JP2023039262A - 電源装置及び超音波診断装置 - Google Patents

電源装置及び超音波診断装置 Download PDF

Info

Publication number
JP2023039262A
JP2023039262A JP2021146344A JP2021146344A JP2023039262A JP 2023039262 A JP2023039262 A JP 2023039262A JP 2021146344 A JP2021146344 A JP 2021146344A JP 2021146344 A JP2021146344 A JP 2021146344A JP 2023039262 A JP2023039262 A JP 2023039262A
Authority
JP
Japan
Prior art keywords
circuit
secondary battery
power supply
voltage
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021146344A
Other languages
English (en)
Inventor
勇治 桑名
Yuji Kuwana
周太 藤原
Shuta Fujiwara
新一郎 菊地
Shinichiro Kikuchi
英雄 小野寺
Hideo Onodera
晋伍 豊田
Shingo Toyoda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Medical Systems Corp
Original Assignee
Canon Medical Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Medical Systems Corp filed Critical Canon Medical Systems Corp
Priority to JP2021146344A priority Critical patent/JP2023039262A/ja
Publication of JP2023039262A publication Critical patent/JP2023039262A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Ultra Sonic Daignosis Equipment (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

【課題】簡易な構成で精度よく二次電池の残容量の算出を行うこと。【解決手段】実施形態に係る、二次電池の放電電圧に基づいて二次電池の残容量を算出する電源装置は、AC電源回路と、二次電池と、充電回路と、放電回路と、制御回路とを備える。AC電源回路は、AC電源からのAC電圧をDC電圧に変換する。充電回路は、AC電源からのAC電圧をDC電圧に変換し、DC電圧によって二次電池を充電する。放電回路は、二次電池を放電する。制御回路は、二次電池の放電電流を検出し、検出した放電電流に基づいて充電回路から出力される電流を制御することで、二次電池から放電回路に出力される電流をキャンセルする。【選択図】 図1

