JP2023022645A - Surface-treated copper material, copper-clad laminate sheet, method for manufacturing surface-treated copper material and method for manufacturing copper-clad laminate sheet - Google Patents

Surface-treated copper material, copper-clad laminate sheet, method for manufacturing surface-treated copper material and method for manufacturing copper-clad laminate sheet Download PDF

Info

Publication number
JP2023022645A
JP2023022645A JP2021127630A JP2021127630A JP2023022645A JP 2023022645 A JP2023022645 A JP 2023022645A JP 2021127630 A JP2021127630 A JP 2021127630A JP 2021127630 A JP2021127630 A JP 2021127630A JP 2023022645 A JP2023022645 A JP 2023022645A
Authority
JP
Japan
Prior art keywords
copper
thickness
copper material
oxide
oxidized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021127630A
Other languages
Japanese (ja)
Inventor
政波 北束
Manami Kitatsuka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Exsymo Co Ltd
Original Assignee
Ube Exsymo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Exsymo Co Ltd filed Critical Ube Exsymo Co Ltd
Priority to JP2021127630A priority Critical patent/JP2023022645A/en
Priority to TW111128445A priority patent/TW202323026A/en
Priority to PCT/JP2022/029333 priority patent/WO2023013552A1/en
Publication of JP2023022645A publication Critical patent/JP2023022645A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • C23C8/12Oxidising using elemental oxygen or ozone
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Laminated Bodies (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

To improve retention property of adhesion force between a surface of a surface-treated copper material and a resin part joined to the surface after exposed to a high-temperature environment for a long time.SOLUTION: A surface-treated copper material includes an oxidized surface including a cuprous oxide and a copper oxide. In the oxidized surface, the total of thickness (T1) of the cuprous oxide and thickness (T2) of the copper oxide is 1 nm or more and 40 nm or less which is determined by continuous electrochemical reduction analysis and a ratio (T2/T1) of the thickness (T2) of the copper oxide to the thickness (T1) of the cuprous oxide is 1 or more and 9 or less.SELECTED DRAWING: None

Description

本発明は、表面処理銅材、銅張積層板、表面処理銅材の製造方法、及び銅張積層板の製造方法に関する。 TECHNICAL FIELD The present invention relates to a surface-treated copper material, a copper-clad laminate, a method for producing a surface-treated copper material, and a method for producing a copper-clad laminate.

絶縁層と銅層とが積層された銅張積層板は、例えば、フレキシブルプリント配線基板を製造するための材料として用いられている。こうした銅張積層板は、例えば、銅箔と、絶縁層を構成する樹脂シートとを張り合わせることにより製造される。 A copper-clad laminate in which an insulating layer and a copper layer are laminated is used as a material for manufacturing a flexible printed wiring board, for example. Such a copper-clad laminate is manufactured, for example, by laminating a copper foil and a resin sheet forming an insulating layer.

特許文献1及び特許文献2には、銅張積層板の製造に用いる銅箔の表面を、酸化還元処理を経て形成された粗化表面とすることによって、銅張積層板における銅層と絶縁層としての樹脂層との間の剥離強度を高める技術が開示されている。特許文献1には、連続電気化学還元分析により決定される酸化銅の厚さが1nm以上20以下であり、亜酸化銅の厚さが15nm以上70nm以下である粗化表面を有する銅箔を用いて銅張積層板を製造する方法が開示されている。特許文献2には、連続電気化学還元分析により決定される亜酸化銅の厚さが71nm以上300nm以下であり、酸化銅の厚さが0nm以上20nm以下である粗化表面を有する銅箔を用いて銅張積層板を製造する方法が開示されている。 In Patent Documents 1 and 2, a copper layer and an insulating layer in a copper-clad laminate are formed by roughening the surface of the copper foil used in the production of the copper-clad laminate through oxidation-reduction treatment. A technique for increasing the peel strength between the resin layer as a is disclosed. In Patent Document 1, the thickness of copper oxide determined by continuous electrochemical reduction analysis is 1 nm or more and 20 nm or less, and the thickness of cuprous oxide is 15 nm or more and 70 nm or less. A method for manufacturing a copper clad laminate is disclosed. In Patent Document 2, the thickness of cuprous oxide determined by continuous electrochemical reduction analysis is 71 nm or more and 300 nm or less, and the thickness of copper oxide is 0 nm or more and 20 nm or less. A method for manufacturing a copper clad laminate is disclosed.

特許第6178035号公報Japanese Patent No. 6178035 特開2019-218602号公報JP 2019-218602 A

近年、IoT(Internet of Things)の活用に伴って、センサー等の電子機器は、様々な環境で使用される傾向にある。例えば、センサー等で用いられるミリ波は、光、天候、環境に対する安定性が高いため、自動車のミリ波レーダー等で使用されている他、より過酷な環境での使用が想定されている。このように近年の電子機器は、より過酷な環境で使用される場合があり、これに伴って電子機器の耐環境性能の向上が求められている。 In recent years, with the utilization of IoT (Internet of Things), electronic devices such as sensors tend to be used in various environments. For example, millimeter waves used in sensors, etc. are highly stable against light, weather, and environment. In this way, recent electronic devices are sometimes used in harsher environments, and along with this, there is a demand for improved environmental resistance performance of the electronic devices.

例えば、過酷な環境下で用いられる電子機器に搭載されるフレキシブルプリント配線基板には、長時間、高温の環境に曝された後においても、銅層と樹脂層との間の密着力が保持されることが求められる。特許文献1及び特許文献2に記載の方法により製造された銅張積層板は、長時間、高温の環境に曝された後の密着力の保持性の観点において改善の余地があった。 For example, in a flexible printed wiring board mounted on an electronic device used in a harsh environment, the adhesive strength between the copper layer and the resin layer is maintained even after being exposed to a high-temperature environment for a long time. is required. The copper-clad laminates produced by the methods described in Patent Documents 1 and 2 have room for improvement in terms of retention of adhesion after being exposed to high-temperature environments for a long period of time.

