JP2023043971A - air conditioner - Google Patents

air conditioner Download PDF

Info

Publication number
JP2023043971A
JP2023043971A JP2021151750A JP2021151750A JP2023043971A JP 2023043971 A JP2023043971 A JP 2023043971A JP 2021151750 A JP2021151750 A JP 2021151750A JP 2021151750 A JP2021151750 A JP 2021151750A JP 2023043971 A JP2023043971 A JP 2023043971A
Authority
JP
Japan
Prior art keywords
outdoor
relative humidity
absorbent
air
air conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021151750A
Other languages
Japanese (ja)
Inventor
優生 大西
Yuki Onishi
悠二 渡邉
Yuji Watanabe
晴之 宮崎
Haruyuki Miyazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2021151750A priority Critical patent/JP2023043971A/en
Priority to PCT/JP2022/032615 priority patent/WO2023042656A1/en
Priority to CN202280061373.2A priority patent/CN117957408A/en
Publication of JP2023043971A publication Critical patent/JP2023043971A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0087Indoor units, e.g. fan coil units with humidification means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F6/00Air-humidification, e.g. cooling by humidification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity
    • F24F2110/22Humidity of the outside air
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Drying Of Gases (AREA)
  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)
  • Air Humidification (AREA)
  • Air Conditioning Control Device (AREA)
  • Central Air Conditioning (AREA)

Abstract

To efficiently execute a humidification operation in an air conditioner.SOLUTION: An air conditioner in one embodiment includes an indoor unit and an outdoor unit. The air conditioner includes: an absorber provided in the outdoor unit and absorbing moisture of outdoor air; a moisture absorbing flow passage that passes through the absorber and in which the outdoor air flows from an outdoor side to an outdoor side; a moisture absorption fan generating a flow of outdoor air in the moisture absorbing flow passage; a motor for rotating and driving the absorber; and a control section for controlling the moisture absorption fan and the motor. The control section acquires outdoor relative humidity information and controls the rotating speed of the motor on the basis of the outdoor relative humidity information.SELECTED DRAWING: Figure 11

Description

本開示は、空気調和機に関する。 The present disclosure relates to air conditioners.

従来より、特許文献1に記載するように、空気調和対象の室内に配置される室内機と、室外に配置される室外機とから構成される空気調和機が知られている。この空気調和機は、室外機から室内機に加湿された室外空気を供給できるように構成されている。 2. Description of the Related Art Conventionally, as described in Patent Literature 1, an air conditioner is known that includes an indoor unit arranged inside a room to be air-conditioned and an outdoor unit arranged outdoors. This air conditioner is configured to supply humidified outdoor air from the outdoor unit to the indoor unit.

特開2001-91000号公報JP-A-2001-91000

ところで、空気調和機の室外の相対湿度に基づいて効率よく加湿運転を実行したいというニーズがある。 By the way, there is a need to efficiently execute the humidification operation based on the outdoor relative humidity of the air conditioner.

そこで、本開示は、室外の相対湿度に基づいて効率よく加湿運転を実行することのできる空気調和機を提供することを課題とする。 Therefore, an object of the present disclosure is to provide an air conditioner that can efficiently perform a humidification operation based on the outdoor relative humidity.

上述の課題を解決するために、本発明の一態様によれば、
室内機と室外機とを備える空気調和機であって、
前記室外機に設けられ、室外空気の水分を吸収する吸収材と、
前記吸収材を通過し、室外空気が室外から室外に流れる吸湿流路と、
前記吸湿流路に室外空気の流れを発生させる吸湿ファンと、
前記吸収材を回転駆動するモータと、
前記吸湿ファンと、前記モータと、を制御する制御部と、
を備え、
前記制御部は、室外の相対湿度情報を取得し、前記室外の相対湿度情報に基づいて、前記モータの回転速度を制御する、空気調和機が提供される。
In order to solve the above problems, according to one aspect of the present invention,
An air conditioner comprising an indoor unit and an outdoor unit,
an absorbent provided in the outdoor unit for absorbing moisture in the outdoor air;
a moisture absorption channel through which the outdoor air flows from the outdoor to the outdoor through the absorbent;
a moisture absorption fan for generating a flow of outdoor air in the moisture absorption channel;
a motor that rotationally drives the absorbent;
a control unit that controls the moisture absorption fan and the motor;
with
The air conditioner is provided, wherein the control unit acquires outdoor relative humidity information and controls the rotational speed of the motor based on the outdoor relative humidity information.

本開示によると、室外の相対湿度に基づいて効率よく加湿運転を実行することのできる空気調和機を提供することができる。 According to the present disclosure, it is possible to provide an air conditioner that can efficiently perform a humidifying operation based on the outdoor relative humidity.

本開示の実施の形態1に係る空気調和機の概略図Schematic diagram of an air conditioner according to Embodiment 1 of the present disclosure 換気装置の概略図Schematic diagram of the ventilation system 換気運転中の換気装置の概略図Schematic diagram of the ventilator during ventilation operation 加湿運転中の換気装置の概略図Schematic diagram of the ventilator during humidification operation 除湿運転中の換気装置の概略図Schematic diagram of the ventilation system during dehumidification operation 空気調和機を制御する構成を示すブロック図Block diagram showing a configuration for controlling an air conditioner 加湿運転ONからOFFまでの全体の動作を示すフローチャートFlowchart showing overall operation from ON to OFF of humidification operation 室外空気の相対湿度とモータの回転速度の大小関係を示すグラフGraph showing the relationship between the relative humidity of the outdoor air and the rotational speed of the motor 高分子収着材、シリカゲル、およびゼオライトの水蒸気吸着等温線Water vapor adsorption isotherms of polymeric sorbents, silica gels, and zeolites 変形例1の加湿運転制御のフローチャートFlowchart of humidification operation control of modification 1 室外空気の相対湿度と第2のファンの回転数との大小関係を示すグラフGraph showing magnitude relationship between relative humidity of outdoor air and rotational speed of second fan 変形例2の加湿運転制御のフローチャートFlowchart of humidification operation control of modification 2 室外空気の相対湿度と第1のファンの回転数との大小関係を示すグラフGraph showing magnitude relationship between relative humidity of outdoor air and rotational speed of first fan 変形例3の加湿運転制御のフローチャートFlowchart of humidification operation control of modification 3 室外空気の相対湿度とヒータの入力電圧との大小関係を示すグラフGraph showing the magnitude relationship between the relative humidity of the outdoor air and the input voltage of the heater 実施の形態2に係る空気調和機の構成を示すブロック図Block diagram showing the configuration of an air conditioner according to Embodiment 2 換気装置の一部を示す平面図Plan view showing part of the ventilation system 図17のA-A断面図AA sectional view of FIG. 図18の領域R1を拡大した図FIG. 18 is an enlarged view of region R1 in FIG.

本開示の一態様に係る空気調和機は、室内機と室外機とを備える空気調和機であって、前記室外機に設けられ、室外空気の水分を吸収する吸収材と、前記吸収材を通過し、室外空気が室外から室外に流れる吸湿流路と、前記吸湿流路に室外空気の流れを発生させる吸湿ファンと、前記吸収材を回転駆動するモータと、前記吸湿ファンと、前記モータと、を制御する制御部と、を備え、前記制御部は、室外の相対湿度情報を取得し、前記室外の相対湿度情報に基づいて、前記モータの回転速度を制御する。 An air conditioner according to one aspect of the present disclosure is an air conditioner that includes an indoor unit and an outdoor unit, an absorbent provided in the outdoor unit that absorbs moisture in outdoor air, and an absorbent that passes through the absorbent. a moisture absorption passage through which outdoor air flows from the outside to the outside, a moisture absorption fan that generates the outdoor air flow in the moisture absorption passage, a motor that rotationally drives the absorbent, the moisture absorption fan, the motor, wherein the control unit acquires outdoor relative humidity information and controls the rotational speed of the motor based on the outdoor relative humidity information.

このような一態様によれば、室外の相対湿度に基づいて効率よく加湿運転を実行することができる。 According to such an aspect, it is possible to efficiently perform the humidification operation based on the outdoor relative humidity.

例えば、前記制御部は、前記室外の相対湿度が第1の閾値より高い場合に前記モータの回転速度を減速し、前記室外の相対湿度が前記第1の閾値より低い第2の閾値より低い場合に前記モータの回転速度を加速してもよい。 For example, the control unit reduces the rotational speed of the motor when the outdoor relative humidity is higher than a first threshold, and the outdoor relative humidity is lower than a second threshold lower than the first threshold. The rotational speed of the motor may be accelerated at the same time.

例えば、前記制御部は、前記室外の相対湿度情報に基づいて、前記吸湿ファンの回転速度を制御してもよい。 For example, the controller may control the rotation speed of the moisture absorption fan based on the outdoor relative humidity information.

例えば、前記制御部は、前記室外の相対湿度が第3の閾値より高い場合に前記吸湿ファンの回転速度を加速し、前記室外の相対湿度が前記第3の閾値より低い第4の閾値より低い場合に前記吸湿ファンの回転速度を減速してもよい。 For example, the controller accelerates the rotational speed of the moisture absorption fan when the outdoor relative humidity is higher than a third threshold, and the outdoor relative humidity is lower than a fourth threshold lower than the third threshold. In some cases, the rotation speed of the moisture absorption fan may be reduced.

例えば、前記吸収材を通過し、室外空気が流れる再生流路と、前記再生流路に室外空気を送る再生ファンと、をさらに備え、前記制御部は、前記室外の相対湿度情報に基づいて、前記再生ファンの回転数を制御してもよい。 For example, further comprising a regeneration channel through which the outdoor air flows through the absorbent material, and a regeneration fan that sends the outdoor air to the regeneration channel, the control unit, based on the outdoor relative humidity information, The rotation speed of the regeneration fan may be controlled.

例えば、前記制御部は、前記室外の相対湿度が第5の閾値より高い場合に前記再生ファンの回転速度を加速し、前記室外の相対湿度が前記第5の閾値より低い第6の閾値より低い場合に前記再生ファンの回転速度を減速してもよい。 For example, the controller accelerates the rotation speed of the regeneration fan when the outdoor relative humidity is higher than a fifth threshold, and the outdoor relative humidity is lower than a sixth threshold, which is lower than the fifth threshold. In some cases, the rotation speed of the regeneration fan may be reduced.