Description

本明細書及び図面に開示の実施形態は、電源装置及び超音波診断装置に関する。
電力を消費する装置(電力消費装置)に無停電電源装置等の電源装置が接続される。電源装置は、通常時に、電力消費装置に電力を供給するとともに、停電等によって電力が断たれた場合に、電力消費装置に電力を供給する。無停電電源装置は、商用のAC(交流)電源に接続されて使用され、UPS(Uninterruptible Power Supply)と呼ばれる。
また、従来、パーソナルコンピュータ(PC)等の電子機器に搭載される二次電池の残容量(RC:Remaining Capacity)は、満充電容量(FCC:Full Charge Capacity)、すなわち、満充電状態における二次電池の電気量(電流値×時間)又は電力量(電力値×時間)のそれぞれに対して、充電/放電電流又は充電/放電電力の積算値(充放電量)を加算/減算して算出されている。いわゆる残容量は、満充電容量に対する相対残容量(RSOC:Relative State Of Charge)として表されることもある。このように残容量の算出の元になる満充電容量は、二次電池の使用に伴う劣化に応じて低下するにも関わらず、二次電池の実際の使用状態において満充電状態から放電終止状態になるまで放電(又は放電終止状態から満充電状態になるまで充電)されることが殆どないため、正確な満充電容量を算出する機会に乏しいのが実情である。
そこで、第1及び第2時点における二次電池の放電電圧(無負荷電圧)から算出した相対残容量の変化量と、第1及び第2時点の間における充放電量の変化量とから、二次電池の満充電容量を算出する技術がある。このように、二次電池の放電電圧に基づいて算出した満充電容量を相対残容量に乗じることで二次電池の残容量が算出される。さらに、二次電池の残容量を算出したときからの充放電量を加算/減算することによって新たな残容量が算出される。
特開2009-165203号公報
本明細書及び図面に開示の実施形態が解決しようとする課題の一つは、簡易な構成で精度よく二次電池の残容量の算出を行うことである。ただし、本明細書等に開示の実施形態により解決される課題は上記課題に限られない。後述する実施形態に示す各構成による各効果に対応する課題を、本明細書等に開示の実施形態が解決する他の課題として位置づけることもできる。
実施形態に係る、二次電池の放電電圧に基づいて二次電池の残容量を算出する電源装置は、AC電源回路と、二次電池と、充電回路と、放電回路と、制御回路とを備える。AC電源回路は、AC電源からのAC電圧をDC電圧に変換する。充電回路は、AC電源からのAC電圧をDC電圧に変換し、DC電圧によって二次電池を充電する。放電回路は、二次電池を放電する。制御回路は、二次電池の放電電流を検出し、検出した放電電流に基づいて充電回路から出力される電流を制御することで、二次電池から放電回路に出力される電流をキャンセルする。
図1は、第1の実施形態に係る電源装置の構成の一例を示す概略図。 図2は、第1の比較例に係る電源装置の構成の一例を示す概略図。 図3は、第2の比較例に係る電源装置の構成の一例を示す概略図。 図4は、第3の比較例に係る電源装置の構成の一例を示す概略図。 図5は、第1の実施形態に係る電源装置を設ける超音波診断装置の構成の一例を示す概略図。 図6は、超音波診断装置に設けられる、第1の実施形態に係る電源装置の構成の一例を示す概略図。 図7は、超音波診断装置に設けられる、第2の実施形態に係る電源装置の構成の一例を示す概略図。
以下、図面を参照しながら、電源装置及び超音波診断装置の実施形態について詳細に説明する。
(第1の実施形態)
図1は、第1の実施形態に係る電源装置の構成の一例を示す概略図である。
図1は、第1の実施形態に係る電源装置10と、電力消費装置20とを示す。電源装置10は、無停電電源装置、すなわちUPSであり、AC(交流)電源回路11と、ダイオード12と、可変充電回路(AC-DCコンバータ)13と、放電回路(DC-DCコンバータ)14と、ダイオード15と、電池パック16と、電流計17と、制御回路18とを備える。構成要素13~18は、電池ユニットUを構成する。また、電池パック16は、二次電池Cと残容量算出回路Dとを備える。なお、制御回路18と、残容量算出回路Dとは、特定用途向け集積回路(ASIC:Application Specific Integrated Circuit)等によって構成される。
電力消費装置20は、一般に電力を消費する全ての電子機器を意味する。例えば、電力消費装置20は、図5を用いて後述する医用画像診断装置(例えば、超音波診断装置100)や、PC(Personal Computer)、スマートフォン、及びタブレット等のコンピュータや、デジタルカメラや、家電製品等のうち電力を消費する電子部品を意味する。例えば、超音波診断装置100の電力を消費する電子部品とは、図5に示す装置本体30(超音波プローブ40、入力インターフェース50、ディスプレイ60を含む場合もある)である。
電源装置10は、電力消費装置20に接続され、AC電源回路11と、ダイオード12とを介して電力消費装置20に電力を供給する。AC電源回路11は、AC電圧をDC電圧に変換する。一方で、電源装置10は、停電等によってAC電源からの電力が断たれた場合に、電池ユニットUを介して電力消費装置20に電力を供給する。
電池パック16の二次電池Cは、充電を行うことにより繰り返し使用することができる電池(化学電池)を意味し、蓄電池又はバッテリとも呼ばれる。例えば、二次電池Cは、定電流充電と低電圧充電とを組み合わせる必要のあるリチウムイオンバッテリであることが好適である。
電池パック16の残容量算出回路Dは、二次電池Cの残容量を算出(推定)する。残容量算出回路Dは、二次電池Cの残容量を、満充電容量、すなわち、満充電状態における二次電池Cの電気量又は電力量のそれぞれに対して、充電/放電電流、又は、充電/放電電力の積算値(充放電量)を加算/減算して算出する。いわゆる残容量は、満充電容量に対する相対残容量として表されることもある。このように残容量の算出の元になる満充電容量は、二次電池Cの使用に伴う劣化に応じて低下するにも関わらず、二次電池Cの実際の使用状態において満充電状態から放電終止状態になるまで放電(又は放電終止状態から満充電状態になるまで充電)されることが殆どないため、正確な満充電容量を算出する機会に乏しい。