上記課題を解決する表面処理銅材は、亜酸化銅及び酸化銅を含む酸化表面を有する表面処理銅材であって、前記酸化表面は、連続電気化学還元分析により決定される亜酸化銅の厚さ(T1)及び酸化銅の厚さ(T2)の合計が1nm以上40nm以下であり、亜酸化銅の厚さ(T1)に対する酸化銅の厚さ(T2)の比(T2/T1)が1以上9以下である。 The surface-treated copper material that solves the above problems is a surface-treated copper material having an oxidized surface containing cuprous oxide and copper oxide, wherein the oxidized surface has a thickness of cuprous oxide determined by continuous electrochemical reduction analysis The total thickness (T1) and copper oxide thickness (T2) is 1 nm or more and 40 nm or less, and the ratio (T2/T1) of the copper oxide thickness (T2) to the cuprous oxide thickness (T1) is 1 9 or less.

上記表面処理銅材において、前記酸化表面における亜酸化銅の厚さ(T1)は、0.1nm以上20nm以下であることが好ましい。
上記表面処理銅材において、前記酸化表面における酸化銅の厚さ(T2)は、0.9nm以上36nm以下であることが好ましい。
In the surface-treated copper material, the thickness (T1) of cuprous oxide on the oxidized surface is preferably 0.1 nm or more and 20 nm or less.
In the surface-treated copper material, the thickness (T2) of copper oxide on the oxidized surface is preferably 0.9 nm or more and 36 nm or less.

上記課題を解決する銅張積層板は、上記表面処理銅材により構成される銅層と、前記銅層の前記酸化表面に積層される絶縁樹脂層とを備える。
上記銅張積層板において、前記絶縁樹脂層を構成する樹脂は、熱可塑性樹脂を含むことが好ましい。
A copper-clad laminate that solves the above problems includes a copper layer composed of the surface-treated copper material, and an insulating resin layer laminated on the oxidized surface of the copper layer.
In the above copper-clad laminate, the resin forming the insulating resin layer preferably contains a thermoplastic resin.

上記銅張積層板において、前記熱可塑性樹脂は、ポリイミド、液晶ポリマー、ポリエーテルエーテルケトン、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、ポリテトラフルオロエチレンから選ばれる少なくとも一種であることが好ましい。 In the above copper-clad laminate, the thermoplastic resin is polyimide, liquid crystal polymer, polyether ether ketone, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, tetrafluoroethylene-hexafluoropropylene copolymer, polytetrafluoroethylene. It is preferably at least one selected from.

上記課題を解決する表面処理銅材の製造方法は、銅材の表面に、亜酸化銅及び酸化銅を含む酸化表面を形成する表面処理工程を有し、前記表面処理工程では、連続電気化学還元分析により決定される亜酸化銅の厚さ(T1)及び酸化銅の厚さ(T2)の合計が1nm以上40nm以下であり、亜酸化銅の厚さ(T1)に対する酸化銅の厚さ(T2)の比(T2/T1)が1以上9以下となるように、前記銅材の表面を酸化させる。 A method for producing a surface-treated copper material that solves the above problems has a surface treatment step of forming an oxidized surface containing cuprous oxide and copper oxide on the surface of the copper material, and in the surface treatment step, continuous electrochemical reduction The sum of the thickness of cuprous oxide (T1) and the thickness of copper oxide (T2) determined by analysis is 1 nm or more and 40 nm or less, and the thickness of copper oxide (T2) relative to the thickness of cuprous oxide (T1) ), the surface of the copper material is oxidized so that the ratio (T2/T1) of 1 or more and 9 or less.

上記課題を解決する銅張積層板の製造方法は、銅層と、前記銅層の表面に積層される絶縁樹脂層とを備える銅張積層板の製造方法であって、上記表面処理銅材の前記酸化表面に、絶縁性樹脂を積層して接合する積層工程を備える。 A method for producing a copper clad laminate that solves the above problems is a method for producing a copper clad laminate comprising a copper layer and an insulating resin layer laminated on the surface of the copper layer, wherein the surface-treated copper material is A lamination step of laminating and bonding an insulating resin to the oxidized surface is provided.

本発明によれば、長時間、高温の環境に曝された後における、表面処理銅材の表面と、当該表面に接合された樹脂部分との間の密着力の保持性が向上する。 ADVANTAGE OF THE INVENTION According to this invention, the retention of the adhesive force between the surface of the surface-treated copper material and the resin portion bonded to the surface is improved after being exposed to a high-temperature environment for a long time.

以下、本発明の一実施形態を説明する。
<表面処理銅材>
本実施形態の表面処理銅材は、特定の酸化表面を有する銅材である。
An embodiment of the present invention will be described below.
<Surface treatment copper material>
The surface-treated copper material of this embodiment is a copper material having a specific oxidized surface.

表面処理銅材の形態は、特に限定されるものではない。表面処理銅材の形態としては、例えば、箔状、板状が挙げられる。箔状の表面処理銅材としては、例えば、圧延銅箔、電解銅箔が挙げられる。箔状又は板状である場合の表面処理銅材の厚さは、表面処理銅材の用途に応じて適宜、設定できる。例えば、フレキシブルプリント配線基板に使用する場合、表面処理銅材の厚さは、例えば、2μm以上105μm以下であり、好ましくは2μm以上70μm以下である。半導体製造装置や熱電変換部材などに使用する場合、表面処理銅材の厚さは、例えば、100μm以上1000μm以下であり、好ましくは300μm以上700μm以下である。 The form of the surface-treated copper material is not particularly limited. Examples of the form of the surface-treated copper material include foil and plate. Examples of the foil-shaped surface-treated copper material include rolled copper foil and electrolytic copper foil. The thickness of the surface-treated copper material in the form of foil or plate can be appropriately set according to the application of the surface-treated copper material. For example, when used for a flexible printed circuit board, the thickness of the surface-treated copper material is, for example, 2 μm or more and 105 μm or less, preferably 2 μm or more and 70 μm or less. When used for semiconductor manufacturing equipment, thermoelectric conversion members, etc., the thickness of the surface-treated copper material is, for example, 100 μm or more and 1000 μm or less, preferably 300 μm or more and 700 μm or less.