例えば、前記再生流路における前記吸収材に対する上流側で室外空気を加熱するヒータをさらに備え、前記制御部は、前記室外の相対湿度情報に基づいて、前記ヒータの入力電圧を制御してもよい。 For example, a heater that heats outdoor air may be further provided on the upstream side of the absorbent in the regeneration flow path, and the controller may control the input voltage of the heater based on the outdoor relative humidity information. .

例えば、前記制御部は、前記室外の相対湿度が第7の閾値より高い場合に、前記ヒータの入力電圧を高くし、前記室外の相対湿度が前記第7の閾値より低い第8の閾値より低い場合に前記ヒータの入力電圧を低くしてもよい。 For example, the controller increases the input voltage of the heater when the outdoor relative humidity is higher than a seventh threshold, and the outdoor relative humidity is lower than an eighth threshold, which is lower than the seventh threshold. In some cases, the input voltage of the heater may be lowered.

例えば、前記吸湿流路の前記吸収材の上流側に配置された相対湿度センサをさらに備え、前記室外の相対湿度情報は、前記相対湿度センサにより検出されてもよい。 For example, a relative humidity sensor arranged upstream of the absorbent in the moisture absorption channel may be further provided, and the outdoor relative humidity information may be detected by the relative humidity sensor.

例えば、前記相対湿度センサを覆い、ラビリンス構造を有するセンサカバー、をさらに備えてもよい。 For example, a sensor cover covering the relative humidity sensor and having a labyrinth structure may further be provided.

例えば、前記吸収材は、高分子収着材であってもよい。 For example, the absorbent may be a polymeric sorbent.

以下、本開示の一実施の形態について図面を参照しながら説明する。 An embodiment of the present disclosure will be described below with reference to the drawings.

(実施の形態1)
図1は、本開示の実施の形態1に係る空気調和機の概略図である。
(Embodiment 1)
FIG. 1 is a schematic diagram of an air conditioner according to Embodiment 1 of the present disclosure.

図1に示すように、本実施の形態に係る空気調和機10は、空調対象の室内Rinに配置される室内機20と、室外Routに配置される室外機30とを有する。 As shown in FIG. 1, the air conditioner 10 according to the present embodiment has an indoor unit 20 arranged in the indoor Rin to be air-conditioned, and an outdoor unit 30 arranged in the outdoor Rout.

室内機20には、室内空気A1と熱交換を行う室内熱交換器22と、室内空気A1を室内機20内に誘引するとともに、室内熱交換器22と熱交換した後の室内空気A1を室内Rinに吹き出すファン24とが設けられている。 The indoor unit 20 includes an indoor heat exchanger 22 that exchanges heat with the indoor air A1, and invites the indoor air A1 into the indoor unit 20, and the indoor air A1 after heat exchange with the indoor heat exchanger 22 is introduced into the room. A fan 24 that blows to Rin is provided.

室外機30には、室外空気A2と熱交換を行う室外熱交換器32と、室外空気A2を室外機30内に誘引するとともに、室外熱交換器32と熱交換した後の室外空気A2を室外Routに吹き出すファン34とが設けられている。また、室外機30には、室内熱交換器22および室外熱交換器32と冷凍サイクルを実行する圧縮機36、膨張弁38、および四方弁40が設けられている。 The outdoor unit 30 includes an outdoor heat exchanger 32 that exchanges heat with the outdoor air A2, and invites the outdoor air A2 into the outdoor unit 30. A fan 34 blowing to Rout is provided. In addition, the outdoor unit 30 is provided with a compressor 36, an expansion valve 38, and a four-way valve 40 for executing a refrigerating cycle with the indoor heat exchanger 22 and the outdoor heat exchanger 32.

室内熱交換器22、室外熱交換器32、圧縮機36、膨張弁38、および四方弁40それぞれは、冷媒が流れる冷媒配管によって接続されている。冷房運転および除湿運転(弱冷房運転)の場合、空気調和機10は、冷媒が圧縮機36から四方弁40、室外熱交換器32、膨張弁38、室内熱交換器22を順に流れて圧縮機36に戻る冷凍サイクルを実行する。暖房運転の場合、空気調和機10は、冷媒が圧縮機36から四方弁40、室内熱交換器22、膨張弁38、室外熱交換器32を順に流れて圧縮機36に戻る冷凍サイクルを実行する。 The indoor heat exchanger 22, the outdoor heat exchanger 32, the compressor 36, the expansion valve 38, and the four-way valve 40 are connected by refrigerant pipes through which refrigerant flows. In the case of cooling operation and dehumidification operation (weak cooling operation), the air conditioner 10 is configured such that the refrigerant flows from the compressor 36 through the four-way valve 40, the outdoor heat exchanger 32, the expansion valve 38, and the indoor heat exchanger 22 in order. Execute the freeze cycle back to 36. In the case of heating operation, the air conditioner 10 executes a refrigeration cycle in which refrigerant flows from the compressor 36 through the four-way valve 40, the indoor heat exchanger 22, the expansion valve 38, the outdoor heat exchanger 32 in order, and then returns to the compressor 36. .

空気調和機10は、冷凍サイクルよる空調運転の他に、室外空気A3を室内Rinに導入する空調運転を実行する。そのために、空気調和機10は、換気装置50を有する。換気装置50は、室外機30に設けられている。 The air conditioner 10 performs an air-conditioning operation of introducing the outdoor air A3 into the room Rin in addition to the air-conditioning operation by the refrigeration cycle. Therefore, the air conditioner 10 has a ventilator 50 . A ventilation device 50 is provided in the outdoor unit 30 .

図2は、換気装置の概略図である。 FIG. 2 is a schematic diagram of a ventilator.

図2に示すように、換気装置50は、その内部に室外空気A3、A4が通過する吸収材52を備える。 As shown in FIG. 2, the ventilator 50 comprises an absorbent material 52 through which outdoor air A3, A4 passes.

吸収材52は、空気が通過可能な部材であって、通過する空気から水分を捕集するまたは通過する空気に水分を与える部材である。本実施の形態の場合、吸収材52は、円盤状であって、その中心を通過する回転中心線C1を中心にして回転する。吸収材52は、モータ54によって回転駆動される。 The absorbent 52 is a member through which air can pass, and is a member that collects moisture from the passing air or provides moisture to the passing air. In the case of this embodiment, the absorber 52 is disc-shaped and rotates around a rotation center line C1 passing through the center thereof. The absorbing material 52 is rotationally driven by a motor 54 .

吸収材52は、空気中の水分を収着する高分子収着材が好ましい。高分子収着材は、例えば、ポリアクリル酸ナトリウム架橋体から構成される。高分子収着材は、シリカゲルやゼオライトなどの吸着材に比べて、同一体積当たり水分を吸収する量が多く、低い加熱温度で担持する水分を脱着することができ、そして水分を長時間担持することができる。 Absorbent material 52 is preferably a polymeric sorbent material that sorbs moisture in the air. The polymeric sorbent material is composed of, for example, a crosslinked sodium polyacrylate. Compared to adsorbents such as silica gel and zeolite, polymer sorbents can absorb a large amount of water per unit volume, can desorb water at low heating temperatures, and can hold water for a long time. be able to.

換気装置50の内部には、吸収材52をそれぞれ通過し、室外空気A3、A4がそれぞれ流れる第1の流路P1と第2の流路P2とが設けられている。第1の流路P1と第2の流路P2は、異なる位置で吸収材52を通過する。なお、第1の流路P1が、本開示の「再生流路」に相当し、第2の流路P2が、本開示の「吸湿流路」に相当する。 Inside the ventilator 50, there are provided a first flow path P1 and a second flow path P2 through which the outdoor air A3 and A4 respectively pass through the absorbent material 52. As shown in FIG. The first flow path P1 and the second flow path P2 pass through the absorbent material 52 at different positions. The first flow path P1 corresponds to the "regeneration flow path" of the present disclosure, and the second flow path P2 corresponds to the "moisture absorption flow path" of the present disclosure.

第1の流路P1は、室内機20内に向かう室外空気A3が流れる流路である。第1の流路P1を流れる室外空気A3は、換気導管56を介して、室内機20内に供給される。 The first flow path P1 is a flow path through which the outdoor air A3 directed to the inside of the indoor unit 20 flows. The outdoor air A3 flowing through the first flow path P1 is supplied into the indoor unit 20 via the ventilation conduit 56. As shown in FIG.

本実施の形態の場合、第1の流路P1は、吸収材52に対して上流側に複数の支流路P1a、P1bを含んでいる。なお、本明細書において、「上流」および「下流」は、空気の流れに対して使用される。 In the case of this embodiment, the first flow path P1 includes a plurality of branch flow paths P1a and P1b on the upstream side with respect to the absorbent 52 . It should be noted that "upstream" and "downstream" are used herein with respect to air flow.

複数の支流路P1a、P2aは、吸収材52に対して上流側で合流する。複数の支流路P1a、P1bそれぞれには、室外空気A3を加熱する第1および第2のヒータ58、60が設けられている。 The plurality of tributary channels P1a and P2a join together on the upstream side of the absorbent 52 . First and second heaters 58 and 60 for heating the outdoor air A3 are provided in the plurality of branch passages P1a and P1b, respectively.

第1および第2のヒータ58、60は、同一の加熱能力を備えるヒータであってもよいし、異なる加熱能力を備えるヒータであってもよい。また、第1および第2のヒータ58、60は、電流が流れて温度が上昇すると電気抵抗が増加する、すなわち過剰な加熱温度の上昇を抑制することができるPTC(Positive Temperature Coefficient)ヒータが好ましい。ニクロム線やカーボン繊維などを用いるヒータの場合、電流が流れ続けると加熱温度(表面温度)が上昇し続けるため、その温度をモニタリングする必要がある。PTCヒータの場合、ヒータ自体が加熱温度を一定の温度範囲内で調節するために、加熱温度をモニタリングする必要がなくなる。 The first and second heaters 58, 60 may be heaters with the same heating capacity, or may be heaters with different heating capacities. Moreover, the first and second heaters 58 and 60 are preferably PTC (Positive Temperature Coefficient) heaters, which increase electrical resistance when current flows and the temperature rises, that is, can suppress an excessive heating temperature rise. . In the case of a heater using a nichrome wire, carbon fiber, or the like, the heating temperature (surface temperature) continues to rise as current continues to flow, so it is necessary to monitor the temperature. The PTC heater eliminates the need to monitor the heating temperature because the heater itself regulates the heating temperature within a certain temperature range.

