JP2023044248A - Thermally conductive adhesive sheet, thermally conductive sheet-like substrate, and method for producing thermally conductive adhesive sheet - Google Patents

Thermally conductive adhesive sheet, thermally conductive sheet-like substrate, and method for producing thermally conductive adhesive sheet Download PDF

Info

Publication number
JP2023044248A
JP2023044248A JP2021152178A JP2021152178A JP2023044248A JP 2023044248 A JP2023044248 A JP 2023044248A JP 2021152178 A JP2021152178 A JP 2021152178A JP 2021152178 A JP2021152178 A JP 2021152178A JP 2023044248 A JP2023044248 A JP 2023044248A
Authority
JP
Japan
Prior art keywords
thermally conductive
sheet
conductive adhesive
substrate
inorganic filler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021152178A
Other languages
Japanese (ja)
Inventor
淳 高橋
Atsushi Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Artience Co Ltd
Original Assignee
Toyo Ink SC Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink SC Holdings Co Ltd filed Critical Toyo Ink SC Holdings Co Ltd
Priority to JP2021152178A priority Critical patent/JP2023044248A/en
Publication of JP2023044248A publication Critical patent/JP2023044248A/en
Pending legal-status Critical Current

Links

Landscapes

  • Adhesive Tapes (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

To provide a thermally conductive double-sided adhesive sheet that is thin, has excellent punchability, is easy to stick, has excellent thermal conductivity in a thickness direction, and has excellent withstand voltage.SOLUTION: A sheet-like substrate β includes insulating inorganic fillers and has a thickness of 1-10 μm. Of the insulating inorganic fillers observed in cross section, 80% or more particles have an aspect ratio of 1-2, expressed by major axis aβ/minor axis bβ. The sheet-like substrate β has a storage elastic modulus of 103 MPa or more at 200°C. A thermally conductive adhesive sheet includes the insulating inorganic fillers on both sides of the sheet-like substrate β. The total thickness of thermally conductive adhesive layers α1 and α2 is 1-45 μm. The total thickness of the sheet-like substrate β and the thermally conductive adhesive layers α1 and α2 is 50 μm or less. The thermally conductive adhesive sheet has a specific storage elastic modulus.SELECTED DRAWING: None

Description

本発明は、熱伝導性粘着シート、熱伝導性シート状基材、および熱伝導性粘着シートの製造方法に関する。 TECHNICAL FIELD The present invention relates to a thermally conductive pressure-sensitive adhesive sheet, a thermally conductive sheet-like substrate, and a method for producing a thermally conductive pressure-sensitive adhesive sheet.

近年、電子機器や半導体の小型化、高密度化、高出力化、高性能化に伴って、それを構成する部材の高集積化が進んでいる。高集積化された機器の内部は、限られたスペースに様々な部材が隙間なく配置されるため、電子機器等の内部が高温となりやすく、電子機器等に誤作動を引き起こす場合があった。 2. Description of the Related Art In recent years, as electronic devices and semiconductors have become smaller, denser, higher in output, and higher in performance, the components constituting them have been highly integrated. In a highly integrated device, various members are arranged without gaps in a limited space, so the inside of the electronic device or the like tends to become hot, which may cause the electronic device or the like to malfunction.

そこで、電子機器等の内部からの熱を放散させるために、放熱板やヒートシンク等の放熱部材が利用されている。熱の発生源となる部材に放熱部材を接合するためには、ビス止めや接着剤や接着シートが使用されてきたが、電子機器等の小型化、高密度化の観点から接着剤や接着シートの利用が好適である。接着シートの中でも、貼付に際し、特段の加熱や加圧を必要としない感圧性接着シート、即ち粘着シートの利用が多くなってきている。そして、粘着シートとしては、部材から発生した熱を効率的に放熱部材に伝えるべく、熱伝導性に優れる熱伝導性粒子を含む熱伝導性粘着剤を利用したさまざまな熱伝導性粘着シートが提案されている。
例えば、特許文献1~5には、熱伝導性粒子を含む熱伝導性粘着剤層を熱伝導性粘着シートとする、いわゆる基材レスタイプの熱伝導性粘着シートが開示されている。また、特許文献6~9には、基材を有する熱伝導性粘着シートが開示されている。さらに、特許文献10~11には、基材についての工夫が開示されている。
Therefore, in order to dissipate the heat from the inside of the electronic equipment, heat dissipating members such as heat dissipating plates and heat sinks are used. Screws, adhesives, and adhesive sheets have been used to join heat-dissipating members to heat-generating members. is preferred. Among the adhesive sheets, pressure-sensitive adhesive sheets that do not require special heating or pressure for attachment, that is, pressure-sensitive adhesive sheets, have been increasingly used. As for the adhesive sheet, various thermally conductive adhesive sheets using thermally conductive adhesive containing thermally conductive particles with excellent thermal conductivity are proposed in order to efficiently transfer the heat generated from the member to the heat dissipating member. It is
For example, Patent Documents 1 to 5 disclose so-called substrate-less type thermally conductive pressure-sensitive adhesive sheets in which a thermally conductive pressure-sensitive adhesive layer containing thermally conductive particles is used as the thermally conductive pressure-sensitive adhesive sheet. Further, Patent Documents 6 to 9 disclose thermally conductive adhesive sheets having a substrate. Furthermore, Patent Documents 10 and 11 disclose a device for the base material.

特開2002-294192号公報Japanese Patent Application Laid-Open No. 2002-294192 特開2002-285121号公報JP-A-2002-285121 特開2004-027039号公報Japanese Patent Application Laid-Open No. 2004-027039 特開2014-167093号公報JP 2014-167093 A 特開2019-189767号公報JP 2019-189767 A 特開2014-034652号公報JP 2014-034652 A 特開2016-108438号公報JP 2016-108438 A 特開2015-160937号公報JP 2015-160937 A 特開2015-164996号公報JP 2015-164996 A 特開平10-292157号公報JP-A-10-292157 特開2012-169599号公報JP 2012-169599 A

特許文献1~5に開示されるような基材レスの熱伝導性粘着シートは、基材を含まないので理論上は熱伝導性粘着シートの厚みを薄くすることができ、熱発生源部材から発生した熱を効率的に放熱部材に伝えることができる。
しかし、基材を含まない、粘着層のみからなる粘着シートは、実際にはいわゆるコシがないので、打ち抜き加工性が著しく悪い。工業的に用いられる粘着シートの多くは、使用時、即ち貼付時を想定し、被着体の大きさ・形状に適合する大きさ・形状の小片に打ち抜き加工されて提供される。打ち抜き加工性が著しく悪い粘着シートは、小片の生産性が悪いという難点がある。さらに、このような基材レスの粘着シートは、電気絶縁性(破壊電圧等)が著しく悪く、電気絶縁材料としての信頼性が強く要求される部位には使用できないという難点もある。
The substrate-less thermally conductive adhesive sheets disclosed in Patent Documents 1 to 5 do not contain a substrate, so theoretically the thickness of the thermally conductive adhesive sheet can be reduced. The generated heat can be efficiently transferred to the heat radiating member.
However, a pressure-sensitive adhesive sheet consisting of only a pressure-sensitive adhesive layer that does not contain a substrate does not actually have so-called stiffness, so that the punching processability is remarkably poor. Most of the pressure-sensitive adhesive sheets used industrially are punched into small pieces having a size and shape suitable for the size and shape of the adherend, assuming the time of use, that is, the time of application. Adhesive sheets with remarkably poor punching workability have the drawback of poor productivity of small pieces. Furthermore, such a substrate-less pressure-sensitive adhesive sheet has a problem that its electrical insulation properties (breakdown voltage, etc.) are extremely poor, and it cannot be used in areas where reliability as an electrical insulation material is strongly required.

一方、特許文献6~9に開示されるような基材を有する熱伝導性粘着シートは、基材レスのものに比して、打ち抜き加工性や電気絶縁性の点で優れる。しかし、その反面、基材を有するが故に熱発生源部材から発生した熱を効率的に放熱部材に伝え難い。 On the other hand, the thermally conductive pressure-sensitive adhesive sheets having a substrate as disclosed in Patent Documents 6 to 9 are superior in terms of punching workability and electrical insulation compared to those without a substrate. However, on the other hand, it is difficult to efficiently transfer the heat generated from the heat source member to the heat radiating member due to the presence of the base material.

特許文献10に開示されるような熱伝導性粒子を含む基材を用いることによって、熱伝導性粘着シート全体の熱伝導性を向上させる(熱抵抗を低下させる)ことが理論上期待される。
しかし、熱伝導性粒子を含む基材を十分に薄くすることができなかったので、熱伝導性粒子を含む基材を用いて熱伝導性粘着シート全体の熱伝導率を向上させても、熱伝導性粘着シート全体の熱伝導性を十分には向上させることはできなかった。熱伝導性粒子を含む基材は、溶融混練等や各種混合装置(1軸又は2軸押出機、ロール、バンバリーミキサー、各種ニーダー等)を使用して、熱伝導性粒子が均一に分散するように溶融状態の樹脂に混合し、T台成形機、カレンダー成形機等の成型機を用い、前記混合物をシート状に成形して製造する。このような製造方法では、熱伝導性粒子を含む基材を十分には薄くすることができなったからである。
It is theoretically expected to improve the thermal conductivity (reduce the thermal resistance) of the entire thermally conductive adhesive sheet by using a substrate containing thermally conductive particles as disclosed in Patent Document 10.
However, since the substrate containing the thermally conductive particles could not be made sufficiently thin, even if the thermal conductivity of the entire thermally conductive adhesive sheet was improved using the substrate containing the thermally conductive particles, the thermal It was not possible to sufficiently improve the thermal conductivity of the entire conductive pressure-sensitive adhesive sheet. The base material containing thermally conductive particles is melt-kneaded or mixed using various mixing devices (single-screw or twin-screw extruders, rolls, Banbury mixers, various kneaders, etc.) so that the thermally conductive particles are uniformly dispersed. It is mixed with a resin in a molten state, and the mixture is molded into a sheet using a molding machine such as a T-unit molding machine or a calender molding machine. This is because such a manufacturing method cannot make the base material containing the thermally conductive particles sufficiently thin.

特許文献11には、樹脂と鱗片状のフィラーとを含むフィルム形成用材料を、支持体上に塗布し、塗布膜を形成した後、磁場を利用して鱗片状のフィラーをフィルムの厚さ方向に配向させ、前記塗布膜を固化させる、熱伝導性フィルムの製造方法が開示されている(請求項7、[0044]~[0047]等)。
鱗片状のフィラーを含む組成物を支持体に塗布・乾燥した場合、鱗片状のフィラーは、面方向に層を成すように配向・沈降しつつ塗布膜を形成するので、塗布膜やその固化膜は面方向の熱伝導性には優れるが、厚さ方向の熱伝導性は劣る。これに対し磁場を利用して鱗片状のフィラーをフィルムの厚さ方向に平行になるように配向させることによって、厚さ方向の熱伝導性は向上する。
しかし、鱗片状のフィラーを用いた場合、面方向であれ、厚さ方向であれ、鱗片状のフィラーが配向するので、塗布膜やその固化膜は脆く伸張性に劣るものとなる。伸張性の乏しい基材を用いた粘着シートは、基材を有するにも関わらず打ち抜き加工性に劣り、貼付の際の張力にも耐えられない。殊に塗布膜やその固化膜が薄い場合、その傾向は顕著である。
In Patent Document 11, a film-forming material containing a resin and a scale-like filler is coated on a support to form a coating film, and then a magnetic field is used to spread the scale-like filler in the thickness direction of the film. and solidifying the coating film (Claim 7, [0044] to [0047], etc.).
When a composition containing scaly fillers is applied to a support and dried, the scaly fillers form a coating film while being oriented and sedimented so as to form a layer in the plane direction. has excellent thermal conductivity in the plane direction, but inferior thermal conductivity in the thickness direction. On the other hand, the thermal conductivity in the thickness direction is improved by orienting the scale-like fillers parallel to the thickness direction of the film using a magnetic field.
However, when scaly fillers are used, the scaly fillers are oriented either in the plane direction or in the thickness direction, so that the coating film and its solidified film are brittle and poor in extensibility. A pressure-sensitive adhesive sheet using a base material with poor extensibility is poor in punching processability and cannot withstand tension during application, although it has a base material. This tendency is remarkable especially when the coating film or its solidified film is thin.

本発明は、薄くて、打ち抜き加工性に優れ、貼付し易く、厚さ方向の熱伝導性に優れ、耐電圧に優れる熱伝導性両面粘着シートを提供することを目的とする。 An object of the present invention is to provide a thermally conductive double-sided pressure-sensitive adhesive sheet that is thin, has excellent punchability, is easy to apply, has excellent thermal conductivity in the thickness direction, and has excellent withstand voltage.

即ち、本発明は、シート状基材βの両面に熱伝導性粘着層α1、α2を有する熱伝導性粘着シートであって、
前記シート状基材βは、絶縁性の無機フィラーを含み、厚みが1~10μmであり、
前記シート状基材βの断面に観察される前記絶縁性の無機フィラーのうち、アスペクト比:長径aβ/短径bβが1~2の無機フィラーの割合が80%以上であり、
前記熱伝導性粘着層α1、α2が、それぞれ独立に絶縁性の無機フィラーを含み、熱伝導性粘着層α1およびα2の合計の厚みが1~45μmであり、
前記シート状基材βと前記熱伝導性粘着層α1、α2との合計の厚みが50μm以下であり、
0℃~150℃の温度領域における貯蔵弾性率の変曲点のうち最も高温側の変曲点の温度T0よりも30℃高い温度T1おける貯蔵弾性率E’1と、前記変曲点の温度T0よりも50℃高い温度T2おける貯蔵弾性率E’2との比:E’1 / E’2が1~3である、
熱伝導性粘着シートに関する。
That is, the present invention provides a thermally conductive adhesive sheet having thermally conductive adhesive layers α1 and α2 on both sides of a sheet-like substrate β,
The sheet-like base material β contains an insulating inorganic filler and has a thickness of 1 to 10 μm,
Among the insulating inorganic fillers observed in the cross section of the sheet-like substrate β, the ratio of inorganic fillers having an aspect ratio: major axis a β / minor axis b β of 1 to 2 is 80% or more,
The thermally conductive adhesive layers α1 and α2 each independently contain an insulating inorganic filler, and the total thickness of the thermally conductive adhesive layers α1 and α2 is 1 to 45 μm,
The total thickness of the sheet-like substrate β and the thermally conductive adhesive layers α1 and α2 is 50 μm or less,
A storage modulus E′1 at a temperature T 1 which is 30° C. higher than the temperature T 0 of the highest inflection point of the storage modulus in the temperature range of 0° C. to 150° C., and the inflection point to the storage modulus E'2 at a temperature T2 that is 50°C higher than the temperature T0 : E'1 / E'2 is 1 to 3,
It relates to a thermally conductive adhesive sheet.

また、本発明は、絶縁性の無機フィラーを含み、厚みが1~10μmであり、断面に観察される前記絶縁性の無機フィラー100%のうち、80%以上の無機フィラーのアスペクト比:長径aβ/短径bβが1~2であり、200℃における貯蔵弾性率が103Pa以上のシート状基材βに関する。 Further, the present invention contains an insulating inorganic filler, has a thickness of 1 to 10 μm, and out of 100% of the insulating inorganic filler observed in the cross section, the aspect ratio of the inorganic filler of 80% or more: major diameter a It relates to a sheet-like substrate β having a ratio of β 1 /minor diameter b β of 1 to 2 and a storage elastic modulus of 10 3 Pa or more at 200°C.

さらに、本発明は、シート状基材βの両面に熱伝導性粘着層α1、α2を有する熱伝導性粘着シートの製造方法であって、下記工程[1]~[3]を含む、
0~150℃の温度領域における貯蔵弾性率の変曲点のうち最も高温側の変曲点の温度T0よりも30℃高い温度T1おける貯蔵弾性率E’1と、前記変曲点の温度T0よりも50℃高い温度T2おける貯蔵弾性率E’2との比:E’1 /E’2が1~3である、
熱伝導性粘着シートの製造方法に関する。
[1] 架橋可能なポリマーの溶液または分散液と、絶縁性の無機フィラーと、架橋剤とを含むシート状基材β形成用の分散液を用いて、200℃における貯蔵弾性率が103Pa以上であり、厚みが1~10μmであり、シート状基材βの断面に観察される前記絶縁性の無機フィラー100%のうち、80%以上の無機フィラーのアスペクト比:長径aβ/短径bβが1~2である、シート状基材βを製造する工程。
[2] 架橋可能なポリマーの溶液または分散液と、絶縁性の無機フィラーと、架橋剤とを含む熱伝導性粘着層α1、α2形成用の分散液を用いて、2つの熱伝導性粘着層α1、α2を製造する工程。
[3] 前記シート状基材βの両面にそれぞれ前記熱伝導性粘着層α1、α2を、前記熱伝導性粘着層α1およびα2の合計の厚みが1~45μmであって、前記シート状基材βと前記熱伝導性粘着層α1、α2との合計の厚みが50μm以下となるように積層する工程。
Furthermore, the present invention provides a method for producing a thermally conductive adhesive sheet having thermally conductive adhesive layers α1 and α2 on both sides of a sheet-like substrate β, comprising the following steps [1] to [3]:
A storage modulus E′1 at a temperature T 1 that is 30° C. higher than the temperature T 0 of the highest inflection point of the storage modulus in the temperature range of 0 to 150° C., and the inflection point The ratio of the storage modulus E'2 at a temperature T2 which is 50°C higher than the temperature T0 : E'1 / E'2 is 1 to 3,
The present invention relates to a method for producing a thermally conductive adhesive sheet.
[1] Using a dispersion for forming a sheet-like substrate β containing a solution or dispersion of a crosslinkable polymer, an insulating inorganic filler, and a crosslinking agent, the storage elastic modulus at 200°C is 10 3 Pa. and having a thickness of 1 to 10 μm, and of 100% of the insulating inorganic filler observed in the cross section of the sheet-like base material β, the aspect ratio of the inorganic filler of 80% or more: major axis a β /minor axis b A step of producing a sheet-like base material β in which β is 1-2.
[2] Two thermally conductive adhesive layers are formed using a dispersion for forming thermally conductive adhesive layers α1 and α2 containing a solution or dispersion of a crosslinkable polymer, an insulating inorganic filler, and a crosslinking agent. A step of manufacturing α1 and α2.
[3] The thermally conductive adhesive layers α1 and α2 are respectively provided on both sides of the sheet-like substrate β, and the total thickness of the thermally conductive adhesive layers α1 and α2 is 1 to 45 μm, and the sheet-like substrate A step of laminating β and the thermally conductive adhesive layers α1 and α2 so that the total thickness is 50 μm or less.

本発明により、薄くて、打ち抜き加工性に優れ、貼付し易く、厚さ方向の熱伝導性に優れ、耐電圧に優れる熱伝導性両面粘着シートを提供することができるようになった。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a thermally conductive double-sided pressure-sensitive adhesive sheet that is thin, has excellent punchability, is easy to apply, has excellent thermal conductivity in the thickness direction, and has excellent withstand voltage.

本発明は、簡略化すると絶縁性の無機フィラーを含み、薄くて耐熱性に優れるシート状基材βの両面に薄い熱伝導性粘着層α1、α2を有する熱伝導性粘着シートに関する。 Briefly, the present invention relates to a thermally conductive adhesive sheet containing an insulating inorganic filler and having thin thermally conductive adhesive layers α1 and α2 on both sides of a thin sheet-like substrate β having excellent heat resistance.

<<シート状基材β>>
本発明の熱伝導性粘着シートを構成するシート状基材βについて説明する。
シート状基材βは、絶縁性の無機フィラーを含み、厚みが1~10μmであり、断面に観察される前記絶縁性の無機フィラー100%のうち、80%以上の無機フィラーのアスペクト比:長径aβ/短径bβが1~2であり、200℃における貯蔵弾性率が10MPa以上であることが好ましい。
貯蔵弾性率は一般に高温になるに従って低下する傾向にあり、10MPa未満のものは軟化し液状に近しい。シート状基材βは、成膜性成分として機能する、架橋可能なポリマーの硬化物を含むことによって、200℃における貯蔵弾性率が10MPa以上となり、厚みが1~10μmであっても、熱伝導性粘着シートにおいて熱伝導性粘着層α1、α2を支える支持体として機能する。
<<Sheet-like base material β>>
The sheet-like substrate β constituting the thermally conductive pressure-sensitive adhesive sheet of the present invention will be described.
The sheet-like base material β contains an insulating inorganic filler, has a thickness of 1 to 10 μm, and out of 100% of the insulating inorganic filler observed in the cross section, the inorganic filler has an aspect ratio of 80% or more: major axis. It is preferable that a β /minor diameter b β is 1 to 2, and that the storage elastic modulus at 200° C. is 10 3 MPa or more.
The storage elastic modulus generally tends to decrease as the temperature rises, and those below 10 3 MPa are softened and almost liquid. Even if the sheet-like substrate β contains a cured product of a crosslinkable polymer that functions as a film-forming component, the storage elastic modulus at 200° C. is 10 3 MPa or more and the thickness is 1 to 10 μm. It functions as a support for supporting the thermally conductive adhesive layers α1 and α2 in the thermally conductive adhesive sheet.

<絶縁性の無機フィラー>
シート状基材βに含まれる絶縁性の無機フィラー(以下、無機フィラーと略すこともある)としては、例えば、金属水酸化物、金属酸化物、セラミックス等を使用できる。具体的には、水酸化アルミニウム、水酸化マグネシウム、酸化アルミニウム、酸化ケイ素、酸化マグネシウム、酸化亜鉛、酸化チタン、酸化ジルコニウム、酸化鉄、炭化ケイ素、窒化ホウ素、窒化アルミニウム、窒化チタン、窒化ケイ素、ホウ素化チタン等が挙げられ、大きさや形状の点から窒化アルミニウム、酸化アルミニウムが好ましい。
これら無機フィラーには、耐湿性や耐熱性の向上、紫外線等による表面活性を抑える点から、あるいは後述する架橋可能なポリマーへの分散性向上、樹脂との界面を小さくする(熱伝導性向上)の点から、酸化処理や、シランカップリング処理・ステアリン酸処理などの表面処理を施してもよい。
<Insulating inorganic filler>
As the insulating inorganic filler (hereinafter sometimes abbreviated as inorganic filler) contained in the sheet-like substrate β, for example, metal hydroxides, metal oxides, ceramics, and the like can be used. Specifically, aluminum hydroxide, magnesium hydroxide, aluminum oxide, silicon oxide, magnesium oxide, zinc oxide, titanium oxide, zirconium oxide, iron oxide, silicon carbide, boron nitride, aluminum nitride, titanium nitride, silicon nitride, boron Titanium oxide and the like can be mentioned, and aluminum nitride and aluminum oxide are preferable in terms of size and shape.
For these inorganic fillers, from the viewpoint of improving moisture resistance and heat resistance, suppressing surface activity due to ultraviolet rays, etc., improving dispersibility in crosslinkable polymers described later, and reducing the interface with resin (improving thermal conductivity) From this point of view, surface treatment such as oxidation treatment, silane coupling treatment or stearic acid treatment may be applied.