そこで、残容量算出回路Dは、第1及び第2時点における二次電池Cの放電電圧(無負荷電圧、すなわち、開放電圧)から算出した、第1及び第2時点の間における相対残容量の変化量と、第1及び第2時点の間における充放電量の変化量とから、二次電池Cの満充電容量を算出する。そして、残容量算出回路Dは、二次電池Cの放電電圧に基づいて算出した満充電容量を相対残容量に乗じることで二次電池Cの残容量を算出する。さらに、残容量算出回路Dは、二次電池Cの残容量を算出したときからの充放電量を加算/減算することによって二次電池Cの新たな残容量を算出する。
ここで、二次電池Cが充電されていない時は、二次電池Cから放電回路14を介して常時の放電電流が流れることとなる。放電電流値が閾値を超えると、二次電池Cの開放電圧が測定できないため、二次電池Cの残容量の算出を正しく行うことができなくなる。そこで、電源装置10は、電力消費装置20がAC電源回路11により動作していて、非充電時等の軽負荷時に、二次電池Cが負荷に電力を供給し続ける場合に可変充電回路13から電力を出力することで、二次電池Cが供給する電力を相殺するものとする。それにより、電源装置10は、二次電池Cの残容量の算出タイミングを提供し、残容量算出回路Dは、算出タイミングで、放電電圧から残容量の算出を精度よく行うことができる。
残容量算出回路Dによる二次電池Cの残容量の算出タイミングで、制御回路18は、電流計17により二次電池Cの放電電流値を検出し、放電回路14の消費電力(軽負荷電力)P1を全て可変充電回路13から供給するように制御する。つまり、制御回路18による制御により、二次電池Cの放電電流I3をキャンセルする。ここで、二次電池Cの放電電流I3のキャンセルとは、二次電池Cの放電電流I3を「0」とする場合の他、二次電池Cの放電電流I3が閾値以下(又は未満)の場合を含む。以下、二次電池Cの放電電流I3のキャンセルが、放電電流I3=0の場合を意味するものとして説明する。
二次電池Cの放電電流I3がキャンセルされるとき、電力消費装置20の消費電力P2はAC電源からAC電源回路11とダイオード12とを介して供給される。電圧は、V0>V4に調整され、放電回路14の出力電力は無い。放電回路14は消費電力P1でアイドル動作を行い、消費電力P1は可変充電回路13からのみ供給される(I1=I2)。なお、制御回路18は、二次電池Cの放電電流I3がキャンセルされるように(I3=0)、可変充電回路13からの電流をフィードバック制御することが好適である。
一方で、電源装置10に対する比較例について図2~図4を用いて説明する。
図2は、第1の比較例に係る電源装置の構成の一例を示す概略図である。
図2は、第1の比較例に係る電源装置10Pと、電力消費装置20とを示す。電源装置10Pは、AC電源回路11と、ダイオード12と、充電回路13Pと、放電回路14と、ダイオード15と、電池パック16とを備える。また、構成要素13P、14~16は、電池ユニットUPを構成する。
電源装置10Pは、電力消費装置20に接続され、AC電源回路11と、ダイオード12とを介して電力消費装置20に電力を供給する。一方で、電源装置10Pは、停電等によって電力が断たれた場合に、電池ユニットUPを介して電力消費装置20に電力を供給する。なお、図2において、図1に示す構成と同一構成には同一符号を付して説明を省略する。
電源装置10Pにおいて、電力消費装置20の消費電力P2は、AC電源からAC電源回路11とダイオード12とを介して供給される。電圧はV0>V4に調整され、放電回路14の出力電力は無い。放電回路14は消費電力P1でアイドル動作を行い、消費電力P1は二次電池Cからのみ供給される(I3=I2)。この場合、充電は休止され充電回路13Pの出力電流は「0」となる(I1=0)。
図2の構成では、図1の構成とは異なり、二次電池Cの放電電流I3をキャンセルできないので、二次電池Cの残容量の算出の精度がよくない。
図3は、第2の比較例に係る電源装置の構成の一例を示す概略図である。
図3は、第2の比較例に係る電源装置10Qと、電力消費装置20とを示す。電源装置10Qは、AC電源回路11Qと、ダイオード12Qと、充電回路13Qと、放電回路14Qと、ダイオード15Qと、電池パック16とを備える。
電源装置10Qは、電力消費装置20に接続され、AC電源回路11Qと、ダイオード12Qと、放電回路14Qとを介して電力消費装置20に電力を供給する。一方で、電源装置10Qは、停電等によって電力が断たれた場合に、電池パック16と、ダイオード15Qと、放電回路14Qとを介して電力消費装置20に電力を供給する。なお、図3において、図1に示す構成と同一構成には同一符号を付して説明を省略する。
電源装置10Qにおいて、電力消費装置20の消費電力P2は、AC電源からAC電源回路11Qと、ダイオード12Qと、放電回路14Qとを介して供給される。電圧はV0>V1に調整され、二次電池Cの出力電力は無い。また、放電回路14Qの変換損失である消費電力P1はAC電源回路11Qから供給される。
図3の構成では、図1の構成と同様に、二次電池Cの放電電流をキャンセルすることができるので、精度よく二次電池Cの残容量の算出を行うことができる。しかしながら、図3の構成では、二次電池Cの電圧程度の低電圧でダイオード15Qに通電することになるため、電力損失が発生してしまうという課題がある。
図4は、第3の比較例に係る電源装置の構成の一例を示す概略図である。
図4は、第3の比較例に係る電源装置10Rと、電力消費装置20とを示す。電源装置10Rは、AC電源回路11と、ダイオード12と、充電回路13R,13R´と、放電回路14と、ダイオード15と、電池パック16,16´と、スイッチ19,19´とを備える。