第1の流路P1には、室内機20内に向かう室外空気A3の流れを発生させる第1のファン62が設けられている。本実施の形態の場合、第1のファン62は、吸収材52に対して下流側に配置されている。第1のファン62が作動することにより、室外空気A3が、室外Routから第1の流路P1内に流入し、吸収材52を通過する。なお、第1のファン62が本開示の「再生ファン」に相当する。 A first fan 62 that generates a flow of the outdoor air A3 toward the inside of the indoor unit 20 is provided in the first flow path P1. In the case of this embodiment, the first fan 62 is arranged downstream with respect to the absorbent 52 . By operating the first fan 62 , the outdoor air A 3 flows from the outdoor Rout into the first flow path P 1 and passes through the absorbent 52 . Note that the first fan 62 corresponds to the "reproduction fan" of the present disclosure.

また、第1の流路P1には、第1の流路P1を流れる室外空気A3を室内Rin(すなわち室内機20)または室外Routに振り分けるダンパ装置64が設けられている。本実施の形態の場合、ダンパ装置64は、第1のファン62に対して下流側に配置されている。ダンパ装置64によって室内機20に振り分けられた室外空気A3は、換気導管56を介して室内機20内に入り、ファン24によって室内Rinに吹き出される。 Further, the first flow path P1 is provided with a damper device 64 that distributes the outdoor air A3 flowing through the first flow path P1 to the indoor Rin (that is, the indoor unit 20) or the outdoor Rout. In this embodiment, the damper device 64 is arranged downstream of the first fan 62 . The outdoor air A3 distributed to the indoor unit 20 by the damper device 64 enters the indoor unit 20 via the ventilation conduit 56 and is blown out by the fan 24 to the indoor unit Rin.

第2の流路P2は、室外空気A4が流れる流路である。第1の流路P1を流れる室外空気A3と異なり、第2の流路P2を流れる室外空気A4は、室内機20に向かうことはない。第2の流路P2を流れる室外空気A4は、吸収材52を通過した後、室外Routに流出する。 The second flow path P2 is a flow path through which the outdoor air A4 flows. Unlike the outdoor air A3 flowing through the first flow path P1, the outdoor air A4 flowing through the second flow path P2 does not go to the indoor unit 20. The outdoor air A4 flowing through the second flow path P2 flows out to the outdoor Rout after passing through the absorbent 52 .

第1の流路P1には、室外空気A4の流れを発生させる第2のファン66が設けられている。本実施の形態の場合、第2のファン66は、吸収材52に対して下流側に配置されている。第2のファン66が作動することにより、室外空気A4が、室外Routから第2の流路P2内に流入し、吸収材52を通過し、そして室外Routに流出する。なお、第2のファン66が、本開示の「吸湿ファン」に相当する。 A second fan 66 that generates a flow of outdoor air A4 is provided in the first flow path P1. In the case of this embodiment, the second fan 66 is arranged downstream with respect to the absorbent 52 . By operating the second fan 66, the outdoor air A4 flows from the outdoor Rout into the second flow path P2, passes through the absorbent 52, and then flows out to the outdoor Rout. The second fan 66 corresponds to the "moisture absorption fan" of the present disclosure.

換気装置50は、吸収材52、モータ54、第1のヒータ58、第2のヒータ60、第1のファン62、ダンパ装置64、および第2のファン66を選択的に使用して換気運転、加湿運転、および除湿運転を選択的に実行する。 The ventilator 50 selectively uses the absorber 52, the motor 54, the first heater 58, the second heater 60, the first fan 62, the damper device 64, and the second fan 66 for ventilation operation; Humidification operation and dehumidification operation are selectively executed.

図3は、換気運転中の換気装置の概略図である。 FIG. 3 is a schematic diagram of the ventilator during ventilation operation.

換気運転は、室外空気A3をそのまま換気導管56を介して室内Rin(すなわち室内機20)に供給する空調運転である。図3に示すように、換気運転中、モータ54は吸収材52を回転し続ける。第1のヒータ58と第2のヒータ60は、OFF状態であって、室外空気A3を加熱していない。第1のファン62はON状態で、それにより第1の流路P1内を室外空気A3が流れている。ダンパ装置64は、第1の流路P1内の室外空気A3を室内機20に振り分ける。第2のファン66は、OFF状態であって、それにより第2の流路P2内に室外空気A4の流れが発生していない。 The ventilation operation is an air conditioning operation in which the outdoor air A3 is directly supplied to the indoor unit Rin (that is, the indoor unit 20) through the ventilation conduit 56. As shown in FIG. 3, motor 54 continues to rotate absorbent material 52 during ventilation operation. The first heater 58 and the second heater 60 are in the OFF state and do not heat the outdoor air A3. The first fan 62 is in the ON state, thereby causing the outdoor air A3 to flow through the first flow path P1. The damper device 64 distributes the outdoor air A3 in the first flow path P1 to the indoor units 20 . The second fan 66 is in an OFF state, so that no flow of outdoor air A4 is generated in the second flow path P2.

このような換気運転によれば、室外空気A3は、第1の流路P1に流入し、第1および第2のヒータ58、60に加熱されることなく吸収材52を通過する。吸収材52を通過した室外空気A3は、ダンパ装置64によって室内機20に振り分けられる。ダンパ装置64を通過して換気導管56を介して室内機20に到達した室外空気A3は、ファン24によって室内Rinに吹き出される。このような換気運転により、室外空気A3がそのまま室内Rinに供給され、室内Rinが換気される。 According to such a ventilation operation, the outdoor air A3 flows into the first flow path P1 and passes through the absorbent 52 without being heated by the first and second heaters 58 and 60 . The outdoor air A3 that has passed through the absorbent 52 is distributed to the indoor units 20 by the damper device 64 . The outdoor air A3 that has passed through the damper device 64 and reached the indoor unit 20 via the ventilation conduit 56 is blown out into the room Rin by the fan 24 . Through such a ventilation operation, the outdoor air A3 is supplied to the room Rin as it is, and the room Rin is ventilated.

図4は、加湿運転中の換気装置の概略図である。 FIG. 4 is a schematic diagram of the ventilator during humidification operation.

加湿運転は、室外空気A3を加湿し、その加湿された室外空気A3を室内Rin(すなわち室内機20)に供給する空調運転である。図4に示すように、加湿運転中、モータ54は、吸収材52を回転し続ける。第1のヒータ58と第2のヒータ60は、ON状態であって、室外空気A3を加熱している。第1のファン62はON状態で、それにより第1の流路P1内を室外空気A3が流れている。ダンパ装置64は、第1の流路P1内の室外空気A3を室内機20に振り分ける。第2のファン66は、ON状態であって、それにより第2の流路P2内を室外空気A4が流れている。 The humidification operation is an air conditioning operation in which the outdoor air A3 is humidified and the humidified outdoor air A3 is supplied to the indoor unit Rin (that is, the indoor unit 20). As shown in FIG. 4, the motor 54 continues to rotate the absorbent 52 during the humidification operation. The first heater 58 and the second heater 60 are in the ON state and heat the outdoor air A3. The first fan 62 is in the ON state, thereby causing the outdoor air A3 to flow through the first flow path P1. The damper device 64 distributes the outdoor air A3 in the first flow path P1 to the indoor units 20 . The second fan 66 is in the ON state, thereby causing the outdoor air A4 to flow through the second flow path P2.

このような加湿運転によれば、室外空気A3は、第1の流路P1に流入し、第1および第2のヒータ58、60に加熱されて吸収材52を通過する。このとき、加熱された室外空気A3は、加熱されていない場合に比べて、吸収材52からより多量の水分を奪うことができる。それにより、室外空気A3が多量の水分を担持する。吸収材52を通過して多量の水分を担持する室外空気A3は、ダンパ装置64によって室内機20に振り分けられる。ダンパ装置64を通過して換気導管56を介して室内機20に到達した室外空気A3は、ファン24によって室内Rinに吹き出される。このような加湿運転により、多量の水分を担持する室外空気A3が室内Rinに供給され、室内Rinが加湿される。 According to such a humidification operation, the outdoor air A3 flows into the first flow path P1, is heated by the first and second heaters 58 and 60, and passes through the absorbent 52. As shown in FIG. At this time, the heated outdoor air A3 can deprive the absorbent 52 of a larger amount of moisture than when it is not heated. As a result, the outdoor air A3 carries a large amount of moisture. The outdoor air A3 that has passed through the absorbent 52 and carries a large amount of moisture is distributed to the indoor unit 20 by the damper device 64 . The outdoor air A3 that has passed through the damper device 64 and reached the indoor unit 20 via the ventilation conduit 56 is blown out into the room Rin by the fan 24 . Through such a humidification operation, the outdoor air A3 carrying a large amount of moisture is supplied to the room Rin, and the room Rin is humidified.

なお、第1のヒータ58と第2のヒータ60のいずれか一方をOFF状態にすることによって室外空気A3が吸収材52から奪う水分量を少なくする、すなわち室内Rinの加湿量が少ない弱加湿運転が実行されてもよい。 By turning off either one of the first heater 58 and the second heater 60, the amount of moisture taken from the absorbent 52 by the outdoor air A3 is reduced. may be performed.

加熱された室外空気A3に水分が奪われることにより、吸収材52の保水量が減少する、すなわち吸収材52が乾燥する。吸収材52が乾燥すると、第1の流路P1を流れる室外空気A3は吸収材52から水分を奪うことができない。その対処として、吸収材52は、第2の流路P2を流れる室外空気A4から水分を奪う。それにより、吸収材52の保水量がほぼ一定に維持され、加湿運転を継続することができる。 As the heated outdoor air A3 deprives moisture, the water retention capacity of the absorbent 52 decreases, that is, the absorbent 52 dries. When the absorbent 52 dries, the outdoor air A3 flowing through the first flow path P1 cannot deprive the absorbent 52 of moisture. As a countermeasure, the absorbent 52 deprives the outdoor air A4 flowing through the second flow path P2 of water. As a result, the amount of water retained in the absorbent material 52 is kept substantially constant, and the humidification operation can be continued.

図5は、除湿運転中の換気装置の概略図である。 FIG. 5 is a schematic diagram of the ventilation system during dehumidification operation.

除湿運転は、室外空気A3を除湿し、その除湿された室外空気A3を室内Rin(すなわち室内機20)に供給する空調運転である。図5に示すように、除湿運転では、吸着運転と再生運転とが交互に実行される。 The dehumidifying operation is an air conditioning operation in which the outdoor air A3 is dehumidified and the dehumidified outdoor air A3 is supplied to the indoor Rin (that is, the indoor unit 20). As shown in FIG. 5, in the dehumidifying operation, the adsorption operation and the regeneration operation are alternately performed.