無機フィラーの形状は、シート状基材βにできるだけ無機フィラーの配向や偏向が生じないように、球状、立方体状、多角形状のものを選択することが好ましい。つまり、いわゆるアスペクト比(「縦/横」比、「長径/短径」比ともいう)が極端に大きくなく、できるだけ1に近い形状のものを選択することが好ましい。
シート状基材β中にできるだけ均一に含まれるように無機フィラーを選択することによって、無機フィラー含有に起因するシート状基材βの脆化や伸張性の低下を抑制できる。シート状基材βは、厚みが1~10μmと薄い状態で、両面粘着シートのいわゆる芯材として機能し、両面粘着シート全体の形態の安定化を担う。従って、シート状基材βに用いる無機フィラーは、アスペクト比ができるだけ1に近い形状のものを選択することが好ましい。
走査型電子顕微鏡を用い、一視野において50個程度の粒子が観察できる倍率にて無機フィラーを観察し、視野のほぼ中央の任意の一点から外部に向かってらせん状に順番に30個の粒子を選択し、それぞれの粒子の長径aβと短径bβとをそれぞれ求め、個々の粒子の長径aβ、短径bβをそれぞれ求め、30個の粒子のアスペクト比=長径aβ/短径bβの平均値を無機フィラーの平均アスペクト比とする。無機フィラーとしては、30個のうち80%以上の粒子のアスペクト比:長径aβ/短径bβが1~2であるものを選択することが重要であり、80%以上の粒子のアスペクト比が1~1.5であるものを選択することが好ましく、80%以上の粒子のアスペクト比が1~1.3であるものを選択することがより好ましい。
無機フィラーとしては、平均粒子径が、0.1~3μmであるものを選択することが好ましく、0.3~2μmであるものを選択することがより好ましい。平均粒子径とは、30個の粒子の粒子径の平均値の意であり、個々の粒子の粒子径とは、個々の粒子の長径aβと短径bβとの和の1/2の意である。
As for the shape of the inorganic filler, it is preferable to select a spherical, cubic, or polygonal shape so that the orientation and deflection of the inorganic filler in the sheet-like substrate β are minimized. In other words, it is preferable to select a shape having a so-called aspect ratio (“length/width” ratio, also referred to as “major axis/minor axis” ratio) that is not extremely large and is as close to 1 as possible.
By selecting the inorganic filler so as to be contained in the sheet-like base material β as uniformly as possible, it is possible to suppress embrittlement and deterioration of extensibility of the sheet-like base material β due to inclusion of the inorganic filler. The sheet-like base material β functions as a so-called core material of the double-sided pressure-sensitive adhesive sheet in a thin state of 1 to 10 μm in thickness, and is responsible for stabilizing the shape of the double-sided pressure-sensitive adhesive sheet as a whole. Therefore, it is preferable to select an inorganic filler having an aspect ratio as close to 1 as possible for the inorganic filler used in the sheet-like substrate β.
Using a scanning electron microscope, the inorganic filler is observed at a magnification that allows observation of about 50 particles in one field of view, and 30 particles are sequentially spiraled outward from an arbitrary point in the center of the field of view. Select and obtain the major diameter a β and the minor diameter b β of each particle, obtain the major diameter a β and the minor diameter b β of each particle, and the aspect ratio of 30 particles = major diameter a β / minor diameter Let the average value of be the average aspect ratio of the inorganic filler. As the inorganic filler, it is important to select one in which the aspect ratio of 80% or more of the 30 particles: the major diameter a β / the minor diameter b β is 1 to 2, and the aspect ratio of the particles is 80% or more. is preferably 1 to 1.5, and more preferably 80% or more of the particles have an aspect ratio of 1 to 1.3.
The inorganic filler preferably has an average particle size of 0.1 to 3 μm, more preferably 0.3 to 2 μm. The average particle diameter means the average value of the particle diameters of 30 particles, and the particle diameter of an individual particle is 1/2 of the sum of the major diameter a β and the minor diameter b β of each particle. I mean.

また、無機フィラーとしては、形成するシート状基材βの厚みを100とした場合に、D90粒子径が50以下である無機フィラーを選択することが好ましい。
熱伝導性を向上するためには、熱伝導性粘着シート全体をできるだけ薄くすることが効果的ではある。しかし、粘着性能を発現するためには後述する熱伝導性粘着層α1、α2をある程度厚くする必要がある。従って、熱伝導性粘着シート全体をできるだけ薄くするためにはシート状基材βをできるだけ薄くすることが大事である。一方、シート状基材βの生産安定性や取扱いのし易さという点からはある程度の厚みが求められる。そこで、シート状基材βの厚みは1~10μmであり、2~9μmであることが好ましく、3~8μmであることがより好ましい。
As the inorganic filler, it is preferable to select an inorganic filler having a D90 particle size of 50 or less when the thickness of the sheet-like substrate β to be formed is 100.
In order to improve thermal conductivity, it is effective to make the entire thermally conductive adhesive sheet as thin as possible. However, it is necessary to increase the thickness of the thermally conductive adhesive layers α1 and α2 described later to some extent in order to exhibit adhesive performance. Therefore, it is important to make the sheet-like substrate β as thin as possible in order to make the entire thermally conductive adhesive sheet as thin as possible. On the other hand, a certain thickness is required from the viewpoint of production stability and ease of handling of the sheet-like base material β. Therefore, the thickness of the sheet-like base material β is 1 to 10 μm, preferably 2 to 9 μm, more preferably 3 to 8 μm.

シート状基材βの厚みが1~10μmであるので、シート状基材βに含まれる無機フィラーとしては、前記厚みに収まるように、形成するシート状基材βの厚みを100とした場合に、D90粒子径が50以下である無機フィラーを選択することが好ましい。
D90粒子径とは、粒度分布の累積体積百分率が90%のときの粒径である。D90粒子径は、動的光散乱式粒径分布測定装置(日機装(株)製「ナノトラックUPA」や堀場製作所(株)製「LB-550」等)を用いて測定することができる。測定に際しては、希釈液としてメチルエチルケトン、酢酸エチル等を用いることができる。具体的には、D90粒子径が0.5~5μmの無機フィラーを選択することが好ましく、1~3μmの無機フィラーを選択することがより好ましい。
Since the thickness of the sheet-like base material β is 1 to 10 μm, the inorganic filler contained in the sheet-like base material β has a thickness of 100 so that the thickness of the sheet-like base material β to be formed is 100. , D90 particle size of 50 or less.
The D90 particle size is the particle size when the cumulative volume percentage of the particle size distribution is 90%. The D90 particle size can be measured using a dynamic light scattering type particle size distribution analyzer (“Nanotrack UPA” manufactured by Nikkiso Co., Ltd., “LB-550” manufactured by Horiba Ltd., etc.). In the measurement, methyl ethyl ketone, ethyl acetate, or the like can be used as a diluent. Specifically, an inorganic filler with a D90 particle size of 0.5 to 5 μm is preferably selected, and an inorganic filler with a D90 particle size of 1 to 3 μm is more preferably selected.

選択した無機フィラーは、シート状基材βの断面にも観察されることとなるので、このような無機フィラーを選択することによって、シート状基材βの断面に観察される絶縁性の無機フィラーのうち、80%以上の粒子のアスペクト比:長径aβ/短径bβを1~2とすることができ、好ましくはアスペクト比を1~1.5とすることができ、より好ましくはアスペクト比を1~1.3とすることができる。
また、シート状基材βの断面に観察される絶縁性の無機フィラーの平均粒子径は、シート状基材βの厚みの60%以下とすることが好ましく、絶縁性の無機フィラーの最大径aβ maxはシート状基材βの厚み未満とすることが好ましい。
シート状基材βの断面に観察される絶縁性の無機フィラーのアスペクト比や平均粒子径や最大径aβ maxは、絶縁性の無機フィラーの観察の場合と同様に、走査型電子顕微鏡を用い、一視野において50個程度の粒子が観察できる倍率にてシート状基材βの断面を観察し、30個の粒子を選択し、それぞれの粒子の長径aβと短径bβとをそれぞれ測ることとによって求めることができる。
The selected inorganic filler is also observed in the cross section of the sheet-like substrate β. Among them, the aspect ratio of 80% or more of the particles: major axis a β /minor axis b β can be 1 to 2, preferably the aspect ratio can be 1 to 1.5, more preferably the aspect ratio The ratio can be from 1 to 1.3.
In addition, the average particle diameter of the insulating inorganic filler observed in the cross section of the sheet-like substrate β is preferably 60% or less of the thickness of the sheet-like substrate β, and the maximum diameter a of the insulating inorganic filler β max is preferably less than the thickness of the sheet-like substrate β.
The aspect ratio, average particle diameter, and maximum diameter a β max of the insulating inorganic filler observed in the cross section of the sheet-like substrate β were measured using a scanning electron microscope in the same manner as in the observation of the insulating inorganic filler. Observe the cross section of the sheet-like substrate β at a magnification that allows observation of about 50 particles in one field of view, select 30 particles, and measure the major diameter a β and the minor diameter b β of each particle. can be obtained by

<架橋可能なポリマー>
前述の通り、シート状基材βは、成膜性成分として機能する、架橋可能なポリマーの硬化物を含むことが好ましい。架橋可能なポリマーについて説明する。
架橋可能なポリマーとしては、架橋剤(硬化剤ともいう)と反応して硬化物を形成し得るものの他、自己架橋性を有するポリマーも挙げられる。
架橋剤と反応して硬化物を形成し得るポリマーとしては、ポリビニルアセタール樹脂、スチレン系エラストマー、ポリエステル樹脂、エポキシ樹脂、ウレタン樹脂、ウレタンウレア樹脂、フェノール樹脂、アミノ樹脂、アクリル樹脂等が挙げられ、ポリビニルアセタール樹脂、スチレン系エラストマーが好ましい。
架橋可能なポリマーが有し得る官能基としては、アルコール性水酸基(以下、単に水酸基ともいう)、フェノール性水酸基、酸無水物基、カルボキシ基、アミノ基、シアネート基、イソシアノ基、シアナト基、イソシアナト基、イミダゾール基、ピロール基、アセタール基、アクリロイル基、メタクリロイル基、アルデヒド基、ヒドラジド基、ヒドラゾン基、リン酸基等が挙げられ、アルコール性水酸基、カルボキシ基、および酸無水物基からなる群より選ばれる少なくとも一種であることが好ましい。
<Polymer that can be crosslinked>
As described above, the sheet-like substrate β preferably contains a cured product of a crosslinkable polymer that functions as a film-forming component. A crosslinkable polymer is described.
Examples of crosslinkable polymers include those capable of reacting with a crosslinking agent (also referred to as a curing agent) to form a cured product, as well as polymers having self-crosslinking properties.
Polymers that can react with a cross-linking agent to form a cured product include polyvinyl acetal resins, styrene elastomers, polyester resins, epoxy resins, urethane resins, urethane urea resins, phenol resins, amino resins, acrylic resins, and the like. Polyvinyl acetal resin and styrene elastomer are preferred.
Examples of functional groups that the crosslinkable polymer may have include alcoholic hydroxyl groups (hereinafter also simply referred to as hydroxyl groups), phenolic hydroxyl groups, acid anhydride groups, carboxy groups, amino groups, cyanate groups, isocyano groups, cyanato groups, and isocyanato groups. groups, imidazole groups, pyrrole groups, acetal groups, acryloyl groups, methacryloyl groups, aldehyde groups, hydrazide groups, hydrazone groups, phosphoric acid groups, etc., and from the group consisting of alcoholic hydroxyl groups, carboxyl groups, and acid anhydride groups. At least one selected is preferable.

<ポリビニルアセタール樹脂>
ポリビニルアセタール樹脂としては、ポリビニルアルコールにアルデヒド化合物を反応させることによりアセタール化した樹脂であり、例えば、ホルムアルデヒドに由来するポリビニルホルマール樹脂(狭義のポリビニルアセタール樹脂ともいう)、ブチルアルデヒドに由来するポリビニルブチラール樹脂等が挙げられる。
<Polyvinyl acetal resin>
The polyvinyl acetal resin is a resin obtained by reacting polyvinyl alcohol with an aldehyde compound to acetalize it. etc.

ポリビニルアセタール樹脂の製造方法としては、例えば、酢酸ビニルをラジカル重合してポリ酢酸ビニルを製造し、得られたポリ酢酸ビニルをアルカリ溶液中で加水分解(ケン化)した後、分離、精製、及び乾燥工程を経ることによりポリビニルアルコールを得る第1工程、前記第1工程で得られたポリビニルアルコールを溶解し、これに酸触媒とホルムアルデヒドやブチルアルデヒドを添加し、これを縮合させることによりポリビニルアセタール樹脂を製造する第2工程を有する製造方法を挙げることができる。生成されるポリビニルアセタール樹脂には、酢酸ビニル由来のアセチル基とポリビニルアルコール由来の水酸基とアセタール化由来の六員環構造とを有する。
ポリビニルアセタール樹脂としては、樹脂単体の伸張性が高く、フィラーを配合しても伸張性が大きくは損なわれにくいことからポリビニルブチラール樹脂が好ましい。
As a method for producing a polyvinyl acetal resin, for example, vinyl acetate is radically polymerized to produce polyvinyl acetate, the resulting polyvinyl acetate is hydrolyzed (saponified) in an alkaline solution, and then separated, purified, and A first step of obtaining polyvinyl alcohol through a drying step, the polyvinyl alcohol obtained in the first step is dissolved, an acid catalyst and formaldehyde or butyraldehyde are added thereto, and the mixture is condensed to form a polyvinyl acetal resin. A manufacturing method having a second step of manufacturing can be mentioned. The polyvinyl acetal resin produced has an acetyl group derived from vinyl acetate, a hydroxyl group derived from polyvinyl alcohol, and a six-membered ring structure derived from acetalization.
Polyvinyl butyral resin is preferable as the polyvinyl acetal resin because the resin alone has high extensibility and the extensibility is not greatly impaired even when a filler is added.

成膜性の観点からポリビニルブチラール樹脂の重量平均分子量(Mw)は10,000以上であることが好ましく、20,000以上であることがより好ましく、30,000以上であることが好ましい。また、シート状基材β形成用の分散液の剥離性シートへの塗工適性の点からポリビニルブチラール樹脂の重量平均分子量(Mw)は1,000,000万以下であることが好ましく、500,000以下であることがより好ましく、250,000以下であることがさらに好ましい。 From the viewpoint of film-forming properties, the weight average molecular weight (Mw) of the polyvinyl butyral resin is preferably 10,000 or more, more preferably 20,000 or more, and preferably 30,000 or more. Further, from the viewpoint of the coating suitability of the dispersion liquid for forming the sheet-like substrate β onto the release sheet, the weight average molecular weight (Mw) of the polyvinyl butyral resin is preferably 1,000,000 or less. 000 or less, and even more preferably 250,000 or less.

ポリビニルブチラール樹脂中の水酸基は、後述する架橋剤と反応して硬化物を形成する機能を担う。適度な架橋を生成し、200℃における貯蔵弾性率が10MPa以上のシート状基材βを形成するという観点から、ポリビニルブチラール樹脂の水酸基を有するユニット、即ち、アセチル化していないポリビニルアルコール由来のユニットの含有率は10~30wt%であることが好ましく、15~25wt%であることがより好ましい。
また、ポリビニルブチラール樹脂の水酸基価は、150~350mgKOH/gであることが好ましく、200~300mgKOH/gであることがより好ましい。ポリビニルブチラール樹脂の水酸基価は、以下のようにして求めることができる。
The hydroxyl groups in the polyvinyl butyral resin have the function of reacting with a cross-linking agent, which will be described later, to form a cured product. From the viewpoint of generating moderate cross-linking and forming a sheet-like base material β having a storage modulus of 10 3 MPa or more at 200° C., a unit having a hydroxyl group of the polyvinyl butyral resin, that is, a unit derived from non-acetylated polyvinyl alcohol The unit content is preferably 10 to 30 wt%, more preferably 15 to 25 wt%.
The hydroxyl value of the polyvinyl butyral resin is preferably 150-350 mgKOH/g, more preferably 200-300 mgKOH/g. The hydroxyl value of polyvinyl butyral resin can be determined as follows.

即ち、JIS K 0070-1992(アセチル化法)に準じて水酸基価を測定する。
無水酢酸約25gを取り、ピリジンを加え、全量を100 mLにして充分に撹拌し、アセチル化試薬を作製する。フラスコに試料約2gを精秤採取し、アセチル化試薬5mL及びピリジン10mLを加え、空気冷却管を装着し、100℃で70分間加熱後、放冷した後、冷却管上部から溶剤としてトルエン35mLを加え撹拌後、水1mLを加え撹拌し、無水酢酸を分解する。分解を完全にするため再度10分間加熱し放冷した後、エタノール5mLで冷却管を洗い、洗浄後のエタノールを試料溶液に加え、さらに溶剤としてピリジン50mLを試料溶液に加え撹拌する。
この試料溶液に対し0.5mol/L水酸化カリウムエタノール溶液で電位差滴定を行う。 同様の操作を次は試料を除いた状態で作製、電位差滴定をおこない、以下の式より水酸基価を算出する

(式)水酸基価(mgKOH/g) = ((α-γ)×Δ×28.5)/ε + η

α:空試験に用いた0.5mol/L水酸化カリウムエタノール溶液の量(mL)
γ:試料に用いた0.5mol/L水酸化カリウムエタノール溶液の量(mL)
Δ:0.5mol/L水酸化カリウムエタノール溶液のファクター
ε:試料の採取量(g)
η:酸価
That is, the hydroxyl value is measured according to JIS K 0070-1992 (acetylation method).
Take about 25 g of acetic anhydride, add pyridine to bring the total volume to 100 mL, and stir thoroughly to prepare an acetylation reagent. About 2 g of a sample was accurately weighed into a flask, 5 mL of an acetylation reagent and 10 mL of pyridine were added, an air cooling tube was attached, and after heating at 100°C for 70 minutes and allowing to cool, 35 mL of toluene was added as a solvent from the top of the cooling tube. After adding and stirring, 1 mL of water is added and stirred to decompose acetic anhydride. After heating again for 10 minutes and allowing to cool for complete decomposition, the cooling tube is washed with 5 mL of ethanol, the ethanol after washing is added to the sample solution, and 50 mL of pyridine as a solvent is further added to the sample solution and stirred.
This sample solution is subjected to potentiometric titration with a 0.5 mol/L potassium hydroxide ethanol solution. Next, perform the same operation without the sample, perform potentiometric titration, and calculate the hydroxyl value from the following formula.

(Formula) Hydroxyl value (mgKOH/g) = ((α-γ) x Δ x 28.5)/ε + η

α: Amount (mL) of 0.5 mol/L potassium hydroxide ethanol solution used in blank test
γ: Amount (mL) of 0.5 mol/L potassium hydroxide ethanol solution used for the sample
Δ: Factor ε of 0.5 mol/L potassium hydroxide ethanol solution: Amount of sample collected (g)
η: acid number

酸価はJIS K 0070-1992(電位差滴定方法)に準じて測定する。
トルエンとエタノールを体積比で4:1に混合した溶剤にフェノールフタレイン溶液を指示薬として加え、0.1mol/L水酸化カリウムエタノール溶液で中和する。ビーカーに試料約5gを精秤採取し、溶剤50mLを加え、パネルヒーター(80℃)上で6時間撹拌し、0.1mol/L水酸化カリウムエタノール溶液で、電位差滴定を行い、酸価は以下の式より求める。

(式)酸価(mgKOH/g) = (γ×Δ×5.611)/ε

γ:試料に用いた0.1mol/L水酸化カリウムエタノール溶液の量(mL)
Δ:0.1mol/L水酸化カリウムエタノール溶液のファクター
ε:試料(g)
The acid value is measured according to JIS K 0070-1992 (potentiometric titration method).
A phenolphthalein solution is added as an indicator to a solvent in which toluene and ethanol are mixed at a volume ratio of 4:1, and neutralized with a 0.1 mol/L potassium hydroxide ethanol solution. Accurately weigh about 5 g of sample in a beaker, add 50 mL of solvent, stir on a panel heater (80 ° C) for 6 hours, perform potentiometric titration with 0.1 mol / L potassium hydroxide ethanol solution, acid value is as follows. Calculated from the formula

(Formula) Acid value (mgKOH/g) = (γ x Δ x 5.611)/ε

γ: Amount (mL) of 0.1 mol/L potassium hydroxide ethanol solution used for the sample
Δ: Factor ε of 0.1 mol/L potassium hydroxide ethanol solution: sample (g)

また、ポリビニルブチラール樹脂のガラス転移温度は(Tg)は、50~150℃であることが好ましく、60~130℃であることがより好ましい。Tgが前記範囲のポリビニルブチラール樹脂を用いることによって、200℃における貯蔵弾性率がより大きいシート状基材βを形成し易くなる。 The glass transition temperature (Tg) of the polyvinyl butyral resin is preferably 50 to 150°C, more preferably 60 to 130°C. By using a polyvinyl butyral resin having a Tg in the above range, it becomes easier to form a sheet-like substrate β having a higher storage elastic modulus at 200°C.

ポリビニルブチラール樹脂の市販品としては、積水化学工業(株)製のエスレック「BL-1」、「BL-2」、「BL-2H」、「BL-5」、「BL-10」、「BM-1」、「BM-2」、「BM-S」、「BH-3」、「BH-S」等を挙げることができる。
これらのポリビニルアセタール樹脂は1種を単独で用いても、2種以上を混合して用いてもよい。
Commercially available polyvinyl butyral resins include S-Lec "BL-1", "BL-2", "BL-2H", "BL-5", "BL-10", "BM" manufactured by Sekisui Chemical Co., Ltd. -1”, “BM-2”, “BM-S”, “BH-3”, “BH-S” and the like.
These polyvinyl acetal resins may be used singly or in combination of two or more.

<スチレン系エラストマー>
本明細書において「エラストマー」とは、加硫処理を行わなくても、常温でゴム弾性を有するポリマーを指す。化学構造的にはABA型のブロックまたは(A-B)n型のマルチブロック構造を有するものが一般的である。また、スチレン系エラストマーとは、ポリスチレンを有するブロック(以下、ポリスチレンブロックともいう)を有する共重合体をいう。
<Styrene-based elastomer>
As used herein, the term "elastomer" refers to a polymer having rubber elasticity at room temperature without vulcanization treatment. In terms of chemical structure, it generally has an ABA-type block or (AB)n-type multi-block structure. A styrene-based elastomer refers to a copolymer having a block containing polystyrene (hereinafter also referred to as a polystyrene block).