電源装置10Rは、電力消費装置20に接続され、AC電源回路11と、ダイオード12とを介して電力消費装置20に電力を供給する。一方で、電源装置10Pは、停電等によって電力が断たれた場合に、電池パック16,16´を介して電力消費装置20に電力を供給する。なお、図4において、図1に示す構成と同一構成には同一符号を付して説明を省略する。また、図示していないが、電池パック16,16´には、図1に示す構成と同様に、それぞれ二次電池Cおよび残容量算出回路Dが備えられている。
電源装置10Rにおいて、スイッチ19,19´により電池パック16,16´を切り替え可能であり、電池パック16,16´のうち放電電圧を測定するもののみスイッチ19,19´をオープンとする。
図4の構成では、図1の構成と同様に、電池パック16,16´の各二次電池Cの放電電流をキャンセルすることができるので、精度よく二次電池Cの残容量の算出を行うことができる。しかしながら、図4の構成では、放電電圧の測定時にも装置(例えば、スイッチ19,19´)を駆動する可能性があるため、切り替え機能が無い場合で不要であった電池パックを冗長追加する課題がある。
以上説明したように、図1に示す電源装置10によれば、残容量の算出を精度よくできなくなる原因であった常時の放電電流と同等の電流を可変充電回路13から供給するのみで切り替えが不要となり、図2~図4で説明した課題を解決することができる。つまり、図1に示す電源装置10によれば、可変充電回路13から出力される電流を制御して二次電池Cの放電電流をキャンセルすることができるので、適切なタイミングで、精度よく、二次電池Cの放電電圧に基づいて二次電池Cの残容量を算出することができる。
(第1の実施形態の適用例)
電源装置10は、具体的には、医用画像データを生成する医用画像診断装置や、医用画像データを処理する画像処理装置(ワークステーションを含む)や、医用画像データを管理する医用画像データを管理する画像サーバの一部として設けられる。以下、電源装置10が、医用画像診断装置としての超音波診断装置の一部として設けられる場合について説明する。しかし、その場合に限定されるものではない。例えば、電源装置10は、医用画像診断装置としての単純X線装置、X線透視撮影装置、X線CT(Computed Tomography)装置、MRI(Magnetic Resonance Imaging)装置、及び核医学診断装置等の一部として設けられる場合であってもよい。
図5は、超音波診断装置の構成の一例を示す概略図である。図6は、超音波診断装置に設けられる電源装置10の構成の一例を示す概略図である。なお、超音波診断装置に設けられる電源装置10の構成及び動作は、図1に示す電源装置10の構成及び動作と同等であるので説明を省略する。
図5は、電源装置10を設ける超音波診断装置100を示す。超音波診断装置100は、電源装置10と、電力消費装置20(図1に図示)としての装置本体30と、超音波プローブ40と、入力インターフェース50と、ディスプレイ60とを示す。なお、装置本体30に、超音波プローブ40と、入力インターフェース50と、ディスプレイ60と、電源装置10とのうちの少なくとも1個を加えた装置を装置本体と称する場合もある。以下の説明では、装置本体30の外部に、超音波プローブ40と、入力インターフェース50と、ディスプレイ60と、電源装置10との全てが備えられる場合について説明する。
電源装置10は、図1を用いて説明した構成及び機能を備え、電力消費装置20としての装置本体30に電力を供給する。
装置本体30は、電源装置10から電力の供給を受け、超音波の送受信を制御するとともに、超音波の送受信に基づく超音波画像データを生成する。装置本体30は、送受信回路31と、Bモード処理回路32と、ドプラ処理回路33と、画像生成回路34と、画像メモリ35と、ネットワークインターフェース36と、処理回路37と、メインメモリ38とを備える。回路31~34は、特定用途向け集積回路等によって構成されるものである。しかしながら、その場合に限定されるものではなく、回路31~34の機能の全部又は一部は、処理回路37がプログラムを実行することで実現されるものであってもよい。
送受信回路31は、送信回路及び受信回路(図示省略)を有する。送受信回路31は、処理回路37による制御の下、超音波の送受信における送信指向性と受信指向性とを制御する。なお、送受信回路31が装置本体30に設けられる場合について説明するが、送受信回路31は、超音波プローブ40に設けられてもよいし、装置本体30と超音波プローブ40との両方に設けられてもよい。なお、送受信回路31は、送受信部の一例である。
送信回路は、パルス発生回路、送信遅延回路、及びパルサ回路等を有し、超音波振動子に駆動信号を供給する。パルス発生回路は、所定のレート周波数で、送信超音波を形成するためのレートパルスを繰り返し発生する。送信遅延回路は、超音波プローブ40の超音波振動子から発生される超音波をビーム状に集束し、送信指向性を決定するために必要な圧電振動子ごとの遅延時間を、パルス発生回路が発生する各レートパルスに対し与える。また、パルサ回路は、レートパルスに基づくタイミングで、超音波振動子に駆動パルスを印加する。送信遅延回路は、各レートパルスに対し与える遅延時間を変化させることで、圧電振動子面から送信される超音波ビームの送信方向を任意に調整する。
受信回路は、アンプ回路、A/D(Analog to Digital)変換器、及び加算器等を有し、超音波振動子が受信したエコー信号を受け、このエコー信号に対して各種処理を行ってエコーデータを生成する。アンプ回路は、エコー信号をチャンネル毎に増幅してゲイン補正処理を行う。A/D変換器は、ゲイン補正されたエコー信号をA/D変換し、デジタルデータに受信指向性を決定するのに必要な遅延時間を与える。加算器は、A/D変換器によって処理されたエコー信号の加算処理を行ってエコーデータを生成する。加算器の加算処理により、エコー信号の受信指向性に応じた方向からの反射成分が強調される。
Bモード処理回路32は、処理回路37による制御の下、受信回路からエコーデータを受信し、対数増幅、及び包絡線検波処理等を行って、信号強度が輝度の明るさで表現されるデータ(2次元又は3次元データ)を生成する。このデータは、一般に、Bモードデータと呼ばれる。なお、Bモード処理回路32は、Bモード処理部の一例である。
