JP2023037269A - 熱利用発電モジュール及びその製造方法 - Google Patents

熱利用発電モジュール及びその製造方法 Download PDF

Info

Publication number
JP2023037269A
JP2023037269A JP2021143914A JP2021143914A JP2023037269A JP 2023037269 A JP2023037269 A JP 2023037269A JP 2021143914 A JP2021143914 A JP 2021143914A JP 2021143914 A JP2021143914 A JP 2021143914A JP 2023037269 A JP2023037269 A JP 2023037269A
Authority
JP
Japan
Prior art keywords
layer
power generation
conductive layer
generation module
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021143914A
Other languages
English (en)
Inventor
▲ヒョウ▼ 梅
Hyo Mei
曄 王
Ye Wang
知子 阿波連
Tomoko Aharen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanoh Industrial Co Ltd
Original Assignee
Sanoh Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanoh Industrial Co Ltd filed Critical Sanoh Industrial Co Ltd
Priority to JP2021143914A priority Critical patent/JP2023037269A/ja
Priority to CN202280058869.4A priority patent/CN117882510A/zh
Priority to PCT/JP2022/032826 priority patent/WO2023033062A1/ja
Publication of JP2023037269A publication Critical patent/JP2023037269A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Hybrid Cells (AREA)

Abstract

【課題】初期性能の劣化を抑制可能な熱利用発電モジュール及びその製造方法を提供すること。【解決手段】熱利用発電モジュールは、第1主面及び第2主面を有し、金属を含む第1導電層と、電子熱励起層及び電子輸送層を含み、第1主面上に位置する熱電変換層と、熱電変換層上に位置する有機電解質層と、第2主面上に位置する第2導電層と、を有する熱利用発電ユニットを備え、電子輸送層は、第1主面と電子熱励起層との間に位置する。【選択図】図1