表面処理銅材が有する酸化表面は、表面処理銅材の1面のみであってもよいし、2面以上であってもよい。例えば、表面処理銅材が箔状又は板状である場合、表面処理銅材の片面が酸化表面であってもよいし、表面処理銅材の両面が酸化表面であってもよい。 The oxidized surface of the surface-treated copper material may be only one surface of the surface-treated copper material, or may be two or more surfaces. For example, when the surface-treated copper material is foil-shaped or plate-shaped, one side of the surface-treated copper material may be an oxidized surface, or both sides of the surface-treated copper material may be oxidized surfaces.

酸化表面は、連続電気化学還元分析(SERA)により決定される、亜酸化銅の厚さ(T1)及び酸化銅の厚さ(T2)に基づく第1パラメータ及び第2パラメータがそれぞれ特定範囲となる面である。 The oxidized surface has specific ranges for the first and second parameters based on the thickness of the cuprous oxide (T1) and the thickness of the copper oxide (T2), respectively, determined by continuous electrochemical reduction analysis (SERA). It is the surface.

第1パラメータは、亜酸化銅の厚さ(T1)及び酸化銅の厚さ(T2)の合計である。第1パラメータは、1nm以上40nm以下である。また、第1パラメータは、好ましくは1.2nm以上であり、より好ましくは1.5nm以上である。第1パラメータは、好ましくは35nm以下であり、より好ましくは20nm以下である。 The first parameter is the sum of the cuprous oxide thickness (T1) and the copper oxide thickness (T2). The first parameter is 1 nm or more and 40 nm or less. Also, the first parameter is preferably 1.2 nm or more, more preferably 1.5 nm or more. The first parameter is preferably 35 nm or less, more preferably 20 nm or less.

第2パラメータは、亜酸化銅の厚さ(T1)に対する酸化銅の厚さ(T2)の比(T2/T1)である。第2パラメータは、1以上9以下である。また、第2パラメータは、好ましくは1.2(55/45)以上であり、より好ましくは1.5(60/40)以上であり、更に好ましくは3以上である。第2パラメータは、好ましくは8.1(89/11)以下であり、より好ましくは7.3(88/12)以下であり、より好ましくは6以下である。これらの中でも、第2パラメータは、3以上6以下であることが特に好ましい。 The second parameter is the ratio (T2/T1) of the cuprous oxide thickness (T2) to the cuprous oxide thickness (T1). The second parameter is 1 or more and 9 or less. Also, the second parameter is preferably 1.2 (55/45) or more, more preferably 1.5 (60/40) or more, and even more preferably 3 or more. The second parameter is preferably 8.1 (89/11) or less, more preferably 7.3 (88/12) or less, and more preferably 6 or less. Among these, the second parameter is particularly preferably 3 or more and 6 or less.

亜酸化銅の厚さ(T1)は、例えば、0.1nm以上であり、好ましくは0.2nm以上であり、より好ましくは0.3nm以上である。亜酸化銅の厚さ(T1)は、例えば、20nm以下であり、好ましくは15nm以下であり、より好ましくは5nm以下である。 The thickness (T1) of cuprous oxide is, for example, 0.1 nm or more, preferably 0.2 nm or more, and more preferably 0.3 nm or more. The thickness (T1) of cuprous oxide is, for example, 20 nm or less, preferably 15 nm or less, and more preferably 5 nm or less.

酸化銅の厚さ(T2)は、例えば、0.9nm以上であり、好ましくは1.0nm以上であり、より好ましくは1.2nm以上である。酸化銅の厚さ(T2)は、例えば、36nm以下であり、好ましくは20nm以下であり、より好ましくは15nm以下である。 The thickness (T2) of copper oxide is, for example, 0.9 nm or more, preferably 1.0 nm or more, and more preferably 1.2 nm or more. The thickness (T2) of copper oxide is, for example, 36 nm or less, preferably 20 nm or less, and more preferably 15 nm or less.

亜酸化銅の厚さ(T1)及び酸化銅の厚さ(T2)を決定するための連続電気化学還元分析は、例えば、ECI TECHNOLOGY社製QC-100等の市販の測定装置を用いて行うことができる。以下、連続電気化学還元分析に基づいて亜酸化銅の厚さ(T1)及び酸化銅の厚さ(T2)を決定する方法の一例を記載する。 Continuous electrochemical reduction analysis to determine cuprous oxide thickness (T1) and copper oxide thickness (T2) can be performed using a commercially available measurement device such as the ECI TECHNOLOGY QC-100. can be done. An example method for determining cuprous oxide thickness (T1) and copper oxide thickness (T2) based on continuous electrochemical reduction analysis is described below.

測定対象となる表面処理銅材の直径0.16cmの円形の領域をリングガスケットで隔離し、電解液を注入し、窒素で飽和させる。電解液は、例えば、ホウ酸6.18g/L、四ホウ酸ナトリウム十水和物9.55g/Lになるように純水で調製したpH8.4のホウ酸緩衝液である。上記領域に電流密度150μA/cmで印加し、-0.35~-0.60V(CuO)、-0.60~-0.85V(CuO)にそれぞれ現れる還元反応時間(秒)を計測する。計測した各還元反応時間に基づいて、下記式を用いてCuOの厚さ(T1)及びCuOの厚さ(T2)を算出する。 A circular area with a diameter of 0.16 cm on the surface-treated copper material to be measured is isolated by a ring gasket, injected with electrolyte and saturated with nitrogen. The electrolytic solution is, for example, a pH 8.4 borate buffer prepared with pure water so as to contain 6.18 g/L of boric acid and 9.55 g/L of sodium tetraborate decahydrate. A current density of 150 μA/cm 2 was applied to the above region, and the reduction reaction time (seconds) appearing at −0.35 to −0.60 V (Cu 2 O) and −0.60 to −0.85 V (CuO) was measured. measure. Based on the measured reduction reaction times, the thickness of Cu 2 O (T1) and the thickness of CuO (T2) are calculated using the following equations.