200℃における貯蔵弾性率がより大きいシート状基材βを形成し得るという点から、エラストマーとしてはポリスチレン構造を分子中に有しているスチレン系エラストマーが好ましい。具体例としては、スチレン-ブタジエンブロック共重合体、スチレン-エチレン-プロピレンブロック共重合体、スチレン-ブタジエン-スチレンブロック共重合体(以下、SBSともいう)、スチレン-イソプレン-スチレンブロック共重合体(以下、SISともいう)、スチレン-エチレン-ブチレン-スチレンブロック共重合体(以下、SEBSともいう)等が挙げられる。
なお、これらスチレン系エラストマーにおいて、ポリスチレンブロック以外の部分は、まとめて1つのブロックと捉える。また、ポリスチレンブロック以外の部分のうち、2つ以上のモノマー由来の単位(残基)から形成されるブロックとして、上記の例では、エチレンとプロピレンとからなる共重合体や、エチレンとブチレンとからなる共重合体が例示できる。このようなポリスチレンブロック以外の2つ以上のモノマー由来の単位から形成されるブロックは、ランダム共重合体でもブロック共重合でもよい。
A styrene-based elastomer having a polystyrene structure in the molecule is preferable as the elastomer because it can form a sheet-like base material β having a higher storage elastic modulus at 200°C. Specific examples include styrene-butadiene block copolymers, styrene-ethylene-propylene block copolymers, styrene-butadiene-styrene block copolymers (hereinafter also referred to as SBS), styrene-isoprene-styrene block copolymers ( SIS), styrene-ethylene-butylene-styrene block copolymer (hereinafter also referred to as SEBS), and the like.
In addition, in these styrene-based elastomers, portions other than the polystyrene block are collectively regarded as one block. In addition, among the portions other than the polystyrene block, the blocks formed from units (residues) derived from two or more monomers include, in the above examples, copolymers composed of ethylene and propylene, and copolymers composed of ethylene and butylene. A copolymer can be exemplified. Blocks formed from units derived from two or more monomers other than such polystyrene blocks may be random copolymers or block copolymers.

スチレン系エラストマーは、重量平均分子量が30,000~400,000程度のものが好ましく、50,000~300,000のものがより好ましく、80,000~25,000のものがより好ましい。無機フィラーの配合による脆化を抑制するという点からは、反応性に優れる重量平均分子量が10万程度のエラストマーを主とし、重量平均分子量が20万程度のエラストマーを組み合わせることができる。 The styrene elastomer preferably has a weight average molecular weight of about 30,000 to 400,000, more preferably 50,000 to 300,000, and even more preferably 80,000 to 25,000. From the viewpoint of suppressing embrittlement due to the addition of an inorganic filler, an elastomer having a weight average molecular weight of about 100,000, which is excellent in reactivity, can be used in combination with an elastomer having a weight average molecular weight of about 200,000.

スチレン系エラストマーは、後述する架橋剤と反応し得る官能基として、カルボキシ基やカルボン酸の無水物基等を有することが重要であり、カルボン酸の無水物基を有することが好ましい。 It is important for the styrene-based elastomer to have a carboxy group, a carboxylic anhydride group, or the like as a functional group capable of reacting with a cross-linking agent described later, and it is preferable to have a carboxylic anhydride group.

スチレン系エラストマーへの酸無水物基の導入方法は、スチレン系エラストマーを製造するための原料の1つとして酸無水物基を有するモノマーを他の原料と重合する方法、ポリマー合成後に側鎖に酸無水物基を導入する方法、グラフト化反応させる方法が例示できる。例えば、適量の無水マレイン酸等のエチレン性不飽和カルボン酸の無水物を共重合させる方法、スチレン系エラストマーを合成した後に、適量の無水マレイン酸等のエチレン性不飽和カルボン酸の無水物と過酸化物を用いてグラフト化反応させる方法が挙げられる。酸無水物基を導入した後、水やアルコールやアミンなどを利用して酸無水物基の一部または全部を開環することによって、カルボキシ基を導入することができる。
また、酸無水物の代わりに、適量のマレイン酸等のエチレン性不飽和カルボン酸を用いることもできる。この場合は、カルボキシ基導入後にカルボキシ基の一部または全部が無水物基となるようにすれば、酸無水物基を導入できる。
Methods for introducing an acid anhydride group into a styrene elastomer include a method of polymerizing a monomer having an acid anhydride group as one of raw materials for producing a styrene elastomer with other raw materials, A method of introducing an anhydride group and a method of grafting can be exemplified. For example, a method of copolymerizing an appropriate amount of an ethylenically unsaturated carboxylic acid anhydride such as maleic anhydride, a method of synthesizing a styrene-based elastomer, followed by a method of synthesizing an appropriate amount of an ethylenically unsaturated carboxylic anhydride such as maleic anhydride and a A method of carrying out a grafting reaction using an oxide can be mentioned. After introducing the acid anhydride group, a carboxy group can be introduced by partially or entirely ring-opening the acid anhydride group using water, alcohol, amine, or the like.
Also, an appropriate amount of ethylenically unsaturated carboxylic acid such as maleic acid can be used instead of the acid anhydride. In this case, acid anhydride groups can be introduced by allowing some or all of the carboxy groups to become anhydride groups after the introduction of the carboxy groups.

カルボキシ基や酸無水物基を有するスチレン系エラストマーは、エチレン性不飽和カルボン酸の無水物を除く100質量%中に、ポリスチレンブロックが5~60質量%含まれることが好ましく、より好ましくは10~50質量%、更に好ましくは20~40質量%である。
ポリスチレンブロックが5質量%以上であることにより、溶剤への溶解性が良くなりシート状基材β形成用組成物の溶液安定性が優れ、60質量%以下であることにより、伸張性にも優れ、200℃での貯蔵弾性率のより大きなシート状基材βを形成できる。
The styrene elastomer having a carboxyl group or an acid anhydride group preferably contains 5 to 60% by mass of polystyrene block, more preferably 10 to 100% by mass, excluding anhydrides of ethylenically unsaturated carboxylic acids. 50% by mass, more preferably 20 to 40% by mass.
When the polystyrene block content is 5% by mass or more, the solubility in a solvent is improved and the solution stability of the composition for forming the sheet-shaped base material β is excellent. , a sheet-like substrate β having a higher storage elastic modulus at 200° C. can be formed.

酸無水物基を有するスチレン系エラストマーの酸無水物基価は、0.1~40mgCHONa/gであることが好ましく、より好ましくは1~30mgCHONa/g、更に好ましくは5~20mgCHONa/gである。酸無水物基価が0.1mgCHONa/g以上の酸無水物基を有するスチレン系エラストマーを用いることにより、200℃における貯蔵弾性率の十分に大きな硬化物を形成することができ、打ち抜き加工性に優れ、耐電圧に優れる熱伝導性粘着シートを形成することができる。酸無水物基価が40mgCHONa/g以下の酸無水物基を有するスチレン系エラストマーを用いることにより、シート状基材β形成用組成物の溶液安定性が優れる。 The acid anhydride group value of the styrenic elastomer having an acid anhydride group is preferably 0.1 to 40 mg CH 3 ONa/g, more preferably 1 to 30 mg CH 3 ONa/g, still more preferably 5 to 20 mg CH 3 . ONa/g. By using a styrene-based elastomer having an acid anhydride group with an acid anhydride value of 0.1 mg CH 3 ONa/g or more, a cured product having a sufficiently high storage elastic modulus at 200° C. can be formed, and punching can be performed. It is possible to form a thermally conductive pressure-sensitive adhesive sheet having excellent properties and withstand voltage. By using a styrene-based elastomer having an acid anhydride group with an acid anhydride value of 40 mgCH 3 ONa/g or less, the solution stability of the composition for forming the sheet-shaped base material β is excellent.

シート状基材βの形成に用いられる他の樹脂としては、ポリエステル樹脂、エポキシ樹脂、ウレタン樹脂、ウレタンウレア樹脂、フェノール樹脂、アミノ樹脂、アクリル樹脂等が挙げられる。 Other resins used for forming the sheet-like substrate β include polyester resins, epoxy resins, urethane resins, urethane urea resins, phenol resins, amino resins, acrylic resins, and the like.

<架橋剤>
架橋剤は、架橋可能なポリマーの有する官能基と反応し、硬化物であるシート状基材βを形成し得るものを適宜用いることができる。
架橋可能なポリマーがアルコール性水酸基を有する場合、架橋剤としてはイソシアネート基を有する化合物、酸無水物基を有する化合物等が挙げられる。架橋可能なポリマーがカルボキシ基や酸無水物基を有する場合、架橋剤としてはイソシアネート基を有する化合物、アジリジニル基を有する化合物、エポキシ基を有する化合物、アミノ基を有する化合物等が挙げられる。
<Crosslinking agent>
As the cross-linking agent, those capable of reacting with the functional groups of the cross-linkable polymer to form the sheet-like substrate β, which is a cured product, can be appropriately used.
When the crosslinkable polymer has an alcoholic hydroxyl group, examples of the crosslinking agent include a compound having an isocyanate group and a compound having an acid anhydride group. When the crosslinkable polymer has a carboxy group or an acid anhydride group, the cross-linking agent includes a compound having an isocyanate group, a compound having an aziridinyl group, a compound having an epoxy group, a compound having an amino group, and the like.

<イソシアネート基を有する化合物>
イソシアネート基を有する化合物は、2個以上のイソシアネートを有する化合物であり、この成分と前述のポリビニルアセタール樹脂やスチレン系エラストマーとの反応により、貯蔵弾性率が200℃でも10MPa以上の硬化物を形成することができ、打ち抜き加工性に優れ、耐電圧に優れる熱伝導性粘着シートを形成することができる。
<Compound having an isocyanate group>
A compound having an isocyanate group is a compound having two or more isocyanates, and a cured product having a storage modulus of 10 3 MPa or more even at 200° C. can be obtained by reaction of this component with the polyvinyl acetal resin or the styrene elastomer. It is possible to form a thermally conductive adhesive sheet that is excellent in punching workability and withstand voltage.

イソシアネート基を有する化合物としては、芳香族系、脂肪族系、芳香脂肪族系、脂環族系が挙げられ、硬化物の200℃における貯蔵弾性率や、熱伝導性粘着シートの打ち抜き加工性、耐電圧の観点から、芳香族系が好ましい。
イソシアネート基を有する芳香族系の化合物のうち、イソシアネート基を2個有する有化合物としては、具体的には、1,3-フェニレンジイソシアネート、4,4’-ジフェニルジイソシアネート、1,4-フェニレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、4,4’-トルイジンジイソシアネート、ジアニシジンジイソシアネート、4,4’-ジフェニルエーテルジイソシアネートが挙げられる。
イソシアネート基を有する芳香族系の化合物のうち、イソシアネート基を3個以上有する有化合物としては、、具体的には、2,4,6-トリイソシアネートトルエン、1,3,5-トリイソシアネートベンゼン等の芳香族ポリイソシアネート等が挙げられ、さらに前記で説明したジイソシアネートの、トリメチロールプロパンアダクト体、水と反応したビュウレット体、イソシアヌレート環を有する3量体が挙げられる。
Examples of the compound having an isocyanate group include aromatic, aliphatic, araliphatic, and alicyclic compounds. From the standpoint of withstand voltage, aromatic compounds are preferred.
Among the aromatic compounds having an isocyanate group, examples of organic compounds having two isocyanate groups include 1,3-phenylene diisocyanate, 4,4'-diphenyl diisocyanate, 1,4-phenylene diisocyanate, 4,4'-diphenylmethane diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 4,4'-toluidine diisocyanate, dianisidine diisocyanate and 4,4'-diphenyl ether diisocyanate.
Among the aromatic compounds having an isocyanate group, specific compounds having 3 or more isocyanate groups include 2,4,6-triisocyanatotoluene, 1,3,5-triisocyanatobenzene, and the like. Further, trimethylolpropane adducts, water-reacted biuret forms, and isocyanurate ring-containing trimers of the above-described diisocyanates may be mentioned.

架橋可能なポリマーとしてポリビニルアセタール樹脂を用い、架橋剤としてイソシアネート基を有する化合物を用いる場合、イソシアネート基を有する化合物は、ポリビニルアセタール樹脂中の水酸基1molに対し、イソシアネート基が0.01~1molとなる範囲で配合することが好ましく、0.05~0.5molの範囲がより好ましい。 When a polyvinyl acetal resin is used as a crosslinkable polymer and a compound having an isocyanate group is used as a cross-linking agent, the compound having an isocyanate group has 0.01 to 1 mol of isocyanate groups per 1 mol of hydroxyl groups in the polyvinyl acetal resin. It is preferably blended in the range, more preferably in the range of 0.05 to 0.5 mol.

架橋可能なポリマーとしてスチレン系エラストマー樹脂を用い、架橋剤としてイソシアネート基を有する化合物を用いる場合、イソシアネート基を有する化合物は、スチレン系エラストマー樹脂中の官能基(即ち、カルボキシ基や酸無水物基)1molに対し、イソシアネート基が0.5~20molとなる範囲で配合することが好ましく、1~10molの範囲がより好ましい。 When a styrene-based elastomer resin is used as a crosslinkable polymer and a compound having an isocyanate group is used as a cross-linking agent, the compound having an isocyanate group is a functional group (i.e., a carboxy group or an acid anhydride group) in the styrene-based elastomer resin. It is preferable to blend the isocyanate group in a range of 0.5 to 20 mol, more preferably 1 to 10 mol, per 1 mol.

ポリビニルアセタール樹脂中の水酸基に対し、イソシアネート基の含有量を0.01mol以上としたり、スチレン系エラストマー樹脂中の官能基に対し、イソシアネート基の含有量を0.5mol以上としたりすることにより、架橋密度を増加させ、200℃環境下であっても貯蔵弾性率の十分に大きな硬化物を形成することができ、打ち抜き加工性に優れ、耐電圧に優れる熱伝導性粘着シートを形成することができる。
ポリビニルアセタール樹脂中の水酸基に対し、イソシアネート基の含有量を1mol以下としたり、スチレン系エラストマー樹脂中の官能基に対し、イソシアネート基の含有量を20mol以下としたりすることにより、架橋可能なポリマー本来の柔軟性を損なわず無機フィラーを配合しても脆化しない強靭な物性を保つことが出来る。さらに好ましい範囲にあることでより、脆化しないまま加工性に優れる熱伝導性粘着シートが作製できる。
Crosslinking is achieved by setting the content of isocyanate groups to 0.01 mol or more with respect to the hydroxyl groups in the polyvinyl acetal resin, or by setting the content of the isocyanate groups to 0.5 mol or more with respect to the functional groups in the styrene elastomer resin. By increasing the density, it is possible to form a cured product with a sufficiently large storage elastic modulus even in an environment of 200° C., and it is possible to form a thermally conductive pressure-sensitive adhesive sheet that is excellent in punchability and withstand voltage. .
By setting the content of isocyanate groups to 1 mol or less with respect to the hydroxyl groups in the polyvinyl acetal resin, or by setting the content of the isocyanate groups to 20 mol or less with respect to the functional groups in the styrene-based elastomer resin, the original crosslinkable polymer It is possible to maintain a tough physical property that does not become brittle even if an inorganic filler is blended without impairing the flexibility of the material. Furthermore, when it is in the preferable range, it is possible to produce a thermally conductive pressure-sensitive adhesive sheet which is excellent in workability without being embrittled.

<アジリジニル基を有する化合物>
架橋可能なポリマーとしてスチレン系エラストマー樹脂を用い、架橋剤としてアジリジニル基を有する化合物を用いる場合、アジリジニル基を有する化合物は、スチレン系エラストマー樹脂中の官能基1molに対し、アジリジニル基が0.05~1molとなる範囲で配合することが好ましく、0.1~0.5molの範囲がより好ましい。アジリジニル基を0.05mol以上とすることが好ましい理由、1mol以下とすることが好ましい理由は、架橋剤としてイソシアネート基を有する化合物を用いる場合と同様である。
<Compound having an aziridinyl group>
When a styrene-based elastomer resin is used as a crosslinkable polymer and a compound having an aziridinyl group is used as a cross-linking agent, the compound having an aziridinyl group has an aziridinyl group content of 0.05 to 0.05 per 1 mol of functional groups in the styrene-based elastomer resin. It is preferably blended in the range of 1 mol, more preferably in the range of 0.1 to 0.5 mol. The reason why the aziridinyl group is preferably 0.05 mol or more and the reason why it is preferably 1 mol or less is the same as in the case of using a compound having an isocyanate group as a cross-linking agent.

<酸無水物基を有する化合物、エポキシ基を有する化合物、アミノ基を有する化合物>
架橋剤として酸無水物基を有する化合物、エポキシ基を有する化合物、アミノ基を有する化合物を用いる場合、それぞれ選択する架橋可能なポリマー中の官能基1molに対して、酸無水物基等が0.05~1molとなる範囲で配合することが好ましく、0.1~0.5molの範囲で配合することがさらに好ましい。好ましい範囲にあることで、高温環境下であっても貯蔵弾性率の十分に大きな硬化物を形成することができ、打ち抜き加工性に優れ、耐電圧に優れながら、脆化しない熱伝導性粘着シートの基材として使用できる。
<Compound Having Acid Anhydride Group, Compound Having Epoxy Group, Compound Having Amino Group>
When a compound having an acid anhydride group, a compound having an epoxy group, or a compound having an amino group is used as the cross-linking agent, the amount of acid anhydride group or the like is 0.00 per 1 mol of the functional group in the selected crosslinkable polymer. It is preferably blended in the range of 05 to 1 mol, more preferably blended in the range of 0.1 to 0.5 mol. By being in the preferable range, it is possible to form a cured product with a sufficiently large storage elastic modulus even in a high temperature environment, and the thermally conductive adhesive sheet is excellent in punching workability and withstand voltage, but does not become brittle. can be used as a base material for

シート状基材βは、架橋可能なポリマーの溶液または分散液と、絶縁性の無機フィラーと、架橋剤とを含むシート状基材β形成用の分散液を用いて形成することができる。
即ち、シート状基材β形成用の分散液を剥離性シート上に塗布し、加熱することによって、液状媒体を除去し、架橋可能なポリマーと架橋剤とを反応させ、反応生成物である硬化物中に絶縁性の無機フィラーを含むシート状基材βを剥離性シート上に形成することができる。
シート状基材β形成用の分散液は、架橋可能なポリマー100質量部に対し、絶縁性の無機フィラーを100~500質量部含むことが好ましく、150~450質量部含むことがより好ましく、200~400質量部含むことがさらに好ましい。形成されるシート状基材βの熱伝導性の点から絶縁性の無機フィラーの含有量は多い方が好ましい。シート状基材β形成用の分散液の塗工適性の点、そして空隙・クラック等の発生を抑制しできるだけ緻密なシート状基材βを形成し、耐電圧に優れる粘着シートを形成するという点から絶縁性の無機フィラーの含有量は多過ぎないことが好ましい。
The sheet-shaped substrate β can be formed using a dispersion for forming the sheet-shaped substrate β containing a solution or dispersion of a crosslinkable polymer, an insulating inorganic filler, and a crosslinking agent.
That is, the dispersion liquid for forming the sheet-shaped base material β is applied onto the release sheet and heated to remove the liquid medium, react the crosslinkable polymer with the crosslinker, and cure the reaction product. A sheet-like substrate β containing an insulating inorganic filler in the material can be formed on the release sheet.
The dispersion for forming the sheet-like substrate β preferably contains 100 to 500 parts by mass, more preferably 150 to 450 parts by mass, of an insulating inorganic filler with respect to 100 parts by mass of the crosslinkable polymer. It is more preferable to contain up to 400 parts by mass. From the viewpoint of thermal conductivity of the sheet-like base material β to be formed, the content of the insulating inorganic filler is preferably large. The suitability of the dispersion liquid for forming the sheet-like base material β, and the formation of the sheet-like base material β as dense as possible by suppressing the occurrence of voids, cracks, etc., and forming an adhesive sheet with excellent withstand voltage. Therefore, it is preferable that the content of the insulating inorganic filler is not too large.

シート状基材β形成用の分散液に含まれる液状媒体は、架橋可能なポリマーおよび架橋剤を溶解または分散し得るものであればよく、メチルエチルケトン、酢酸エチル、イソプロピルアルコール等が例示できる。
シート状基材β形成用の分散液は、架橋可能なポリマーの溶液または分散液に、絶縁性の無機フィラーを加え、分散した後、架橋剤や架橋剤を含む溶液を加えることによって得ることができる。シート状基材β形成用の分散液には、分散剤、レベリング剤等の添加剤を適宜加えることもできる。分散には、攪拌モーター、らいかい機、三本ロール、ボールミル、自転・公転ミル、遊星ミル、ビーズミル等の機器を用いることができる。
The liquid medium contained in the dispersion liquid for forming the sheet-like substrate β may be any medium as long as it can dissolve or disperse the crosslinkable polymer and the crosslinker, and examples thereof include methyl ethyl ketone, ethyl acetate, and isopropyl alcohol.
The dispersion liquid for forming the sheet-shaped base material β can be obtained by adding an insulating inorganic filler to a crosslinkable polymer solution or dispersion liquid, dispersing the filler, and then adding a crosslinker or a solution containing a crosslinker. can. Additives such as a dispersing agent and a leveling agent may be appropriately added to the dispersion liquid for forming the sheet-shaped base material β. Devices such as a stirring motor, slaked mill, triple roll, ball mill, rotation/revolution mill, planetary mill, and bead mill can be used for dispersion.

<<熱伝導性粘着層α1、α2>>
本発明の熱伝導性粘着シートを構成する熱伝導性粘着層α1、α2について説明する。
粘着層は、粘着性発現のためにガラス転移点が0℃以下であることが好ましい。シート状基材βの両面に位置する熱伝導性粘着層α1、α2は、いずれの層も絶縁性の無機フィラーを含む。熱伝導性粘着層α1、およびα2の厚みの合計は1~45μmであり、熱伝導性粘着層α1、α2の厚みは同程度であってもよいし、異なっていてもよい。
熱伝導性を向上するためには、熱伝導性粘着シート全体をできるだけ薄くすることが効果的である。そのため、熱伝導性粘着層α1、α2の厚みは、それぞれ独立に30μm以下であることが好ましく、25μm以下であることがより好ましい。
一方、粘着性能を発現するためには後述する熱伝導性粘着層α1、α2をある程度厚くする必要がある。従って、熱伝導性粘着層α1、α2の厚みは、それぞれ独立に5μm以上であることが好ましく、10μm以上であることがより好ましく、15μm以上であることがより好ましい。すなわち、15~25μmの範囲で設定することが好ましい。
<<Thermal conductive adhesive layers α1 and α2>>
The thermally conductive adhesive layers α1 and α2 constituting the thermally conductive adhesive sheet of the present invention will be described.
The adhesive layer preferably has a glass transition point of 0° C. or lower in order to exhibit adhesiveness. Each of the thermally conductive adhesive layers α1 and α2 located on both sides of the sheet-like substrate β contains an insulating inorganic filler. The total thickness of the thermally conductive adhesive layers α1 and α2 is 1 to 45 μm, and the thicknesses of the thermally conductive adhesive layers α1 and α2 may be the same or different.
In order to improve thermal conductivity, it is effective to make the entire thermally conductive adhesive sheet as thin as possible. Therefore, the thicknesses of the thermally conductive adhesive layers α1 and α2 are each independently preferably 30 μm or less, more preferably 25 μm or less.
On the other hand, it is necessary to increase the thickness of the thermally conductive adhesive layers α1 and α2 described later to some extent in order to exhibit adhesive performance. Therefore, the thicknesses of the thermally conductive adhesive layers α1 and α2 are each independently preferably 5 μm or more, more preferably 10 μm or more, and even more preferably 15 μm or more. That is, it is preferable to set the thickness in the range of 15 to 25 μm.