Description

本発明は、熱利用発電モジュール及びその製造方法に関する。
地熱又は工場の排熱等を利用した熱利用発電として、ゼーベック効果を利用した方法が挙げられる。また、ゼーベック効果を利用しない熱利用発電として、下記特許文献1に開示される熱利用発電素子が挙げられる。下記特許文献1では、電解質と、熱励起電子及び正孔を生成する熱電変換材料とを組み合わせることによって、熱エネルギーを電気エネルギーに変換することが開示されている。このような熱利用発電素子を電子部品の電源として用いることによって、例えば一般的な電池が劣化しやすい高温環境下(例えば、50℃以上)においても、当該電子部品に対して安定した電力を供給できる。
国際公開第2017/038988号 特開2020-108315号公報
上述したような熱利用発電素子(熱利用発電モジュール)に含まれる電解質が有機物を含む場合、熱利用発電素子の製造中に電解質の劣化が発生しやすい傾向がある。当該劣化が発生した場合、熱利用発電素子の初期性能もまた劣化してしまう。
本発明の一側面の目的は、初期性能の劣化を抑制可能な熱利用発電モジュール及びその製造方法を提供することである。
本発明の一側面に係る熱利用発電モジュールは、第1主面及び第2主面を有し、金属を含む第1導電層と、電子熱励起層及び電子輸送層を含み、第1主面上に位置する熱電変換層と、熱電変換層上に位置する有機電解質層と、第2主面上に位置する第2導電層と、を有する熱利用発電ユニットを備え、電子輸送層は、第1主面と電子熱励起層との間に位置する。
上記熱利用発電モジュールが備える熱利用発電ユニットは、上述した構成を有する。これにより、有機電解質層上に何らの層を形成することなく、熱利用発電ユニットを製造できる。このため、熱利用発電ユニットの製造中に有機電解質層が劣化しにくくなる。したがって、本発明の一側面によれば、初期性能の劣化を抑制可能な熱利用発電モジュールを提供できる。
第2導電層は、導電性有機物を含んでもよい。この場合、導電性有機物を含む第2導電層上に何らの層を形成することなく、熱利用発電ユニットを製造できる。このため、熱利用発電ユニットの製造中に第2導電層が劣化しにくくなる。加えて、第2導電層と有機電解質層との接触抵抗を抑制できる。
上記熱利用発電モジュールは、熱利用発電ユニットを複数備え、複数の熱利用発電ユニットのそれぞれにおいて、有機電解質層、熱電変換層、第1導電層、及び第2導電層が順に積層されてもよい。この場合、例えば熱利用発電ユニット同士を直列接続させることによって、熱利用発電モジュールの起電力などを向上できる。
電子輸送層は、n型半導体を含み、電子熱励起層は、i型半導体を含み、有機電解質層は、p型半導体を含んでもよい。この場合、熱利用発電ユニット内における電子と正孔とを整流できるので、熱利用発電モジュールに電流が流れやすくなる。
有機電解質層は、可撓性を有してもよい。この場合、例えば熱利用発電モジュールを曲面上などに配置する場合、有機電解質層の破損を抑制できる。
第1導電層、熱電変換層、有機電解質層、及び第2導電層のそれぞれは、可撓性を有してもよい。この場合、例えば配管の表面に相当する曲面上などに熱利用発電モジュールを好適に配置できる。
非加熱時において、熱利用発電ユニットは、第1導電層及び第2導電層を有する導電部と、熱電変換層及び有機電解質層を有する絶縁部との二部構造でもよい。この場合、熱利用発電ユニット内での短絡を防止できる。
上記熱利用発電モジュールは、第1導電層、熱電変換層、有機電解質層、及び第2導電層の積層方向における一端に位置する導電性有機物を含む導電層を有する第1集電極と、積層方向における他端に位置する金属を含む別の導電層を有する第2集電極と、をさらに備えてもよい。この場合、熱利用発電モジュールの部品点数を低減できる。
上記熱利用発電モジュールは、第1導電層、熱電変換層、有機電解質層、及び第2導電層の積層方向における一端に位置する第1集電極と、積層方向における他端に位置する第2集電極と、をさらに備え、第1集電極は、第1導電層、第2導電層、及び金属を含む第3導電層を有し、積層方向において、第2導電層は、第1導電層と第3導電層との間に位置してもよい。この場合、第1集電極を介した熱利用発電ユニットへの伝熱性を向上できる。
本発明の他の一側面に係る熱利用発電モジュールの製造方法は、金属を含む第1導電層の第1主面上に電子輸送層を形成する第1工程と、電子輸送層上に電子熱励起層を形成する第2工程と、第1導電層の第2主面上に第2導電層を形成する第3工程と、電子熱励起層上に有機電解質層を形成する第4工程と、を備える。
この製造方法によれば、第4工程までにおいて、有機電解質層上に何らの層も形成されない。このため、熱利用発電ユニットの製造中に有機電解質層が劣化しにくくなる。したがって、本発明の他の一側面によれば、初期性能の劣化を抑制可能な熱利用発電モジュールの製造方法を提供できる。
第3工程では、導電性有機物を含む第2導電層を形成してもよい。この場合、第4工程までにおいて、第2導電層上に何らの層も形成されない。このため、熱利用発電ユニットの製造中に第2導電層が劣化しにくくなる。
上記製造方法は、第1導電層、電子輸送層、電子熱励起層、有機電解質層、及び第2導電層を含む熱利用発電ユニット同士を積層する工程をさらに備えてもよい。この場合、例えば熱利用発電ユニット同士を直列接続させることによって、熱利用発電モジュールの起電力などを向上できる。
第3工程では、加熱乾燥が実施され、第3工程後の第4工程では、真空乾燥が実施されてもよい。この場合、有機電解質層は、加熱されることなく形成できる。このため、有機電解質層に熱変性しやすい材料を容易に含められる。よって、有機電解質層の性能向上及び初期性能劣化を両立できる。また、加熱により第2導電層の膜質を向上できる。
上記製造方法は、第1集電極を形成する工程をさらに備え、第1集電極は、第1導電層、第2導電層、及び金属を含む第3導電層を有し、第1導電層と第2導電層との積層方向において、第2導電層は、第1導電層と第3導電層との間に位置してもよい。
上記製造方法は、第2集電極を有機電解質層に接触させる工程をさらに備え、第2集電極は、有機電解質層に接触する有機導電層を有してもよい。この場合、第2集電極と有機電解質層との接触抵抗を抑制できる。
本発明の一側面によれば、初期性能の劣化を抑制可能な熱利用発電モジュール及びその製造方法を提供できる。
図1は、第1実施形態に係る熱利用発電モジュールを示す概略断面図である。 図2は、熱利用発電ユニットを示す概略断面図である。 図3(a)~(d)は、第1実施形態に係る熱利用発電モジュールの製造方法を説明するための図である。 図4(a),(b)は、第1実施形態に係る熱利用発電モジュールの製造方法を説明するための図である。 図5(a)は、第2実施形態に係る熱利用発電モジュールに用いられる第2熱利用発電ユニットを示す概略断面図であり、図5(b)は、第2実施形態に係る熱利用発電モジュールを示す概略断面図である。 図6は、第3実施形態に係る熱利用発電モジュールを示す概略断面図である。
以下、添付図面を参照して、本発明の実施形態について詳細に説明する。なお、以下の説明において、同一要素又は同一機能を有する要素には、同一符号を用いることとし、重複する説明は省略する。
(第1実施形態)