T1(nm)=0.001236×電流密度(μA/cm)×還元時間(秒)
T2(nm)=0.000639×電流密度(μA/cm)×還元時間(秒)
表面処理銅材の酸化表面は、防錆層を有していてもよい。防錆層としては、一般に銅材に施されるものを使用することができる。防錆層は、有機防錆層であることが好ましく、トリアゾール系の防錆剤及びシランカップリング系の防錆剤の少なくとも一方を含む有機防錆層であることがより好ましい。トリアゾール系の防錆剤及びシランカップリング系の防錆剤としては、例えば、特許文献2に記載されている化合物が挙げられる。
T1 (nm) = 0.001236 x current density (μA/cm 2 ) x reduction time (seconds)
T2 (nm) = 0.000639 x current density (μA/cm 2 ) x reduction time (seconds)
The oxidized surface of the surface-treated copper material may have an antirust layer. As the antirust layer, one that is generally applied to a copper material can be used. The rust preventive layer is preferably an organic rust preventive layer, and more preferably an organic rust preventive layer containing at least one of a triazole-based rust preventive agent and a silane coupling-based rust preventive agent. Examples of triazole-based rust inhibitors and silane-coupling-based rust inhibitors include the compounds described in Patent Document 2.

<表面処理銅材の製造方法>
表面処理銅材の製造方法は、銅材の表面に、上記の酸化表面を形成する表面処理工程を有する。表面処理工程において行われる表面処理としては、例えば、酸化性雰囲気下で銅材の表面を加熱する加熱処理、銅材の表面に対して酸化処理及び還元処理を順次行う酸化還元処理が挙げられる。なお、廃液による環境負荷を低減する観点から、表面処理工程は、後処理が必要になる各種処理液を用いない加熱処理とすることが好ましい。
<Method for producing surface-treated copper material>
A method for producing a surface-treated copper material has a surface treatment step of forming the above-described oxidized surface on the surface of the copper material. Examples of the surface treatment performed in the surface treatment step include heat treatment for heating the surface of the copper material in an oxidizing atmosphere, and oxidation-reduction treatment for sequentially performing oxidation treatment and reduction treatment on the surface of the copper material. From the viewpoint of reducing the environmental load caused by the waste liquid, the surface treatment step is preferably a heat treatment that does not use various treatment liquids that require post-treatment.

加熱処理は、加熱装置を用いて、酸化性雰囲気下で銅材の表面を加熱する処理である。加熱装置としては、例えば、遠赤外線加熱炉、送風炉などの公知の加熱装置を用いることができる。加熱装置は、炉内の温度を均一にできる機構を備えるものが好ましい。 The heat treatment is a treatment of heating the surface of the copper material in an oxidizing atmosphere using a heating device. As the heating device, for example, a known heating device such as a far-infrared heating furnace and a blowing furnace can be used. The heating device preferably has a mechanism for making the temperature in the furnace uniform.

加熱処理における加熱温度は、例えば、150℃以上200℃以下である。
加熱処理における加熱時間は、例えば、120秒以上1200秒以下である。
加熱処理における酸化性雰囲気としては、例えば、空気、酸素、オゾン、二酸化炭素が挙げられる。
The heating temperature in the heat treatment is, for example, 150° C. or higher and 200° C. or lower.
The heating time in the heat treatment is, for example, 120 seconds or more and 1200 seconds or less.
Examples of the oxidizing atmosphere in the heat treatment include air, oxygen, ozone, and carbon dioxide.

表面処理工程として加熱処理を用いる場合、例えば、加熱温度、加熱時間、酸化性雰囲気の組成を調整することにより、上記の第1パラメータ及び第2パラメータを調整できる。 When heat treatment is used as the surface treatment step, for example, the first parameter and the second parameter can be adjusted by adjusting the heating temperature, heating time, and composition of the oxidizing atmosphere.

加熱処理による酸化表面の形成プロセスは、以下のように考えられる。加熱処理の初期段階である第1段階として、銅材表面に存在する亜酸化銅が酸化銅に酸化される反応が進行する。その後、更に加熱されると、第2段階として、内側の銅が亜酸化銅に酸化される反応と、内側の銅及び亜酸化銅の一方又は両方が酸化銅に酸化される反応が並行して進行する。 The formation process of the oxidized surface by heat treatment is considered as follows. As the first stage, which is the initial stage of the heat treatment, a reaction proceeds in which cuprous oxide present on the surface of the copper material is oxidized to copper oxide. Then, when further heated, as a second step, a reaction in which the inner copper is oxidized to cuprous oxide and a reaction in which one or both of the inner copper and cuprous oxide are oxidized to copper oxide are performed in parallel. proceed.

したがって、亜酸化銅の厚さ(T1)及び酸化銅の厚さ(T2)の合計である第1パラメータは、第2段階の反応の進行度合が大きくなるにしたがって大きくなる。そのため、第1パラメータを大きくする場合、第2段階の反応の進行度合を大きくすればよく、第1パラメータを小さくする場合、第2段階の反応の進行度合を小さくする、又は第1段階の途中で加熱処理を終了すればよい。 Therefore, the first parameter, which is the sum of the cuprous oxide thickness (T1) and the copper oxide thickness (T2), increases as the progress of the second stage reaction increases. Therefore, when the first parameter is increased, the degree of progress of the reaction in the second stage may be increased, and when the first parameter is decreased, the degree of progress of the reaction in the second stage is decreased, or in the middle of the first stage. The heat treatment should be terminated with .

また、第2段階の反応において、亜酸化銅は酸化銅へと酸化される一方、酸化銅はそのまま蓄積されることから、亜酸化銅の厚さ(T1)に対する酸化銅の厚さ(T2)の比(T2/T1)である第2パラメータは、酸化銅の総量が大きくなるにしたがって大きくなる。そのため、第2パラメータを大きくする場合、第2段階の反応の進行度合を大きくすればよく、第2パラメータを小さくする場合、第2段階の反応の進行度合を小さくすればよい。なお、第1段階の途中で加熱処理を終了する場合においては、第2パラメータを大きくする場合、第1段階の反応の進行度合を大きくすればよく、第2パラメータを小さくする場合、第1段階の反応の進行度合を小さくすればよい。 Also, in the second stage reaction, cuprous oxide is oxidized to copper oxide, while copper oxide is accumulated as it is, so the thickness of cuprous oxide (T2) with respect to the thickness of cuprous oxide (T1) The second parameter, which is the ratio of (T2/T1), increases as the total amount of copper oxide increases. Therefore, when increasing the second parameter, the degree of progress of the reaction in the second stage should be increased, and when decreasing the second parameter, the degree of progress of the reaction in the second stage should be decreased. In the case of ending the heat treatment in the middle of the first step, if the second parameter is increased, the degree of progress of the reaction in the first step should be increased, and if the second parameter is decreased, the first step The degree of progress of the reaction of can be reduced.