吸着運転は、室外空気A3に担持されている水分を吸収材52に吸着させ、それにより室外空気A3を除湿する運転である。図5に示すように、吸着運転中、モータ54は、吸収材52を回転し続ける。第1のヒータ58と第2のヒータ60は、OFF状態であって、室外空気A3を加熱していない。第1のファン62はON状態で、それにより第1の流路P1内を室外空気A3が流れている。ダンパ装置64は、第1の流路P1内の室外空気A3を室内機20に振り分ける。第2のファン66は、OFF状態であって、それにより第2の流路P2内に室外空気A4の流れが発生していない。 The adsorption operation is an operation for causing the absorbent 52 to adsorb moisture carried in the outdoor air A3, thereby dehumidifying the outdoor air A3. As shown in FIG. 5, the motor 54 continues to rotate the absorbent 52 during the adsorption operation. The first heater 58 and the second heater 60 are in the OFF state and do not heat the outdoor air A3. The first fan 62 is in the ON state, thereby causing the outdoor air A3 to flow through the first flow path P1. The damper device 64 distributes the outdoor air A3 in the first flow path P1 to the indoor units 20 . The second fan 66 is in an OFF state, so that no flow of outdoor air A4 is generated in the second flow path P2.

このような吸着運転によれば、室外空気A3は、第1の流路P1に流入し、第1および第2のヒータ58、60に加熱されることなく吸収材52を通過する。このとき、室外空気A3に担持されている水分が吸収材52に吸着する。それにより、室外空気A3の水分の担持量が減少する、すなわち室外空気A3が乾燥される。吸収材52を通過して乾燥した室外空気A3は、ダンパ装置64によって室内機20に振り分けられる。ダンパ装置64を通過して換気導管56を介して室内機20に到達した室外空気A3は、ファン24によって室内Rinに吹き出される。このような吸着運転により、乾燥した室外空気A3が室内Rinに供給され、室内Rinが除湿される。 According to such adsorption operation, the outdoor air A3 flows into the first flow path P1 and passes through the absorbent 52 without being heated by the first and second heaters 58, 60. As shown in FIG. At this time, the moisture carried in the outdoor air A3 is absorbed by the absorbent 52 . As a result, the amount of moisture carried by the outdoor air A3 is reduced, that is, the outdoor air A3 is dried. The outdoor air A3 dried by passing through the absorbent 52 is distributed to the indoor unit 20 by the damper device 64 . The outdoor air A3 that has passed through the damper device 64 and reached the indoor unit 20 via the ventilation conduit 56 is blown out into the room Rin by the fan 24 . By such adsorption operation, the dry outdoor air A3 is supplied to the room Rin, and the room Rin is dehumidified.

吸着運転が続くと、吸収材52の保水量が増加し続け、その結果、室外空気A3に担持されている水分に対する吸収材52の吸着能力が低下する。その吸着能力を回復するために吸収材52を再生させる再生運転が実行される。 As the adsorption operation continues, the water retention capacity of the absorbent 52 continues to increase, and as a result, the ability of the absorbent 52 to adsorb moisture carried in the outdoor air A3 decreases. A regeneration operation is performed to regenerate the absorbent 52 in order to recover its adsorption capacity.

再生運転中、モータ54は、吸収材52を回転し続ける。第1のヒータ58と第2のヒータ60は、ON状態であって、室外空気A3を加熱している。第1のファン62はON状態で、それにより第1の流路P1内を室外空気A3が流れている。ダンパ装置64は、第1の流路P1内の室外空気A3を、室内機20ではなく、室外Routに振り分ける。第2のファン66は、OFF状態であって、それにより第2の流路P2内に室外空気A4の流れが発生していない。 During regeneration operation, motor 54 continues to rotate absorbent material 52 . The first heater 58 and the second heater 60 are in the ON state and heat the outdoor air A3. The first fan 62 is in the ON state, thereby causing the outdoor air A3 to flow through the first flow path P1. The damper device 64 distributes the outdoor air A3 in the first flow path P1 not to the indoor unit 20 but to the outdoor Rout. The second fan 66 is in an OFF state, so that no flow of outdoor air A4 is generated in the second flow path P2.

このような再生運転によれば、室外空気A3は、第1の流路P1に流入し、第1および第2のヒータ58、60に加熱されて吸収材52を通過する。このとき、加熱された室外空気A3は、吸収材52から多量の水分を奪う。それにより、室外空気A3に多量の水分が担持される。それとともに、吸収材52の保水量が減少する、すなわち吸収材52が乾燥してその吸着能力が再生する。吸収材52を通過して多量の水分を担持する室外空気A3は、ダンパ装置64によって室外Routに振り分けられ、室外Routに排出される。これにより、除湿運転における再生運転中に、吸収材52の再生によって多量の水分を担持する室外空気A3が室内Rinに供給されることがない。 According to such a regeneration operation, the outdoor air A3 flows into the first flow path P1, is heated by the first and second heaters 58 and 60, and passes through the absorbent 52. As shown in FIG. At this time, the heated outdoor air A3 deprives the absorbent 52 of a large amount of moisture. As a result, a large amount of moisture is carried in the outdoor air A3. At the same time, the water retention capacity of the absorbent 52 decreases, ie, the absorbent 52 dries and its adsorption capacity is regenerated. The outdoor air A3 that passes through the absorbent 52 and carries a large amount of moisture is distributed to the outdoor route by the damper device 64 and is discharged to the outdoor route. As a result, during the regeneration operation in the dehumidification operation, the outdoor air A3 carrying a large amount of moisture due to the regeneration of the absorbent 52 is not supplied to the indoor Rin.

このような吸着運転と再生運転を交互に行うことにより、吸収材52の吸着能力が維持され、除湿運転を継続的に実行することができる。 By alternately performing such adsorption operation and regeneration operation, the adsorption capacity of the absorbent 52 is maintained, and the dehumidification operation can be continuously performed.

上述の冷凍サイクルによる空調運転(冷房運転、除湿運転(弱冷房運転)、暖房運転)と換気装置50による空調運転(換気運転、加湿運転、除湿運転)は、別々に実行可能であり、また同時に実行することも可能である。例えば、冷凍サイクルによる除湿運転と換気装置50による除湿運転を同時に実行すれば、室温を一定に維持した状態で室内Rinを除湿することが可能である。 The air-conditioning operation (cooling operation, dehumidifying operation (weak cooling operation), heating operation) by the above-described refrigeration cycle and the air-conditioning operation (ventilation operation, humidification operation, dehumidification operation) by the ventilation device 50 can be performed separately, and at the same time It is also possible to execute For example, if the dehumidification operation by the refrigeration cycle and the dehumidification operation by the ventilation device 50 are simultaneously executed, it is possible to dehumidify the room Rin while maintaining the room temperature constant.

空気調和機10が実行する空調運転は、ユーザによって選択される。例えば、図1に示すリモートコントローラ70に対するユーザの選択操作により、その操作に対応する空調運転を空気調和機10は実行する。 The air conditioning operation performed by the air conditioner 10 is selected by the user. For example, when a user selects the remote controller 70 shown in FIG. 1, the air conditioner 10 performs the air conditioning operation corresponding to the operation.

ここまでは、本実施の形態に係る空気調和機10の構成および動作について概略的に説明してきた。ここからは、本実施の形態に係る空気調和機10の更なる特徴について説明する。 So far, the configuration and operation of air conditioner 10 according to the present embodiment have been schematically described. Further features of the air conditioner 10 according to the present embodiment will now be described.

図6は、空気調和機を制御する構成を示すブロック図である。 FIG. 6 is a block diagram showing a configuration for controlling an air conditioner.

図6に示すように、空気調和機10の構成要素は、制御部90によって制御される。制御部90は、例えば、プログラムを記憶したメモリと、CPU(Central Processing Unit)などのプロセッサに対応する処理回路を備える。制御部90の機能は、ハードウェアのみで構成してもよいし、ハードウェアとソフトウェアとを組み合わせることにより実現してもよい。制御部90は、メモリに格納されたデータやプログラムを読み出して種々の演算処理を行うことで、所定の機能を実現する。本実施の形態の場合、制御部90は、モータ54、第1のヒータ58、第2のヒータ60、第1のファン62、ダンパ装置64および第2のファン66を制御する。 As shown in FIG. 6, the components of the air conditioner 10 are controlled by a control unit 90. As shown in FIG. The control unit 90 includes, for example, a memory storing a program and a processing circuit corresponding to a processor such as a CPU (Central Processing Unit). The functions of the control unit 90 may be configured only by hardware, or may be realized by combining hardware and software. The control unit 90 reads data and programs stored in the memory and performs various arithmetic processing, thereby realizing a predetermined function. In this embodiment, the controller 90 controls the motor 54 , first heater 58 , second heater 60 , first fan 62 , damper device 64 and second fan 66 .

制御部90は、例えばインターネットとの接続が可能な通信部(図示省略)を有していることが好ましい。通信部は、例えば、Wi-Fi(登録商標)、IEEE802.2、IEEE802.3、3G、LTE等の規格に従い通信を行うことができるものであればよい。通信部は、インターネットの他、イントラネット、エキストラネット、LAN、ISDN、VAN、CATV通信網、仮想専用網、電話回線網、移動体通信網、衛星通信網等、赤外線、Bluetooth(登録商標)で通信してもよい。 The control unit 90 preferably has a communication unit (not shown) that can be connected to the Internet, for example. The communication unit may be, for example, one capable of performing communication according to standards such as Wi-Fi (registered trademark), IEEE802.2, IEEE802.3, 3G, and LTE. In addition to the Internet, the communication unit communicates via intranet, extranet, LAN, ISDN, VAN, CATV communication network, virtual dedicated network, telephone line network, mobile communication network, satellite communication network, etc., infrared rays, and Bluetooth (registered trademark). You may

<加湿運転のフロー>
図7は、加湿運転ONからOFFまでの全体の動作を示すフローチャートである。なお、図7に示す処理は、制御部90によって空気調和機10の構成要素を制御することによって実施される。なお、図7に示す処理は一例であって、本実施の形態は図7に示す処理に限定されない。
<Flow of humidification operation>
FIG. 7 is a flow chart showing the entire operation from ON to OFF of the humidification operation. Note that the processing shown in FIG. 7 is performed by controlling the components of the air conditioner 10 by the control unit 90 . Note that the processing shown in FIG. 7 is an example, and the present embodiment is not limited to the processing shown in FIG.

