04 2.7892.789 0.1620.162 0.1640.164 0.1620.162 오존 20ppm-PAC120Ozone 20ppm-PAC120 01/0501/05 2.6972.697 0.1400.140 0.1320.132 0.1250.125 오존 20ppm-PAC120Ozone 20ppm-PAC120 01/0601/06 2.6602.660 0.1430.143 0.1610.161 0.1360.136 오존 20ppm-PAC120Ozone 20ppm-PAC120 01/0701/07 2.3422.342 0.1290.129 0.1260.126 0.1220.122 오존 20ppm-PAC130Ozone 20ppm-PAC130 01/0801/08 2.3642.364 0.1430.143 0.1420.142 0.1340.134 오존 20ppm-PAC130Ozone 20ppm-PAC130 01/0901/09 2.5612.561 0.1830.183 0.1720.172 0.1600.160 오존 20ppm-PAC130Ozone 20ppm-PAC130 01/1001/10 2.2402.240 0.1250.125 0.1320.132 0.1280.128 오존 20ppm-PAC130Ozone 20ppm-PAC130 01/1101/11 2.6962.696 0.1640.164 0.1600.160 0.1580.158 오존 20ppm-PAC130Ozone 20ppm-PAC130 01/1201/12 2.6452.645 0.1730.173 0.1700.170 0.1620.162 오존 20ppm-PAC150Ozone 20ppm-PAC150 01/1301/13 2.2352.235 0.1930.193 0.1720.172 0.1570.157 오존 20ppm-PAC140Ozone 20ppm-PAC140 01/1401/14 2.1792.179 0.1430.143 0.1320.132 0.1260.126 오존 20ppm-PAC130Ozone 20ppm-PAC130 01/1501/15 1.8671.867 0.1480.148 0.1240.124 0.1100.110 오존 20ppm-PAC130Ozone 20ppm-PAC130 01/1601/16 1.7421.742 0.1760.176 0.1680.168 0.1680.168 오존 20ppm-PAC130Ozone 20ppm-PAC130 01/1701/17 2.3902.390 0.1720.172 0.1660.166 0.1590.159 오존 20ppm-PAC130Ozone 20ppm-PAC130 01/1801/18 2.4662.466 0.1810.181 0.1770.177 0.1720.172 오존 20ppm-PAC130Ozone 20ppm-PAC130 01/1901/19 2.2892.289 0.1740.174 0.1590.159 0.1570.157 오존 20ppm-PAC130Ozone 20ppm-PAC130 01/2001/20 2.2102.210 0.1810.181 0.1740.174 0.1680.168 오존 20ppm-PAC130Ozone 20ppm-PAC130 01/2101/21 2.0952.095 0.1590.159 0.1510.151 0.1410.141 오존 20ppm-PAC130Ozone 20ppm-PAC130 01/2201/22 1.8831.883 0.1380.138 0.1350.135 0.1280.128 오존 20ppm-PAC130Ozone 20ppm-PAC130 01/2301/23 1.8051.805 0.1700.170 0.1570.157 0.1560.156 오존 20ppm-PAC130Ozone 20ppm-PAC130 01/2401/24 1.7091.709 0.1590.159 0.1540.154 0.1480.148 오존 20ppm-PAC130Ozone 20ppm-PAC130 01/2501/25 2.2032.203 0.1730.173 0.1710.171 0.1670.167 오존 20ppm-PAC130Ozone 20ppm-PAC130 평균Average 2.212.21 0.160.16 0.150.15 0.150.15