ドプラ処理回路33は、処理回路37による制御の下、受信回路からのエコーデータから速度情報を周波数解析し、平均速度、分散、パワー等の移動体の移動情報を多点について抽出したデータ(2次元又は3次元データ)を生成する。このデータは、一般に、ドプラデータと呼ばれる。ここで、移動体とは、例えば、血流や、心壁等の組織、造影剤である。なお、ドプラ処理回路33は、ドプラ処理部の一例である。
画像生成回路34は、処理回路37による制御の下、超音波プローブ40が受信したエコー信号に基づいて、所定の輝度レンジで表現された超音波画像を画像データとして生成する。例えば、画像生成回路34は、超音波画像として、Bモード処理回路32によって生成された2次元のBモードデータから反射波の強度を輝度にて表したBモード画像を生成する。また、画像生成回路34は、超音波画像として、ドプラ処理回路33によって生成された2次元のドプラデータから移動態情報を表す平均速度画像、分散画像、パワー画像、又は、これらの組み合わせ画像としてのカラードプラ画像を生成する。なお、画像生成回路34は、画像生成部の一例である。
画像メモリ35は、例えば、磁気的若しくは光学的記録媒体、又は半導体メモリ等のプロセッサにより読み取り可能な記録媒体等を有する。画像メモリ35は、処理回路37の制御による制御の下、画像生成回路34によって生成された、心拍データに対応付けられた複数心拍分の超音波画像データを保存する。画像メモリ35に保存された複数の超音波画像データは、被検体の心拍データと1心拍(1つの心周期)単位で対応付けられる。具体的には、例えば画像メモリ35に保存された各超音波画像データは、1心拍に対応する心拍データに対応付けられる。
ネットワークインターフェース36は、ネットワークの形態に応じた種々の情報通信用プロトコルを実装する。ネットワークインターフェース36は、この各種プロトコルに従って、超音波診断装置100と、外部機器(図示省略)とを接続する。この接続には、電子ネットワークを介した電気的な接続等を適用することができる。ここで、電子ネットワークとは、電気通信技術を利用した情報通信網全般を意味し、無線/有線の病院基幹のLAN(Local Area Network)やインターネット網のほか、電話通信回線網、光ファイバ通信ネットワーク、ケーブル通信ネットワーク及び衛星通信ネットワーク等を含む。
また、ネットワークインターフェース36は、非接触無線通信用の種々のプロトコルを実装してもよい。この場合、装置本体30は、例えば超音波プローブ40と、ネットワークを介さず直接にデータ送受信することができる。なお、ネットワークインターフェース36は、ネットワーク接続部の一例である。
処理回路37は、専用又は汎用のCPU(central processing unit)、MPU(Micro Processor Unit)、又はGPU(Graphics Processing Unit)の他、ASIC、及び、プログラマブル論理デバイス等を意味する。プログラマブル論理デバイスとしては、例えば、単純プログラマブル論理デバイス(SPLD:simple programmable logic device)、複合プログラマブル論理デバイス(CPLD:complex programmable logic device)、及び、フィールドプログラマブルゲートアレイ(FPGA:field programmable gate array)等が挙げられる。
また、処理回路37は、単一の回路によって構成されてもよいし、複数の独立した回路要素の組み合わせによって構成されてもよい。後者の場合、メインメモリ38は回路要素ごとに個別に設けられてもよいし、単一のメインメモリ38が複数の回路要素の機能に対応するプログラムを記憶するものであってもよい。なお、処理回路37は、処理部の一例である。
メインメモリ38は、RAM(random access memory)、フラッシュメモリ(flash memory)等の半導体メモリ素子、ハードディスク、光ディスク等によって構成される。メインメモリ38は、USB(universal serial bus)メモリ及びDVD(digital video disk)等の可搬型メディアによって構成されてもよい。メインメモリ38は、処理回路37において用いられる各種処理プログラム(アプリケーションプログラムの他、OS(operating system)等も含まれる)や、プログラムの実行に必要なデータを記憶する。また、OSに、操作者に対するディスプレイ60への情報の表示にグラフィックを多用し、基礎的な操作を入力インターフェース50によって行うことができるGUI(graphical user interface)を含めることもできる。なお、メインメモリ38は、記憶部の一例である。
超音波プローブ40は、前面部に複数個の微小な振動子(圧電素子)を備え、スキャン対象を含む領域、例えば管腔体を含む領域に対して超音波の送受波を行う。各振動子は電気音響変換素子であり、送信時には電気パルスを超音波パルスに変換し、また、受信時には反射波を電気信号(受信信号)に変換する機能を有する。超音波プローブ40は小型、軽量に構成されており、ケーブル(又は無線通信)を介して装置本体30に接続される。
入力インターフェース50は、操作者によって操作が可能な入力デバイスと、入力デバイスからの信号を入力する入力回路とを含む。入力デバイスは、トラックボール、スイッチ、マウス、キーボード、操作面に触れることで入力操作を行うタッチパッド、表示画面とタッチパッドとが一化されたタッチスクリーン、光学センサを用いた非接触入力デバイス、及び音声入力デバイス等によって実現される。操作者により入力デバイスが操作されると、入力回路はその操作に応じた信号を生成して処理回路37に出力する。なお、入力インターフェース50は、入力部の一例である。
ディスプレイ60は、例えば液晶ディスプレイやOLED(Organic Light Emitting Diode)ディスプレイ等の一般的な表示出力装置により構成される。ディスプレイ60は、処理回路37の制御に従って各種情報を表示する。なお、ディスプレイ60は、表示部の一例である。