図7に示す処理は、例えば、図1に示すリモートコントローラ70に対するユーザの選択操作により、加湿運転がONになったときに開始する。 The processing shown in FIG. 7 is started, for example, when the humidification operation is turned ON by the user's selection operation on the remote controller 70 shown in FIG.

図7に示すように、ステップS10では、制御部90が、開始条件が成立しているか否かを判定する。制御部90が、開始条件が成立していると判定した場合、処理はステップS20に進む。制御部90が、開始条件が成立していないと判定した場合、処理はステップS10を繰り返す。 As shown in FIG. 7, in step S10, the control unit 90 determines whether or not a start condition is satisfied. When the control unit 90 determines that the start condition is satisfied, the process proceeds to step S20. When the control unit 90 determines that the start condition is not satisfied, the process repeats step S10.

開始条件は、加湿運転を開始するための条件であり、例えば、運転モード、湿度、湿度コントロール、運転周波数、インバータ電流、温度または異常の有無のうち少なくとも1つを含んでいてもよい。 The start condition is a condition for starting humidification operation, and may include, for example, at least one of operation mode, humidity, humidity control, operation frequency, inverter current, temperature, or presence or absence of abnormality.

ステップS20では、制御部90が、ダンパ「開」制御を実施する。ダンパ「開」制御とは、ダンパ装置64を開いて、第1の流路P1を流れる室外空気A3を室内機20に振り分ける。これにより、室外空気A3が換気導管56を通って室内機20に流入する。 In step S20, the control unit 90 performs damper "open" control. The damper “open” control means that the damper device 64 is opened and the outdoor air A3 flowing through the first flow path P1 is distributed to the indoor units 20 . As a result, the outdoor air A3 flows into the indoor unit 20 through the ventilation conduit 56 .

ステップS30では、制御部90が、加湿運転制御を実施する。加湿運転制御では、ヒータのON(ステップS31)、室外Routの相対湿度情報の取得(ステップS32)、およびモータ54の回転速度の制御(ステップS33)が実行される。 In step S30, the controller 90 performs humidification operation control. In the humidification operation control, ON of the heater (step S31), acquisition of relative humidity information of the outdoor route (step S32), and control of the rotational speed of the motor 54 (step S33) are executed.

ステップS31で、制御部90が、ヒータ58、60をONにする。なお、加湿運転制御中、室内Rinの温度または湿度に応じて、制御部90は、ヒータ58、60のいずれか一方をONにする弱加湿運転、またはヒータ58、60の両方をONにする加湿運転を実行することができる。例えば、室内Rinの湿度が目標値に近付いた場合に、制御部90は、ヒータ58、60の一方をON、他方をOFFにして、弱加湿運転を実行し、室内Rinの湿度を適切な値に調整する。 At step S31, the controller 90 turns on the heaters 58 and 60. FIG. During the humidification operation control, depending on the temperature or humidity in the room Rin, the control unit 90 performs a weak humidification operation in which either one of the heaters 58 and 60 is turned on, or a humidification operation in which both the heaters 58 and 60 are turned on. can carry out driving. For example, when the humidity in the room Rin approaches the target value, the control unit 90 turns ON one of the heaters 58 and 60 and turns the other OFF to perform a weak humidification operation, and adjusts the humidity in the room Rin to an appropriate value. adjust to

制御部90がヒータ58、60のうちいずれか一方をONにする場合、吸収材52の回転方向に対して下流側に配置されるヒータをONにするとよい。例えば、後述する図17に示すように、吸収材52が反時計回りに回転する場合、ヒータ60が回転方向に対して上流側に配置され、ヒータ58が回転方向に対して下流側に配置されるとよい。したがって、吸収材52が反時計回りに回転する場合、ヒータ60をOFF、ヒータ58をONにするとよい。 When the controller 90 turns ON one of the heaters 58 and 60, it is preferable to turn ON the heater arranged downstream with respect to the rotation direction of the absorbent 52 . For example, as shown in later-described FIG. 17, when the absorbent 52 rotates counterclockwise, the heater 60 is arranged on the upstream side with respect to the rotation direction, and the heater 58 is arranged on the downstream side with respect to the rotation direction. good. Therefore, when the absorbent 52 rotates counterclockwise, it is preferable to turn off the heater 60 and turn on the heater 58 .

上流側のヒータをONにすると、下流側のヒータを通過した室外空気A3が吸収材52により水分を奪われて除湿される。この場合、除湿された下流側ヒータを通過した室外空気A3と、加湿された上流側ヒータを通過した空気が混合されて、加湿量が低下してしまう。一方で、回転方向に対して上流側のヒータをOFF、下流側のヒータをONにする場合、上流側のヒータ(OFF)を通過した室外空気A3は、水分が飽和に近い状態の吸収材52を通過する。このため、室外空気A3はほとんど水分を奪われることなく吸収材を通過することができる。したがって、消費電力を低減して効率よく加湿運転を行うことができる。 When the heater on the upstream side is turned on, the outdoor air A3 that has passed through the heater on the downstream side is dehumidified by absorbing water from the absorbent material 52 . In this case, the dehumidified outdoor air A3 that has passed through the downstream heater and the humidified air that has passed through the upstream heater are mixed, resulting in a decrease in the amount of humidification. On the other hand, when the heater on the upstream side with respect to the rotation direction is turned off and the heater on the downstream side is turned on, the outdoor air A3 that has passed through the heater on the upstream side (turned off) is saturated with moisture in the absorbent 52. pass through. Therefore, the outdoor air A3 can pass through the absorbent material without being deprived of almost all moisture. Therefore, power consumption can be reduced and the humidification operation can be performed efficiently.

次に、ステップS32で制御部90が、第2の流路P2を流れる室外Routの相対湿度情報を取得する。例えば、制御部90は、室外Routの相対湿度情報として、室外Routに配置された湿度計による相対湿度情報を、通信部を介して取得することができる。または、制御部90は、室外Routの相対湿度情報として、天気予報の相対湿度情報等を、インターネットを介して取得することができる。室外Routの相対湿度情報は、例えば、室外Routに配置された湿度計による相対湿度情報、または天気予報の相対湿度情報等を使用することができる。 Next, in step S32, the controller 90 acquires the relative humidity information of the outdoor Rout flowing through the second flow path P2. For example, the control unit 90 can acquire relative humidity information obtained by a hygrometer placed on the outdoor route via the communication unit as the relative humidity information on the outdoor route. Alternatively, the control unit 90 can acquire relative humidity information of a weather forecast or the like via the Internet as the relative humidity information of the outdoor route. For the relative humidity information of the outdoor route, for example, the relative humidity information obtained by a hygrometer arranged on the outdoor route, the relative humidity information of the weather forecast, or the like can be used.

ステップS32で取得した室外Routの相対湿度情報に基づいて、ステップS33で、制御部90は、モータ54の回転速度を制御する。制御部90は、室外Routの相対湿度が上昇するとモータ54の回転速度を減速させ、室外Routの相対湿度が下降するとモータ54の回転速度を加速させる。 Based on the relative humidity information of the outdoor Rout acquired in step S32, the controller 90 controls the rotation speed of the motor 54 in step S33. The controller 90 decelerates the rotation speed of the motor 54 when the relative humidity of the outdoor Rout increases, and accelerates the rotation speed of the motor 54 when the relative humidity of the outdoor Rout decreases.

図8は、室外空気の相対湿度とモータの回転速度の大小関係を示すグラフである。図8に示すように、本実施の形態では、制御部90は、例えば、室外Routの相対湿度が、所定の閾値(第1の閾値)L1より高い場合に、モータ54の回転速度を低速で一定にする。また、制御部90は、例えば、室外Routの相対湿度が第1の閾値L1よりも低い所定の閾値(第2の閾値)L2より低い場合に、モータ54の回転速度を高速で一定にする。また、制御部90は、室外Routの相対湿度が第2の閾値L2以上第1の閾値L1以下の場合に、室外Routの相対湿度の上昇に応じてモータ54の回転速度を減速し、室外Routの相対湿度の下降に応じてモータ54の回転速度を加速する。 FIG. 8 is a graph showing the magnitude relationship between the relative humidity of the outdoor air and the rotational speed of the motor. As shown in FIG. 8, in the present embodiment, for example, when the relative humidity of the outdoor Rout is higher than a predetermined threshold (first threshold) L1, the controller 90 reduces the rotation speed of the motor 54 to a low speed. keep constant. Further, for example, when the relative humidity of the outdoor Rout is lower than a predetermined threshold value (second threshold value) L2 lower than the first threshold value L1, the control unit 90 keeps the rotational speed of the motor 54 constant at a high speed. Further, when the relative humidity of the outdoor Rout is greater than or equal to the second threshold value L2 and less than or equal to the first threshold value L1, the control unit 90 reduces the rotational speed of the motor 54 in accordance with the increase in the relative humidity of the outdoor Rout. The rotational speed of the motor 54 is accelerated in accordance with the decrease in relative humidity.

図9は、高分子収着材の水蒸気吸着等温線である。図9に示すように、高分子収着材は、相対湿度の上昇に伴って水分の吸着量が増加する。本実施の形態のように、吸収材52の材料として高分子収着材を用いる場合、室外Routの相対湿度が上昇すると、吸収材52の吸着量が増加する。 FIG. 9 is a water vapor adsorption isotherm of a polymer sorbent. As shown in FIG. 9, the amount of water adsorbed by the polymer sorbent material increases as the relative humidity increases. When a polymer sorbent material is used as the material of the absorbent 52 as in the present embodiment, the adsorption amount of the absorbent 52 increases as the relative humidity of the outdoor Rout increases.

したがって、室外Routの相対湿度が高い場合には吸収材52の吸着量が多くなるため、モータ54の回転速度を低速にして吸収材52をゆっくり回転させる。このようにすると、室外Routの相対湿度が高い場合に、吸収材52により多くの水分を吸着させることができる。この場合、第1の流路P1を流れる室外空気A3が吸収材52を通過する際に室外空気A3がより多くの水分を含むことができ、効率よく加湿運転を実行することができる。 Therefore, when the relative humidity of the outdoor Rout is high, the adsorption amount of the absorbent 52 increases, so the rotational speed of the motor 54 is reduced to rotate the absorbent 52 slowly. In this way, when the relative humidity of the outdoor Rout is high, more moisture can be absorbed by the absorbent material 52 . In this case, when the outdoor air A3 flowing through the first flow path P1 passes through the absorbent 52, the outdoor air A3 can contain more moisture, and the humidification operation can be performed efficiently.