第2段階の反応の進行度合は、加熱温度を高くすること、加熱時間を長くすること、及び酸化性雰囲気の富酸素の度合を大きくすることのいずれか一種以上を行うことにより、大きくなる方向に変化する。第1段階の途中で加熱処理を終了する場合には、加熱時間を短くする。第1段階の進行度合は、加熱時間を短くした条件において、加熱温度を高くすること、及び酸化性雰囲気の富酸素の度合いを大きくすることのいずれか一種以上を更に行うことにより、大きくなる方向に変化する。こうした傾向を利用して、第1パラメータ及び第2パラメータがそれぞれ上記の特定範囲となるように加熱処理を行う。 The degree of progress of the reaction in the second stage is increased by any one or more of increasing the heating temperature, lengthening the heating time, and increasing the oxygen-rich degree of the oxidizing atmosphere. change to If the heat treatment is terminated in the middle of the first stage, the heating time is shortened. The degree of progress of the first stage is increased by further performing any one or more of increasing the heating temperature and increasing the oxygen-rich degree of the oxidizing atmosphere under the condition that the heating time is shortened. change to Using these tendencies, the heat treatment is performed so that the first parameter and the second parameter are within the specific ranges described above.

酸化還元処理では、まず、銅材の特定表面に酸化処理を施すことにより、酸化銅を含有する銅化合物が特定表面に形成された酸化処理銅材を得る。次いで、酸化処理銅材の特定表面に還元処理を施して、特定表面の銅化合物に含有される酸化銅の一部を亜酸化銅に転換することにより、亜酸化銅及び酸化銅を含有する銅化合物が特定表面に形成された表面処理銅材を得る。酸化処理及び還元処理は特に限定されるものではなく、従来公知の方法、例えば、特許文献2に開示される酸化処理液及び還元処理液を用いた湿式法を適用できる。 In the oxidation-reduction treatment, first, a specific surface of the copper material is subjected to an oxidation treatment to obtain an oxidized copper material having a copper compound containing copper oxide formed on the specific surface. Then, the specific surface of the oxidized copper material is subjected to a reduction treatment to convert a part of the copper oxide contained in the copper compound on the specific surface to cuprous oxide, so that copper containing cuprous oxide and copper oxide A surface-treated copper material having a compound formed on a specific surface is obtained. The oxidation treatment and reduction treatment are not particularly limited, and a conventionally known method such as a wet method using an oxidation treatment liquid and a reduction treatment liquid disclosed in Patent Document 2 can be applied.

表面処理工程として酸化還元処理を用いる場合、例えば、酸化処理及び還元処理の時間を調整することにより、上記の第1パラメータ及び第2パラメータを調整できる。例えば、酸化処理の処理時間を長くすると、亜酸化銅の厚さ(T1)及び酸化銅の厚さ(T2)の合計である第1パラメータが増加する傾向がある。また、還元処理の時間の処理時間を長くすると、亜酸化銅の厚さ(T1)に対する酸化銅の厚さ(T2)の比(T2/T1)である第2パラメータが減少する傾向がある。こうした傾向を利用して、第1パラメータ及び第2パラメータがそれぞれ上記の特定範囲となるように酸化還元処理を行う。 When oxidation-reduction treatment is used as the surface treatment step, the above first parameter and second parameter can be adjusted, for example, by adjusting the times of oxidation treatment and reduction treatment. For example, increasing the oxidation treatment time tends to increase the first parameter, which is the sum of the cuprous oxide thickness (T1) and the copper oxide thickness (T2). In addition, when the treatment time of the reduction treatment is lengthened, the second parameter, which is the ratio (T2/T1) of the thickness (T2) of cuprous oxide to the thickness (T1) of cuprous oxide, tends to decrease. Utilizing these tendencies, the oxidation-reduction treatment is performed so that the first parameter and the second parameter are within the specific ranges described above.

また、表面処理工程は、フィルムロール等から連続的に供給される銅材に対して連続式で行ってもよいし、所定の単位ごとにバッチ式で行ってもよい。
<銅張積層板>
銅張積層板は、銅層と、銅層に積層される絶縁樹脂層とを備える積層体である。
Moreover, the surface treatment process may be performed continuously on the copper material continuously supplied from a film roll or the like, or may be performed batchwise for each predetermined unit.
<Copper clad laminate>
A copper-clad laminate is a laminate comprising a copper layer and an insulating resin layer laminated on the copper layer.

銅層は、表面処理銅材により構成される層であり、少なくとも一つの表面が上記の酸化表面である。銅層の厚さは、表面処理銅材の厚さと同じである。
絶縁樹脂層は、表面処理銅材の酸化表面により構成される銅層の表面に積層及び接合される層である。絶縁樹脂層を構成する樹脂は特に限定されるものではなく、フレキシブルプリント配線基板、又は半導体製造装置や熱電変換部材の基板に用いられる公知の樹脂を用いることができる。
The copper layer is a layer composed of a surface-treated copper material, and at least one surface is the oxidized surface described above. The thickness of the copper layer is the same as the thickness of the surface-treated copper material.
The insulating resin layer is a layer laminated and bonded to the surface of the copper layer composed of the oxidized surface of the surface-treated copper material. The resin constituting the insulating resin layer is not particularly limited, and known resins used for substrates of flexible printed wiring boards, semiconductor manufacturing equipment, and thermoelectric conversion members can be used.

絶縁樹脂層を構成する樹脂としては、例えば、ポリイミド(PI)、液晶ポリマー(LCP)、ポリエーテルエーテルケトン(PEEK)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン-エチレン共重合体(ETFE)、ポリアミドイミド(PAI)、シクロオレフィンポリマー(COP)、ポリフェニレンサルファイド(PPS)、シンジオタクチックポリスチレン(SPS)が挙げられる。絶縁樹脂層を構成する樹脂は、1種のみであってもよいし、2種以上の組み合わせであってもよい。 Examples of the resin constituting the insulating resin layer include polyimide (PI), liquid crystal polymer (LCP), polyetheretherketone (PEEK), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene- Hexafluoropropylene copolymer (FEP), polytetrafluoroethylene (PTFE), tetrafluoroethylene-ethylene copolymer (ETFE), polyamideimide (PAI), cycloolefin polymer (COP), polyphenylene sulfide (PPS), Syndi Occult polystyrene (SPS) can be mentioned. The resin constituting the insulating resin layer may be of only one type, or may be a combination of two or more types.