まず、図1を参照しながら、第1実施形態に係る熱利用発電モジュールの構成を説明する。図1は、第1実施形態に係る熱利用発電モジュールを示す概略断面図である。図1に示される熱利用発電モジュール1は、外部から熱が供給されることによって発電する機能を示す部材(すなわち、熱エネルギーを電気エネルギーに変換する熱発電体)の集合体である。熱利用発電モジュール1は、例えば温泉、蒸気などの熱流体用の配管上、太陽電池などの装置上に配置される。これらの場合、熱利用発電モジュール1は、上記装置用のセンサなどの電源として用いられる。もしくは、熱利用発電モジュール1は、空調機、燃焼装置等の排熱部に装着されてもよいし、ウェアラブルデバイス用の電源として用いられてもよい。熱利用発電モジュール1は可撓性を有するので、当該熱利用発電モジュール1は、例えば上記配管の表面である曲面上に良好に配置可能である。熱利用発電モジュール1の形状は、特に限定されない。平面視における熱利用発電モジュール1の形状は、例えば矩形状等の多角形状でもよいし、円形状でもよいし、楕円形状でもよい。
熱利用発電モジュール1は、複数の熱利用発電ユニット2と、一対の集電極3,4とを備える。複数の熱利用発電ユニット2と、一対の集電極3,4とは、所定の方向に沿って互いに重なっている。複数の熱利用発電ユニット2は、一対の集電極3,4の間に位置する。以下では、上記所定の方向を単に「積層方向」とする。本明細書における「同一」は、「完全同一」だけではなく「実質的に同一」も含む概念である。
複数の熱利用発電ユニット2のそれぞれは、同一形状を有する熱発電体であり、外部から熱が供給されることによって熱励起電子及び正孔を生成する。熱利用発電ユニット2による熱励起電子及び正孔の生成は、例えば25℃以上300℃以下にて実施される。十分な数の熱励起電子及び正孔を生成する観点から、熱利用発電モジュール1の使用時において熱利用発電ユニット2は、例えば50℃以上に加熱されてもよい。熱利用発電ユニット2の劣化等を良好に防止する観点から、熱利用発電モジュール1の使用時において熱利用発電ユニット2は、例えば200℃以下に加熱される。十分な数の熱励起電子が生成される温度は、例えば「熱利用発電ユニット2の熱励起電子密度が1015/cm以上となる温度」である。第1実施形態において、熱利用発電モジュール1及び熱利用発電ユニット2の発電機構は、例えば特開2020-108315号公報などに記載される発電機構と同様である。
第1実施形態では、複数の熱利用発電ユニット2のそれぞれは、積層方向に沿って互いに重なっており、且つ、互いに直列接続されている。複数の熱利用発電ユニット2の数は、熱利用発電モジュール1に対して求められる性能に応じて変化する。
図2は、熱利用発電ユニットを示す概略断面図である。図2に示されるように、熱利用発電ユニット2は、第1導電層11と、熱電変換層12と、電解質層13と、第2導電層14とを有する積層体である。第1導電層11と、熱電変換層12と、電解質層13と、第2導電層14とは、積層方向において互いに重なる。第1導電層11と、熱電変換層12と、電解質層13と、第2導電層14とのそれぞれは、可撓性を有し得る(フレキシブルであり得る)。第1実施形態では、電解質層13と、熱電変換層12と、第1導電層11と、第2導電層14とが、積層方向において順に積層される。各熱利用発電ユニット2において、電子熱励起層12a、電子輸送層12b及び電解質層13の積層順序は、揃っている。
第1導電層11は、熱利用発電ユニット2において金属を含む導電体であり、例えば、金属板、合金板、及びそれらの複合板である。金属板は、例えばアルミ箔、ニッケル箔などである。合金板は、例えばアルミ合金箔、ニッケル合金箔などである。第1導電層11は、第1主面11a及び第2主面11bを有する。第1主面11aと、第2主面11bとのそれぞれは、積層方向に対して交差する面である。第1導電層11の熱伝導率は、例えば、10W/m・K以上である。
熱電変換層12は、熱を電気に変換する層であり、第1主面11a上に位置する。熱電変換層12は、積層方向において互いに重なる電子熱励起層12a及び電子輸送層12bを有する。各熱利用発電ユニット2において、電子熱励起層12a、電子輸送層12b及び電解質層13の積層順序は、揃っている。第1実施形態では、電子輸送層12bは第1主面11a上に位置し、電子熱励起層12aは電子輸送層12b上に位置し、電解質層13は電子熱励起層12a上(すなわち、熱電変換層12上)に位置する。このため第1実施形態では、電解質層13と、電子熱励起層12aと、電子輸送層12bと、第1導電層11と、第2導電層14とが、積層方向において順に積層される。
電子熱励起層12aは、熱利用発電ユニット2にて熱励起電子及び正孔を生成する層であり、電解質層13に接する。電子熱励起層12aは、熱電変換材料を含む。熱電変換材料は、高温環境下にて励起電子が増加する材料であり、例えば、金属半導体(Si,Ge)、テルル化合物半導体、シリコンゲルマニウム(Si-Ge)化合物半導体、シリサイド化合物半導体、スクッテルダイト化合物半導体、クラスレート化合物半導体、ホイスラー化合物半導体、ハーフホイスラー化合物半導体、金属酸化物半導体、金属硫化物半導体、有機半導体等の半導体材料である。金属酸化物半導体は、例えば二酸化チタン(TiO)、酸化亜鉛(ZnO)、アルミ添加酸化亜鉛(AZO)、二酸化スズ(SnO)、酸化インジウム(In)などである。金属硫化物半導体は、例えば硫化亜鉛(ZnS)、硫化銀(AgS)、硫化カドミウム(CdS)などである。比較的低温にて十分な熱励起電子を生成する観点から、熱電変換材料は、ゲルマニウム(Ge)でもよい。電子熱励起層12aの可撓性の観点から、熱電変換材料は、金属酸化物半導体、金属硫化物半導体などでもよい。電子熱励起層12aが半導体材料を含む場合、当該半導体材料は、例えばi型半導体を含む。第1実施形態では、i型半導体として機能し得る硫化銀が電子熱励起層12aに含まれる。
電子熱励起層12aは、複数の熱電変換材料を含んでもよい。電子熱励起層12aは、熱電変換材料以外の材料を含んでもよい。例えば、電子熱励起層12aは、熱電変換材料を結合させるバインダ、熱電変換材料の成形を補助する焼結助剤などを含んでもよい。電子熱励起層12aは、乾式法にて形成されてもよいし、湿式法にて形成されてもよい。電子熱励起層12aは、例えばインクジェット法、ドロップキャスト法、スキージ法、スクリーン印刷法、放電プラズマ焼結法、圧縮成形法、スパッタリング法、真空蒸着法、化学気相成長法(CVD法)、スピンコート法等によって形成される。
電子輸送層12bは、第1主面11a上に位置する層であり、電子熱励起層12aにて生成された熱励起電子を外部へ輸送する。電子輸送層12bは、積層方向において第1主面11aと電子熱励起層12aとの間に位置し、かつ、積層方向において電子熱励起層12aを介して電解質層13の反対側に位置する。よって熱利用発電ユニット2では、上述したように、電子輸送層12b、電子熱励起層12a、及び電解質層13は、積層方向において順に積層される。電子輸送層12bは、電子輸送材料を含む。電子輸送材料は、その伝導帯電位が熱電変換材料の伝導帯電位と同じかそれよりも正である材料である。電子輸送材料の伝導帯電位と、熱電変換材料の伝導帯電位との差は、例えば0.01V以上0.1V以下である。電子輸送材料は、例えば半導体材料、電子輸送性有機物等である。電子輸送層12bは、乾式法にて形成されてもよいし、湿式法にて形成されてもよい。電子輸送層12bは、例えばスキージ法、スクリーン印刷法、放電プラズマ焼結法、圧縮成形法、スパッタリング法、真空蒸着法、CVD法、インクジェット法、スピンコート法等によって形成される。