표 13을 참조하면 유입수의 총인이 1.8 ~ 2.7 ppm 범위이나 방류수의 총인은 0.2 ppm 이내로 관리됨을 알 수 있다. 이는 OB-P, Poly-P를 제거하기 위하여 약 2개월간 코오롱워터앤에너지 연구소 및 코오롱생명과학 등에서 반응가능약품을 연구하였으나 모두 실패하였고, 또한 여러 약품제조업체에 폐수샘플을 보내어 의뢰하였으나, 총인(T-P)이 0.25이하로는 낮아지지 않아 시험을 포기한 상태에서 발견한 결과로서 의미가 있다 할 것이다.Referring to Table 13, it can be seen that the influent total phosphorus is in the range of 1.8 to 2.7 ppm, but the total phosphorus of the effluent is managed within 0.2 ppm. In order to remove OB-P and Poly-P, Kolon Water & Energy Research Institute and Kolon Life Science researched reactive chemicals for about 2 months, but all failed, and also sent samples of wastewater to various drug manufacturers, ) Is not lower than 0.25, which is meaningful as a result of finding the test abandoned.

500 : 2차 침전지 502 : 분배조
504 : 오존접촉조(OB-P, Poly-P성분을 약품반응 가능한 PO4-P로 전환)
506 : 흡착 혼화지 508 : 응집지
510 : 침전조
500: secondary sedimentation basin 502: distribution tank
504: Ozone contact tank (converts OB-P, Poly-P components to PO 4 -P that can react chemicals)
506: adsorptive blended paper 508: flocculated paper
510: sedimentation tank

Claims (3)

2차 침전지에서 유입된 물을 약품 처리에 의한 흡착 혼화지에서 약품 처리하고 응집지에서 혼화/응집시키며, 혼화/응집 공정을 거친 원수 중의 오염물질인 플록을 가압 부상조에서 미세기포에 부착, 부상시켜 배출하는 총인 제거를 위한 폐수 처리 방법에 있어서,
유입수에 대하여 흡착 혼화 처리하기 이전에 오존접촉조를 거쳐 산화처리함으로써 OB-P, Poly-P성분을 약품 반응 가능한 PO4-P로 전환시키는 오존 접촉 과정을 포함하는 것을 특징으로 하는 총인 제거를 위한 폐수 처리 방법.
Adsorption of water from the secondary sedimentation basin by chemical treatment, chemical treatment in the mixing basin, mixing / agglomeration in the flocculation basin, and floc, contaminants in raw water that have undergone the mixing / agglomeration process, are attached to the microbubbles in the pressure flotation tank. In the wastewater treatment method for the removal of total phosphorus discharged by
For the total phosphorus removal characterized in that it comprises an ozone contact process for converting the OB-P, Poly-P components into chemically reactive PO 4 -P by oxidation treatment through an ozone contact tank prior to the adsorption mixing process for the influent. Wastewater treatment method.
제1항에 있어서, 상기 오존 접촉 과정은,
유입 및 방류량에 지장이 없도록 유입부에서 가압용해탱크로 이송하고, 오존과 접촉시킨 후 오존접촉조로 펌핑하는 과정을 포함하는 것을 특징으로 하는 총인 제거를 위한 폐수 처리 방법.
The method of claim 1, wherein the ozone contact process,
A method for treating wastewater for total phosphorus removal, comprising the step of transferring the inlet to a pressurized melting tank so as not to interfere with inflow and discharge, and contacting with ozone and pumping it into an ozone contact tank.
제1항 또는 제2항에 있어서,
상기 오존접촉조는 4지 이상으로 구성된 것을 특징으로 하는 총인 제거를 위한 폐수 처리 방법.
The method according to claim 1 or 2,
The ozone contact tank is waste water treatment method for total phosphorus removal, characterized in that consisting of four or more.
KR1020120011055A 2012-02-03 2012-02-03 Waste water processing method for removing total phosphorous KR20120023164A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120011055A KR20120023164A (en) 2012-02-03 2012-02-03 Waste water processing method for removing total phosphorous

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120011055A KR20120023164A (en) 2012-02-03 2012-02-03 Waste water processing method for removing total phosphorous

Publications (1)

Publication Number Publication Date
KR20120023164A true KR20120023164A (en) 2012-03-12

Family

ID=46130716

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120011055A KR20120023164A (en) 2012-02-03 2012-02-03 Waste water processing method for removing total phosphorous

Country Status (1)