逆に、室外Routの相対湿度が下降すると、吸収材52の吸着量が減少する。このため、吸収材52をゆっくり回転させると第2の流路P2において、吸収材52に吸着した水分が飽和状態となってしまう。このため、室外Routの相対湿度が第2の閾値L2よりも低い場合には、モータ54の回転速度を高速にして、吸収材52を速く回転させる。このようにすると、第2の流路P2における吸収材52への水分の吸着から、第1の流路P1における吸収材52からの水分の脱離までのサイクルを速くすることができる。このため、吸収材52の保水量を適切に維持しつつ、効率よく加湿運転を実行することができる。 Conversely, when the relative humidity of the outdoor Rout decreases, the adsorption amount of the absorbent 52 decreases. For this reason, if the absorbent 52 is rotated slowly, the water adsorbed by the absorbent 52 will be saturated in the second flow path P2. Therefore, when the relative humidity of the outdoor Rout is lower than the second threshold value L2, the rotation speed of the motor 54 is increased to rotate the absorbent 52 faster. By doing so, it is possible to speed up the cycle from adsorption of moisture to the absorbent material 52 in the second flow path P2 to desorption of moisture from the absorbent material 52 in the first flow path P1. Therefore, it is possible to efficiently perform the humidification operation while appropriately maintaining the water retention amount of the absorbent 52 .

ステップS40では、制御部90が、加湿運転制御を終了するか否かを判定する。制御部90が加湿運転制御を終了すると判定した場合、処理は終了する。制御部90が加湿運転制御を終了しないと判定した場合、処理はステップS30を繰り返す。 In step S40, the control unit 90 determines whether or not to end the humidification operation control. If the controller 90 determines to end the humidification operation control, the process ends. When the controller 90 determines not to end the humidification operation control, the process repeats step S30.

次に、変形例1の加湿運転制御について説明する。図10は、変形例1の加湿運転制御のフローチャートである。変形例1の加湿運転制御では、制御部90が第2のファン66の回転速度を制御する点で、上述した実施の形態の加湿運転制御と異なる。 Next, the humidification operation control of Modification 1 will be described. FIG. 10 is a flow chart of humidification operation control of Modification 1. FIG. The humidification operation control of Modification 1 differs from the humidification operation control of the above-described embodiment in that the controller 90 controls the rotational speed of the second fan 66 .

図10に示すように、ステップS32で、制御部90が、室外Routの相対湿度情報を取得した後、ステップS33Aで第2のファン66の回転速度を制御する。制御部90は、室外Routの相対湿度が上昇すると第2のファン66の回転速度を加速させ、室外Routの相対湿度が下降すると第2のファン66の回転速度を減速させる。 As shown in FIG. 10, after the controller 90 obtains the relative humidity information of the outdoor Rout in step S32, it controls the rotational speed of the second fan 66 in step S33A. The control unit 90 accelerates the rotational speed of the second fan 66 when the relative humidity of the outdoor Rout increases, and decelerates the rotational speed of the second fan 66 when the relative humidity of the outdoor Rout decreases.

図11は、室外空気の相対湿度と第2のファンの回転数との大小関係を示すグラフである。図11に示すように、本実施の形態では、制御部90は、例えば、室外Routの相対湿度が、所定の閾値(第3の閾値)L3より高い場合に、第2のファン66の回転速度を高速で一定にする。また、制御部90は、例えば、室外Routの相対湿度が第3の閾値L3よりも低い所定の閾値(第4の閾値)L4より低い場合に、第2のファン66の回転速度を低速で一定にする。また、制御部90は、室外Routの相対湿度が第4の閾値L4以上第3の閾値L3以下の場合に、室外Routの相対湿度の上昇に応じて第2のファン66の回転速度を加速し、室外Routの相対湿度の下降に応じて第2のファン66の回転速度を減速する。 FIG. 11 is a graph showing the magnitude relationship between the relative humidity of the outdoor air and the rotational speed of the second fan. As shown in FIG. 11, in the present embodiment, for example, when the relative humidity of the outdoor Rout is higher than a predetermined threshold (third threshold) L3, the controller 90 changes the rotation speed of the second fan 66 to is fast and constant. Further, for example, when the relative humidity of the outdoor Rout is lower than a predetermined threshold (fourth threshold) L4 lower than the third threshold L3, the control unit 90 keeps the rotation speed of the second fan 66 constant at a low speed. to Further, when the relative humidity of the outdoor route is equal to or greater than the fourth threshold value L4 and equal to or smaller than the third threshold value L3, the control unit 90 accelerates the rotation speed of the second fan 66 according to the increase in the relative humidity of the outdoor route. , the rotation speed of the second fan 66 is reduced in accordance with the decrease in the relative humidity of the outdoor Rout.

上述したように、室外Routの相対湿度が高い場合には、吸収材52の吸着量が増加する。このため、室外Routの相対湿度が高い場合には、制御部90は、第2のファン66の回転速度を加速し、より多くの室外空気A4を第2の流路P2に取り込むことで、吸収材52はより多くの水分を吸着することができる。したがって、第1の流路P1において、室外空気A3が吸収材52からより多くの水分を奪うことができ、効率よく加湿運転を実行することができる。 As described above, when the relative humidity of the outdoor Rout is high, the adsorption amount of the absorbent 52 increases. Therefore, when the relative humidity of the outdoor Rout is high, the control unit 90 accelerates the rotation speed of the second fan 66 to take in more outdoor air A4 into the second flow path P2, thereby absorbing The material 52 can adsorb more moisture. Therefore, in the first flow path P1, the outdoor air A3 can take more moisture from the absorbent 52, and the humidification operation can be performed efficiently.

また、室外Routの相対湿度が低い場合には、吸収材52の吸着量が減少する。このため、室外Routの相対湿度が低い場合には、多くの室外空気A4を第2の流路P2に取り込んでも、吸収材52の水分が飽和状態となってしまう。このため、第2のファン66の回転速度を低下させることで、電力消費を抑制することができる。 Also, when the relative humidity of the outdoor Rout is low, the adsorption amount of the absorbent 52 decreases. Therefore, when the relative humidity of the outdoor Rout is low, even if a large amount of the outdoor air A4 is taken into the second flow path P2, the water content of the absorbent 52 is saturated. Therefore, power consumption can be suppressed by lowering the rotation speed of the second fan 66 .

次に、変形例2の加湿運転制御について説明する。図12は、変形例2の加湿運転制御のフローチャートである。変形例2の加湿運転制御では、制御部90が第1のファン62の回転速度を制御する点で、上述した実施の形態の加湿運転制御と異なる。 Next, the humidification operation control of Modification 2 will be described. FIG. 12 is a flow chart of humidification operation control of Modification 2. In FIG. The humidification operation control of Modification 2 differs from the humidification operation control of the above-described embodiment in that the controller 90 controls the rotational speed of the first fan 62 .

図12に示すように、ステップS32で、制御部90が、室外Routの相対湿度情報を取得した後、ステップS33Bで第1のファン62の回転速度を制御する。制御部90は、室外Routの相対湿度が上昇すると第1のファン62の回転速度を加速させ、室外Routの相対湿度が下降すると第1のファン62の回転速度を減速させる。 As shown in FIG. 12, after the controller 90 obtains the relative humidity information of the outdoor Rout in step S32, it controls the rotational speed of the first fan 62 in step S33B. The control unit 90 accelerates the rotational speed of the first fan 62 when the relative humidity of the outdoor Rout increases, and decelerates the rotational speed of the first fan 62 when the relative humidity of the outdoor Rout decreases.

図13は、室外空気の相対湿度と第1のファンの回転数との大小関係を示すグラフである。図13に示すように、本実施の形態では、制御部90は、例えば、室外Routの相対湿度が、所定の閾値(第5の閾値)L5より高い場合に、第1のファン62の回転速度を高速で一定にする。また、制御部90は、例えば、室外Routの相対湿度が第5の閾値L5よりも低い所定の閾値(第6の閾値)L6より低い場合に、第1のファン62の回転速度を低速で一定にする。また、制御部90は、室外Routの相対湿度が第6の閾値L6以上第5の閾値L5以下の場合に、室外Routの相対湿度の上昇に応じて第1のファン62の回転速度を加速し、室外Routの相対湿度の下降に応じて第1のファン62の回転速度を減速する。 FIG. 13 is a graph showing the magnitude relationship between the relative humidity of outdoor air and the rotational speed of the first fan. As shown in FIG. 13, in the present embodiment, for example, when the relative humidity of the outdoor Rout is higher than a predetermined threshold value (fifth threshold value) L5, the control unit 90 changes the rotational speed of the first fan 62 to is fast and constant. Further, for example, when the relative humidity of the outdoor Rout is lower than a predetermined threshold value (sixth threshold value) L6 lower than the fifth threshold value L5, the control unit 90 keeps the rotation speed of the first fan 62 constant at a low speed. to Further, when the relative humidity of the outdoor route is greater than or equal to the sixth threshold value L6 and less than or equal to the fifth threshold value L5, the control unit 90 accelerates the rotation speed of the first fan 62 according to the increase in the relative humidity of the outdoor route. , the rotation speed of the first fan 62 is reduced in accordance with the decrease in the relative humidity of the outdoor Rout.

例えば、ヒータ58、60がPTCヒータである場合、ヒータ58、60を通過する風量に応じてヒータ58、60の発熱温度が変わる。具体的には、ヒータ58、60を通過する風量が多い場合には、ヒータ58、60の発熱温度が高くなり、ヒータ58、60を通過する風量が少ない場合には、ヒータ58、60の発熱温度が低くなる。 For example, when the heaters 58 and 60 are PTC heaters, the heat generation temperatures of the heaters 58 and 60 change according to the air volume passing through the heaters 58 and 60 . Specifically, when the amount of air passing through the heaters 58, 60 is large, the heat generation temperature of the heaters 58, 60 increases, and when the amount of air passing through the heaters 58, 60 is small, the heat generation of the heaters 58, 60 increases. temperature drops.

このため、室外Routの相対湿度が高く、吸収材52がより多くの水分を吸着する場合には、第1のファン62の回転速度を加速して、第1の流路P1により多くの室外空気を取り込み、ヒータ58、60の発熱温度を上昇させることで、室外空気A3により多くの水分を脱離させることがでる。このため、効率よく加湿運転を実行することができる。 Therefore, when the relative humidity of the outdoor Rout is high and the absorbent 52 absorbs more moisture, the rotational speed of the first fan 62 is accelerated to increase the amount of outdoor air through the first flow path P1. is taken in and the heat generation temperature of the heaters 58 and 60 is raised, so that a large amount of moisture can be desorbed by the outdoor air A3. Therefore, the humidification operation can be performed efficiently.