電子輸送材料に用いられる半導体材料と、電子熱励起層12aに含まれる半導体材料とは、同一でもよいし、異なってもよい。電子輸送材料が半導体材料である場合、当該半導体材料は、n型半導体でもよい。電子輸送性有機物は、例えば、n型導電性高分子、n型低分子有機半導体、π電子共役化合物等である。電子輸送層12bは、複数の電子輸送材料を含んでもよい。電子輸送層12bは、電子輸送材料以外の材料を含んでもよい。例えば、電子輸送層12bは、電子輸送材料を結合させるバインダ、電子輸送材料の成形を補助する焼結助剤などを含んでもよい。第1実施形態では、n型半導体として機能し得る二酸化チタンが電子輸送層12bに含まれる。
電解質層13は、熱利用発電ユニット2にて十分な数の熱励起電子が生成される温度にて、電荷輸送イオン対が内部を移動できる電解質を含む層である。電解質層13内を上記電荷輸送イオン対が移動することによって、電解質層13に電流が流れる。「電荷輸送イオン対」は、互いに価数が異なる安定な一対のイオンであり、例えば金属イオンである。一方のイオンが酸化または還元されると他方のイオンとなることによって、電子と正孔とを移動できる。電解質層13内の電荷輸送イオン対の酸化還元電位は、電子熱励起層12aに含まれる熱電変換材料の価電子帯電位よりも負である。このため、電子熱励起層12aと電解質層13との界面では、電荷輸送イオン対のうち、酸化されやすいイオンが酸化され、他方のイオンとなる。電解質層13は、電荷輸送イオン対以外のイオンを含んでもよい。電解質層13は、乾式法にて形成されてもよいし、湿式法にて形成されてもよい。電解質層13は、例えばスキージ法、スクリーン印刷法、スパッタリング法、真空蒸着法、CVD法、ゾルゲル法、又はスピンコート法によって形成できる。
電解質層13に含まれる電解質は、特に限定されない。当該電解質は、例えば、液体電解質でもよいし、固体電解質でもよいし、ゲル状電解質でもよい。第1実施形態では、電解質層13は固体電解質を含む。固体電解質は、例えば、上記温度にて物理的及び化学的に安定である物質であり、多価イオンを含み得る。固体電解質は、例えば、ナトリウムイオン伝導体、銅イオン伝導体、鉄イオン伝導体、リチウムイオン伝導体、銀イオン伝導体、水素イオン伝導体、ストロンチウムイオン伝導体、アルミニウムイオン伝導体、フッ素イオン伝導体、塩素イオン伝導体、酸化物イオン伝導体等である。固体電解質は、例えば、分子量60万以下のポリエチレングリコール(PEG)またはその誘導体でもよい。固体電解質がPEGである場合、例えば銅イオン、鉄イオン等の多価イオン源が電解質層13に含まれてもよい。寿命向上等の観点から、アルカリ金属イオンが電解質層13に含まれてもよい。PEGの分子量は、ゲル浸透クロマトグラフィーによりポリスチレン換算で測定される重量平均分子量に相当する。電解質層13はホール輸送半導体でもよい。還元すると、電解質層13は、p型半導体を含んでもよい。電解質層13には、絶縁性を有するセパレータ(絶縁層)が含まれてもよい。
第1実施形態では、電解質層13は、可撓性を有する有機電解質層である。有機電解質層は、少なくとも有機電解質を含む層である。有機電解質層は、例えば1又は複数の有機物を主な組成とする電解質層でもよい。有機電解質は、低分子有機化合物及び高分子有機化合物の少なくとも一方を含む。有機電解質には、電解質とは異なる有機物が含まれてもよい。電解質層13の組成は、例えば熱利用発電モジュール1の性能などに応じて決定される。有機電解質層には無機物が含まれてもよい。例えば、電解質層13は、電解質を結合させるバインダ、電解質の成形を補助する焼結助剤などとして機能する有機物または無機物を含み得る。導電性有機物は、導電ポリマー(例えば、PEGなど)、N-メチルピロリドン(NMP)、アセトニトリル等である。PEG以外の導電ポリマーにも、銅イオン、鉄イオン等の多価イオン源が含まれてもよい。無機物は、例えば二酸化シリコン(SiO)、二酸化チタン、酸化アルミニウム(AlOx)等である。なお、分子量が1万以上である有機化合物を高分子有機化合物とする。
第2導電層14は、熱利用発電モジュール1において第1導電層11とは異なる導電体であり、第1導電層11の第2主面11b上に位置する。第1実施形態では、例えば上述した導電性有機物を含む。第2導電層14は、乾式法にて形成されてもよいし、湿式法にて形成されてもよい。第2導電層14は、例えばスキージ法、スクリーン印刷法、スパッタリング法、真空蒸着法、CVD法、ゾルゲル法、又はスピンコート法によって形成できる。第2導電層14の熱伝導率は、例えば、0.2W/m・K以上である。
集電極3は、熱利用発電モジュール1における正極及び負極の一方として機能する電極(第1集電極)であり、積層方向において熱利用発電モジュール1の一端に位置する。集電極4は、熱利用発電モジュール1における正極及び負極の他方として機能する電極(第2集電極)であり、積層方向において熱利用発電モジュール1の他端に位置する。集電極3,4のそれぞれは、例えば単層構造もしくは積層構造を有する導電板である。集電極3,4の少なくとも一方は、熱利用発電ユニット2の一部を含んでもよい。第1実施形態では、集電極3は、熱利用発電ユニット2の一部を含む。導電板のうち金属を含む板は、第1導電層11と同様の構成を有してもよいし、第1導電層11とは異なる構成の金属板などでもよい。導電板のうち導電性有機物を含む板は、例えば、第2導電層14と同様の構成を有してもよいし、第2導電層14とは異なる構成の導電板でもよい。
第1実施形態では、集電極3は、熱利用発電ユニット2に含まれる第1導電層11と第2導電層14とを有する。集電極3の第1導電層11は、積層方向において熱利用発電ユニット2と第2導電層14との間に位置する。よって、積層方向における熱利用発電モジュール1の一端には、導電性有機物を含む第2導電層14(導電層)が位置する。一方、集電極4は、金属を含む導電層21と、導電性有機物を含む導電層22(有機導電層)とを有する。集電極4の導電層22は、積層方向において熱利用発電ユニット2と導電層21との間に位置する。よって、積層方向における熱利用発電モジュール1の他端には、金属を含む導電層21(別の導電層)が位置する。熱利用発電モジュール1の性能を良好に発揮する観点から、集電極3,4の少なくとも一方は、高熱伝導性を示してもよい。熱利用発電モジュール1では温度差は不要であるため、集電極3,4の両方が高熱伝導性を示すことが望ましい。例えば、集電極3,4の少なくとも一方の熱伝導率は、10W/m・K以上でもよい。
次に、図3(a)~(d)及び図4(a),(b)を参照しながら、熱利用発電モジュール1の製造方法の一例を説明する。図3(a)~(d)及び図4(a),(b)のそれぞれは、第1実施形態に係る熱利用発電モジュールの製造方法を説明するための図である。
まず、図3(a)に示されるように、第1導電層11の第1主面11a上に電子輸送層12bを形成する(第1ステップ)。第1ステップでは、第1主面11a上に乾式法または湿式法にて電子輸送層12bを形成する。第1実施形態では、電子輸送層12bは湿式法にて形成される。この場合、大気中にて電子輸送層12bを形成できるので、製造コストを低減できる。第1実施形態では、例えば、第1主面11a上に電子輸送材料を含む液体を塗布した後、当該液体を乾燥することによって電子輸送層12bを形成する。上記乾燥は、自然乾燥でもよいし、真空乾燥でもよいし、公知の加熱乾燥でもよい。湿式法として例えばスピンコート法が実施される場合、スピンコーターに固定される第1導電層11の第1主面11a上に液体を滴下した後、第1導電層11を回転させる。これにより、第1主面11aを上記液体によって覆う。そして、当該液体を乾燥する。上記液体は、例えば、電子輸送材料に対して低い反応性を示す水または公知の有機溶媒である。