Country Link
KR (1) KR20120023164A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101850057B1 (en) * 2018-01-25 2018-04-18 환경시설관리 주식회사 Complex bioreactor for treatment of wastewater
KR101860102B1 (en) * 2018-01-26 2018-05-21 환경시설관리 주식회사 Wastewater Treatment System Including Non-coherent Phosphorus Components
KR101867930B1 (en) * 2018-01-25 2018-06-15 환경시설관리 주식회사 System for treatment of wastewater using complex bioreactor
KR20180068814A (en) * 2016-12-14 2018-06-22 한국해양대학교 산학협력단 Drainage treatment system for membrane filtration and Drainage treatment method using the same
CN113149282A (en) * 2021-04-26 2021-07-23 中国市政工程华北设计研究总院有限公司 Deep phosphorus removal system based on phosphorus component and operation method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180068814A (en) * 2016-12-14 2018-06-22 한국해양대학교 산학협력단 Drainage treatment system for membrane filtration and Drainage treatment method using the same
KR101850057B1 (en) * 2018-01-25 2018-04-18 환경시설관리 주식회사 Complex bioreactor for treatment of wastewater
KR101867930B1 (en) * 2018-01-25 2018-06-15 환경시설관리 주식회사 System for treatment of wastewater using complex bioreactor
KR101860102B1 (en) * 2018-01-26 2018-05-21 환경시설관리 주식회사 Wastewater Treatment System Including Non-coherent Phosphorus Components
CN113149282A (en) * 2021-04-26 2021-07-23 中国市政工程华北设计研究总院有限公司 Deep phosphorus removal system based on phosphorus component and operation method thereof

Similar Documents

Publication Publication Date Title
Guo et al. Treatment of landfill leachate using a combined stripping, Fenton, SBR, and coagulation process
Bourgeois et al. Treatment of drinking water residuals: comparing sedimentation and dissolved air flotation performance with optimal cation ratios
US9708202B2 (en) Electroplating waste water treatment method
CN104098228A (en) Organic amine wastewater treatment method
CN110921954A (en) Method and system for treating oilfield wastewater by combining iron-carbon micro-electrolysis and Fenton oxidation
Amaral‐Silva et al. From a lab test to industrial application: scale‐up of Fenton process for real olive mill wastewater treatment
CN107698098B (en) Organic silicon wastewater treatment system and treatment method thereof
KR20120023164A (en) Waste water processing method for removing total phosphorous
KR100957851B1 (en) Method of water treatment
CN107739124A (en) A kind of Zero-discharge coked wastewater processing method
CN101955279B (en) Advanced treatment method of industrial waste water by combining catalysis internal electrolysis, coupling, oxidization and flocculation
KR101360015B1 (en) Method of reusing treated wastewater and system using the same
CN102642901B (en) Three-level polyaluminium chloride coagulation treatment method for electro-polishing wastewater
CN112079524A (en) Oily sewage treatment system and treatment process
Salameh Treatment of olive mill wastewater by ozonation and electrocoagulation processes
Vendramel et al. Reverse osmosis concentrate treatment by chemical oxidation and moving bed biofilm processes
Nurul Hanira et al. Pre-treatment ammonia removal of scheduled waste leachate with hydrated lime and caustic soda
El-Batrawy et al. Study on ferric chloride coagulation process and fenton’s reaction for pretreatment of dairy wastewater
KR19980077286A (en) Oxidation of Organic Wastewater in an Electrolytic Treatment Tank Using Fenton Oxidation
CN210764880U (en) Coking wastewater treatment system
Hong et al. Performance evaluation of physicochemical processes for biologically pre-treated livestock wastewater
Schneider et al. Effects of Mixing Ratio, Contact Time and Dissolved Oxygen on Efficiency of Biosorption for Primary Carbon Diversion
CN110590064A (en) Coking wastewater treatment method and system
Moremada et al. Advances in Coagulation Technique for COD Removal of Petroleum Wastewater—A Review
Wu et al. Optimization of coagulation treatment process for the removal of refractory organics from leachate concentrate

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E601 Decision to refuse application