一方、室外Routの相対湿度が低く、吸収材52の水分の吸着量が少ない場合には、第1のファン62の回転速度を低速にして、第1の流路P1に取り込まれる室外空気A3の量を減らす。このようにすると、ヒータ58、60の発熱温度が下がり、吸収材52の過乾燥を防止することができる。また、室外Routの相対湿度が低い場合、吸収材52の吸着量も少なくなるため、ヒータ58、60の発熱温度を高くしても第1の流路P1を通過する室外空気A3はそれほど多くの水分を脱離することができない。このため、第1のファン62の回転速度を低速にして、ヒータ58、60の発熱温度を下げることにより、消費電力を低減することができる。 On the other hand, when the relative humidity of the outdoor Rout is low and the amount of moisture adsorbed by the absorbent 52 is small, the rotational speed of the first fan 62 is reduced to reduce the outdoor air A3 taken into the first flow path P1. Reduce quantity. By doing so, the heat generation temperature of the heaters 58 and 60 is lowered, and excessive drying of the absorbent 52 can be prevented. Further, when the relative humidity of the outdoor Rout is low, the adsorption amount of the absorbent 52 is also small. Water cannot be desorbed. Therefore, power consumption can be reduced by lowering the rotation speed of the first fan 62 and lowering the heat generation temperature of the heaters 58 and 60 .

次に、変形例3の加湿運転制御について説明する。図14は、変形例3の加湿運転制御のフローチャートである。変形例3の加湿運転制御では、制御部90がヒータ58、60の入力電圧を制御する点で、上述した実施の形態の加湿運転制御と異なる。 Next, the humidification operation control of Modification 3 will be described. FIG. 14 is a flowchart of humidification operation control according to Modification 3. FIG. The humidification operation control of Modification 3 differs from the humidification operation control of the above-described embodiment in that the controller 90 controls the input voltages of the heaters 58 and 60 .

図14に示すように、ステップS32で、制御部90が、室外Routの相対湿度情報を取得した後、ステップS33Cでヒータ58、60の入力電圧を制御する。制御部90は、室外Routの相対湿度が上昇するとヒータ58、60の入力電圧を上昇させ、室外Routの相対湿度が下降するとヒータ58、60の入力電圧を下降させる。 As shown in FIG. 14, after the controller 90 obtains the relative humidity information of the outdoor Rout in step S32, it controls the input voltages of the heaters 58 and 60 in step S33C. The control unit 90 increases the input voltage of the heaters 58 and 60 when the relative humidity of the outdoor Rout increases, and decreases the input voltage of the heaters 58 and 60 when the relative humidity of the outdoor Rout decreases.

図15は、室外空気の相対湿度とヒータの入力電圧との大小関係を示すグラフである。図15に示すように、本実施の形態では、制御部90は、例えば、室外Routの相対湿度が、所定の閾値(第7の閾値)L7より高い場合に、ヒータ58、60の入力電圧を高入力で一定にする。また、制御部90は、例えば、室外Routの相対湿度が第7の閾値L7よりも低い所定の閾値(第8の閾値)L8より低い場合に、ヒータ58、60の入力電圧を低入力で一定にする。また、制御部90は、室外Routの相対湿度が第8の閾値L8以上第7の閾値L7以下の場合に、室外Routの相対湿度の上昇に応じてヒータ58、60の入力電圧を上昇させ、室外Routの相対湿度の下降に応じてヒータ58、60の入力電圧を加工させる。 FIG. 15 is a graph showing the magnitude relationship between the relative humidity of outdoor air and the input voltage of the heater. As shown in FIG. 15, in the present embodiment, the controller 90 reduces the input voltage of the heaters 58 and 60 to Keep constant at high input. In addition, for example, when the relative humidity of the outdoor Rout is lower than a predetermined threshold (eighth threshold) L8 lower than the seventh threshold L7, the control unit 90 keeps the input voltage of the heaters 58 and 60 constant at a low input. to Further, when the relative humidity of the outdoor route is equal to or higher than the eighth threshold value L8 and equal to or lower than the seventh threshold value L7, the control unit 90 increases the input voltage of the heaters 58 and 60 according to the increase in the relative humidity of the outdoor route, The input voltages of the heaters 58 and 60 are processed in accordance with the decrease in the relative humidity of the outdoor Rout.

室外Routの相対湿度が高い場合、吸収材52の吸着量が増加するため、吸収材52を通過する室外空気A3により多くの水分を含ませることができる。このため、室外Routの相対湿度が高い場合に、制御部90は、ヒータ58、60の入力電圧を高くする。このようにすると、ヒータ58、60を通過する室外空気A3の温度を上昇させて、室外空気A3により多くの水分を含ませることができ、効率よく加湿運転を実行することができる。 When the relative humidity of the outdoor Rout is high, the adsorption amount of the absorbent 52 increases, so that the outdoor air A3 passing through the absorbent 52 can contain more moisture. Therefore, when the relative humidity of the outdoor Rout is high, the controller 90 increases the input voltages of the heaters 58 and 60 . In this way, the temperature of the outdoor air A3 passing through the heaters 58 and 60 can be raised to make the outdoor air A3 contain more moisture, and the humidification operation can be performed efficiently.

一方で、室外Routの相対湿度が低い場合、吸収材52の吸着量が減少するため、ヒータ58、60の入力電圧を低くしても、吸収材52を通過する室外空気A3が脱離する水分量は減らない。このため、消費電力を低減することができる。 On the other hand, when the relative humidity of the outdoor Rout is low, the adsorption amount of the absorbent 52 decreases. quantity does not decrease. Therefore, power consumption can be reduced.

なお、制御部90は、室外Routの相対湿度情報に基づいて、モータ54の回転速度の制御、第2のファン66の回転速度の制御、第1のファン62の回転速度の制御、およびヒータ58、60の入力電圧の制御、を組み合わせて実行してもよい。 Note that the control unit 90 controls the rotation speed of the motor 54, the rotation speed of the second fan 66, the rotation speed of the first fan 62, and the heater 58 based on the relative humidity information of the outdoor route. , control of the input voltage of 60 may be performed in combination.

(実施の形態2)
本発明の実施の形態2に係る空気調和機について説明する。なお、実施の形態2では、主に実施の形態1と異なる点について説明する。実施の形態2においては、実施の形態1と同一または同等の構成については同じ符号を付して説明する。また、実施の形態2では、実施の形態1と重複する記載は省略する。
(Embodiment 2)
An air conditioner according to Embodiment 2 of the present invention will be described. In addition, in Embodiment 2, mainly different points from Embodiment 1 will be described. In the second embodiment, the same reference numerals are assigned to the same or equivalent configurations as in the first embodiment. In addition, in the second embodiment, the description overlapping with the first embodiment is omitted.

図16は、実施の形態2に係る空気調和機の構成を示すブロック図である。図17は、換気装置の一部を示す平面図である。 16 is a block diagram showing a configuration of an air conditioner according to Embodiment 2. FIG. FIG. 17 is a plan view showing part of the ventilator.

図16および図17に示すように、実施の形態2では、空気調和機10が相対湿度センサ82を有する点で、実施の形態1と異なる。 As shown in FIGS. 16 and 17, the second embodiment differs from the first embodiment in that the air conditioner 10 has a relative humidity sensor 82. FIG.

相対湿度センサ82は、図17に示すように、第2の流路P2において、吸収材52の上流側に配置される。相対湿度センサ82は、室外Routの相対湿度を検出することができる。相対湿度センサ82は、室外Routの相対湿度および温度を検出することのできる温湿度センサであってもよい。 The relative humidity sensor 82 is arranged upstream of the absorbent 52 in the second flow path P2, as shown in FIG. The relative humidity sensor 82 can detect the relative humidity of the outdoor Rout. The relative humidity sensor 82 may be a temperature/humidity sensor capable of detecting the relative humidity and temperature of the outdoor Route.

したがって、本実施の形態では、室外Routの相対湿度情報は、相対湿度センサ82により検出され、制御部90は、相対湿度センサ82により検出した値を、室外Routの相対湿度情報として取得する。 Therefore, in the present embodiment, the relative humidity information of the outdoor route is detected by the relative humidity sensor 82, and the controller 90 acquires the value detected by the relative humidity sensor 82 as the relative humidity information of the outdoor route.

図18は、図17のA-A断面図である。図19は、図18の領域R1を拡大した図である。図18および図19に示すように、本実施の形態では、空気調和機10は、相対湿度センサ82を覆うセンサカバー84を備える。センサカバー84は、換気装置50の筐体51の底部に配置される。また、センサカバー84には、図19に示すように、筐体51の底部に向かって延びる外壁84aと内壁84bとが設けられている。センサカバー84の外壁84aと内壁84bとは、筐体51の底部から延びる壁51aと組み合わせて、ラビリンス構造を形成する。具体的には、センサカバー84の外壁84aと内壁84bとの間に筐体51の壁51aが配置されている。さらに、筐体51の壁51aと、センサカバー84の外壁84aおよび内壁84bとの間に隙間が形成されている。このため、センサカバー84の内部に蛇行した流路(ラビリンス構造)が形成される。このラビリンス構造には、室外空気A4を通過させることができる。このような構造により、図19の矢印で示すように室外空気A4はラビリンス構造を通過することができる一方で、センサカバー84の内部への水の浸入を防止することができる。 18 is a cross-sectional view taken along the line AA of FIG. 17. FIG. FIG. 19 is an enlarged view of region R1 in FIG. As shown in FIGS. 18 and 19 , in the present embodiment, air conditioner 10 includes sensor cover 84 that covers relative humidity sensor 82 . The sensor cover 84 is arranged on the bottom of the housing 51 of the ventilator 50 . 19, the sensor cover 84 is provided with an outer wall 84a and an inner wall 84b extending toward the bottom of the housing 51. As shown in FIG. The outer wall 84a and the inner wall 84b of the sensor cover 84 combine with the wall 51a extending from the bottom of the housing 51 to form a labyrinth structure. Specifically, the wall 51 a of the housing 51 is arranged between the outer wall 84 a and the inner wall 84 b of the sensor cover 84 . Further, a gap is formed between the wall 51a of the housing 51 and the outer wall 84a and the inner wall 84b of the sensor cover 84. As shown in FIG. Therefore, a meandering flow path (labyrinth structure) is formed inside the sensor cover 84 . Outdoor air A4 can pass through this labyrinth structure. Such a structure allows outdoor air A4 to pass through the labyrinth structure as indicated by the arrow in FIG. 19, while preventing water from entering the sensor cover 84.