電源装置10は、電力消費装置20(図1に図示)の一例である装置本体30(超音波プローブ40、入力インターフェース50、ディスプレイ60を含む場合もある)に電力を供給する。
以上説明したように、図5及び図6に示す超音波診断装置100の電源装置10によれば、残容量の算出が精度よくできなくなる原因であった常時の放電電流と同等の電流を可変充電回路13から供給するのみで、切り替えが不要となり、図2~図4で説明した課題を解決することができる。つまり、図5及び図6に示す超音波診断装置100の電源装置10によれば、可変充電回路13から出力される電流を制御して二次電池Cの放電電流をキャンセルすることができるので、適切なタイミングで、正確に精度よく、二次電池Cの放電電圧に基づいて二次電池Cの残容量を算出することができる。
(第2の実施形態)
第1の実施形態に係る電源装置10は、AC電源回路11が電池ユニットUと独立して構成され、電力消費装置20(例えば、装置本体30)の消費電力の変動が十分に小さい場合に、二次電池Cの放電電圧に基づいて二次電池Cの残容量を算出するものである。なお、電源装置10(図5及び図6に図示)において、装置本体30の消費電力の変動が十分に小さい場合、つまり、消費電力が安定する場合としては、装置本体30が長時間使用されない場合(検査待ち画面が表示されている場合)や、処理回路37のCPUのクロックブーストが停止中の場合を含む。
一方で、電源回路が簡易な構成、つまり、AC電源回路11が電池ユニットUと独立して構成されるものではない場合、言い換えれば、常時変換方式である場合、電力消費装置20(例えば、装置本体30)の負荷電力P2が急減する場合に、AC電源回路の出力電圧が上昇し、二次電池Cに過大な電圧が印加されるという課題がある。この課題を解決するために、第2の実施形態に係る電源装置10Aは、負荷電力P2が急減する前に制御回路18Aがフィードフォワード制御信号を装置本体30から受信することで、AC電源回路の電流出力を停止し電圧上昇を防止する。装置本体30がフィードフォワード制御信号を発する具体的な条件として、消費電力が大きなプッシュパルスが停止するタイミングがある。
この場合、電源装置10Aは、放電電流I3を負荷に追従させるため、装置本体30の消費電力P2の変動に応じて装置本体30からフィードフォワード制御信号を受信し、フィードフォワード制御信号に基づいて電流I3をキャンセルするタイミングを制御する。なお、超音波診断装置の構成については、図5に示すものと同等であるので、説明を省略する。
図7は、超音波診断装置に設けられる、第2の実施形態に係る電源装置の構成の一例を示す概略図である。
図7は、第2の実施形態に係る電源装置10Aと、電力消費装置20としての装置本体30とを示す。電源装置10Aは、電源装置10(図1に図示)と同様に、無停電電源装置、すなわちUPSである。電源装置10Aは、AC電源回路11と、可変充電回路13Aと、放電回路14Aと、電池パック16と、電流計17と、制御回路18Aとを備える。可変充電回路13Aは、DC電圧に基づいて、二次電池Cを充電する。なお、制御回路18Aと、残容量算出回路Dとは、特定用途向け集積回路等によって構成される。また、AC電源回路11と、可変充電回路13Aとは単一の回路構成とすることもでき、その場合、回路数の削減を実現することもできる。
なお、図7において、図1及び図6に示す構成と同一構成には同一符号を付して説明を省略する。
二次電池Cの充電時は、可変充電回路13Aは、負荷電力(放電回路14Aの消費電力P1+装置本体30の消費電力P2)相当の電流I2と充電電流I3(値は負)の和に等しい電流I1を供給する(I2+I3=I1)。充電完了後は、制御回路18Aによる制御により二次電池Cの放電電流I3をキャンセルし(I3=0)、可変充電回路13Aは、I2=I1となる電流を供給する。制御回路18Aは、負荷電流I2が急減少する場合(閾値を超えて減少する場合)に、装置本体30からフィードフォワード制御信号を受信する。制御回路18Aは、制御回路18の動作に加え、フィードフォワード制御信号の受信タイミングで、AC電源回路11Aの電流出力を停止し電圧上昇を防止する制御を行う。
例えば、装置本体30の消費電力が急減する場合(消費電力の減少が閾値を超える場合)としては、入力インターフェース50としてのフリーズボタンが押圧された場合、つまり、装置本体30のアナログ回路の動作が停止された場合と、超音波画像データを生成する診断モードから患者情報入力モードに切り替わった場合と、ディスプレイ60の動作(例えば、表示)が停止された場合とのうち少なくとも1つを含む。例えば、装置本体30のアナログ回路は、装置本体30の送受信端のFE(Front-End)である送受信回路31等を含み、送受信回路31で送信パルスを生成する送信回路(T)や、エコー信号を受信する受信回路(R)等を意味する。
超音波診断装置100の簡易構成の電源装置10Aによれば、可変充電回路13Aから出力される電流を制御して二次電池Cの放電電流をキャンセルすることができるので、適切なタイミングで、精度よく、二次電池Cの放電電圧に基づいて二次電池Cの残容量を算出することができる。また、簡易構成の電源装置10Aによれば、装置本体30の消費電力が急減する場合に、AC電源回路11の出力電圧が上昇して二次電池Cに過大電圧が印加されることを防止することができる。
以上説明した少なくとも1つの実施形態によれば、簡易な構成で精度よく二次電池の残容量の算出を行うことができる。
いくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更、実施形態同士の組み合わせ、実施形態と1又は複数の変形例との組み合わせを行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
10,10A…電源装置
20…電力消費装置
11…AC電源回路
12…ダイオード
13,13A…可変充電回路
14,14A…放電回路
15…ダイオード
16…電池パック
17…電流計
18,18A…制御回路
30…装置本体
100…超音波診断装置
C…二次電池
D…残容量算出回路