<絶縁性の無機フィラー>
熱伝導性粘着層α1、α2に含まれる絶縁性の無機フィラー(以下、無機フィラーと略すこともある)としては、例えば、金属水酸化物、金属酸化物、セラミックス等を使用できる。具体的には、水酸化アルミニウム、水酸化マグネシウム、酸化アルミニウム、酸化ケイ素、酸化マグネシウム、酸化亜鉛、酸化チタン、酸化ジルコニウム、酸化鉄、炭化ケイ素、窒化ホウ素、窒化アルミニウム、窒化チタン、窒化ケイ素、ホウ素化チタン等が挙げられ、大きさや形状の点から窒化アルミニウム、酸化アルミニウムが好ましい。
これら無機フィラーには、フィラーの耐湿熱性の向上あるいは後述する架橋可能なポリマーへの分散性向上の点から、酸化処理や、シランカップリング処理・ステアリン酸処理などの表面処理を施してもよい。
<Insulating inorganic filler>
As the insulating inorganic filler (hereinafter sometimes abbreviated as inorganic filler) contained in the thermally conductive adhesive layers α1 and α2, for example, metal hydroxides, metal oxides, ceramics and the like can be used. Specifically, aluminum hydroxide, magnesium hydroxide, aluminum oxide, silicon oxide, magnesium oxide, zinc oxide, titanium oxide, zirconium oxide, iron oxide, silicon carbide, boron nitride, aluminum nitride, titanium nitride, silicon nitride, boron Titanium oxide and the like can be mentioned, and aluminum nitride and aluminum oxide are preferable in terms of size and shape.
These inorganic fillers may be subjected to a surface treatment such as oxidation treatment, silane coupling treatment, or stearic acid treatment from the viewpoint of improving the heat and humidity resistance of the filler or improving the dispersibility in a crosslinkable polymer described later.

無機フィラーの形状は、例えば、球状、立方体状、多角形状、楕円状、針状、鱗片状又はこれらを組み合わせた形状等が挙げられる。
熱伝導性粘着層α1、α2をできるだけ薄くすることによって熱抵抗を低下させ、熱伝導性を向上させるという点からは、球状、立方体状、多角形状のものが好ましく、アスペクト比ができるだけ1に近い形状のものが好ましい。
一方、無機フィラー同士の接点を増やしたり、熱の伝搬に方向性・流れを形成したりすることによって熱伝導性の向上を狙うという点からは、鱗片状や楕円状のものやこれらの凝集体を使用することができる。先に述べたようにシート状基材βの場合は、厚みが1~10μmと薄い状態で、両面粘着シートのいわゆる芯材として機能し、両面粘着シート全体の安定化を担うという点から、シート状基材βに含まれる無機フィラーは、アスペクト比ができるだけ1に近い形状のものが好ましい。しかし、熱伝導性粘着層α1、α2の場合は、そもそも粘着層であるが故に柔らかく、シート状基材βほどは脆化の影響が大きくはないので、無機フィラーとして窒化ホウ素のように鱗片状のものや、その凝集体も使用し得る。
Examples of the shape of the inorganic filler include spherical, cubic, polygonal, elliptical, needle-like, scale-like, and combinations thereof.
From the viewpoint of reducing thermal resistance and improving thermal conductivity by making the thermally conductive adhesive layers α1 and α2 as thin as possible, spherical, cubic, and polygonal shapes are preferable, and the aspect ratio is as close to 1 as possible. A shape is preferred.
On the other hand, from the point of aiming to improve thermal conductivity by increasing the number of contact points between inorganic fillers and by forming directionality and flow in heat propagation, scaly and elliptical fillers and aggregates of these can be used. As described above, in the case of the sheet-like substrate β, it functions as a so-called core material of the double-sided pressure-sensitive adhesive sheet in a thin state of 1 to 10 μm in thickness, and is responsible for stabilizing the entire double-sided pressure-sensitive adhesive sheet. The inorganic filler contained in the base material β preferably has a shape whose aspect ratio is as close to 1 as possible. However, in the case of the thermally conductive adhesive layers α1 and α2, since they are adhesive layers in the first place, they are soft, and the effect of embrittlement is not as great as that of the sheet-like substrate β. and aggregates thereof may also be used.

熱伝導性粘着層α1、α2の厚みは合計で1~45μmであるので、熱伝導性粘着層α1、α2に含まれる無機フィラーとしては、前記厚みに収まるような大きさのものを選択することが好ましい。即ち、形成する熱伝導性粘着層α1の厚みを100とした場合に、D90粒子径が50以下である無機フィラーを選択することが好ましい。熱伝導性粘着層α2の場合も同様である。
D90粒子径とは、粒度分布の累積体積百分率が90%のときの粒径であり、シート状基材βにおける無機フィラーの場合と同様にして求めることができる。熱伝導性粘着層α1、α2の場合、具体的には、D90粒子径が1~10μmの無機フィラーを選択することが好ましく、1~8μmの無機フィラーを選択することがより好ましい。
このような無機フィラーを選択することによって、熱伝導性粘着層α1の断面に観察される絶縁性の無機フィラーの平均粒子径、即ち長径aα1と短径bα1との和の1/2である粒子径の平均値が、熱伝導性粘着層α1の厚みの60%以下であり、絶縁性の無機フィラーの最大径aα1 maxが熱伝導性粘着層α1の厚み未満となる、熱伝導性粘着層α1を得ることができる。熱伝導性粘着層α2の場合も同様である。
Since the total thickness of the thermally conductive adhesive layers α1 and α2 is 1 to 45 μm, the inorganic filler contained in the thermally conductive adhesive layers α1 and α2 should be selected to have a size that fits within the above thickness. is preferred. That is, when the thickness of the thermally conductive adhesive layer α1 to be formed is 100, it is preferable to select an inorganic filler having a D90 particle size of 50 or less. The same applies to the thermally conductive adhesive layer α2.
The D90 particle size is the particle size when the cumulative volume percentage of the particle size distribution is 90%, and can be obtained in the same manner as the inorganic filler in the sheet-like substrate β. Specifically, in the case of the heat conductive adhesive layers α1 and α2, it is preferable to select an inorganic filler having a D90 particle size of 1 to 10 μm, more preferably an inorganic filler having a D90 particle size of 1 to 8 μm.
By selecting such an inorganic filler, the average particle diameter of the insulating inorganic filler observed in the cross section of the heat conductive adhesive layer α1, that is, the sum of the major diameter a α1 and the minor diameter b α1 The average value of a certain particle size is 60% or less of the thickness of the thermally conductive adhesive layer α1, and the maximum diameter a α1 max of the insulating inorganic filler is less than the thickness of the thermally conductive adhesive layer α1. An adhesive layer α1 can be obtained. The same applies to the thermally conductive adhesive layer α2.

<架橋可能なポリマー>
前述の通り、熱伝導性粘着層α1、α2は、成膜性成分として機能する、架橋可能なポリマーの硬化物を含む。架橋可能なポリマーについて説明する。なお、シート状基材β形成用の場合と区別するために、熱伝導性粘着層α1、α2形成用の架橋可能なポリマーを粘着樹脂ということがある。
架橋可能なポリマーとしては、架橋剤(硬化剤ともいう)と反応して硬化物を形成し得るものの他、自己架橋性を有するポリマーも挙げられる。
架橋剤と反応して硬化物を形成し得るポリマーとしては、アクリル樹脂、ポリエステル樹脂、ウレタン樹脂、シリコーン樹脂等が挙げられ、これらの中でも、耐候性、耐熱性、機能、コストや使用目的に応じた粘着剤設計のしやすさの点より、アクリル樹脂が好ましい。熱伝導性粘着層α1、α2の形成には、異なる種類の架橋可能なポリマーを用いることもできるし、同じ種類の架橋可能なポリマーを用いることもできる。また、同じ種類の架橋可能なポリマーを用いる場合、同一のポリマーを用いることもできるし、異なるポリマーを用いることもできる。
<Polymer that can be crosslinked>
As described above, the thermally conductive adhesive layers α1 and α2 contain a cured product of a crosslinkable polymer that functions as a film-forming component. A crosslinkable polymer is described. In order to distinguish from the case of forming the sheet-like base material β, the crosslinkable polymer for forming the thermally conductive adhesive layers α1 and α2 is sometimes referred to as an adhesive resin.
Examples of crosslinkable polymers include those capable of reacting with a crosslinking agent (also referred to as a curing agent) to form a cured product, as well as polymers having self-crosslinking properties.
Examples of polymers that can react with a cross-linking agent to form a cured product include acrylic resins, polyester resins, urethane resins, and silicone resins. Acrylic resin is preferable from the point of view of ease of designing the pressure-sensitive adhesive. Different types of crosslinkable polymers can be used to form the thermally conductive adhesive layers α1 and α2, and the same type of crosslinkable polymers can also be used. Also, when using the same type of crosslinkable polymer, the same polymer can be used, or different polymers can be used.

架橋可能なポリマーが有し得る官能基としては、アルコール性水酸基(以下、単に水酸基ともいう)、フェノール性水酸基、酸無水物基、カルボキシ基、アミノ基、シアネート基、イソシアノ基、シアナト基、イソシアナト基、イミダゾール基、ピロール基、アセタール基、アクリロイル基、メタクリロイル基、アルデヒド基、ヒドラジド基、ヒドラゾン基、リン酸基等が挙げられ、アルコール性水酸基、カルボキシ基が好ましい。 Examples of functional groups that the crosslinkable polymer may have include alcoholic hydroxyl groups (hereinafter also simply referred to as hydroxyl groups), phenolic hydroxyl groups, acid anhydride groups, carboxy groups, amino groups, cyanate groups, isocyano groups, cyanato groups, and isocyanato groups. group, imidazole group, pyrrole group, acetal group, acryloyl group, methacryloyl group, aldehyde group, hydrazide group, hydrazone group, phosphoric acid group and the like, and alcoholic hydroxyl group and carboxyl group are preferred.

アクリル樹脂は、アクリル系モノマー(分子中に(メタ)アクリロイル基を有するモノマー成分)を重合してなる重合体、即ちポリマーであり、(メタ)アクリル酸アルキルエステルを重合してなるポリマーであることが好ましい。なお、アクリル樹脂は、単独で又は2種以上組み合わせて用いることができる。 The acrylic resin is a polymer obtained by polymerizing an acrylic monomer (a monomer component having a (meth)acryloyl group in the molecule), that is, a polymer obtained by polymerizing a (meth)acrylic acid alkyl ester. is preferred. In addition, an acrylic resin can be used individually or in combination of 2 or more types.

上記(メタ)アクリル酸アルキルエステルとしては、特に限定されないが、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸s-ブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸イソペンチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸ヘプチル、(メタ)アクリル酸オクチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸ノニル、(メタ)アクリル酸イソノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸イソデシル、(メタ)アクリル酸ウンデシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸トリデシル、(メタ)アクリル酸テトラデシル、(メタ)アクリル酸ペンタデシル、(メタ)アクリル酸ヘキサデシル、(メタ)アクリル酸ヘプタデシル、(メタ)アクリル酸オクタデシル、(メタ)アクリル酸ノナデシル、(メタ)アクリル酸エイコシル、などの炭素数が1~20であるアルキル基を有する(メタ)アクリル酸アルキルエステルを挙げることができる。中でも、粘着特性のバランスを取りやすいという観点から、炭素数が1~12(特に、2~12)のアルキル基を有する(メタ)アクリル酸アルキルエステルが好ましく、より好ましくは炭素数が4~9のアルキル基を有する(メタ)アクリル酸アルキルエステルである。上記(メタ)アクリル酸アルキルエステルは、単独で又は2種以上組み合わせて使用することができる。 Examples of the (meth)acrylic acid alkyl ester include, but are not limited to, methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, isopropyl (meth)acrylate, and (meth)acrylic acid. Butyl acid, isobutyl (meth)acrylate, s-butyl (meth)acrylate, t-butyl (meth)acrylate, pentyl (meth)acrylate, isopentyl (meth)acrylate, hexyl (meth)acrylate, ( meth)heptyl acrylate, octyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, isooctyl (meth)acrylate, nonyl (meth)acrylate, isononyl (meth)acrylate, decyl (meth)acrylate, Isodecyl (meth)acrylate, Undecyl (meth)acrylate, Dodecyl (meth)acrylate, Tridecyl (meth)acrylate, Tetradecyl (meth)acrylate, Pentadecyl (meth)acrylate, Hexadecyl (meth)acrylate, ( (Meth)acrylic acid alkyl esters having an alkyl group having a carbon number of 1 to 20, such as heptadecyl methacrylate, octadecyl (meth)acrylate, nonadecyl (meth)acrylate, and eicosyl (meth)acrylate. be able to. Among them, a (meth)acrylic acid alkyl ester having an alkyl group having 1 to 12 carbon atoms (particularly 2 to 12 carbon atoms) is preferable, more preferably 4 to 9 carbon atoms, from the viewpoint of easily balancing adhesive properties. is a (meth)acrylic acid alkyl ester having an alkyl group of The (meth)acrylic acid alkyl esters may be used alone or in combination of two or more.

アクリル樹脂を構成する全モノマー成分(100質量%)中、上記(メタ)アクリル酸アルキルエステルの割合は、特に限定されないが、60質量%以上(例えば60~99質量%)であることが好ましく、より好ましくは70質量%以上(例えば70~98質量%)、さらに好ましくは80質量以上(例えば80~98質量%)である。 The ratio of the (meth)acrylic acid alkyl ester in the total monomer components (100% by mass) constituting the acrylic resin is not particularly limited, but is preferably 60% by mass or more (for example, 60 to 99% by mass), More preferably 70% by mass or more (eg 70 to 98% by mass), still more preferably 80% by mass or more (eg 80 to 98% by mass).

アクリル樹脂は、構成するモノマー成分として、上記(メタ)アクリル酸アルキルエステルのみを含むポリマーであってもよいが、架橋点として機能するアルコール性水酸基やカルボキシ基を有するモノマーを共重合したものが好ましい。 The acrylic resin may be a polymer containing only the (meth)acrylic acid alkyl ester as a constituent monomer component, but is preferably a copolymer of a monomer having an alcoholic hydroxyl group or a carboxy group that functions as a cross-linking point. .

共重合性モノマーとして水酸基を有するモノマーを含んでいると、無機フィラーの分散性が良好となり、また、貼付の際、被着体への濡れ性が向上し、その結果、熱伝導性の向上が期待できる。
上記水酸基を有するモノマーとしては、例えば、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸4-ヒドロキシブチル、(メタ)アクリル酸6-ヒドロキシヘキシル、(メタ)アクリル酸8-ヒドロキシオクチル、(メタ)アクリル酸10-ヒドロキシデシル、(メタ)アクリル酸12-ヒドロキシラウリル、(4-ヒドロキシメチルシクロへキシル)メチルメタクリレートなどが挙げられる。中でも、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸4-ヒドロキシブチルが好ましい。なお、水酸基含有モノマーは、単独で又は2種以上組み合わせて用いることができる。
水酸基を有するモノマーは、全モノマー成分(100質量%)中、0.1~10質量%であることが好ましく、1~5質量%であることがより好ましい。
When a monomer having a hydroxyl group is contained as a copolymerizable monomer, the dispersibility of the inorganic filler is improved, and the wettability to the adherend during application is improved. As a result, the thermal conductivity is improved. I can expect it.
Examples of the monomer having a hydroxyl group include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, 6-hydroxyhexyl (meth)acrylate, 8-hydroxyoctyl (meth)acrylate, 10-hydroxydecyl (meth)acrylate, 12-hydroxylauryl (meth)acrylate, (4-hydroxymethylcyclohexyl)methyl (meth)acrylate methacrylate and the like. Among them, 2-hydroxyethyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, and 4-hydroxybutyl (meth)acrylate are preferred. In addition, a hydroxyl-containing monomer can be used individually or in combination of 2 or more types.
The monomer having a hydroxyl group preferably accounts for 0.1 to 10% by mass, more preferably 1 to 5% by mass, of the total monomer components (100% by mass).

上記カルボキシ基を有するモノマーは、1分子中にカルボキシ基を1つ以上有するモノマーであるが、無水物の形態であってもよい。上記カルボキシ基を有するモノマーとしては、特に限定されないが、例えば、(メタ)アクリル酸、イタコン酸、マレイン酸、フマル酸、クロトン酸、イソクロトン酸、無水マレイン酸、無水イタコン酸などが挙げられる。なお、カルボキル基含有モノマーは、単独で又は2種以上組み合わせて用いることができる。
カルボキシ基を有するモノマーは、全モノマー成分(100質量%)中、0.1~15質量%であることが好ましく、1~10質量%であることがより好ましい。
The monomer having a carboxy group is a monomer having one or more carboxy groups in one molecule, and may be in the form of an anhydride. Examples of the carboxy group-containing monomer include, but are not limited to, (meth)acrylic acid, itaconic acid, maleic acid, fumaric acid, crotonic acid, isocrotonic acid, maleic anhydride, and itaconic anhydride. Carboxyl group-containing monomers may be used alone or in combination of two or more.
A monomer having a carboxy group is preferably 0.1 to 15% by mass, more preferably 1 to 10% by mass, based on the total monomer components (100% by mass).

アクリル樹脂を構成する全モノマー成分として、他に窒素を有するモノマー、スルホン酸基を有するモノマー、リン酸基を有するモノマーなどの極性官能基を有するモノマーや、スチレンなども用いることができる。 As all the monomer components constituting the acrylic resin, a monomer having a polar functional group such as a monomer having nitrogen, a monomer having a sulfonic acid group, a monomer having a phosphoric acid group, or styrene can also be used.

成膜性の観点からアクリル樹脂の重量平均分子量(Mw)は、100,000以上であることが好ましく、300,000以上であることがより好ましく、500,000以上であることが好ましい。また、シート状基材β形成用の分散液の剥離性シートへの塗工適性の点からアクリル樹脂の重量平均分子量(Mw)は2,000,000万以下であることが好ましく、1300,000以下であることがより好ましい。100,000以上であることで耐久性が十分に発揮し、2,000,000以下であることで膜の作製(塗工)に適した流動性や乾燥性を得ることができる。 From the viewpoint of film-forming properties, the weight average molecular weight (Mw) of the acrylic resin is preferably 100,000 or more, more preferably 300,000 or more, and preferably 500,000 or more. Further, from the viewpoint of the coating suitability of the dispersion liquid for forming the sheet-like substrate β onto the release sheet, the weight average molecular weight (Mw) of the acrylic resin is preferably 2,000,000 or less, more preferably 1,300,000. The following are more preferable. When it is 100,000 or more, the durability is sufficiently exhibited, and when it is 2,000,000 or less, fluidity and drying properties suitable for film production (coating) can be obtained.

また、アクリル樹脂のガラス転移温度は(Tg)は、0℃~―70℃であることが好ましく、-20~―70℃であることがより好ましく、-40~-70℃であることがさらに好ましい。アクリル樹脂のガラス転移温度は、「Polymer Handbook」(J.Brandrup及びE.H.Immergut編、Interscience Publishers)に記載の各モノマーのホモポリマーのガラス転移温度を引用し、使用するアクリル樹脂のモノマー構成からFox式により計算された値を指す。 The glass transition temperature (Tg) of the acrylic resin is preferably 0°C to -70°C, more preferably -20 to -70°C, and further preferably -40 to -70°C. preferable. The glass transition temperature of the acrylic resin refers to the glass transition temperature of the homopolymer of each monomer described in "Polymer Handbook" (edited by J.Brandrup and EH Immergut, Interscience Publishers), and the monomer composition of the acrylic resin to be used. to the value calculated by the Fox formula.

<架橋剤>
熱伝導性粘着層α1、α2の形成に用いられる架橋剤としては、シート状基材βの形成用に例示したものが同様に例示できる。
架橋可能なポリマーとして水酸基を有するアクリル樹脂を用い、架橋剤としてイソシアネート基を有する化合物を用いる場合、イソシアネート基を有する化合物は、アクリル樹脂中の水酸基1molに対し、イソシアネート基が0.01~1molとなる範囲で配合することが好ましく、0.05~0.5molの範囲がより好ましい。
架橋可能なポリマーとしてカルボキシ基を有するアクリル樹脂を用い、架橋剤としてエポキシ基を有する化合物を用いる場合、エポキシ基を有する化合物は、アクリル樹脂中のカルボキシ基1molに対し、エポキシ基が0.01~1molとなる範囲で配合することが好ましく、0.05~0.5molの範囲がより好ましい。
上記範囲にすることによって、ポリマー間の架橋が十分に形成され、加熱環境下でも粘着層が完全には溶融せず、粘着テープとして剥離しない。特にイソシアネート硬化剤を選択する場合は、幅広い被着体で良好な表面親和性を示し、安定した粘着物性が発現できる。
なお、架橋剤として用いられるエポキシ基を有する化合物としては、ポリマー間で強固な架橋を作りやすく、より高温かつ高湿環境下で粘着物性の安定のために好ましく選択できる。
<Crosslinking agent>
As the cross-linking agent used for forming the heat-conductive adhesive layers α1 and α2, those exemplified for forming the sheet-like base material β can be similarly exemplified.
When an acrylic resin having a hydroxyl group is used as a crosslinkable polymer and a compound having an isocyanate group is used as a crosslinking agent, the compound having an isocyanate group has an isocyanate group of 0.01 to 1 mol per 1 mol of the hydroxyl group in the acrylic resin. It is preferable to blend in the range of 0.05 to 0.5 mol, more preferably.
When an acrylic resin having a carboxy group is used as a crosslinkable polymer and a compound having an epoxy group is used as a cross-linking agent, the compound having an epoxy group has an epoxy group content of 0.01 to 0.01 per 1 mol of the carboxy group in the acrylic resin. It is preferably blended in the range of 1 mol, more preferably in the range of 0.05 to 0.5 mol.
Within the above range, cross-linking between polymers is sufficiently formed, the adhesive layer does not melt completely even in a heated environment, and the adhesive tape does not peel off. Especially when an isocyanate curing agent is selected, it exhibits good surface affinity on a wide range of adherends, and can exhibit stable adhesive physical properties.
The epoxy group-containing compound used as a cross-linking agent can be preferably selected because it facilitates formation of strong cross-links between polymers and stabilizes adhesive physical properties under higher temperature and higher humidity environments.