また、絶縁樹脂層は、熱可塑性樹脂を含むことが好ましい。この場合には、銅層と絶縁樹脂層とを接合する際に、銅層の酸化表面に形成される微細な凹凸構造の内部に、絶縁樹脂層に含有される熱可塑性樹脂を軟化させて入り込ませることにより、アンカー効果に基いて銅層と絶縁樹脂層との密着力が向上する。この場合、上記樹脂の中でも、ポリイミド(PI)、液晶ポリマー(LCP)、ポリエーテルエーテルケトン(PEEK)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、ポリテトラフルオロエチレン(PTFE)から選ばれる少なくとも一種の熱可塑性樹脂を用いることが特に好ましい。 Also, the insulating resin layer preferably contains a thermoplastic resin. In this case, when the copper layer and the insulating resin layer are joined together, the thermoplastic resin contained in the insulating resin layer softens and enters into the fine irregularities formed on the oxidized surface of the copper layer. The adhesion between the copper layer and the insulating resin layer is improved based on the anchor effect. In this case, among the above resins, polyimide (PI), liquid crystal polymer (LCP), polyether ether ketone (PEEK), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene-hexafluoropropylene copolymer It is particularly preferable to use at least one thermoplastic resin selected from polymers (FEP) and polytetrafluoroethylene (PTFE).

絶縁樹脂層の厚さは、特に限定されるものではなく、銅張積層板の用途に応じて適宜設定できる。絶縁樹脂層の厚さは、例えば、1μm以上1000μm以下であり、好ましくは5μm以上200μm以下であり、より好ましくは12.5μm以上100μm以下である。 The thickness of the insulating resin layer is not particularly limited, and can be appropriately set according to the use of the copper-clad laminate. The thickness of the insulating resin layer is, for example, 1 μm or more and 1000 μm or less, preferably 5 μm or more and 200 μm or less, and more preferably 12.5 μm or more and 100 μm or less.

絶縁樹脂層は、単層構造であってもよいし、複数の樹脂層が積層されてなる積層構造であってもよい。
絶縁樹脂層は、銅層の片側の表面のみに設けられていてもよいし、銅層の両側の表面に設けられていてもよい。銅層の両側の表面に絶縁樹脂層を設ける場合、銅層の両側の表面が共に酸化表面であることが好ましい。
The insulating resin layer may have a single layer structure, or may have a laminated structure in which a plurality of resin layers are laminated.
The insulating resin layer may be provided only on one surface of the copper layer, or may be provided on both surfaces of the copper layer. When insulating resin layers are provided on both surfaces of the copper layer, both surfaces of the copper layer are preferably oxidized surfaces.

<銅張積層板の製造方法>
次に、銅張積層板の製造方法について記載する。
銅張積層板の製造方法は、上記表面処理銅材の酸化表面に絶縁性樹脂を積層して接合する積層工程を備える。積層工程としては、例えば、絶縁性の熱可塑性樹脂からなる樹脂フィルムを熱圧着する処理、溶融状態の絶縁性樹脂を、表面処理銅材の酸化表面に塗布して固化させる処理、表面処理銅材の酸化表面に樹脂接着剤を介して絶縁性樹脂フィルムを接着する処理が挙げられる。以下では、一例として、熱圧着処理について具体的に説明する。
<Method for producing copper-clad laminate>
Next, a method for manufacturing a copper-clad laminate will be described.
A method of manufacturing a copper-clad laminate includes a lamination step of laminating and bonding an insulating resin to the oxidized surface of the surface-treated copper material. As the lamination process, for example, a process of thermocompression bonding a resin film made of an insulating thermoplastic resin, a process of applying a molten insulating resin to the oxidized surface of the surface-treated copper material and solidifying it, a process of solidifying the surface-treated copper material a process of adhering an insulating resin film to the oxidized surface of the substrate via a resin adhesive. As an example, the thermocompression bonding process will be specifically described below.

熱圧着処理は、表面処理銅材の酸化表面に樹脂フィルムを重ね合わせた状態として、加熱加圧装置を用いて、表面処理銅材及び樹脂フィルムを加熱するとともに、所定の圧力をもって加圧する。熱圧着処理は、フィルムロール等から連続的に供給される表面処理銅材及び樹脂フィルムに対して連続式で行ってもよいし、所定の単位ごとにバッチ式で行ってもよい。 In the thermocompression bonding, a resin film is superimposed on the oxidized surface of the surface-treated copper material, and the surface-treated copper material and the resin film are heated and pressurized with a predetermined pressure using a heating and pressurizing device. The thermocompression bonding may be performed continuously on the surface-treated copper material and the resin film which are continuously supplied from a film roll or the like, or may be performed batchwise for each predetermined unit.

熱圧着処理における加熱温度は、例えば、300℃以上400℃以下である。熱圧着処理における加熱時間は、例えば、1分以上30分以下である。熱圧着処理において、表面処理銅材及び樹脂フィルムに加えられる圧力は、例えば、2MPa以上12MPa以下である。 The heating temperature in the thermocompression bonding process is, for example, 300° C. or higher and 400° C. or lower. The heating time in the thermocompression bonding process is, for example, 1 minute or more and 30 minutes or less. In the thermocompression bonding process, the pressure applied to the surface-treated copper material and the resin film is, for example, 2 MPa or more and 12 MPa or less.

加熱加圧装置は、上記の条件を満たすことのできるものであれば、特に限定されるものではない。加熱加圧装置としては、例えば、平坦面状の加熱及び加圧部を有する熱プレス機、真空バッチプレス機、多段プレス機、加熱ロールプレス機、並びにベルト間で加熱及び加圧するダブルベルトプレス装置が挙げられる。 The heating and pressurizing device is not particularly limited as long as it can satisfy the above conditions. As the heating and pressurizing device, for example, a heat press machine having a flat heating and pressurizing part, a vacuum batch press machine, a multi-stage press machine, a heating roll press machine, and a double belt press device that heats and presses between belts. is mentioned.