Claims (7)

  1. 二次電池の放電電圧に基づいて前記二次電池の残容量を算出する電源装置であって、
    AC電源からのAC電圧をDC電圧に変換するAC電源回路と、
    前記二次電池と、
    前記AC電源からのAC電圧をDC電圧に変換し、前記DC電圧によって前記二次電池を充電する充電回路と、
    前記二次電池を放電する放電回路と、
    前記二次電池の放電電流を検出し、検出した前記放電電流に基づいて前記充電回路から出力される電流を制御することで、前記二次電池から前記放電回路に出力される電流をキャンセルする制御回路と、
    を備える電源装置。
  2. 前記制御回路は、前記二次電池の前記放電電流がキャンセルされるように前記充電回路から出力される電流をフィードバック制御する、
    請求項1に記載の電源装置。
  3. 前記二次電池は、リチウムイオンバッテリである、
    請求項1又は2に記載の電源装置。
  4. 請求項1乃至3のいずれか1項に記載の電源装置と、
    前記電源装置から電力の供給を受け、超音波の送受信を制御するとともに前記超音波の送受信に基づく超音波画像データを生成する装置本体と、
    を備えた電源装置。
  5. 二次電池の放電電圧に基づいて前記二次電池の残容量を算出する電源装置と、前記電源装置から電力の供給を受け、超音波の送受信を制御するとともに前記超音波の送受信に基づく超音波画像データを生成する装置本体とを備えた超音波診断装置であって、
    前記電源装置は、
    AC電源からのAC電圧をDC電圧に変換するAC電源回路と、
    前記二次電池と、
    前記DC電圧に基づいて、前記二次電池を充電する充電回路と、
    前記二次電池を放電する放電回路と、
    前記二次電池の放電電流に基づいて前記充電回路から出力される電流を制御することで、前記二次電池から前記放電回路に出力される電流をキャンセルする制御回路と、
    を備え、
    前記制御回路は、前記装置本体の消費電力の変動に応じて前記装置本体からフィードフォワード制御信号を受信し、前記フィードフォワード制御信号に基づいて前記AC電源回路の電流出力を停止する、
    超音波診断装置。
  6. 前記AC電源回路と前記充電回路とが単一の回路構成である、
    請求項5に記載の超音波診断装置。
  7. 前記装置本体は、前記フィードフォワード制御信号を、前記装置本体の送受信回路の動作が停止された場合と、前記超音波画像データを生成する診断モードから患者情報入力モードに切り替わった場合と、ディスプレイの表示が停止された場合とのうち少なくとも1つに基づいて発する、
    請求項5又は6に記載の超音波診断装置。
JP2021146344A 2021-09-08 2021-09-08 電源装置及び超音波診断装置 Pending JP2023039262A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021146344A JP2023039262A (ja) 2021-09-08 2021-09-08 電源装置及び超音波診断装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021146344A JP2023039262A (ja) 2021-09-08 2021-09-08 電源装置及び超音波診断装置