次に、図3(b)に示されるように、上記第1ステップ後、電子輸送層12b上に電子熱励起層12aを形成する(第2ステップ)。第2ステップでは、例えば、電子輸送層12b上に乾式法または湿式法にて電子熱励起層12aを形成する。これにより、電子熱励起層12a及び電子輸送層12bを含む熱電変換層12が形成される。第1実施形態では、電子熱励起層12aは湿式法にて形成される。この場合、例えば、電子輸送層12b上に熱電変換材料を含む液体を塗布した後、当該液体を乾燥することによって電子熱励起層12aを形成する。上記乾燥は、自然乾燥でもよいし、真空乾燥でもよいし、公知の加熱乾燥でもよい。湿式法として例えばスピンコート法が実施される場合、まず、電子輸送層12bが形成される第1導電層11をスピンコーターに固定する。続いて、電子輸送層12b上に液体を滴下した後、第1導電層11を回転させる。これにより、電子輸送層12bを上記液体によって覆う。そして、当該液体を乾燥する。
第2ステップでは、電子輸送層12b上に熱電変換材料が直接設けられなくてもよい。例えば、まず、電子輸送層12b上に熱電変換材料の前駆体を形成する。例えば、熱電変換材料が硫化銀である場合、前駆体として銀粒子が電子輸送層12b上に形成される。この前駆体は、例えば、電子輸送層12b上に設けられる仮層内に分散する。仮層は、例えば、前駆体を含む液体の乾燥物に相当する。続いて、当該前駆体を基にする熱電変換材料を形成することによって、電子熱励起層12aを形成する。例えば、仮層が形成された電子輸送層12bを溶液に浸漬させて当該前駆体を化学反応させることによって、熱電変換材料を形成する。このとき、第1導電層11も上記溶液に浸漬させてもよい。例えば、熱電変換材料が硫化銀である場合、硫黄を含む溶液に仮層が電子輸送層12bを浸漬させる。そして、仮層などを乾燥することによって、電子熱励起層12aが形成される。
次に、図3(c)に示されるように、上記第2ステップ後、第1導電層11の第2主面11b上に第2導電層14を形成する(第3ステップ)。第3ステップでは、熱電変換層12が形成された第1導電層11の第2主面11b上に、第2導電層14を形成する。第2導電層14は、例えば、第2主面11b上に乾式法または湿式法にて形成される。第1実施形態では、第2導電層14は、湿式法にて形成される。この場合、例えば、第2主面11b上に導電ポリマーなどの導電性有機物を含む液体を塗布した後、当該液体を乾燥することによって第2導電層14を形成する。上記乾燥は、自然乾燥でもよいし、真空乾燥でもよいし、公知の加熱乾燥でもよい。第2導電層14の膜質向上等の観点から、加熱乾燥が実施されてもよい。上記液体は、例えば、導電性有機物に対して低い反応性を示す水または公知の有機溶媒である。
次に、図3(d)に示されるように、上記第3ステップ後、熱電変換層12の電子熱励起層12a上に電解質層13を形成する(第4ステップ)。第4ステップでは、例えば、電子熱励起層12a上に乾式法または湿式法にて電解質層13を形成する。第1実施形態では、電解質層13は湿式法にて形成される。この場合、例えば、電子熱励起層12a上に有機電解質を含む液体を塗布した後、当該液体を乾燥することによって電解質層13を形成する。上記乾燥は、自然乾燥でもよいし、真空乾燥でもよい。一方、有機電解質の変性防止などの観点から、上記乾燥には加熱乾燥(より具体的には、200℃以上の加熱乾燥)は含まれない。上記液体は、例えば、有機電解質に対して低い反応性を示す水または公知の有機溶媒である。第1ステップ~第4ステップを実施することによって、熱利用発電ユニット2が形成される。熱利用発電ユニット2は、非加熱時において、第1導電層11及び第2導電層14から構成される導電部と、電子熱励起層12a、電子輸送層12b及び電解質層13から構成される絶縁部との二部構造を有する。
次に、図4(a)に示されるように、上記第4ステップ後、第1導電層11、電子輸送層12b、電子熱励起層12a、電解質層13、及び第2導電層14を含む熱利用発電ユニット2同士を積層する(第5ステップ)。第5ステップでは、上記第1~第4ステップにて形成した複数の熱利用発電ユニット2を、積層方向に沿って積層する。具体的には、隣り合う2つの熱利用発電ユニット2において、一方の熱利用発電ユニット2の第2導電層14と、他方の熱利用発電ユニット2の電解質層13とを接触させる。これにより、複数の熱利用発電ユニット2を有する積層体5を形成する。
次に、図4(b)に示されるように、集電極4を準備する(第6ステップ)。第6ステップでは、導電層21,22を有する集電極4を準備する。導電層21上に導電層22を形成することによって、集電極4が形成される。導電層22は、例えば、導電層21上に乾式法または湿式法にて形成される。第1実施形態では、導電層22は湿式法にて形成される。この場合、例えば、導電層22は第2導電層14と同様の方法にて形成される。第6ステップは、第5ステップ後に実施されてもよいし、第1ステップの前に実施されてもよいし、以上に説明した第1ステップ~第4ステップの実施中に実施されてもよい。
次に、積層体5と集電極4とを積層する(第7ステップ)。第7ステップでは、集電極4の導電層22を、積層方向における積層体5の一端に位置する電解質層13に接触させる。これにより、電解質層13と導電層21(より具体的には、金属)との接触を防止できる。以上の第1ステップ~第7ステップを経て、図1に示される熱利用発電モジュール1が製造される。熱利用発電モジュール1は、例えば、フィルム等によって真空封止されてもよい。
以上に説明した第1実施形態に係る製造方法によって形成される熱利用発電モジュール1の作用効果について、以下に説明する比較例を用いつつ説明する。比較例に係る熱利用発電ユニットは、第1導電層、電子熱励起層、電子輸送層、電解質層及び第2導電層が順に積層される積層構造を有する。すなわち、比較例に係る熱利用発電ユニットは、非加熱時において、第1導電層から構成される第1導電部と、電子熱励起層、電子輸送層及び電解質層から構成される絶縁部と、第2導電層から構成される第2導電部とを有する三部構造である。上記比較例においては、電解質層上に第2導電層が直接形成される。例えば、第2導電層がスパッタリング法等によって形成される場合、イオン照射等による電解質層の損傷が発生し得る。例えば、第2導電層がインクジェット法等によって形成される場合、電解質層の溶解に伴う損傷が発生し得る。よって、上記比較例においては、電解質層の損傷に起因した熱利用発電ユニットの初期性能の劣化が発生し得る。加えて、電解質層の損傷に起因した熱利用発電ユニット内の短絡が発生することもある。
これに対して、第1実施形態に係る製造方法によって形成される熱利用発電モジュール1によれば、第1ステップ~第4ステップまでにおいて、電解質層13上に何らの層も形成されない。このため、電解質層13に有機電解質が含まれている場合であっても、熱利用発電ユニット2の製造中に電解質層13が劣化しにくくなる。したがって、第1実施形態によれば、初期性能の劣化を抑制可能な熱利用発電モジュール1を提供できる。加えて、熱利用発電ユニット2は、非加熱時において、第1導電層11及び第2導電層14から構成される導電部と、電子熱励起層12a、電子輸送層12b及び電解質層13から構成される絶縁部との二部構造にて形成される。このため、熱利用発電ユニット2内の短絡を防止できる。
第1実施形態では、第2導電層14は、導電性有機物を含む。このため、導電性有機物を含む第2導電層14上に何らの層を形成することなく、熱利用発電ユニット2を製造できる。このため、熱利用発電ユニット2の製造中に第2導電層14もまた劣化しにくくなる。加えて、第2導電層14と電解質層13との接触抵抗を抑制できる。