熱伝導性粘着層α1、α2は、架橋可能なポリマーの溶液または分散液と、絶縁性の無機フィラーと、架橋剤とを含む熱伝導性粘着層α1、α2形成用の分散液を用いて形成することができる。
熱伝導性粘着層α1、α2形成用の分散液は、架橋可能なポリマー100質量部に対し、絶縁性の無機フィラーを100~500質量部含むことが好ましく、150~450質量部含むことがより好ましく、200~400質量部含むことがさらに好ましい。形成される熱伝導性粘着層α1、α2の熱伝導性の点から絶縁性の無機フィラーの含有量は多い方が好ましい。熱伝導性粘着層α1、α2形成用の分散液の塗工適性の点から絶縁性の無機フィラーの含有量は多過ぎないことが好ましい。
The thermally conductive adhesive layers α1 and α2 are formed using a dispersion for forming the thermally conductive adhesive layers α1 and α2 containing a crosslinkable polymer solution or dispersion, an insulating inorganic filler, and a crosslinking agent. can do.
The dispersion for forming the thermally conductive adhesive layers α1 and α2 preferably contains 100 to 500 parts by mass, more preferably 150 to 450 parts by mass, of an insulating inorganic filler with respect to 100 parts by mass of the crosslinkable polymer. More preferably, it contains 200 to 400 parts by mass. From the viewpoint of the thermal conductivity of the thermally conductive adhesive layers α1 and α2 to be formed, the content of the insulating inorganic filler is preferably large. The content of the insulating inorganic filler is preferably not too large from the viewpoint of coating suitability of the dispersion for forming the thermally conductive adhesive layers α1 and α2.

熱伝導性粘着層α1、α2形成用の分散液に含まれる液状媒体は、架橋可能なポリマーおよび架橋剤を溶解または分散し得るものであればよく、メチルエチルケトン、酢酸エチル、イソプロピルアルコール等が例示できる。
熱伝導性粘着層α1、α2形成用の分散液は、架橋可能なポリマーの溶液または分散液に、絶縁性の無機フィラーを加え、分散した後、架橋剤や架橋剤を含む溶液を加えることによって得ることができる。熱伝導性粘着層α1、α2形成用の分散液には、分散剤、レベリング剤等の添加剤を適宜加えることもできる。分散には、攪拌モーター、らいかい機、三本ロール、ボールミル、自転・公転ミル、遊星ミル、ビーズミル等の機器を用いることができる。
The liquid medium contained in the dispersion for forming the thermally conductive adhesive layers α1 and α2 may be any medium as long as it can dissolve or disperse the crosslinkable polymer and the crosslinker, and examples thereof include methyl ethyl ketone, ethyl acetate, and isopropyl alcohol. .
The dispersion liquid for forming the thermally conductive adhesive layers α1 and α2 is obtained by adding an insulating inorganic filler to a crosslinkable polymer solution or dispersion liquid, dispersing it, and then adding a crosslinker or a solution containing a crosslinker. Obtainable. Additives such as a dispersing agent and a leveling agent may be appropriately added to the dispersion for forming the heat conductive adhesive layers α1 and α2. Devices such as a stirring motor, slaked mill, triple roll, ball mill, rotation/revolution mill, planetary mill, and bead mill can be used for dispersion.

熱伝導性粘着層α1、α2には、タックや被着体への密着性、粘着力の増強を目的として、タッキファイヤー(粘着付与剤)を含有させてもよい。タッキファイヤーとしては、例えば、ポリブテン類、ロジン系樹脂、テルペン系樹脂、石油系樹脂(例えば、石油系脂肪族炭化水素樹脂、石油系芳香族炭化水素樹脂、石油系脂肪族・芳香族共重合炭化水素樹脂、石油系脂環族炭化水素樹脂(芳香族炭化水素樹脂を水素添加したもの)等)、クマロン系樹脂等が挙げられる。相溶性の点において、石油系樹脂、ロジン系樹脂が好ましい。タッキファイヤーは、1種又は2種以上を組み合わせて用いてもよい。 The thermally conductive adhesive layers α1 and α2 may contain a tackifier (tackifier) for the purpose of enhancing tackiness, adhesion to adherends, and adhesive strength. Examples of tackifiers include polybutenes, rosin-based resins, terpene-based resins, petroleum-based resins (e.g., petroleum-based aliphatic hydrocarbon resins, petroleum-based aromatic hydrocarbon resins, petroleum-based aliphatic/aromatic copolymerization carbonization hydrogen resins, petroleum-based alicyclic hydrocarbon resins (hydrogenated aromatic hydrocarbon resins), coumarone-based resins, and the like. In terms of compatibility, petroleum-based resins and rosin-based resins are preferred. You may use a tackifier in combination of 1 type or 2 or more types.

熱伝導性粘着層α1、α2中のタッキファイヤーの含有量は、主となる架橋可能なポリマーの固形分100質量部に対して1質量部以上であることが好ましく、30質量部%以下であることがより好ましい。1質量部以上配合することでタックや被着体への密着性、粘着力の増強の性質が発現しやすく、30質量部以下とすることで主となる粘着層を形成するための架橋反応を阻害したり、製品の加熱使用時の低分子成分のブリードや端部のタレを抑制や打ち抜き加工等で使用する刃の汚染を少なくすることができる。 The content of the tackifier in the heat conductive adhesive layers α1 and α2 is preferably 1 part by mass or more and 30 parts by mass or less based on 100 parts by mass of the solid content of the main crosslinkable polymer. is more preferable. By blending 1 part by mass or more, the properties of tackiness, adhesion to adherends, and enhancement of adhesive strength are likely to be expressed, and by blending 30 parts by mass or less, the cross-linking reaction for forming the main adhesive layer is performed. It is possible to suppress the bleeding of low-molecular-weight components when the product is heated and sagging, and to reduce the contamination of the blades used in punching and the like.

<<熱伝導性粘着シート>>
本発明の熱伝導性粘着シートは、シート状基材βの両面に熱伝導性粘着層α1、α2を有する熱伝導性粘着シートであって、シート状基材βと熱伝導性粘着層α1、α2との合計の厚みが50μm以下である。シート状基材βと熱伝導性粘着層α1、α2との合計の厚みは、より薄いことが好ましいが、厚みの安定性や取り扱いのし易さ等の点から30~49μmが好ましい。
シート状基材βの厚みや熱伝導性粘着層α1、α2の厚みについては前述した通りである。
<<Heat conductive adhesive sheet>>
The thermally conductive adhesive sheet of the present invention is a thermally conductive adhesive sheet having thermally conductive adhesive layers α1 and α2 on both sides of a sheet-like substrate β, wherein the sheet-like substrate β and the thermally conductive adhesive layer α1, The total thickness with α2 is 50 μm or less. The total thickness of the sheet-like substrate β and the thermally conductive adhesive layers α1 and α2 is preferably thinner, but preferably 30 to 49 μm from the standpoints of thickness stability and ease of handling.
The thickness of the sheet-like substrate β and the thickness of the thermally conductive adhesive layers α1 and α2 are as described above.

本発明の熱伝導性粘着シートは、0℃~150℃の温度領域における貯蔵弾性率の変曲点のうち最も高温側の変曲点の温度T0よりも30℃高い温度T1おける貯蔵弾性率E’1と、前記変曲点の温度T0よりも50℃高い温度T2ける貯蔵弾性率E’2 との比:E’1/E’2が1~3である。なお、明確な変曲点が観察されない場合、温度T0は150℃とする。
温度T1おける貯蔵弾性率E’1とは、高分子同士離れて動き始め、半液状化した状態となる温度である。また、温度T2おける貯蔵弾性率E’2は、液状化が進みさらに大きく弾性率が下がった状態E’1≫E’2となる。従って、本発明において、温度T1おける貯蔵弾性率E’1と温度T2おける貯蔵弾性率E’2との比:E’1/E’2は1~3であることが重要であり、T1からT2への温度上昇において液状化が進んでいない事を示し、すなわち高分子同士が十分に架橋していることを示す。そのため、高温環境で本発明の熱伝導性粘着シートを使用しても基材がテープ全体を十分に支持し、性能を保つ事が出来る。E’1/E’2は1~1.5の範囲であることがさらに好ましい。
The thermally conductive pressure-sensitive adhesive sheet of the present invention exhibits storage elasticity at a temperature T 1 that is 30° C. higher than the temperature T 0 of the highest inflection point of the storage modulus in the temperature range of 0° C. to 150° C. The ratio of the modulus E′ 1 to the storage elastic modulus E ′ 2 at a temperature T 2 50° C. higher than the inflection point temperature T 0 : E′ 1 /E′ 2 is 1-3. Note that the temperature T 0 is set to 150° C. when no clear inflection point is observed.
The storage modulus E′ 1 at temperature T 1 is the temperature at which the polymers begin to move apart and become semi-liquid. Further, the storage modulus E' 2 at the temperature T 2 becomes E' 1 >>E' 2 , in which the liquefaction progresses and the modulus of elasticity further drops significantly. Therefore, in the present invention, it is important that the ratio of the storage modulus E'1 at temperature T1 and the storage modulus E'2 at temperature T2 : E'1 / E'2 is 1 to 3, It shows that liquefaction does not progress when the temperature rises from T 1 to T 2 , that is, the polymers are sufficiently crosslinked. Therefore, even if the thermally conductive pressure-sensitive adhesive sheet of the present invention is used in a high-temperature environment, the base material sufficiently supports the entire tape and the performance can be maintained. More preferably, E' 1 /E' 2 is in the range of 1 to 1.5.

本発明の熱伝導性粘着シートにおける、絶縁性の無機フィラーを含むシート状基材βの厚みは1~10μmであり、3~10μmであることが好ましく、3~8μmであることがより好ましい。
本発明の熱伝導性粘着シートにおけるシート状基材βは、その断面に観察される絶縁性の無機フィラーのうち、80%以上の粒子のアスペクト比:長径aβ/短径bβが1~2であり、アスペクト比が1~1.5であることが好ましく、アスペクト比が1~1.3であることがより好ましい。シート状基材β中の無機フィラーのアスペクト比が1~2であることによって、薄いシート状基材βの伸張性を良好なものとすることができ、熱伝導性粘着シートとしての貼付性能を向上できる。
シート状基材βの断面に観察される絶縁性の無機フィラーのアスペクト比は、走査型電子顕微鏡を用い、一視野において50個程度の粒子が観察できる倍率にて熱伝導性粘着シートにおけるシート状基材βの断面を観察し、視野のほぼ中央の任意の一点から外部に向かってらせん状に順番に30個の粒子を選択し、それぞれの粒子の長径aβと短径bβとをそれぞれ求め、個々の粒子のアスペクト比:長径aβ/短径bβを求める。
In the thermally conductive pressure-sensitive adhesive sheet of the present invention, the sheet-like substrate β containing an insulating inorganic filler has a thickness of 1 to 10 μm, preferably 3 to 10 μm, more preferably 3 to 8 μm.
The sheet-like substrate β in the thermally conductive pressure-sensitive adhesive sheet of the present invention has an aspect ratio of 80% or more of the insulating inorganic filler particles observed in its cross section: major diameter a β / minor diameter b β of 1 to 2, and the aspect ratio is preferably 1 to 1.5, more preferably 1 to 1.3. When the aspect ratio of the inorganic filler in the sheet-like base material β is 1 to 2, the extensibility of the thin sheet-like base material β can be improved, and the adhesion performance as a thermally conductive pressure-sensitive adhesive sheet can be improved. can improve.
The aspect ratio of the insulating inorganic filler observed in the cross section of the sheet-like substrate β was measured using a scanning electron microscope at a magnification that allows observation of about 50 particles in one field of view. Observe the cross section of the base material β, select 30 particles in order spirally outward from an arbitrary point near the center of the field of view, and measure the major axis a β and the minor axis b β of each particle. Then, the aspect ratio of each particle: major axis a β /minor axis b β is determined.

また、シート状基材βの薄さと伸張性、熱伝導性粘着シートとしての貼付性能の点から、本発明の熱伝導性粘着シートにおけるシート状基材βは、シート状基材βの断面に観察される絶縁性の無機フィラーの平均粒子径、即ち長径aβと短径bβとの和の1/2である粒子径の平均値がシート状基材βの厚みの60%以下であり、前記絶縁性の無機フィラーの最大径aβ maxがシート状基材βの厚み未満であることが好ましい。 In addition, from the viewpoint of the thinness and extensibility of the sheet-like substrate β, and the sticking performance as a thermally conductive adhesive sheet, the sheet-like substrate β in the thermally conductive adhesive sheet of the present invention has a cross section of the sheet-like substrate β. The average particle diameter of the observed insulating inorganic filler, that is, the average value of the particle diameter that is 1/2 of the sum of the major diameter and the minor diameter is 60% or less of the thickness of the sheet-like substrate β. , the maximum diameter a β max of the insulating inorganic filler is preferably less than the thickness of the sheet-like substrate β.

本発明の熱伝導性粘着シートは、例えば以下のようにして形成することができる。
即ち、熱伝導性粘着層α1、α2形成用の分散液をそれぞれ剥離性シート上に塗布し、加熱することによって、液状媒体を除去し、架橋可能なポリマーと架橋剤とを反応させ、反応生成物である硬化物中に絶縁性の無機フィラーを含む熱伝導性粘着層α1、α2を剥離性シート上にそれぞれ形成する。別途、剥離性シート上に形成しておいたシート状基材βに、熱伝導性粘着層α1を重ね合わせ、剥離性シート/シート状基材β/熱伝導性粘着層α1/剥離性シートという積層構成の中間体を得、次いで、シート状基材βを覆っていた剥離性シートを剥がし、露出したシート状基材βに熱伝導性粘着層α2を重ね合わせ、剥離性シート/熱伝導性粘着層α2/シート状基材β/熱伝導性粘着層α1/剥離性シートという積層構成の積層体を得ることができる。つまり、本発明の熱伝導性粘着シートの両面が剥離性シートで覆われた積層体を得ることができる。
The thermally conductive adhesive sheet of the present invention can be formed, for example, as follows.
That is, the dispersions for forming the thermally conductive adhesive layers α1 and α2 are each applied onto a release sheet and heated to remove the liquid medium and react the crosslinkable polymer with the crosslinker to form a reaction. Thermally conductive adhesive layers α1 and α2 each containing an insulating inorganic filler in a cured product are formed on a release sheet. Separately, the thermally conductive adhesive layer α1 is superimposed on the sheet-like substrate β formed on the release sheet, and a release sheet/sheet-like substrate β/thermally conductive adhesive layer α1/release sheet is formed. An intermediate having a laminated structure is obtained, then the release sheet covering the sheet-like substrate β is peeled off, and the exposed sheet-like substrate β is overlaid with the thermally conductive adhesive layer α2 to form a release sheet/thermally conductive adhesive layer α2. A laminate having a laminate structure of adhesive layer α2/sheet-like substrate β/thermal conductive adhesive layer α1/releasable sheet can be obtained. That is, it is possible to obtain a laminate in which both sides of the thermally conductive pressure-sensitive adhesive sheet of the present invention are covered with a release sheet.

あるいは、本発明の熱伝導性粘着シートは、以下のような方法で得ることもできる。
即ち、まず、上述の場合と同様にして、熱伝導性粘着層α2形成用の分散液を、剥離性シート上に塗布し、加熱し、剥離性シート上に熱伝導性粘着層α2を形成する。別途、熱伝導性粘着層α1形成用の分散液を、シート状基材β上に塗布し、加熱することによって、液状媒体を除去し、架橋可能なポリマーと架橋剤とを反応させ、熱伝導性粘着層α1をシート状基材β上に形成し、形成された熱伝導性粘着層α1の表面を剥離性シートで覆い、剥離性シート/シート状基材β/熱伝導性粘着層α1/剥離性シートという積層構成の中間体を得る。次いで、シート状基材βを覆っていた剥離性シートを剥がし、露出したシート状基材βに熱伝導性粘着層α2を重ね合わせ、剥離性シート/熱伝導性粘着層α2/シート状基材β/熱伝導性粘着層α1/剥離性シートという積層構成の積層体を得ることができる。つまり、本発明の熱伝導性粘着シートの両面が剥離性シートで覆われた積層体を得ることができる。
Alternatively, the thermally conductive pressure-sensitive adhesive sheet of the present invention can also be obtained by the following method.
That is, first, in the same manner as described above, a release sheet is coated with a dispersion liquid for forming the thermally conductive adhesive layer α2 and heated to form a thermally conductive adhesive layer α2 on the release sheet. . Separately, a dispersion liquid for forming the thermally conductive adhesive layer α1 is applied onto the sheet-like substrate β, and heated to remove the liquid medium, react the crosslinkable polymer and the crosslinker, and increase heat conduction. The thermally conductive adhesive layer α1 is formed on the sheet-like substrate β, the surface of the formed thermally conductive adhesive layer α1 is covered with a release sheet, and the release sheet/sheet-like substrate β/thermally conductive adhesive layer α1/ An intermediate body having a layered structure called a peelable sheet is obtained. Next, the release sheet covering the sheet-like substrate β is peeled off, and the exposed sheet-like substrate β is overlaid with the thermally conductive adhesive layer α2 to obtain a release sheet/thermally conductive adhesive layer α2/sheet-like substrate. A laminate having a laminate structure of β/thermally conductive adhesive layer α1/releasable sheet can be obtained. That is, it is possible to obtain a laminate in which both sides of the thermally conductive pressure-sensitive adhesive sheet of the present invention are covered with a release sheet.

前記積層体から両面を覆っていた剥離性シートを剥がし、本発明の熱伝導性粘着シートを用いて、発熱部材と放熱部材とを貼付することによって、発熱部材から生じた熱を効率的に放熱部材に伝えることができる。 The peelable sheets covering both sides of the laminate are peeled off, and the heat-generating member and the heat-dissipating member are attached using the thermally conductive adhesive sheet of the present invention, thereby efficiently dissipating the heat generated from the heat-generating member. can be transmitted to the component.

以下、実施例および比較例により、本発明の実施の形態を詳しく説明する。尚、本発明は、これらの実施例のみに限定されるものではない。以下、特にことわらない限り「部」は「質量部」を、「%」は「質量%」を示す。また、表に示す各材料の配合量は全て溶剤を抜いた固形分での値とする。 Hereinafter, embodiments of the present invention will be described in detail based on examples and comparative examples. It should be noted that the present invention is not limited only to these examples. Hereinafter, "part" means "mass part" and "%" means "mass %" unless otherwise specified. In addition, the compounding amount of each material shown in the table is all the value of the solid content excluding the solvent.

(シート状基材βの作製)
〈シート状基材β-1の作製〉
450mL容量のガラス瓶にて、無水マレイン酸変性スチレン系エラストマー樹脂(クレイトン(株)製FG1901、表1ではSEBSと略記)のペレット10gをトルエン:メチルエチルケトン(以下、MEKという)=9:1(質量比)の溶媒で溶解させ固形分約10%の溶液とした。次いで、前記溶液100gに対し、アドマテックス社アルミナ粉末AO-502(平均粒子径:0.3μm)15.1g、および直径5mmサイズのガラスビーズを100g加え、湿式メディア分散機スキャンデックスで60分間振盪させ、アルミナ粉末を分散させ、ガラスビーズを除去し、分散液を作った。
前記分散液に対し、アジリジン系硬化剤(ケミタイトPZ-33)0.06g、および希釈用のトルエン:MEK=9:1(質量比)の溶媒を加え、ミックスローターで20分間混合し、固形分約20%のシート状基材β-1形成用塗液を作製した。
シート状基材β-1形成用塗液を東レ(株)製剥離フィルム(セラピールMF、厚み50μm)の剥離処理面に、ドクターブレードで塗工し、100℃のオーブンで2分間乾燥させた後、40℃で3日間養生させ、剥離フィルム上に厚みが約5μmのシート状基材β-1を作製した。
(Preparation of sheet-like base material β)
<Preparation of sheet-like base material β-1>
In a 450 mL glass bottle, 10 g of pellets of a maleic anhydride-modified styrene-based elastomer resin (FG1901 manufactured by Kraton Co., Ltd., abbreviated as SEBS in Table 1) were mixed with toluene: methyl ethyl ketone (hereinafter referred to as MEK) = 9: 1 (mass ratio). ) to give a solution with a solid content of about 10%. Next, 15.1 g of Admatechs alumina powder AO-502 (average particle size: 0.3 μm) and 100 g of glass beads with a diameter of 5 mm are added to 100 g of the solution, and shaken for 60 minutes with a wet media dispersing machine Scandex. to disperse the alumina powder and remove the glass beads to prepare a dispersion liquid.
To the dispersion liquid, 0.06 g of an aziridine-based curing agent (Kemitite PZ-33) and a solvent of toluene for dilution: MEK = 9:1 (mass ratio) are added and mixed with a mix rotor for 20 minutes to obtain a solid content. About 20% of the coating liquid for forming the sheet-like substrate β-1 was prepared.
The coating solution for forming the sheet-like substrate β-1 was applied to the release-treated surface of a release film (Therapeal MF, thickness 50 μm) manufactured by Toray Industries, Inc. with a doctor blade, and dried in an oven at 100° C. for 2 minutes. , and cured at 40° C. for 3 days to prepare a sheet-like substrate β-1 having a thickness of about 5 μm on the release film.

〈シート状基材β-2、β-3の作製〉
表1に示すフィラー配合量となるようアルミナ粉末AO-502フィラーを加えたこと以外は、β-1と同様の方法で作製した。
<Preparation of sheet-like substrates β-2 and β-3>
It was produced in the same manner as β-1 except that alumina powder AO-502 filler was added so that the filler content shown in Table 1 was obtained.

〈シート状基材β-4の作製〉
β-2と同じシート状基材β-2形成用塗液を用い、その塗液を#500メッシュの金網で自然ろ過により粗粒を除去した以外は、表1に示す厚みとなるようにドクターブレードのクリアランスを調整した以外はβ-1と同様の方法でβ-4を作製した。
<Preparation of sheet-like substrate β-4>
The same coating liquid for forming the sheet-like substrate β-2 as β-2 was used, and the coating liquid was filtered through a wire mesh of #500 mesh to remove coarse particles by natural filtration. β-4 was made in the same manner as β-1 except that the blade clearance was adjusted.

〈シート状基材β-5~β-7の作製〉
β-2と同じシート状基材β-2形成用塗液を用い、表1に示す厚みとなるようにドクターブレードのクリアランスを調整した以外はβ-1と同様の方法でβ-5~β-7を作製した。
<Production of sheet-like substrates β-5 to β-7>
β-5 to β in the same manner as β-1 except that the same coating liquid for forming the sheet-like substrate β-2 as β-2 was used and the clearance of the doctor blade was adjusted so that the thickness shown in Table 1 was obtained. -7 was made.

〈シート状基材β-8~β-10の作製〉
β-8はフィラーの種類をデンカ(株)製の球状アルミナDAM-03(平均粒子径:6.8μm)に、
β-9はフィラーの種類をThrutek(株)製の窒化アルミニウムAlN020AF(平均粒子径:2.7μm)に、
β-10はフィラーの種類を協和化学(株)製の酸化マグネシウム パイロキスマ5301K(平均粒子径:3μm)に、
それぞれ変更し、表1に示す厚みに調整した以外はβ-1と同様の方法で作製した。
<Production of sheet-like substrates β-8 to β-10>
For β-8, the type of filler is spherical alumina DAM-03 (average particle size: 6.8 μm) manufactured by Denka Co., Ltd.
For β-9, the type of filler is aluminum nitride AlN020AF (average particle size: 2.7 μm) manufactured by Thrutek Co., Ltd.
For β-10, the type of filler is magnesium oxide pyrokisma 5301K (average particle size: 3 μm) manufactured by Kyowa Kagaku Co., Ltd.
Each was changed and prepared in the same manner as β-1 except that the thickness was adjusted as shown in Table 1.