Publications (1)

Publication Number Publication Date
JP2023039262A true JP2023039262A (ja) 2023-03-20

Family

ID=85600615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021146344A Pending JP2023039262A (ja) 2021-09-08 2021-09-08 電源装置及び超音波診断装置

Country Status (1)

Country Link
JP (1) JP2023039262A (ja)

Similar Documents

Publication Publication Date Title
US10702249B2 (en) Wireless probe and method for power controlling of wireless probe
US20150327839A1 (en) Ultrasonic probe and ultrasonic diagnostic apparatus
EP2805677B1 (en) Ultrasound diagnosis apparatus, ultrasound probe, operating method of ultrasound diagnosis apparatus, and operating method of ultrasound probe
EP3175793B1 (en) Method and apparatus for determining occurrence of electrical fault in channel of ultrasound probe
US20180280001A1 (en) Medical image diagnosis apparatus
US20160374645A1 (en) Method for performing low power mode in portable ultrasonic diagnostic apparatus and portable ultrasonic diagnostic apparatus for applying same
JP5261021B2 (ja) 携帯型超音波診断装置
JP2023039262A (ja) 電源装置及び超音波診断装置
US10702241B2 (en) Portable ultrasonic diagnostic device and power efficiency improvement method therein
JP2010213787A (ja) 超音波診断装置
JP6965560B2 (ja) 医用画像診断装置
JP6546078B2 (ja) 超音波診断システム
JP7200593B2 (ja) 超音波診断装置
EP3469994A1 (en) Ultrasound diagnosis apparatus and method of operating the same
JP2014083142A (ja) 超音波診断装置
KR102665895B1 (ko) 초음파 진단 장치 및 그 동작 방법
US11638570B2 (en) Ultrasonic diagnostic apparatus, probe sensitivity management system, and non-transitory storage medium
CN112334075A (zh) 超声图像显示装置和系统及用其检测生物组织尺寸的方法
KR20190042427A (ko) 초음파 진단 장치 및 그 동작 방법
US11653902B2 (en) Ultrasound image diagnostic apparatus and power supply control method
JP2011130849A (ja) 超音波診断装置
EP4169448A1 (en) Radiation imaging system, radiation control apparatus, control method of radiation control apparatus, and program
WO2011043316A1 (ja) 超音波診断装置
JP2024024518A (ja) 超音波診断装置及び超音波プローブ
JP2012179084A (ja) 超音波診断装置