第1実施形態では、熱利用発電モジュール1は、熱利用発電ユニット2を複数備え、複数の熱利用発電ユニット2のそれぞれにおいて、電解質層13、電子熱励起層12a、電子輸送層12b、第1導電層11、及び第2導電層14が積層方向において順に積層される。このため、例えば熱利用発電ユニット2同士を直列接続させることによって、熱利用発電モジュール1の起電力などを向上できる。ここで第1実施形態では、電解質層13は、第2導電層14に接触する一方で、第1導電層11に対して離間する。このため、熱利用発電モジュール1では、電解質層13が金属に直接接触しない。よって、電解質層13に含まれる物質と金属との反応を防止できるので、隣り合う熱利用発電ユニット2間の接触抵抗を低減できる。
第1実施形態では、電子輸送層12bは、n型半導体を含み、電子熱励起層12aは、i型半導体を含み、電解質層13は、p型半導体を含んでもよい。この場合、熱利用発電ユニット2内における電子と正孔とを整流できるので、熱利用発電モジュール1に電流が流れやすくなる。
第1実施形態では、電解質層13は、可撓性を有する。このため、例えば熱利用発電モジュール1を曲面上などに配置する場合、電解質層13の破損を抑制できる。加えて、第1実施形態では、第1導電層11、電子輸送層12b、電子熱励起層12a、電解質層13、及び第2導電層14のそれぞれは、可撓性を有する。このため、配管の表面に相当する曲面上などに熱利用発電モジュール1を好適に配置できる。
第1実施形態では、非加熱時において、熱利用発電ユニット2は、第1導電層11及び第2導電層14を有する導電部と、熱電変換層12及び電解質層13を有する絶縁部との二部構造でもよい。この場合、熱利用発電ユニット2内での短絡を防止できる。
第1実施形態では、第3ステップ(第3工程)では、導電性有機物を含む第2導電層14を形成する。このため、第4ステップまでにおいて、第2導電層14上に何らの層も形成されない。これにより、熱利用発電ユニット2の製造中に第2導電層14が劣化しにくくなる。
第1実施形態では、熱利用発電モジュール1の製造方法は、第1導電層11、電子輸送層12b、電子熱励起層12a、電解質層13、及び第2導電層14を含む熱利用発電ユニット2同士を積層する第5ステップ(第5工程)を備える。この場合、例えば熱利用発電ユニット2同士を直列接続させることによって、熱利用発電モジュール1の起電力などを向上できる。加えて、単に熱利用発電ユニット2同士を積層するだけであるので、第5ステップにおいて電解質層13、第2導電層14などが劣化しにくい。したがって、初期性能の劣化を良好に抑制可能な熱利用発電モジュール1を提供できる。
第1実施形態では、第3ステップでは加熱乾燥が実施され、第3ステップ後の第4ステップ(第4工程)では、真空乾燥が実施されてもよい。この場合、電解質層13は、加熱されることなく形成できる。このため、電解質層13に熱変性しやすい材料を容易に含められる。よって、電解質層13の性能向上及び初期性能劣化を両立できる。また、加熱により第2導電層14の膜質を向上できる。
(第2実施形態)
以下では、第2実施形態に係る熱利用発電モジュールについて説明する。第2実施形態の説明において第1実施形態と重複する記載は省略し、第1実施形態と異なる部分を記載する。つまり、技術的に可能な範囲において、第2実施形態に第1実施形態の記載を適宜用いてもよい。
図5(a)は、第2実施形態に係る熱利用発電モジュールに用いられる第2熱利用発電ユニットを示す概略断面図である。図5(a)に示されるように、第2熱利用発電ユニット6は、第2導電層14を有していない点で、熱利用発電ユニット2と異なる。換言すると、第2熱利用発電ユニット6は、第1導電層11と、熱電変換層12と、電解質層13とを有する。第2熱利用発電ユニット6は、例えば、上記第1実施形態における第1ステップ、第2ステップ、及び第4ステップを実施することによって形成される。
図5(b)は、第2実施形態に係る熱利用発電モジュールを示す概略断面図である。図5(b)に示されるように、熱利用発電モジュール1Aは、複数の熱利用発電ユニット2と、集電極3Aと、集電極4と、第2熱利用発電ユニット6とを有する。積層方向において、複数の熱利用発電ユニット2は、集電極4と、第2熱利用発電ユニット6との間に位置する。積層方向において、集電極4は熱利用発電モジュール1Aの一端に位置し、第2熱利用発電ユニット6は熱利用発電モジュール1Aの他端に位置する。熱利用発電モジュール1Aにおいては、第2熱利用発電ユニット6の第1導電層11が、集電極3Aに相当する。
以上に説明した第2実施形態に係る熱利用発電モジュール1Aにおいても、上記第1実施形態と同様の作用効果が発揮される。加えて、第2実施形態では、熱利用発電モジュール1Aの両端のそれぞれが金属を含む導電層によって形成される。このため上記第1実施形態と比較して、熱利用発電ユニット2及び第2熱利用発電ユニット6への伝熱性を向上できる。
(第3実施形態)
以下では、第3実施形態に係る熱利用発電モジュールについて説明する。第3実施形態の説明において第1及び第2実施形態と重複する記載は省略し、第1及び第3実施形態と異なる部分を記載する。つまり、技術的に可能な範囲において、第3実施形態に第1及び第2実施形態の記載を適宜用いてもよい。
図6は、第3実施形態に係る熱利用発電モジュールを示す概略断面図である。図6に示されるように、熱利用発電モジュール1Bは、複数の熱利用発電ユニット2と、集電極3Bと、集電極4とを有する。集電極3Bは、熱利用発電ユニット2に含まれる第1導電層11及び第2導電層14に加えて、金属を含む導電層31(第3導電層)を有する。導電層31は、第1導電層11と同様に金属を含む導電体であり、例えば、金属板、合金板、及びそれらの複合板である。集電極3Bにおいて、第2導電層14は、積層方向において第1導電層11と導電層31との間に位置する。よって、積層方向における熱利用発電モジュール1Bの一端には、導電層31が位置する。集電極3Bは、例えば、第4ステップ後、導電層31を第2導電層14に接触させるステップを経て形成される。集電極3Bは、第3ステップ後に形成されてもよいし、第5ステップ後に形成されてもよいし、第7ステップ後に形成されてもよい。第2導電層14の劣化防止の観点から、集電極3Bは、第4ステップ以降にて形成されてもよい。
以上に説明した第2実施形態に係る熱利用発電モジュール1Aにおいても、上記第2実施形態と同様の作用効果が発揮される。
本発明に係る熱利用発電モジュール及びその製造方法は、上記実施形態等に限定されず、他に様々な変形が可能である。例えば、上記実施形態では、熱電変換層は電子熱励起層及び電子輸送層を有しているが、これに限られない。熱電変換層は、上記2層以外の層を有してもよい。
上記実施形態では、第1ステップ~第7ステップと記載されているが、これらの順番は限定されない。例えば、電解質層に含まれる電解質の種類によっては、第4ステップ後に第3ステップが実施されてもよい。
1,1A,1B…熱利用発電モジュール、2…熱利用発電ユニット、3、3A,3B…集電極(第1集電極)、4…集電極(第2集電極)、5…積層体、6…第2熱利用発電ユニット、11…第1導電層、11a…第1主面、11b…第2主面、12…熱電変換層、12a…電子熱励起層、12b…電子輸送層、13…電解質層、14…第2導電層、21…導電層(別の導電層)、22…導電層(有機導電層)、31…導電層(第3導電層)。