次に、本実施形態の作用及び効果について説明する。
(1)表面処理銅材は、表面処理銅材の酸化表面に接合される樹脂部分を有する物品の構成要素として用いられる。上記物品としては、例えば、銅層と銅層の表面に積層される絶縁樹脂層とを備える銅張積層板が挙げられる。
Next, the operation and effects of this embodiment will be described.
(1) The surface-treated copper material is used as a component of an article having a resin portion bonded to the oxidized surface of the surface-treated copper material. Examples of the article include a copper-clad laminate including a copper layer and an insulating resin layer laminated on the surface of the copper layer.

表面処理銅材は、亜酸化銅及び酸化銅を含む酸化表面を有する。酸化表面は、連続電気化学還元分析により決定される亜酸化銅の厚さ(T1)及び酸化銅の厚さ(T2)の合計が1nm以上40nm以下であり、亜酸化銅の厚さ(T1)に対する酸化銅の厚さ(T2)の比(T2/T1)が1以上9以下である。 The surface-treated copper material has an oxidized surface that includes cuprous oxide and copper oxide. The oxidized surface has a total of 1 nm or more and 40 nm or less of the cuprous oxide thickness (T1) and the cuprous oxide thickness (T2) determined by continuous electrochemical reduction analysis, and the cuprous oxide thickness (T1) The ratio (T2/T1) of the thickness (T2) of the copper oxide to the copper oxide is 1 or more and 9 or less.

表面処理銅材の酸化表面における亜酸化銅の厚さ(T1)及び酸化銅の厚さ(T2)の合計及び比(T2/T1)を上記特定範囲とすることにより、表面処理銅材の酸化表面に樹脂部分を接合してなる物品の接合部分の密着力を高めることができる。加えて、上記物品を長時間、高温の環境に曝した後も、接合部分の密着力の低下が抑制されて、密着力を好適に保持できる。 By setting the sum and ratio (T2/T1) of the thickness (T1) of cuprous oxide and the thickness (T2) of cuprous oxide on the oxidized surface of the surface-treated copper material to the above specific range, oxidation of the surface-treated copper material It is possible to increase the adhesion force of the joint portion of the article formed by joining the resin portion to the surface. In addition, even after the article is exposed to a high-temperature environment for a long period of time, it is possible to suppress a decrease in the adhesive strength of the joint portion and maintain the adhesive strength favorably.

(2)亜酸化銅の厚さ(T1)に対する酸化銅の厚さ(T2)の比(T2/T1)が3以上6以下である。この場合には、上記(1)の効果が顕著に得られる。
(3)酸化表面における亜酸化銅の厚さ(T1)は、0.1nm以上20nm以下である。この場合には、上記(1)の効果が顕著に得られる。
(2) The ratio (T2/T1) of the thickness (T2) of cuprous oxide to the thickness (T1) of cuprous oxide is 3 or more and 6 or less. In this case, the above effect (1) can be obtained remarkably.
(3) The thickness (T1) of cuprous oxide on the oxidized surface is 0.1 nm or more and 20 nm or less. In this case, the above effect (1) can be obtained remarkably.

(4)酸化表面における酸化銅の厚さ(T2)は、0.9nm以上36nm以下である。この場合には、上記(1)の効果が顕著に得られる。
(5)絶縁樹脂層を構成する樹脂は、熱可塑性樹脂を含む。
(4) The thickness (T2) of copper oxide on the oxidized surface is 0.9 nm or more and 36 nm or less. In this case, the above effect (1) can be obtained remarkably.
(5) The resin forming the insulating resin layer includes a thermoplastic resin.

この場合には、銅層の酸化表面に形成される微細な凹凸構造の内部に、絶縁樹脂層に含有される熱可塑性樹脂が軟化して入り込むことにより、アンカー効果に基いて銅層と絶縁樹脂層との密着力が向上する。 In this case, the thermoplastic resin contained in the insulating resin layer is softened and penetrates into the fine uneven structure formed on the oxidized surface of the copper layer, so that the copper layer and the insulating resin are bonded together based on the anchor effect. Improves adhesion to layers.

(6)絶縁樹脂層を構成する熱可塑性樹脂は、ポリイミド、液晶ポリマー、ポリエーテルエーテルケトン、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、ポリテトラフルオロエチレンから選ばれる少なくとも一種である。この場合には、上記(5)の効果が顕著に得られる。 (6) The thermoplastic resin constituting the insulating resin layer is polyimide, liquid crystal polymer, polyether ether ketone, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, tetrafluoroethylene-hexafluoropropylene copolymer, polytetrafluoro It is at least one selected from ethylene. In this case, the above effect (5) can be obtained remarkably.

(7)表面処理銅材の製造方法は、銅材の表面に、亜酸化銅及び酸化銅を含む酸化表面を形成する表面処理工程を有する。表面処理工程は、連続電気化学還元分析により決定される亜酸化銅の厚さ(T1)及び酸化銅の厚さ(T2)の合計が1nm以上40nm以下であり、亜酸化銅の厚さ(T1)に対する酸化銅の厚さ(T2)の比(T2/T1)が1以上9以下となるように、酸化性雰囲気下で銅材の表面を加熱する加熱処理である。 (7) A method for producing a surface-treated copper material has a surface treatment step of forming an oxidized surface containing cuprous oxide and copper oxide on the surface of the copper material. In the surface treatment step, the sum of the cuprous oxide thickness (T1) and the copper oxide thickness (T2) determined by continuous electrochemical reduction analysis is 1 nm or more and 40 nm or less, and the cuprous oxide thickness (T1 ), the surface of the copper material is heated in an oxidizing atmosphere so that the ratio (T2/T1) of the thickness (T2) of the copper oxide to ) is 1 or more and 9 or less.