〈シート状基材β-11~β-14の作製〉
450mL容量のガラス瓶にポリビニルブチラール樹脂(積水化学工業(株)製エスレックBHS、表1ではPVBと略記)の粉末10gを、トルエン:イソプロピルアルコール(以下、IPAという)=3:7(質量比)の溶媒で溶解させ固形分約10%の溶液とした。次いで、アドマテックス社アルミナ粉末AO-502(平均粒子径:0.3μm)25.3g、および直径5mmサイズのガラスビーズを100g加え、湿式メディア分散機スキャンデックスで30分間振盪させ、アルミナ粉末を分散させ、ガラスビーズを除去し、分散液を作った。
前記分散液に対し、イソシアネート硬化剤(スミジュールN3900、HDIヌレート体)0.81g、および希釈用のトルエン:IPA=3:7の溶媒を加え、ミックスローターで20分混合し、固形分約20%のシート状基材β-11形成用塗液を作製した。
得られたシート状基材β-11形成用塗液を用い、形成されるシート状基材の厚みが表1に示す厚みとなるようにドクターブレードのクリアランスを調整した以外はβ-1と同様の方法でβ-11~β-14を作製した。
<Preparation of sheet-like substrates β-11 to β-14>
10 g of powder of polyvinyl butyral resin (S-Lec BHS manufactured by Sekisui Chemical Co., Ltd., abbreviated as PVB in Table 1) is added to a 450 mL glass bottle with toluene: isopropyl alcohol (hereinafter referred to as IPA) = 3: 7 (mass ratio). It was dissolved in a solvent to obtain a solution with a solid content of about 10%. Next, 25.3 g of Admatechs alumina powder AO-502 (average particle size: 0.3 μm) and 100 g of glass beads with a diameter of 5 mm are added, and shaken for 30 minutes with a wet media dispersing machine Scandex to disperse the alumina powder. and the glass beads were removed to form a dispersion.
To the dispersion liquid, 0.81 g of an isocyanate curing agent (Sumidur N3900, HDI nurate) and a solvent of toluene:IPA=3:7 for dilution were added and mixed with a mix rotor for 20 minutes to give a solid content of about 20. % of the sheet-like substrate β-11 forming coating liquid was prepared.
The same as β-1, except that the obtained sheet-like base material β-11 forming coating solution was used and the clearance of the doctor blade was adjusted so that the thickness of the sheet-like base material to be formed became the thickness shown in Table 1. β-11 to β-14 were produced by the method of.

〈シート状基材β-15の作製〉
ポリビニルブチラール樹脂の粉末10gの代わりに、ポリエステル樹脂(東洋紡(株)製バイロン200)10gを用いてトルエン:IPA=9:1の溶媒で溶解させ固形分約10%の溶液とし、アドマテックス社アルミナ粉末AO-502(平均粒子径:0.3μm)を15.1gとした以外は、シート状基材β-11の場合と同様にして、固形分約20%のシート状基材β-15形成用塗液を作製し、約5μmの厚みのシート状基材β-15を作製した。
<Preparation of sheet-like base material β-15>
Instead of 10 g of polyvinyl butyral resin powder, 10 g of polyester resin (Vylon 200 manufactured by Toyobo Co., Ltd.) was dissolved in a solvent of toluene:IPA = 9: 1 to make a solution with a solid content of about 10%. A sheet-like substrate β-15 having a solid content of about 20% was formed in the same manner as the sheet-like substrate β-11 except that the powder AO-502 (average particle size: 0.3 μm) was 15.1 g. A sheet-like substrate β-15 having a thickness of about 5 μm was prepared.

〈シート状基材β-16の作製〉
トルエン中で、ポリエステル系ジオール「クラレ株式会(株)製、P-2011」195g、ジメチロールブタン酸7g、およびイソホロンジイソシアネート40gを反応させてなる、末端にイソシアネート基を有するウレタンプレポリマーの溶液を得、次に、イソホロンジアミン6部、ジ-n-ブチルアミン0.6g、および2-プロパノール113gを反応させ、トルエン、2-プロパノールを加えて、固形分約25%のポリエステル系ポリウレタン樹脂の溶液を得た。ポリエステル系ポリウレタン樹脂のMwは100,000、Tgは-5℃、酸価は10mgKOH/gであった。
固形分約10%のスチレン系エラストマー樹脂の代わりに、前記の固形分約10%のポリエステル系ポリウレタン樹脂の溶液を用いた以外は、シート状基材β-1の場合と同様にして、固形分約20%のシート状基材β-16形成用塗液を作製し、約5μmの厚みのシート状基材β-16を作製した。
<Preparation of sheet-like base material β-16>
A solution of a urethane prepolymer having an isocyanate group at its end, obtained by reacting 195 g of a polyester diol "P-2011, manufactured by Kuraray Co., Ltd.", 7 g of dimethylolbutanoic acid, and 40 g of isophorone diisocyanate in toluene, was prepared. Next, 6 parts of isophoronediamine, 0.6 g of di-n-butylamine, and 113 g of 2-propanol are reacted, and toluene and 2-propanol are added to obtain a solution of a polyester polyurethane resin having a solid content of about 25%. Obtained. The polyester polyurethane resin had an Mw of 100,000, a Tg of -5°C and an acid value of 10 mgKOH/g.
In the same manner as in the case of the sheet-like substrate β-1, the solid content A sheet-like base material β-16 forming coating liquid of about 20% was prepared, and a sheet-like base material β-16 having a thickness of about 5 μm was prepared.

〈比較例用シート状基材β-101の作製〉
イソシアネート硬化剤(スミジュールN3900、HDIヌレート体)を配合しない以外は、シート状基材β-11形成用塗液の場合と同様にして固形分約20%の比較例用シート状基材β-101形成用塗液を作製し、厚み約5μmの比較例用シート状基材β-101を作成した。
<Preparation of sheet-like base material β-101 for comparative example>
Comparative example sheet-like base material β- having a solid content of about 20% was prepared in the same manner as the coating solution for forming sheet-like base material β-11 except that the isocyanate curing agent (Sumidur N3900, HDI nurate) was not blended. A coating liquid for forming 101 was prepared, and a sheet-like base material β-101 for comparison having a thickness of about 5 μm was prepared.

〈比較例用シート状基材β-102の作製〉
アドマテックス社アルミナ粉末AO-502(平均粒子径:0.3μm)を配合しない以外は、シート状基材β-11形成用塗液の場合と同様にして固形分約20%の比較例用シート状基材β-102形成用塗液を作製し、厚み約5μmの比較例用シート状基材β-102を作成した。
<Preparation of sheet-like base material β-102 for comparative example>
A comparative sheet with a solid content of about 20% was prepared in the same manner as the coating liquid for forming the sheet-like substrate β-11, except that Admatechs alumina powder AO-502 (average particle size: 0.3 μm) was not blended. A coating liquid for forming a base material β-102 was prepared, and a sheet-like base material β-102 for comparison with a thickness of about 5 μm was prepared.

〈比較例用シート状基材β-103の作製〉
アドマテックス社アルミナ粉末AO-502(平均粒子径:0.3μm)25.3gの代わりに昭和電工(株)製の窒化ホウ素UHP-1K(平均粒子径:4μm)11gを使用した以外は、シート状基材β-11形成用塗液の場合と同様にして固形分約20%の比較例用シート状基材β-103形成用塗液を作製し、厚み約15μmの比較例用シート状基材β-103を作成した。
<Preparation of sheet-like base material β-103 for comparative example>
Sheet A coating solution for forming a sheet-like base material β-103 for comparative examples having a solid content of about 20% was prepared in the same manner as the coating solution for forming a base material β-11, and a sheet-like base material for comparative examples having a thickness of about 15 μm was prepared. Material β-103 was created.

[シート状基材β-1等の断面観察]
積層された剥離フィルムとともにシート状基材β-1等を液体窒素に1分間浸漬し、液体窒素内でピンセットを用いてカミソリをシート面に垂直なるよう当てて、カミソリの反対側(背側)をハンマーで叩き、厚み方向にシート状基材β-1等を割り、観察用の断面を得た。室温に戻し、断面をキーエンス(株)製デジタル顕微鏡VHX-7000で観察した。
[Cross-sectional observation of sheet-like substrate β-1, etc.]
Soak the sheet-like substrate β-1, etc. together with the laminated release film in liquid nitrogen for 1 minute, and apply a razor to the sheet surface using tweezers in liquid nitrogen so that it is perpendicular to the sheet surface. was struck with a hammer to split the sheet-like substrate β-1 or the like in the thickness direction to obtain a cross section for observation. After returning to room temperature, the cross section was observed with a digital microscope VHX-7000 manufactured by Keyence Corporation.

[シート状基材β-1等の貯蔵弾性率(E’)の測定]
剥離フィルム上に形成したシート状基材β-1等を長さ15mm、幅5mmの試験片に打ち抜き、剥離フィルムを剥がし、シート状基材β-1等について動的粘弾性測定装置DVA-200(アイティー計測制御株式会(株)製)を用いて、ロードセル:600gf、昇温速度:1℃/分、チャック間:5mm、周波数:5Hz条件下引張り時の、―50℃~250℃の温度範囲における貯蔵弾性率(E’)の変化を測定し、0~150℃の領域における貯蔵弾性率(E’)の変曲点、即ちtanδの極大点の温度のうち、最も高温側にある温度T0を求め、T0から30℃高い温度T1におけるE’1、T0から50℃高い温度T2におけるE’2を求め、E’1/E’2を導いた。
[Measurement of storage elastic modulus (E′) of sheet-like substrate β-1, etc.]
The sheet-like base material β-1, etc. formed on the release film was punched into test pieces of 15 mm in length and 5 mm in width, the release film was peeled off, and the sheet-like base material β-1, etc. was subjected to a dynamic viscoelasticity measurement device DVA-200. (manufactured by IT Keisoku Co., Ltd.), load cell: 600 gf, temperature increase rate: 1 ° C./min, chuck distance: 5 mm, frequency: 5 Hz. Measure the change in storage modulus (E ') in the temperature range, the inflection point of the storage modulus (E ') in the region of 0 to 150 ° C., that is, the temperature of the maximum point of tan δ, which is on the highest temperature side The temperature T 0 was determined, and E' 1 at a temperature T 1 30° C. higher than T 0 and E ' 2 at a temperature T 2 50° C. higher than T 0 were obtained to derive E' 1 /E' 2 .

Figure 2023044248000001
Figure 2023044248000001

(粘着樹脂 Pの作製)
〈粘着樹脂 P-1〉
アセトン/酢酸エチル/トルエン=1/1/0.5(質量比)からなる溶剤中で、2-エチルヘキシルアクリレート/2-ヒドロキシエチルアクリレート/アクリル酸=96.5/3/0.5(質量比)を重合し、重量平均分子量90万、FOXの式によるガラス転移温度:-67℃のアクリル樹脂P-1の溶液(不揮発分濃度約50%)を得た。
(Preparation of adhesive resin P)
<Adhesive resin P-1>
In a solvent consisting of acetone/ethyl acetate/toluene = 1/1/0.5 (mass ratio), 2-ethylhexyl acrylate/2-hydroxyethyl acrylate/acrylic acid = 96.5/3/0.5 (mass ratio ) was polymerized to obtain a solution of acrylic resin P-1 having a weight average molecular weight of 900,000 and a glass transition temperature of −67° C. according to the FOX formula (concentration of non-volatile matter: about 50%).

〈粘着樹脂 P-2〉
重合開始剤の量を変え、粘着樹脂 P-1と同じモノマー組成の、重量平均分子量30万のアクリル樹脂P-2の溶液(不揮発分濃度約50%)を得た。
<Adhesive resin P-2>
By changing the amount of polymerization initiator, a solution (non-volatile content concentration of about 50%) of acrylic resin P-2 having the same monomer composition as adhesive resin P-1 and having a weight average molecular weight of 300,000 was obtained.

〈粘着樹脂 P-3〉
トルエン/酢酸エチル=1/1(質量比)からなる溶剤中で、ブチルアクリレート(BA)/アクリル酸/2-ヒドロキシエチルアクリレート(HEA)=96.5/3/0.5(質量比)を重合し、重量平均分子量30万、FOXの式によるガラス転移温度:-51℃のアクリル樹脂P-3の溶液(不揮発分濃度約50%)を得た。
<Adhesive resin P-3>
Butyl acrylate (BA)/acrylic acid/2-hydroxyethyl acrylate (HEA) = 96.5/3/0.5 (mass ratio) in a solvent consisting of toluene/ethyl acetate = 1/1 (mass ratio). Polymerization was performed to obtain a solution of acrylic resin P-3 having a weight average molecular weight of 300,000 and a glass transition temperature of -51.degree.

[粘着樹脂Pの重量平均分子量(Mw)]
昭和電工(株)製ShodexGPC-104/101システムを用いて測定した。
カラムShodexKF-805L+KF-803L+KF-802
検出器 示差屈折率計(RI)
カラム温度: 40℃
溶離液: テトラヒドロフラン
流速: 1.0mL/分
試料濃度: 0.2%
検量線用標準試料: TSK標準ポリスチレン
[Weight average molecular weight (Mw) of adhesive resin P]
It was measured using a Shodex GPC-104/101 system manufactured by Showa Denko K.K.
Column Shodex KF-805L + KF-803L + KF-802
Detector Differential refractometer (RI)
Column temperature: 40°C
Eluent: Tetrahydrofuran Flow rate: 1.0 mL/min Sample concentration: 0.2%
Standard sample for calibration curve: TSK standard polystyrene

Figure 2023044248000002
Figure 2023044248000002

<熱伝導性粘着層形成用の分散液αS-1>
450mL容量のガラス瓶に、固形分換算で50gの粘着樹脂(P-1)を含む溶液100gと後述する無機フィラー(T-1)75g、および固形分が約60%となるように希釈用のMEKを入れ、次いで、直径5mmサイズのガラスビーズを100g加え、湿式メディア分散機スキャンデックスで60分間振盪させ、無機フィラー(T-1)を分散させ、ガラスビーズを除去し、分散液を作った。
前記分散液に対し、#500メッシュの金網で自然ろ過を実施して粗粒を除去した後、後述する硬化剤(S-1)を0.1gと希釈用のMEKを加え、ミックスローターで混合し、固形分50%の熱伝導性粘着層形成用の分散液αS-1を作製した。
なお、前記分散液αS-1における硬化剤(S-1)中のイソシアネート基と粘着樹脂(P-1)中の水酸基との比、NCO/OHは0.3である。
<Dispersion αS-1 for Forming Thermally Conductive Adhesive Layer>
In a 450 mL glass bottle, 100 g of a solution containing 50 g of adhesive resin (P-1) in terms of solid content, 75 g of inorganic filler (T-1) described later, and MEK for dilution so that the solid content is about 60% Then, 100 g of glass beads with a diameter of 5 mm were added and shaken for 60 minutes with a wet media dispersing machine Scandex to disperse the inorganic filler (T-1) and remove the glass beads to prepare a dispersion.
After removing coarse particles by performing natural filtration with a #500 mesh wire mesh to the dispersion, 0.1 g of a curing agent (S-1) described later and MEK for dilution are added and mixed with a mix rotor. Then, a dispersion liquid αS-1 for forming a thermally conductive adhesive layer having a solid content of 50% was prepared.
The NCO/OH ratio of the isocyanate groups in the curing agent (S-1) to the hydroxyl groups in the adhesive resin (P-1) in the dispersion αS-1 was 0.3.

<熱伝導性粘着層形成用の分散液 αS-2、αS-3>
表3に示す無機フィラー配合量となるよう無機フィラー(T-1)を用いたこと以外は、αS-1と同様にして、熱伝導性粘着層形成用の分散液αS-2、αS-3を作製した。
<Dispersions αS-2 and αS-3 for forming a thermally conductive adhesive layer>
Dispersions αS-2 and αS-3 for forming a thermally conductive adhesive layer were prepared in the same manner as αS-1, except that the inorganic filler (T-1) was used so that the inorganic filler content was as shown in Table 3. was made.

<熱伝導性粘着層形成用の分散液 αS-4~αS-5>
無機フィラー(T-1)の代わりに、無機フィラー(T-2)~(T-4)を用いたこと以外は、αS-2と同様にして、熱伝導性粘着層形成用の分散液αS-3~αS-6を作製した。
<Dispersions αS-4 to αS-5 for Forming Thermally Conductive Adhesive Layers>
Dispersion liquid αS for forming a thermally conductive adhesive layer was prepared in the same manner as αS-2, except that inorganic fillers (T-2) to (T-4) were used instead of inorganic filler (T-1). -3 to αS-6 were produced.

<熱伝導性粘着層形成用の分散液 αS-6>
無機フィラー(T-1)の代わりに、無機フィラー(T-4)を用い、分散後の自然ろ過に使用する金網を#300メッシュに変更したこと以外は、αS-2と同様にして、熱伝導性粘着層形成用の分散液αS-6を作製した。
<Dispersion αS-6 for Forming Thermally Conductive Adhesive Layer>
In the same manner as αS-2, except that the inorganic filler (T-4) was used instead of the inorganic filler (T-1), and the wire mesh used for natural filtration after dispersion was changed to #300 mesh. A dispersion liquid αS-6 for forming a conductive adhesive layer was prepared.

<熱伝導性粘着層形成用の分散液 αS-7~αS-8>
粘着樹脂(P-1)を含む溶液の代わりに、粘着樹脂(P-2)~(P-3)を含む溶液を用いたこと以外は、αS-1と同様にして、熱伝導性粘着層形成用の分散液αS-7~αS-8を作製した。
<Dispersions αS-7 to αS-8 for Forming Thermally Conductive Adhesive Layers>
A thermally conductive adhesive layer was prepared in the same manner as αS-1, except that a solution containing adhesive resins (P-2) to (P-3) was used instead of the solution containing adhesive resin (P-1). Forming dispersions αS-7 to αS-8 were prepared.

<熱伝導性粘着層形成用の分散液 αS-9>
硬化剤(S-1)の代わりに、硬化剤(S-2)を0.6部用いたこと以外は、αS-2と同様にして、熱伝導性粘着層形成用の分散液αS-9を作製した。
なお、前記分散液αS-9における硬化剤(S-2)中のエポキシ基と粘着樹脂(P-1)中のカルボキシ基との比、epoxy/COOHは0.3である。
<Dispersion αS-9 for forming thermally conductive adhesive layer>
Dispersion αS-9 for forming a thermally conductive adhesive layer was prepared in the same manner as αS-2, except that 0.6 parts of the curing agent (S-2) was used instead of the curing agent (S-1). was made.
The ratio of the epoxy groups in the curing agent (S-2) to the carboxyl groups in the adhesive resin (P-1) in the dispersion αS-9, ie, epoxy/COOH, was 0.3.

〈比較例用熱伝導性粘着層形成用の分散液αS-101の作製〉
硬化剤(S-1)を配合しない以外は、αS-2と同様にして、比較例用熱伝導性粘着層形成用の分散液αS-101を作製した。
<Preparation of Dispersion αS-101 for Forming Thermally Conductive Adhesive Layer for Comparative Example>
A dispersion αS-101 for forming a thermally conductive adhesive layer for comparison was prepared in the same manner as αS-2, except that the curing agent (S-1) was not blended.

〈比較例用熱伝導性粘着層形成用の分散液αS-102の作製〉
無機フィラー(T-1)を配合しない以外は、αS-2と同様にして、比較例用熱伝導性粘着層形成用の分散液αS-102を作製した。
<Preparation of Dispersion αS-102 for Forming Thermally Conductive Adhesive Layer for Comparative Example>
A dispersion liquid αS-102 for forming a thermally conductive adhesive layer for comparison was prepared in the same manner as αS-2, except that the inorganic filler (T-1) was not blended.

(硬化剤 S)
・S-1:デスモジュールN3900:住化コべストロウレタン(株)製、HDIヌレート体
・S-2:JER630(三菱ケミカル(株)製 エポキシ基を3つ有する化合物)
(Curing agent S)
・S-1: Desmodur N3900: HDI Nurate, manufactured by Sumika Covestro Urethane Co., Ltd. ・S-2: JER630 (compound having three epoxy groups manufactured by Mitsubishi Chemical Corporation)

(無機フィラーT)
・T-1:酸化アルミニウム デンカ(株)製、DAW-03、平均粒子径4μm、平均アスペクト比:1.02、最大粒径8μm
・T-2:酸化アルミニウム 昭和電工(株)製、CBP-02、平均粒子径2μm、平均アスペクト比:1.01、最大粒径4μm
・T-3:窒化アルミニウム、トクヤマ(株)製HF01、平均粒子径3μm、平均アスペクト比:1.2、最大粒径 9μm
・T-4:窒化ホウ素 デンカ(株)製デンカボロンナイト、HGP 平均粒子径6μm、平均アスペクト比>10、最大粒径23μm
(Inorganic filler T)
・T-1: Aluminum oxide manufactured by Denka Co., Ltd., DAW-03, average particle size 4 μm, average aspect ratio: 1.02, maximum particle size 8 μm
・T-2: Aluminum oxide Showa Denko Co., Ltd., CBP-02, average particle size 2 μm, average aspect ratio: 1.01, maximum particle size 4 μm
・T-3: Aluminum nitride, HF01 manufactured by Tokuyama Corporation, average particle size 3 μm, average aspect ratio: 1.2, maximum particle size 9 μm
・T-4: Boron nitride Denka Boronite manufactured by Denka Co., Ltd., HGP Average particle size 6 μm, average aspect ratio>10, maximum particle size 23 μm

Figure 2023044248000003
Figure 2023044248000003

(実施例1)熱伝導性粘着シート W-1
熱伝導性粘着層形成用の分散液αS-2を、2枚の東レ(株)製剥離フィルム(セラピールMF、厚み50μm)の剥離処理面に、それぞれドクターブレードで塗工し、100℃のオーブンで2分間乾燥させた後、各剥離フィルム上に厚みが約20μmの熱伝導性粘着層α1-2、α2-2となる前段階の前駆体塗膜を作製した。
別途、剥離フィルム上に作製したスチレン系エラストマーのシート状基材β-1のシート状基材面と熱伝導性粘着層α1-2の前駆体塗膜とが接するように重ね、剥離フィルム上にゴムローラーを押し当てて回転させ、中間積層体を得た。
中間積層体におけるシート基材側の剥離フィルムを剥がし、露出したシート状基材面に、熱伝導性粘着層α2-2の前駆体塗膜が接するように重ね、剥離フィルム上にゴムローラーを押し当てて回転させ、剥離フィルム/熱伝導粘着層α1-2の前駆体塗膜/シート状基材β-1/熱伝導粘着層α2-2の前駆体塗膜/剥離フィルムの積層体を作製し、各前駆体塗膜に内在する未反応の架橋剤の反応を完了させるために40℃7日間養生させ、熱伝導性粘着シートW-1が剥離処理フィルムで挟まれた積層体を得た。
(Example 1) Thermally conductive adhesive sheet W-1
Dispersion αS-2 for forming a thermally conductive adhesive layer is applied to the release-treated surfaces of two release films (Therapeel MF, thickness 50 μm) manufactured by Toray Industries, Inc. with a doctor blade, and placed in an oven at 100°C. After drying for 2 minutes, pre-precursor coating films for the thermally conductive adhesive layers α1-2 and α2-2 having a thickness of about 20 μm were formed on each release film.
Separately, the sheet-like base material surface of the styrene-based elastomer sheet-like base material β-1 prepared on the release film and the precursor coating film of the thermally conductive adhesive layer α1-2 are superimposed so that they are in contact with each other, and are placed on the release film. A rubber roller was pressed and rotated to obtain an intermediate laminate.
Peel off the release film on the sheet substrate side of the intermediate laminate, stack the precursor coating film of the thermally conductive adhesive layer α2-2 on the exposed sheet-like substrate surface so that it is in contact, and press a rubber roller on the release film. A laminate of release film/precursor coating film of thermally conductive adhesive layer α1-2/sheet-like substrate β-1/precursor coating film of thermally conductive adhesive layer α2-2/release film was produced by pressing and rotating. In order to complete the reaction of the unreacted cross-linking agent contained in each precursor coating film, it was aged at 40° C. for 7 days to obtain a laminate in which the thermally conductive adhesive sheet W-1 was sandwiched between release-treated films.