Claims (15)

  1. 第1主面及び第2主面を有し、金属を含む第1導電層と、
    電子熱励起層及び電子輸送層を含み、前記第1主面上に位置する熱電変換層と、
    前記熱電変換層上に位置する有機電解質層と、
    前記第2主面上に位置する第2導電層と、
    を有する熱利用発電ユニットを備え、
    前記電子輸送層は、前記第1主面と前記電子熱励起層との間に位置する、
    熱利用発電モジュール。
  2. 前記第2導電層は、導電性有機物を含む、請求項1に記載の熱利用発電モジュール。
  3. 前記熱利用発電ユニットを複数備え、
    複数の前記熱利用発電ユニットのそれぞれにおいて、前記有機電解質層、前記熱電変換層、前記第1導電層、及び前記第2導電層が順に積層される、請求項1又は2に記載の熱利用発電モジュール。
  4. 前記電子輸送層は、n型半導体を含み、
    前記電子熱励起層は、i型半導体を含み、
    前記有機電解質層は、p型半導体を含む、請求項1~3のいずれか一項に記載の熱利用発電モジュール。
  5. 前記有機電解質層は、可撓性を有する、請求項1~4のいずれか一項に記載の熱利用発電モジュール。
  6. 前記第1導電層、前記熱電変換層、前記有機電解質層、及び前記第2導電層のそれぞれは、可撓性を有する、請求項1~5のいずれか一項に記載の熱利用発電モジュール。
  7. 非加熱時において、前記熱利用発電ユニットは、前記第1導電層及び前記第2導電層を有する導電部と、前記熱電変換層及び前記有機電解質層を有する絶縁部との二部構造である、請求項1~6のいずれか一項に記載の熱利用発電モジュール。
  8. 前記第1導電層、前記熱電変換層、前記有機電解質層、及び前記第2導電層の積層方向における一端に位置する導電性有機物を含む第1集電極と、
    前記積層方向における他端に位置する金属を含む第2集電極と、をさらに備える、請求項1~7のいずれか一項に記載の熱利用発電モジュール。
  9. 前記第1導電層、前記熱電変換層、前記有機電解質層、及び前記第2導電層の積層方向における一端に位置する第1集電極と、
    前記積層方向における他端に位置する第2集電極と、をさらに備え、
    前記第1集電極は、前記第1導電層、前記第2導電層、及び金属を含む第3導電層を有し、
    前記積層方向において、前記第2導電層は、前記第1導電層と前記第3導電層との間に位置する、請求項1~7のいずれか一項に記載の熱利用発電モジュール。
  10. 金属を含む第1導電層の第1主面上に電子輸送層を形成する第1工程と、
    前記電子輸送層上に電子熱励起層を形成する第2工程と、
    前記第1導電層の第2主面上に第2導電層を形成する第3工程と、
    前記電子熱励起層上に有機電解質層を形成する第4工程と、
    を備える、熱利用発電モジュールの製造方法。
  11. 前記第3工程では、導電性有機物を含む前記第2導電層を形成する、請求項10に記載の熱利用発電モジュールの製造方法。
  12. 前記第1導電層、前記電子輸送層、前記電子熱励起層、前記有機電解質層、及び前記第2導電層を含む熱利用発電ユニット同士を積層する工程をさらに備える、請求項10又は11に記載の熱利用発電モジュールの製造方法。
  13. 前記第3工程では、加熱乾燥が実施され、
    前記第3工程後の前記第4工程では、真空乾燥が実施される、請求項10~12のいずれか一項に記載の熱利用発電モジュールの製造方法。
  14. 第1集電極を形成する工程をさらに備え、
    前記第1集電極は、前記第1導電層、前記第2導電層、及び金属を含む第3導電層を有し、
    前記第1導電層と前記第2導電層との積層方向において、前記第2導電層は、前記第1導電層と前記第3導電層との間に位置する、請求項10~13のいずれか一項に記載の熱利用発電モジュールの製造方法。
  15. 第2集電極を前記有機電解質層に接触させる工程をさらに備え、
    前記第2集電極は、前記有機電解質層に接触する有機導電層を有する、請求項10~14のいずれか一項に記載の熱利用発電モジュールの製造方法。
JP2021143914A 2021-09-03 2021-09-03 熱利用発電モジュール及びその製造方法 Pending JP2023037269A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021143914A JP2023037269A (ja) 2021-09-03 2021-09-03 熱利用発電モジュール及びその製造方法
CN202280058869.4A CN117882510A (zh) 2021-09-03 2022-08-31 热利用发电模块及其制造方法
PCT/JP2022/032826 WO2023033062A1 (ja) 2021-09-03 2022-08-31 熱利用発電モジュール及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021143914A JP2023037269A (ja) 2021-09-03 2021-09-03 熱利用発電モジュール及びその製造方法