すなわち、センサカバー84の内部に室外空気A4を取り入れつつ雨水等の侵入を防止することができるため、相対湿度センサ82により正確な相対湿度を検出することができる。 That is, it is possible to prevent rainwater from entering while the outdoor air A4 is taken into the sensor cover 84, so that the relative humidity sensor 82 can accurately detect the relative humidity.

なお、本明細書において、「第1」、「第2」などの用語は、説明のためだけに用いられるものであり、相対的な重要性または技術的特徴の順位を明示または暗示するものとして理解されるべきではない。「第1」と「第2」と限定されている特徴は、1つまたはさらに多くの当該特徴を含むことを明示または暗示するものである。 In this specification, terms such as "first" and "second" are used only for explanation, and express or imply the relative importance or order of technical features. should not be understood. A feature that is qualified as "first" and "second" expressly or implicitly includes one or more of such features.

本開示は、室内機と室外機を備える空気調和機であれば適用可能である。 The present disclosure is applicable to any air conditioner that includes an indoor unit and an outdoor unit.

10 空気調和機
20 室内機
30 室外機
40 四方弁
50 換気装置
52 吸収材
54 モータ
56 換気導管
58 第1のヒータ
60 第2のヒータ
62 第1のファン(再生ファン)
64 ダンパ装置
66 第2のファン(吸湿ファン)
70 リモートコントローラ
82 相対湿度センサ
90 制御部
P1 第1の流路(吸湿流路)
P2 第2の流路(再生流路)
REFERENCE SIGNS LIST 10 air conditioner 20 indoor unit 30 outdoor unit 40 four-way valve 50 ventilator 52 absorbent 54 motor 56 ventilation conduit 58 first heater 60 second heater 62 first fan (regenerative fan)
64 damper device 66 second fan (moisture absorption fan)
70 remote controller 82 relative humidity sensor 90 controller P1 first channel (moisture absorption channel)
P2 second channel (regeneration channel)

Claims (11)

室内機と室外機とを備える空気調和機であって、
前記室外機に設けられ、室外空気の水分を吸収する吸収材と、
前記吸収材を通過し、室外空気が室外から室外に流れる吸湿流路と、
前記吸湿流路に室外空気の流れを発生させる吸湿ファンと、
前記吸収材を回転駆動するモータと、
前記吸湿ファンと、前記モータと、を制御する制御部と、
を備え、
前記制御部は、室外の相対湿度情報を取得し、前記室外の相対湿度情報に基づいて、前記モータの回転速度を制御する、
空気調和機。
An air conditioner comprising an indoor unit and an outdoor unit,
an absorbent provided in the outdoor unit for absorbing moisture in the outdoor air;
a moisture absorption channel through which the outdoor air flows from the outdoor to the outdoor through the absorbent;
a moisture absorption fan for generating a flow of outdoor air in the moisture absorption channel;
a motor that rotationally drives the absorbent;
a control unit that controls the moisture absorption fan and the motor;
with
The control unit acquires outdoor relative humidity information, and controls the rotational speed of the motor based on the outdoor relative humidity information.
Air conditioner.
前記制御部は、前記室外の相対湿度が上昇した場合に前記モータの回転速度を減速し、前記室外の相対湿度が下降した場合に前記モータの回転速度を加速する、
請求項1に記載の空気調和機。
The control unit decelerates the rotation speed of the motor when the outdoor relative humidity increases, and accelerates the rotation speed of the motor when the outdoor relative humidity decreases.
The air conditioner according to claim 1.
前記制御部は、前記室外の相対湿度情報に基づいて、前記吸湿ファンの回転速度を制御する、
請求項1または2に記載の空気調和機。
The control unit controls the rotation speed of the moisture absorption fan based on the outdoor relative humidity information.
The air conditioner according to claim 1 or 2.
前記制御部は、前記室外の相対湿度が上昇した場合に前記吸湿ファンの回転速度を加速し、前記室外の相対湿度が下降した場合に前記吸湿ファンの回転速度を減速する、
請求項3に記載の空気調和機。
The control unit accelerates the rotation speed of the moisture absorption fan when the outdoor relative humidity increases, and decelerates the rotation speed of the moisture absorption fan when the outdoor relative humidity decreases.
The air conditioner according to claim 3.
前記吸収材を通過し、室外空気が流れる再生流路と、前記再生流路に室外空気を送る再生ファンと、をさらに備え、
前記制御部は、前記室外の相対湿度情報に基づいて、前記再生ファンの回転数を制御する、
請求項1から4のいずれか1項に記載の空気調和機。
further comprising a regeneration channel through which the outdoor air flows through the absorbent, and a regeneration fan that sends the outdoor air to the regeneration channel;
The control unit controls the rotation speed of the regeneration fan based on the outdoor relative humidity information.
The air conditioner according to any one of claims 1 to 4.
前記制御部は、前記室外の相対湿度が上昇した場合に前記再生ファンの回転速度を加速し、前記室外の相対湿度が下降した場合に前記再生ファンの回転速度を減速する、
請求項5に記載の空気調和機。
The control unit accelerates the rotation speed of the regeneration fan when the outdoor relative humidity increases, and decelerates the rotation speed of the regeneration fan when the outdoor relative humidity decreases.
The air conditioner according to claim 5.
前記再生流路における前記吸収材に対する上流側で室外空気を加熱するヒータをさらに備え、
前記制御部は、前記室外の相対湿度情報に基づいて、前記ヒータの入力電圧を制御する、
請求項5または6に記載の空気調和機。
further comprising a heater that heats outdoor air on the upstream side of the absorbent in the regeneration channel;
The control unit controls the input voltage of the heater based on the outdoor relative humidity information.
The air conditioner according to claim 5 or 6.
前記制御部は、前記室外の相対湿度が上昇した場合に、前記ヒータの入力電圧を高くし、前記室外の相対湿度が下降した場合に前記ヒータの入力電圧を低くする、
請求項7に記載の空気調和機。
The control unit increases the input voltage of the heater when the outdoor relative humidity increases, and decreases the input voltage of the heater when the outdoor relative humidity decreases.
The air conditioner according to claim 7.
前記吸湿流路の前記吸収材の上流側に配置された相対湿度センサをさらに備え、
前記室外の相対湿度情報は、前記相対湿度センサにより検出される、
請求項1から8のいずれか1項に記載の空気調和機。
further comprising a relative humidity sensor located upstream of the absorbent material in the moisture absorption channel;
The outdoor relative humidity information is detected by the relative humidity sensor,
The air conditioner according to any one of claims 1 to 8.
前記相対湿度センサを覆い、ラビリンス構造を有するセンサカバー、をさらに備える、
請求項9に記載の空気調和機。
further comprising a sensor cover covering the relative humidity sensor and having a labyrinth structure;
The air conditioner according to claim 9.
前記吸収材は、高分子収着材である、
請求項1から10のいずれか1項に記載の空気調和機。
The absorbent is a polymeric sorbent,
The air conditioner according to any one of claims 1 to 10.
JP2021151750A 2021-09-17 2021-09-17 air conditioner Pending JP2023043971A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021151750A JP2023043971A (en) 2021-09-17 2021-09-17 air conditioner
PCT/JP2022/032615 WO2023042656A1 (en) 2021-09-17 2022-08-30 Air conditioner
CN202280061373.2A CN117957408A (en) 2021-09-17 2022-08-30 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021151750A JP2023043971A (en) 2021-09-17 2021-09-17 air conditioner

Publications (1)

Publication Number Publication Date
JP2023043971A true JP2023043971A (en) 2023-03-30

Family

ID=85602169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021151750A Pending JP2023043971A (en) 2021-09-17 2021-09-17 air conditioner

Country Status (3)

Country Link
JP (1) JP2023043971A (en)
CN (1) CN117957408A (en)
WO (1) WO2023042656A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08178399A (en) * 1994-12-28 1996-07-12 Matsushita Electric Ind Co Ltd Dehumidifying/humidifying apparatus
JP3567860B2 (en) * 2000-07-04 2004-09-22 ダイキン工業株式会社 Humidifier and air conditioner using the same
JP2010038382A (en) * 2008-07-31 2010-02-18 Daikin Ind Ltd Air conditioner
JP5213938B2 (en) * 2010-11-15 2013-06-19 三菱電機株式会社 Humidity control apparatus and humidity control method
CN214198932U (en) * 2020-12-10 2021-09-14 广东美的制冷设备有限公司 Humidifying device, air conditioner outdoor unit and air conditioner

Also Published As

Publication number Publication date
WO2023042656A1 (en) 2023-03-23
CN117957408A (en) 2024-04-30

Similar Documents

Publication Publication Date Title
US20230022397A1 (en) Air quality adjustment system
JPH11262621A (en) Dehumidifying air conditioner
WO2017183689A1 (en) Outside-air treatment system, and device and method for controlling outside-air treatment system
JP4333986B2 (en) Air conditioner
JP5355501B2 (en) Air conditioning system
WO2023042656A1 (en) Air conditioner
JP2008116060A (en) Adsorption member, humidity conditioning device, and indoor unit of air conditioner
WO2022172485A1 (en) Ventilator and air conditioner equipped with ventilator
WO2023063239A1 (en) Air conditioner
JP2001174074A (en) Dehumidification device
JP2007170786A (en) Ventilation system
JP3588691B2 (en) Dehumidifier / humidifier
WO2023042623A1 (en) Air conditioner
WO2023042627A1 (en) Air conditioner
WO2023074487A1 (en) Dehumidification control method, air conditioner, and program
JP2011177657A (en) Dehumidifying device
WO2023074488A1 (en) Air conditioner
WO2023042655A1 (en) Ventilation control method for air conditioner, ventilation control device, and program
JP2024046347A (en) Air conditioner, air conditioner control method, program and computer-readable storage medium
JP2024046341A (en) air conditioner
KR100624729B1 (en) Air-conditioner
WO2023042628A1 (en) Air conditioner
JPH1194317A (en) Dehumidifier/humidifier
WO2023074724A1 (en) Air conditioner, ventilation control method, and program
WO2023074486A1 (en) Determination method, determination device, and program for determining operation mode of air conditioner