(実施例2、3)熱伝導性粘着シート W-2、W-3
シート状基材β-1の代わりに、無機フィラーの含有率の異なるシート状基材β-2、β-3を用いた以外は、実施例1と同様にして、剥離フィルム/熱伝導粘着層α1-2/シート状基材β-2(またはβ-3)/熱伝導粘着層α2-2/剥離フィルムの積層体を作製、すなわち熱伝導性粘着シートW-2、W-3が剥離処理フィルムで挟まれた積層体を得た。
(Examples 2 and 3) Thermally conductive adhesive sheets W-2 and W-3
A release film/thermal conductive adhesive layer was prepared in the same manner as in Example 1, except that sheet-like substrates β-2 and β-3 having different inorganic filler contents were used instead of the sheet-like substrate β-1. A laminate of α1-2/sheet-like substrate β-2 (or β-3)/thermally conductive adhesive layer α2-2/release film was prepared, that is, the thermally conductive adhesive sheets W-2 and W-3 were subjected to release treatment. A laminate sandwiched between films was obtained.

(実施例4~7)熱伝導性粘着シート W-4~W-7
シート状基材β-1の代わりに、厚みの異なるシート状基材β-4~β-7を用いた以外は、実施例1と同様にして、剥離フィルム/熱伝導粘着層α1-2/シート状基材β-4~β-7/熱伝導粘着層α2-2/剥離フィルムの積層体を作製、すなわち熱伝導性粘着シートW-4~W-7が剥離処理フィルムで挟まれた積層体を得た。
(Examples 4 to 7) Thermally conductive adhesive sheets W-4 to W-7
Release film/thermal conductive adhesive layer α1-2/ A laminate of sheet-like substrates β-4 to β-7/thermal conductive adhesive layer α2-2/release film was produced, that is, a laminate in which the thermal conductive adhesive sheets W-4 to W-7 were sandwiched between release-treated films. got a body

(実施例8~10)熱伝導性粘着シート W-8~W-10
シート状基材β-1の代わりに、無機フィラーの種類の異なるシート状基材β-8~β-10を用いた以外は、実施例1と同様にして、剥離フィルム/熱伝導粘着層α1-2/シート状基材β-8~β-10/熱伝導粘着層α2-2/剥離フィルムの積層体を作製、すなわち熱伝導性粘着シートW-4~W-7が剥離処理フィルムで挟まれた積層体を得た。
(Examples 8 to 10) Thermally conductive adhesive sheets W-8 to W-10
A release film/thermal conductive adhesive layer α1 was prepared in the same manner as in Example 1, except that sheet-like substrates β-8 to β-10 with different types of inorganic filler were used instead of the sheet-like substrate β-1. -2/Sheet-like substrate β-8 to β-10/Thermal conductive adhesive layer α2-2/Release film laminate was prepared, that is, the thermally conductive adhesive sheets W-4 to W-7 were sandwiched between release-treated films. A laminated body was obtained.

(実施例11~14)熱伝導性粘着シート W-11~W-14
シート状基材β-1の代わりに、厚みの異なるポリビニルアセタール系のシート状基材β-11~β-14を用いた以外は、実施例1と同様にして、剥離フィルム/熱伝導粘着層α1-2/シート状基材β-11~β-14/熱伝導粘着層α2-2/剥離フィルムの積層体を作製、すなわち熱伝導性粘着シートW-11~W-14が剥離処理フィルムで挟まれた積層体を得た。
(Examples 11 to 14) Thermally conductive adhesive sheets W-11 to W-14
A release film/thermal conductive adhesive layer was prepared in the same manner as in Example 1, except that polyvinyl acetal-based sheet-like substrates β-11 to β-14 with different thicknesses were used instead of the sheet-like substrate β-1. A laminate of α1-2/sheet-like substrate β-11 to β-14/thermally conductive adhesive layer α2-2/release film was prepared, that is, the thermally conductive adhesive sheets W-11 to W-14 were release treated films. A sandwiched laminate was obtained.

(実施例15~16)熱伝導性粘着シート W-15~W-16
シート状基材β-1の代わりに、架橋可能なポリマーとしてポリエステル系、ポリエステル系ポリウレタンをそれぞれ用いてなるシート状基材β-15~β-16を用いた以外は、実施例1と同様にして、剥離フィルム/熱伝導粘着層α1-2/シート状基材β-15~β-16/熱伝導粘着層α2-2/剥離フィルムの積層体を作製、すなわち熱伝導性粘着シートW-15~W-16が剥離処理フィルムで挟まれた積層体を得た。
(Examples 15-16) Thermally conductive adhesive sheets W-15-W-16
The same procedure as in Example 1 was repeated except that sheet-like substrates β-15 to β-16 each using a polyester-based polymer and a polyester-based polyurethane as the crosslinkable polymer were used instead of the sheet-like substrate β-1. Then, a laminate of release film/thermally conductive adhesive layer α1-2/sheet-like substrates β-15 to β-16/thermally conductive adhesive layer α2-2/release film was produced, that is, thermally conductive adhesive sheet W-15 A laminate was obtained in which W-16 was sandwiched between release-treated films.

(実施例17)熱伝導性粘着シート W-17
熱伝導性粘着層として、厚みが20μmのα1-2、α2-2の代わりに、熱伝導性粘着層形成用の分散液αS-4を用いてなる、厚みが5μmのα1-4-1、α2-4-1、を用いた以外は、実施例1と同様にして、熱伝導性粘着シートW-17が剥離処理フィルムで挟まれた積層体を得た。
(Example 17) Thermally conductive adhesive sheet W-17
α1-4-1 with a thickness of 5 μm, which uses a dispersion liquid αS-4 for forming a thermally conductive adhesive layer instead of α1-2 and α2-2 with a thickness of 20 μm, as the thermally conductive adhesive layer. A laminate in which the thermally conductive adhesive sheet W-17 was sandwiched between release-treated films was obtained in the same manner as in Example 1, except that α2-4-1 was used.

(実施例18~19)熱伝導性粘着シート W-18~W-19
熱伝導性粘着層として、厚みが20μmのα1-2、α2-2の代わりに、熱伝導性粘着層形成用の分散液αS-2を用いてなる、厚みが10μmのα1-2-2、α2-2-2、厚みが30μmのα1-2-3、厚みが10μmのα2-2-3を用いた以外は、実施例1と同様にして、熱伝導性粘着シートW-18~W-19が剥離処理フィルムで挟まれた積層体を得た。
(Examples 18 to 19) Thermally conductive adhesive sheets W-18 to W-19
α1-2-2 with a thickness of 10 μm, which uses a dispersion liquid αS-2 for forming a thermally conductive adhesive layer instead of α1-2 with a thickness of 20 μm and α2-2 with a thickness of 20 μm as the thermally conductive adhesive layer, Thermally conductive adhesive sheets W-18 to W- A laminate in which No. 19 was sandwiched between release-treated films was obtained.

(実施例20~27)熱伝導性粘着シート W-20~W-27
熱伝導性粘着層形成用の分散液αS-2の代わりに、表4に記載するように分散液αS-1、αS-3~αS-9を用いた以外は、実施例1と同様にして、熱伝導性粘着シート20~W-27が剥離処理フィルムで挟まれた積層体を得た。
(Examples 20 to 27) Thermally conductive adhesive sheets W-20 to W-27
In the same manner as in Example 1, except that the dispersions αS-1 and αS-3 to αS-9 shown in Table 4 were used instead of the dispersion αS-2 for forming the thermally conductive adhesive layer. , a laminate in which the thermally conductive adhesive sheets 20 to W-27 were sandwiched between release-treated films was obtained.

(比較例1~2)比較用熱伝導性粘着シート W-101~W-102
熱伝導性粘着層形成用の分散液αS-2の代わりに、表4に記載するように分散液αS-101、αS-102を用いた以外は、実施例1と同様にして、比較用熱伝導性粘着シートW-101~W-102が剥離処理フィルムで挟まれた積層体を得た。
(Comparative Examples 1 and 2) Comparative thermally conductive adhesive sheets W-101 and W-102
Comparative heat was prepared in the same manner as in Example 1, except that dispersions αS-101 and αS-102 as shown in Table 4 were used instead of dispersion αS-2 for forming a thermally conductive adhesive layer. A laminate was obtained in which the conductive adhesive sheets W-101 and W-102 were sandwiched between release-treated films.

(比較例3)比較用熱伝導性粘着シート W-103
熱伝導性粘着層として、厚みが20μmのα1-2、α2-2の代わりに、熱伝導性粘着層形成用の分散液αS-2を用いてなる、厚みが50μmのα1-2-103、α2-2-103を用いた以外は、実施例1と同様にして、比較用熱伝導性粘着シートW-103が剥離処理フィルムで挟まれた積層体を得た。
(Comparative Example 3) Comparative thermally conductive adhesive sheet W-103
α1-2-103 with a thickness of 50 μm, which uses a dispersion αS-2 for forming a thermally conductive adhesive layer instead of α1-2 and α2-2 with a thickness of 20 μm, as the thermally conductive adhesive layer; A laminate in which the comparative thermally conductive adhesive sheet W-103 was sandwiched between release-treated films was obtained in the same manner as in Example 1, except that α2-2-103 was used.

(比較例4~6)比較用熱伝導性粘着シート W-104~W-106
シート状基材β-1の代わりに、ポリビニルアセタール系のシート状基材β-101~β-103を用いた以外は、実施例1と同様にして、剥離フィルム/熱伝導粘着層α1-2/シート状基材β-101~β-103/熱伝導粘着層α2-2/剥離フィルム の積層体を作製、すなわち比較用熱伝導性粘着シートW-104~W-106が剥離処理フィルムで挟まれた積層体を得た。
(Comparative Examples 4 to 6) Comparative thermally conductive adhesive sheets W-104 to W-106
Release film/thermal conductive adhesive layer α1-2 was prepared in the same manner as in Example 1, except that polyvinyl acetal-based sheet-like substrates β-101 to β-103 were used instead of sheet-like substrate β-1. A laminate of / sheet-like substrates β-101 to β-103 / thermally conductive adhesive layer α2-2 / release film was produced, that is, the comparative thermally conductive adhesive sheets W-104 to W-106 were sandwiched between the release treatment films. A laminated body was obtained.

[熱伝導性粘着シートW-1等の断面観察による各層の無機フィラーの平均粒子径等の測定]
シート状基材β-1等の断面観察の場合と同様にして、熱伝導性粘着シートW-1等の断面を観察し、各層に含まれる無機フィラーの平均粒子径、最大径等を求めた。
[Measurement of average particle size etc. of inorganic filler in each layer by cross-sectional observation of thermally conductive adhesive sheet W-1 etc.]
The cross section of the thermally conductive adhesive sheet W-1 and the like was observed in the same manner as the cross section observation of the sheet-like base material β-1 and the like, and the average particle diameter, maximum diameter, etc. of the inorganic filler contained in each layer were obtained. .

[熱伝導性粘着シートW-1等の貯蔵弾性率(E’)の測定]
剥離処理フィルムで挟まれた積層体を長さ15mm、幅5mmの試験片に打ち抜き、剥離処理フィルムを剥がし、熱伝導性粘着シートW-1等について動的粘弾性測定装置DVA-200(アイティー計測制御株式会(株)製)を用いて、ロードセル:600gf、昇温速度:5℃/分、チャック間:5mm、周波数:10Hz条件下引張り時の、―50℃~250℃の温度範囲における貯蔵弾性率(E’)の変化を測定し、0~150℃の領域における貯蔵弾性率(E’)の変曲点、即ちtanδの極大点の温度のうち、最も高温側にある温度T0を求め、T0から30℃高い温度T1におけるE’1、T0から50℃高い温度T2におけるE’2を求め、E’1/E’2を導いた。
なお、比較例1は粘着層が架橋しておらず溶融してしまうため、熱伝導性粘着シートとしての貯蔵弾性率(E’)は、測定できなかった。
[Measurement of storage elastic modulus (E′) of thermally conductive adhesive sheet W-1, etc.]
The laminate sandwiched between the release-treated films was punched into a test piece with a length of 15 mm and a width of 5 mm, the release-treated film was peeled off, and the thermal conductive adhesive sheet W-1, etc. Instrument Control Co., Ltd.), load cell: 600 gf, heating rate: 5 ° C./min, chuck distance: 5 mm, frequency: 10 Hz. The change in storage elastic modulus (E′) is measured, and the temperature T 0 on the highest temperature side among the inflection points of the storage elastic modulus (E′) in the range of 0 to 150° C., that is, the temperature at the maximum point of tan δ E' 1 at a temperature T 1 30° C. higher than T 0 and E' 2 at a temperature T 2 50° C. higher than T 0 were obtained to derive E ' 1 /E' 2 .
In Comparative Example 1, since the adhesive layer was not crosslinked and melted, the storage elastic modulus (E') of the thermally conductive adhesive sheet could not be measured.

<加工性の評価>
剥離処理フィルムで挟まれた積層体を10mm×30mmの長方形サイズに100ピース抜き加工機にて型抜きし、不良品の発生数によって下記の通り評価した。
なお、不良品とは、型抜き加工によって、打ち抜いた端部の形状が歪でいるもの(シート状基材β-1等の脆化による欠け)、剥離フィルムと熱伝導性粘着シートW-1等とが剥がれたものをいう。
S:不良品0個(最良)
A:1~5個(優良)
B:6~10個(標準)
C:11~20個(使用可能)
D:21~100個(不可)
<Evaluation of workability>
The laminate sandwiched between the release-treated films was punched into a rectangular size of 10 mm×30 mm using a 100-piece punching machine, and the number of defective products was evaluated as follows.
In addition, the defective products are those in which the shape of the punched end is distorted due to the punching process (chipping due to embrittlement of the sheet-like base material β-1, etc.), the release film and the thermally conductive adhesive sheet W-1 , etc. means the one that has been peeled off.
S: 0 defective products (best)
A: 1 to 5 (excellent)
B: 6 to 10 (standard)
C: 11 to 20 (usable)
D: 21 to 100 (impossible)

<熱伝導率測定>
剥離処理フィルムで挟まれた積層体から一方の離型フィルムを剥離し、露出した粘着層面に、真空デバイス(株)製小型高真空蒸着装置VE-2013を用いて、金蒸着メッキを施した。次いで、もう一方の面からも離型フィルムを剥離し、同様に金蒸着メッキを施した。
一方の面に、黒化剤(ファインケミカルジャパン(株)製、ブラックガードスプレー)を塗布し、黒色処理した後、ネッチ・ジャパン (株)製のXeフラッシュアナライザーLFA 447Nanoflashを用い、黒色処理した面にレーザーを当て、厚み方向の熱拡散率を23℃で測定した。
別途、示差走査熱量測定装置(DSC測定装置)を用いて熱容量が既知である単結晶サファイアとの比較で試料(即ち、熱伝導性粘着シート)の比熱を算出し、水上置換法により試料の密度を測定し、次式により厚み方向の熱伝導率[W/(mK)]を算出した。
〔熱伝導率〕= 〔熱拡散率〕×〔密度〕×〔比熱〕
<Thermal conductivity measurement>
One of the release films was peeled off from the laminate sandwiched between the release-treated films, and the exposed adhesive layer surface was subjected to gold vapor deposition plating using a small high-vacuum vapor deposition apparatus VE-2013 manufactured by Vacuum Device Co., Ltd. Next, the release film was peeled off from the other side, and gold deposition plating was applied in the same manner.
On one side, a blackening agent (Black Guard Spray, manufactured by Fine Chemical Japan Co., Ltd.) is applied and blackened, and then using a Xe flash analyzer LFA 447 Nanoflash manufactured by Netch Japan Co., Ltd., the blackened surface is A laser was applied and the thermal diffusivity in the thickness direction was measured at 23°C.
Separately, using a differential scanning calorimeter (DSC measuring device), the specific heat of the sample (that is, the thermally conductive adhesive sheet) was calculated by comparing it with a single crystal sapphire whose heat capacity is known, and the density of the sample was calculated by the water displacement method. was measured, and the thermal conductivity [W/(mK)] in the thickness direction was calculated by the following formula.
[Thermal conductivity] = [Thermal diffusivity] x [Density] x [Specific heat]

<熱抵抗値の評価(加熱前)>
アルミニウム板で挟んだ各実施例、各比較例の熱伝導性粘着シート、およびアルミニウム板で挟んだ下記基準粘着シートについて、熱抵抗値をそれぞれ求め、各実施例、各比較例の熱伝導性粘着シートの熱抵抗値が、基準粘着シートの熱抵抗値よりどの程度小さいかによって、各実施例、各比較例の熱伝導性粘着シートの熱抵抗値を評価した。
具体的には、剥離処理フィルムで挟まれた積層体から順次剥離処理フィルムを剥がし、各実施例、各比較例の導性粘着シートまたは基準粘着シートを縦10mm横12mm厚さ2mmのアルミニウム板で挟み1分間1kg荷重をかけ密着させる。一方のアルミニウム板上にMOSFET(熱源IC、縦15mm、横10mm)とサーミスタA(温度計)を並べてエポキシ接着剤(セメダイン株式会社、ハイスーパー5)で取り付け、もう一方のアルミニウム板の中央にサーミスタB(温度計)をエポキシ接着剤で取り付ける。
東京デバイセズ製熱抵抗測定キットIW7300-KITを用い、23℃の室温下にて、1Wの出力に設定したMOSFETで加熱し続け、温度をプロファイルしていき、サーミスタAとサーミスタBそれぞれの温度が一定となったところで、それぞれのサーミスタが検知した温度の差を読み取り、以下の式で加熱前の熱抵抗値(℃/W)を算出する。
〔熱抵抗値〕=〔温度差〕÷〔MOSFET出力〕
<Evaluation of thermal resistance value (before heating)>
The thermal resistance values of the thermally conductive adhesive sheets of each example and each comparative example sandwiched between aluminum plates, and the following reference adhesive sheet sandwiched between aluminum plates were obtained, and the thermally conductive adhesive of each example and each comparative example was obtained. The heat resistance value of the thermally conductive pressure-sensitive adhesive sheet of each example and each comparative example was evaluated depending on how much the heat resistance value of the sheet was smaller than the heat resistance value of the reference pressure-sensitive adhesive sheet.
Specifically, the release-treated films were sequentially peeled off from the laminate sandwiched between the release-treated films, and the conductive pressure-sensitive adhesive sheets or reference pressure-sensitive adhesive sheets of each example and each comparative example were placed on an aluminum plate having a length of 10 mm, a width of 12 mm, and a thickness of 2 mm. A load of 1 kg is applied for 1 minute by pinching to bring them into close contact. On one aluminum plate, MOSFET (heat source IC, length 15 mm, width 10 mm) and thermistor A (thermometer) are arranged side by side and attached with epoxy adhesive (Cemedine Co., Ltd., Hi Super 5), and the thermistor is placed in the center of the other aluminum plate. Attach B (thermometer) with epoxy glue.
Using a thermal resistance measurement kit IW7300-KIT made by Tokyo Devices, at a room temperature of 23°C, continue heating with a MOSFET set to an output of 1 W, profile the temperature, and keep the temperatures of thermistor A and thermistor B constant. Then, the temperature difference detected by each thermistor is read, and the thermal resistance value (°C/W) before heating is calculated by the following formula.
[Thermal resistance value] = [Temperature difference] ÷ [MOSFET output]

<熱抵抗値の評価(加熱後)>
アルミニウム板で挟んだ各実施例、各比較例の熱伝導性粘着シートまたは基準粘着シートを、100℃で4時間加熱した後、23℃に戻し、23℃の室温下にて、上記と同様にして、熱抵抗値(℃/W)を算出する。
<Evaluation of thermal resistance value (after heating)>
The thermally conductive pressure-sensitive adhesive sheet or reference pressure-sensitive adhesive sheet of each example and each comparative example sandwiched between aluminum plates was heated at 100°C for 4 hours, returned to 23°C, and treated at room temperature of 23°C in the same manner as above. Then, the thermal resistance value (°C/W) is calculated.

基準粘着シートとして、無機フィラーを配合しない一般的な両面粘着テープとして流通する日栄新化株式会(株)製Neoflix6571厚さ50μm(構成:アクリル粘着剤/PETフィルム/アクリル粘着剤)を用いた。基準粘着シートの熱抵抗値は加熱前が9.1(℃/W)、加熱後は10.5(℃/W)であった。 As a reference adhesive sheet, Neoflix 6571 thickness 50 μm (composition: acrylic adhesive/PET film/acrylic adhesive) manufactured by Nichiei Shinka Co., Ltd., which is distributed as a general double-sided adhesive tape containing no inorganic filler, was used. The heat resistance value of the reference adhesive sheet was 9.1 (°C/W) before heating and 10.5 (°C/W) after heating.