Publications (1)

Publication Number Publication Date
JP2023037269A true JP2023037269A (ja) 2023-03-15

Family

ID=85411378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021143914A Pending JP2023037269A (ja) 2021-09-03 2021-09-03 熱利用発電モジュール及びその製造方法

Country Status (3)

Country Link
JP (1) JP2023037269A (ja)
CN (1) CN117882510A (ja)
WO (1) WO2023033062A1 (ja)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008141027A (ja) * 2006-12-04 2008-06-19 Ferrotec Corp 熱電変換素子の接合構造及び熱電変換モジュール
JP6803076B2 (ja) 2015-09-04 2021-01-06 国立大学法人東京工業大学 熱電発電素子及びそれを含む熱電発電モジュール、並びにそれを用いた熱電発電方法
JP6794732B2 (ja) * 2015-09-28 2020-12-02 三菱マテリアル株式会社 熱電変換モジュール及び熱電変換装置
JP6507985B2 (ja) * 2015-10-13 2019-05-08 富士通株式会社 熱電変換素子及びその製造方法
JP7389426B2 (ja) 2018-12-28 2023-11-30 三桜工業株式会社 熱発電電池、熱発電電池の製造方法及び熱発電体の製造方法
JP2021005651A (ja) * 2019-06-26 2021-01-14 三桜工業株式会社 熱利用発電モジュール

Also Published As

Publication number Publication date
CN117882510A (zh) 2024-04-12
WO2023033062A1 (ja) 2023-03-09

Similar Documents

Publication Publication Date Title
WO2017038988A1 (ja) 熱電発電素子及びそれを含む熱電発電モジュール、並びにそれを用いた熱電発電方法
JP7104684B2 (ja) 光熱変換基板を備えた熱電変換モジュール
US20220367778A1 (en) Thermoelectric generation device
JP2024014924A (ja) 熱発電電池、熱発電電池の製造方法及び熱発電体の製造方法
Takahashi et al. Perovskite solar cells with CuI inorganic hole conductor
JP7293500B2 (ja) 透明電極、透明電極の製造方法、および電子デバイス
US20220359806A1 (en) Heat-utilizing power generation module
WO2023033062A1 (ja) 熱利用発電モジュール及びその製造方法
Ye et al. Photo-stimulated triboelectric generation
JP2007026982A (ja) 固体電池およびそれを有する電池搭載型集積回路装置
US20220367779A1 (en) Thermoelectric generation module
KR101517784B1 (ko) 열전 성능이 우수한 산화물 반도체 열전 소자 및 그 제조 방법
JP2024030453A (ja) 熱利用発電モジュール
JP2024030452A (ja) 熱利用発電モジュール
US20240147858A1 (en) Heat-utilizing power generation module and thermal power generation device equipped with same
US20220254979A1 (en) Heat generator