(評価基準)
前記基準粘着シートの熱抵抗値から、各実施例、各比較例の熱伝導性粘着シートの熱抵抗値を引き、その差に基づき下記の基準で評価した。、
S:差が5℃/W以上。(最良)
A:差が3℃/W以上、5℃/W未満。(優良)
B:差が2℃/W以上、3℃/W未満。(標準)
C:差が1℃/W以上、2℃/W未満。(使用可能)
D:差が1℃/W未満。(不可)
(Evaluation criteria)
The thermal resistance value of the thermally conductive adhesive sheet of each example and each comparative example was subtracted from the thermal resistance value of the reference adhesive sheet, and the difference was evaluated according to the following criteria. ,
S: The difference is 5°C/W or more. (best)
A: The difference is 3°C/W or more and less than 5°C/W. (excellent)
B: The difference is 2°C/W or more and less than 3°C/W. (standard)
C: The difference is 1°C/W or more and less than 2°C/W. (Available)
D: The difference is less than 1°C/W. (impossible)

[耐電圧試験]
剥離処理フィルムで挟まれた各実施例、各比較例の積層体を5cm角に切り取り、順次剥離処理フィルムを剥がし、それぞれの面に厚み5μmの銅箔を貼り付け、荷重2kgfをかけてゴムロールで密着させた。密着させたサンプルについて鶴賀電機株式会(株)製 耐電圧測定機器8504を用い、荷電端子を粘着層α1側と接触させ、通電端子側を粘着層α2側と接触させ、大気下、直流電流で電圧を0.1から10kVまで増加させていき、通電する電圧(破壊電圧)を記録した。
S:印加電圧が7kV時点で通電しない(最良)
A:5kV以上、7kV未満で通電する(優良)
B:3kV以上、5kV未満で通電する(標準)
C:2kV以上、3kV未満で通電する(使用可能)
D:2kV未満で通電する(不可)
[anti-voltage test]
The laminate of each example and each comparative example sandwiched between the release-treated films was cut into 5 cm squares, the release-treated films were sequentially peeled off, a copper foil having a thickness of 5 μm was attached to each surface, and a load of 2 kgf was applied with a rubber roll. made it adhere. Using a withstand voltage measuring instrument 8504 manufactured by Tsuruga Electric Co., Ltd. for the adhered sample, the charging terminal is brought into contact with the adhesive layer α1 side, the current-carrying terminal side is brought into contact with the adhesive layer α2 side, and a direct current is applied in the atmosphere. The voltage was increased from 0.1 to 10 kV, and the energized voltage (breakdown voltage) was recorded.
S: Not energized when the applied voltage is 7 kV (best)
A: Energized at 5 kV or more and less than 7 kV (excellent)
B: Energize at 3 kV or more and less than 5 kV (standard)
C: Energized at 2 kV or more and less than 3 kV (usable)
D: Energize at less than 2 kV (impossible)

<耐熱性評価>
剥離処理フィルムで挟まれた各実施例、各比較例の積層体を20mm×20mmのサイズにカットし、粘着層α1側の剥離フィルムを剥がし、株式会社アイネックス(株)製チップ用マルチヒートシンク(アルミニウム製20mm×20mm×高さ6mm、約100g)にヒートシンクの平滑面と粘着シートとの正方形が綺麗に重なるよう貼付する。
次に30mm×50mm×厚み2mmのアルミニウム板に粘着層α2側の剥離フィルムを剥がして貼付し、30度に傾けた150℃設定のセラミックホットプレート(アズワン(株)製)の上にアルミニウム板が接するように置く。
10分間後にホットプレートからアルミニウム板ごと下ろし、傾けていた方向にヒートシンクと熱伝導性粘着テープ間にズレが無いか、10~20倍の倍率で顕微鏡で観察し、以下の評価基準で評価した。
S:ズレ無し、または0.1mm未満のズレ(最良)
A:0.1mm以上、0.5mm未満のズレ(優良)
B:0.5mm以上、1mm未満のズレ(標準)
C:1mm以上のズレがあり、ズレて露出した粘着層表面に発泡等の外観不良は確認できない(使用可能)
D:1mm以上のズレがあり、ズレて露出した粘着層表面に発泡等の外観不良が確認できる(不可)
<Heat resistance evaluation>
The laminate of each example and each comparative example sandwiched by the release treatment film was cut into a size of 20 mm × 20 mm, the release film on the adhesive layer α1 side was peeled off, and a multi-heat sink for chips manufactured by Inex Co., Ltd. (aluminum (20 mm x 20 mm x height 6 mm, about 100 g).
Next, the release film on the adhesive layer α2 side was peeled off and attached to an aluminum plate of 30 mm × 50 mm × thickness 2 mm, and the aluminum plate was placed on a ceramic hot plate (manufactured by AS ONE Co., Ltd.) tilted at 30 degrees and set to 150 ° C. Place them so that they touch each other.
After 10 minutes, the aluminum plate was taken down from the hot plate, and it was observed under a microscope at a magnification of 10 to 20 times to see if there was any misalignment between the heat sink and the thermally conductive adhesive tape in the tilted direction, and was evaluated according to the following evaluation criteria.
S: No deviation or less than 0.1 mm deviation (best)
A: Deviation of 0.1 mm or more and less than 0.5 mm (excellent)
B: Deviation of 0.5 mm or more and less than 1 mm (standard)
C: There is a deviation of 1 mm or more, and no appearance defects such as foaming can be confirmed on the surface of the adhesive layer exposed due to deviation (usable)
D: There is a deviation of 1 mm or more, and appearance defects such as foaming can be confirmed on the surface of the adhesive layer exposed due to deviation (impossible)

Figure 2023044248000004
Figure 2023044248000004

Figure 2023044248000005
Figure 2023044248000005

Claims (16)

シート状基材βの両面に熱伝導性粘着層α1、α2を有する熱伝導性粘着シートであって、
前記シート状基材βは、絶縁性の無機フィラーを含み、厚みが1~10μmであり、
前記シート状基材βの断面に観察される前記絶縁性の無機フィラーのうち、アスペクト比:長径aβ/短径bβが1~2の無機フィラーの割合が80%以上であり、
前記熱伝導性粘着層α1、α2が、それぞれ独立に絶縁性の無機フィラーを含み、熱伝導性粘着層α1およびα2の合計の厚みが1~45μmであり、
前記シート状基材βと前記熱伝導性粘着層α1、α2との合計の厚みが50μm以下であり、
0℃~150℃の温度領域における貯蔵弾性率の変曲点のうち最も高温側の変曲点の温度T0よりも30℃高い温度T1おける貯蔵弾性率E’1と、前記変曲点の温度T0よりも50℃高い温度T2おける貯蔵弾性率E’2との比:E’1 / E’2が1~3である、
熱伝導性粘着シート。
A thermally conductive adhesive sheet having thermally conductive adhesive layers α1 and α2 on both sides of a sheet-like substrate β,
The sheet-like base material β contains an insulating inorganic filler and has a thickness of 1 to 10 μm,
Among the insulating inorganic fillers observed in the cross section of the sheet-like substrate β, the ratio of inorganic fillers having an aspect ratio: major axis a β / minor axis b β of 1 to 2 is 80% or more,
The thermally conductive adhesive layers α1 and α2 each independently contain an insulating inorganic filler, and the total thickness of the thermally conductive adhesive layers α1 and α2 is 1 to 45 μm,
The total thickness of the sheet-like substrate β and the thermally conductive adhesive layers α1 and α2 is 50 μm or less,
A storage modulus E′1 at a temperature T 1 which is 30° C. higher than the temperature T 0 of the highest inflection point of the storage modulus in the temperature range of 0° C. to 150° C., and the inflection point to the storage modulus E'2 at a temperature T2 that is 50°C higher than the temperature T0 : E'1 / E'2 is 1 to 3,
Thermally conductive adhesive sheet.
前記シート状基材βの断面に観察される前記絶縁性の無機フィラーの長径aβと短径bβとの和の1/2である粒子径の平均値が前記シート状基材βの厚みの60%以下であり、前記絶縁性の無機フィラーの最大径aβ maxが前記シート状基材βの厚み未満である、請求項1記載の熱伝導性粘着シート。 The thickness of the sheet-like substrate β is the average value of the particle diameter that is 1/2 of the sum of the long diameter a β and the short diameter b β of the insulating inorganic filler observed in the cross section of the sheet-shaped substrate β. , and the maximum diameter a β max of the insulating inorganic filler is less than the thickness of the sheet-like substrate β. 前記熱伝導性粘着層α1の断面に観察される前記絶縁性の無機フィラーの長径aα1と短径bα1との和の1/2である粒子径の平均値が熱伝導性粘着層α1の厚みの60%以下であり、前記絶縁性の無機フィラーの最大径aα1 maxが熱伝導性粘着層α1の厚み未満であり、
前記熱伝導性粘着層α2の断面に観察される前記絶縁性の無機フィラーの長径aα2と短径bα2との和の1/2である粒子径の平均値が熱伝導性粘着層α2の厚みの60%以下であり、前記絶縁性の無機フィラーの最大径aα2 maxが熱伝導性粘着層α2の厚み未満である、
請求項1または2記載の熱伝導性粘着シート。
The average particle diameter of the insulating inorganic filler observed in the cross section of the thermally conductive adhesive layer α1, which is 1/2 of the sum of the major diameter a α1 and the minor diameter b α1 , of the thermally conductive adhesive layer α1 60% or less of the thickness, and the maximum diameter a α1 max of the insulating inorganic filler is less than the thickness of the thermally conductive adhesive layer α1,
The average particle diameter of the insulating inorganic filler observed in the cross section of the thermally conductive adhesive layer α2, which is 1/2 of the sum of the major diameter a α2 and the minor diameter b α2 of the thermally conductive adhesive layer α2 60% or less of the thickness, and the maximum diameter a α2 max of the insulating inorganic filler is less than the thickness of the thermally conductive adhesive layer α2.
The thermally conductive adhesive sheet according to claim 1 or 2.
前記シート状基材βが、ポリビニルアセタール樹脂の硬化物またはスチレン系エラストマーの硬化物を含む、請求項1~3いずれか1項に記載の熱伝導性粘着シート。 The thermally conductive pressure-sensitive adhesive sheet according to any one of claims 1 to 3, wherein the sheet-like substrate β comprises a cured polyvinyl acetal resin or a cured styrene elastomer. 前記熱伝導性粘着層α1およびα2が、アクリル樹脂の硬化物を含む、請求項1~4いずれか1項に記載の熱伝導性粘着シート。 The thermally conductive adhesive sheet according to any one of claims 1 to 4, wherein the thermally conductive adhesive layers α1 and α2 contain a cured acrylic resin. 絶縁性の無機フィラーを含み、厚みが1~10μmであり、断面に観察される前記絶縁性の無機フィラー100%のうち、80%以上の無機フィラーのアスペクト比:長径aβ/短径bβが1~2であり、200℃における貯蔵弾性率が103Pa以上のシート状基材β。 It contains an insulating inorganic filler, has a thickness of 1 to 10 μm, and out of 100% of the insulating inorganic filler observed in the cross section, the aspect ratio of the inorganic filler of 80% or more: major axis a β / minor axis b β is 1 to 2, and the storage elastic modulus at 200°C is 10 3 Pa or more. 前記シート状基材βの断面に観察される前記絶縁性の無機フィラーの長径aβと短径bβとの和の1/2である粒子径の平均値が前記シート状基材βの厚みの60%以下であり、前記絶縁性の無機フィラーの最大径aβ maxが前記シート状基材βの厚み未満である、請求項6記載のシート状基材β。 The thickness of the sheet-like substrate β is the average value of the particle diameter that is 1/2 of the sum of the long diameter a β and the short diameter b β of the insulating inorganic filler observed in the cross section of the sheet-shaped substrate β. 7. The sheet-shaped substrate β according to claim 6, wherein the maximum diameter a β max of the insulating inorganic filler is less than the thickness of the sheet-shaped substrate β. 前記シート状基材βが、ポリビニルアセタール樹脂の硬化物またはスチレン系エラストマーの硬化物を含む、請求項6または7記載のシート状基材β。 8. The sheet-like substrate β according to claim 6, wherein the sheet-like substrate β contains a cured product of polyvinyl acetal resin or a cured product of styrene-based elastomer. 請求項6~8いずれか1項に記載のシート状基材βの両面にそれぞれ独立に絶縁性の無機フィラーを含む熱伝導性粘着層α1、α2を有し、
前記熱伝導性粘着層α1およびα2の合計の厚みが1~45μmであり、
前記シート状基材βと前記熱伝導性粘着層α1、α2との合計の厚みが50μm以下であり、
0~150℃の温度領域における貯蔵弾性率の変曲点のうち最も高温側の変曲点の温度T0よりも30℃高い温度T1おける貯蔵弾性率E’1と、前記変曲点の温度T0よりも50℃高い温度T2おける貯蔵弾性率E’2との比:E’1/E’2が1~3である、
熱伝導性粘着シート。
On both sides of the sheet-like substrate β according to any one of claims 6 to 8, each independently has thermally conductive adhesive layers α1 and α2 containing an insulating inorganic filler,
The total thickness of the thermally conductive adhesive layers α1 and α2 is 1 to 45 μm,
The total thickness of the sheet-like substrate β and the thermally conductive adhesive layers α1 and α2 is 50 μm or less,
A storage modulus E′1 at a temperature T 1 that is 30° C. higher than the temperature T 0 of the highest inflection point of the storage modulus in the temperature range of 0 to 150° C., and the inflection point The ratio of the storage modulus E'2 at a temperature T2 which is 50°C higher than the temperature T0 : E'1 / E'2 is 1 to 3,
Thermally conductive adhesive sheet.
前記熱伝導性粘着層α1の断面に観察される前記絶縁性の無機フィラーの長径aα1と短径bα1との和の1/2である粒子径の平均値が熱伝導性粘着層α1の厚みの60%以下であり、前記絶縁性の無機フィラーの最大径aα1 maxが熱伝導性粘着層α1の厚み未満であり、
前記熱伝導性粘着層α2の断面に観察される前記絶縁性の無機フィラーの長径aα2と短径bα2との和の1/2である粒子径の平均値が熱伝導性粘着層α2の厚みの60%以下であり、前記絶縁性の無機フィラーの最大径aα2 maxが熱伝導性粘着層α2の厚み未満である、
る、請求項9記載の熱伝導性粘着シート。
The average particle diameter of the insulating inorganic filler observed in the cross section of the thermally conductive adhesive layer α1, which is 1/2 of the sum of the major diameter a α1 and the minor diameter b α1 , of the thermally conductive adhesive layer α1 60% or less of the thickness, and the maximum diameter a α1 max of the insulating inorganic filler is less than the thickness of the thermally conductive adhesive layer α1,
The average particle diameter of the insulating inorganic filler observed in the cross section of the thermally conductive adhesive layer α2, which is 1/2 of the sum of the major diameter a α2 and the minor diameter b α2 of the thermally conductive adhesive layer α2 60% or less of the thickness, and the maximum diameter a α2 max of the insulating inorganic filler is less than the thickness of the thermally conductive adhesive layer α2.
10. The thermally conductive adhesive sheet according to claim 9.
前記熱伝導性粘着層α1、およびα2が、アクリル樹脂の硬化物を含む、請求項9または10記載の熱伝導性粘着シート。 The thermally conductive adhesive sheet according to claim 9 or 10, wherein the thermally conductive adhesive layers α1 and α2 contain a cured acrylic resin. シート状基材βの両面に熱伝導性粘着層α1、α2を有する熱伝導性粘着シートの製造方法であって、下記工程[1]~[3]を含む、
0~150℃の温度領域における貯蔵弾性率の変曲点のうち最も高温側の変曲点の温度T0よりも30℃高い温度T1おける貯蔵弾性率E’1と、前記変曲点の温度T0よりも50℃高い温度T2おける貯蔵弾性率E’2との比:E’1 /E’2が1~3である、
熱伝導性粘着シートの製造方法。
[1] 架橋可能なポリマーの溶液または分散液と、絶縁性の無機フィラーと、架橋剤とを含むシート状基材β形成用の分散液を用いて、200℃における貯蔵弾性率が103Pa以上であり、厚みが1~10μmであり、シート状基材βの断面に観察される前記絶縁性の無機フィラー100%のうち、80%以上の無機フィラーのアスペクト比:長径aβ/短径bβが1~2である、シート状基材βを製造する工程。
[2] 架橋可能なポリマーの溶液または分散液と、絶縁性の無機フィラーと、架橋剤とを含む熱伝導性粘着層α1、α2形成用の分散液を用いて、2つの熱伝導性粘着層α1、α2を製造する工程。
[3] 前記シート状基材βの両面にそれぞれ前記熱伝導性粘着層α1、α2を、前記熱伝導性粘着層α1、およびα2の合計の厚みが1~45μmであって、前記シート状基材βと前記熱伝導性粘着層α1、α2との合計の厚みが50μm以下となるように積層する工程。
A method for producing a thermally conductive adhesive sheet having thermally conductive adhesive layers α1 and α2 on both sides of a sheet-like substrate β, comprising the following steps [1] to [3]:
A storage modulus E′1 at a temperature T 1 that is 30° C. higher than the temperature T 0 of the highest inflection point of the storage modulus in the temperature range of 0 to 150° C., and the inflection point The ratio of the storage modulus E'2 at a temperature T2 which is 50°C higher than the temperature T0 : E'1 / E'2 is 1 to 3,
A method for producing a thermally conductive adhesive sheet.
[1] Using a dispersion for forming a sheet-like substrate β containing a solution or dispersion of a crosslinkable polymer, an insulating inorganic filler, and a crosslinking agent, the storage elastic modulus at 200°C is 10 3 Pa. and having a thickness of 1 to 10 μm, and of 100% of the insulating inorganic filler observed in the cross section of the sheet-like base material β, the aspect ratio of the inorganic filler of 80% or more: major axis a β /minor axis b A step of producing a sheet-like base material β in which β is 1-2.
[2] Two thermally conductive adhesive layers are formed using a dispersion for forming thermally conductive adhesive layers α1 and α2 containing a solution or dispersion of a crosslinkable polymer, an insulating inorganic filler, and a crosslinking agent. A step of manufacturing α1 and α2.
[3] The thermally conductive adhesive layers α1 and α2 are provided on both sides of the sheet-like substrate β, respectively, and the total thickness of the thermally conductive adhesive layers α1 and α2 is 1 to 45 μm, and the sheet-like substrate A step of laminating the material β and the thermally conductive adhesive layers α1 and α2 so that the total thickness is 50 μm or less.
前記工程[1]において、前記シート状基材βの厚みを100とした場合に、D90粒子径が50以下である絶縁性の無機フィラーを用いて、前記シート状基材β形成用の分散液を製造する、請求項11記載の熱伝導性粘着シートの製造方法。 In the step [1], when the thickness of the sheet-like substrate β is 100, an insulating inorganic filler having a D90 particle size of 50 or less is used to form a dispersion liquid for forming the sheet-like substrate β. The method for producing a thermally conductive pressure-sensitive adhesive sheet according to claim 11, wherein 前記工程[2]において、前熱伝導性粘着層α1、α2の厚みを100とした場合に、D90粒子径が50以下である絶縁性の無機フィラーを用いて、当該熱伝導性粘着層α1、α2用の分散液を製造する、請求項12または13記載の熱伝導性粘着シートの製造方法。 In the step [2], when the thickness of the front thermally conductive adhesive layers α1 and α2 is 100, an insulating inorganic filler having a D90 particle size of 50 or less is used to form the thermally conductive adhesive layers α1 and α2. 14. The method for producing a thermally conductive pressure-sensitive adhesive sheet according to claim 12 or 13, wherein a dispersion liquid for α2 is produced. 前記工程[1]における架橋可能なポリマーが、ポリビニルアセタール樹脂またはスチレン系エラストマーである、請求項12~14いずれか1項に記載の熱伝導性粘着シートの製造方法。 15. The method for producing a thermally conductive adhesive sheet according to any one of claims 12 to 14, wherein the crosslinkable polymer in the step [1] is polyvinyl acetal resin or styrene elastomer. 前記工程[2]における架橋可能なポリマーが、アクリル樹脂である、請求項12~15いずれか1項に記載の熱伝導性粘着シートの製造方法。
16. The method for producing a thermally conductive pressure-sensitive adhesive sheet according to any one of claims 12 to 15, wherein the crosslinkable polymer in the step [2] is an acrylic resin.
JP2021152178A 2021-09-17 2021-09-17 Thermally conductive adhesive sheet, thermally conductive sheet-like substrate, and method for producing thermally conductive adhesive sheet Pending JP2023044248A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021152178A JP2023044248A (en) 2021-09-17 2021-09-17 Thermally conductive adhesive sheet, thermally conductive sheet-like substrate, and method for producing thermally conductive adhesive sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021152178A JP2023044248A (en) 2021-09-17 2021-09-17 Thermally conductive adhesive sheet, thermally conductive sheet-like substrate, and method for producing thermally conductive adhesive sheet

Publications (1)

Publication Number Publication Date
JP2023044248A true JP2023044248A (en) 2023-03-30

Family

ID=85725704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021152178A Pending JP2023044248A (en) 2021-09-17 2021-09-17 Thermally conductive adhesive sheet, thermally conductive sheet-like substrate, and method for producing thermally conductive adhesive sheet

Country Status (1)

Country Link
JP (1) JP2023044248A (en)

Similar Documents

Publication Publication Date Title
KR102574768B1 (en) Thermally conductive adhesive sheet
TWI577959B (en) Thermal conductive sheet, method of producing thermal conductive sheet and radiator
JP5560630B2 (en) HEAT CONDUCTIVE SHEET, METHOD FOR PRODUCING THE HEAT CONDUCTIVE SHEET, AND HEAT DISCHARGE DEVICE USING HEAT CONDUCTIVE SHEET
US8420164B2 (en) Solid type rubber-based pressure-sensitive adhesive composition and pressure-sensitive adhesive sheet thereof
JP7177811B2 (en) Film adhesive, semiconductor processing sheet, and method for manufacturing semiconductor device
TW201137078A (en) Two-sided adhesive sheet having heat conductivity
EP2979864B1 (en) Protective film formation composite sheet and method for fabricating a chip equipped with a protective film
JP6549902B2 (en) Dicing die bond film, method of manufacturing semiconductor device and semiconductor device
WO2017078026A1 (en) Release agent composition, release sheet, and adhesive body
CN107001875B (en) Film-like adhesive composite sheet and method for manufacturing semiconductor device
WO2017047548A1 (en) Pressure-sensitive adhesive composition and pressure-sensitive adhesive sheet
JP5004538B2 (en) Thermally conductive moisture-curing adhesive and its construction method
KR20190049521A (en) Adhesive sheet
TW201912689A (en) Resin sheet, semiconductor device, and method of using resin sheet
JP2004059851A (en) Composition for heat conductive, electric insulative pressure sensitive adhesive agent and adhesive sheet using same
JP2023044248A (en) Thermally conductive adhesive sheet, thermally conductive sheet-like substrate, and method for producing thermally conductive adhesive sheet
CN109153239B (en) Mold release film
WO2022097442A1 (en) Adhesive film, adehsive film with support sheet, cured body and method for producing structure
WO2022097443A1 (en) Adhesive film, support-sheet-equipped adhesive film, and structure
TWI752845B (en) Thermal peel adhesive tape
JP6470944B2 (en) Conductive adhesive composition and conductive adhesive sheet
JP7490417B2 (en) Adhesive sheet
TWI834120B (en) Next film
WO2023140251A1 (en) Foam member
CN117715995A (en) Mold release film and method for manufacturing semiconductor package

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240514

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20240524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20240524