上記構成によれば、湿式法の酸化還元処理に用いる酸化処理液及び還元処理液のような後処理が必要になる各種処理液を用いることなく、亜酸化銅の厚さ及び酸化銅の厚さの合計及び比が特定範囲である酸化表面を形成できる。そのため、表面処理銅材の製造により生じる廃液による環境に対する負荷を低減できる。 According to the above configuration, the thickness of cuprous oxide and the thickness of copper oxide can be increased without using various treatment solutions that require post-treatment such as oxidation treatment solutions and reduction treatment solutions used in wet oxidation-reduction treatment. can form an oxidized surface having a specific range of sums and ratios of Therefore, it is possible to reduce the load on the environment due to the waste liquid generated in the production of the surface-treated copper material.

また、半導体製造装置や熱電変換部材などに使用される厚さのある銅材、例えば、厚さ100μm以上の銅材は、特許文献1及び特許文献2に開示される方法で粗化表面を形成することが難しい。上記構成によれば、厚さのある銅材に対しても、樹脂に対する密着力の高い表面を形成できる。 In addition, thick copper materials used in semiconductor manufacturing equipment and thermoelectric conversion members, for example, copper materials with a thickness of 100 μm or more are roughened by the methods disclosed in Patent Documents 1 and 2. difficult to do According to the above configuration, it is possible to form a surface having high adhesion to resin even for a thick copper material.

また、上記構成によれば、防錆層が形成されている銅材の表面に対して上記の加熱処理を行うことにより、防錆層が形成されている表面を酸化表面とすることもできる。つまり、防錆層の形成後に酸化表面を形成することができる。 Further, according to the above configuration, the surface on which the rust-preventive layer is formed can be oxidized by performing the above-described heat treatment on the surface of the copper material on which the rust-preventive layer is formed. In other words, the oxidized surface can be formed after the formation of the antirust layer.

なお、上記実施形態は、以下のように変更して実施することができる。上記実施形態及び以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。 It should be noted that the above embodiment can be implemented with the following modifications. The above embodiments and the following modifications can be combined with each other within a technically consistent range.

・上記実施形態の表面処理銅材の用途は、当該表面処理銅材に絶縁樹脂層を積層してなる銅張積層板に限定されるものではない。上記実施形態の表面処理銅材は、表面処理銅材の酸化表面に接合される樹脂部分を有する物品の構成要素の全般に適用できる。この場合、表面処理銅材の酸化表面に接合される樹脂は、絶縁性樹脂に限定されない。 - The application of the surface-treated copper material of the above embodiment is not limited to a copper-clad laminate obtained by laminating an insulating resin layer on the surface-treated copper material. The surface-treated copper material of the above-described embodiment can be applied to general components of an article having a resin portion bonded to the oxidized surface of the surface-treated copper material. In this case, the resin bonded to the oxidized surface of the surface-treated copper material is not limited to insulating resin.

・銅材の表面に酸化表面を形成する表面処理工程と、表面処理工程により得られた表面処理銅材の酸化表面に絶縁性樹脂を積層して接合する積層工程とを連続的に行うことにより、銅張積層板を製造してもよい。 ・By continuously performing a surface treatment process for forming an oxidized surface on the surface of the copper material and a lamination process for laminating and bonding an insulating resin to the oxidized surface of the surface-treated copper material obtained by the surface treatment process. , a copper clad laminate may be produced.

・銅張積層板は、銅層及び絶縁樹脂層以外のその他の層を備えていてもよい。 - The copper-clad laminate may include layers other than the copper layer and the insulating resin layer.

次に、実施例及び比較例を挙げて実施形態をさらに具体的に説明する。
(実施例1~7及び比較例1~4)
所定温度に設定した送風オーブンに銅箔を投入し、所定時間、加熱する加熱処理を行うことにより、実施例1~7及び比較例1~4の表面処理銅材を作製した。表1に示すように、各例の表面処理銅材は、用いた銅箔の種別及び厚さ、並びに加熱処理の温度及び時間をそれぞれ異ならせている。銅箔としては、日立金属ネオマテリアル製HCL-02Z又はC1020箔を用いた。比較例1は、加熱処理を行っていない銅箔である。
Next, the embodiment will be described more specifically with reference to examples and comparative examples.
(Examples 1 to 7 and Comparative Examples 1 to 4)
The surface-treated copper materials of Examples 1 to 7 and Comparative Examples 1 to 4 were produced by putting the copper foil into an air blowing oven set at a predetermined temperature and performing heat treatment for a predetermined time. As shown in Table 1, the surface-treated copper materials of each example differed in the type and thickness of the copper foil used, as well as the temperature and time of heat treatment. As the copper foil, HCL-02Z or C1020 foil manufactured by Hitachi Metals Neomaterial was used. Comparative Example 1 is a copper foil that is not heat-treated.

(連続電気化学還元分析)
各実施例及び各比較例の表面処理銅材から切り出した測定サンプルをブチルセロソルブ溶液中に20分間、浸漬させた後、2-プロパノール溶液中で5分間、超音波洗浄することにより異物を除去した。その後、測定装置(ECI TECHNOLOGY社製QC-100)を用いて、試験サンプルの酸化表面に含まれる亜酸化銅(CuO)の厚さ(T1)及び酸化銅(CuO)の厚さ(T2)を連続電気化学還元分析(SERA)により測定した。
(Continuous electrochemical reduction analysis)
A measurement sample cut from the surface-treated copper material of each example and each comparative example was immersed in a butyl cellosolve solution for 20 minutes, and then ultrasonically cleaned in a 2-propanol solution for 5 minutes to remove foreign matter. After that, using a measuring device (ECI TECHNOLOGY QC-100), the thickness (T1) of cuprous oxide (Cu 2 O) and the thickness (T2) of copper oxide (CuO) contained in the oxidized surface of the test sample ) was measured by continuous electrochemical reduction analysis (SERA).

まず、試験サンプルにおける直径0.16cmの円形の領域をリングガスケットで隔離し、電解液を注入し、窒素で飽和させた。電解液には、ホウ酸6.18g/L、四ホウ酸ナトリウム十水和物9.55g/Lになるように純水で調製したpH8.4のホウ酸緩衝液を用いた。その後、電流密度150μA/cmで印加し、-0.35~-0.60V(CuO)、-0.60~-0.85V(CuO)にそれぞれ現れる還元反応時間(秒)を計測した。 First, a circular area of 0.16 cm diameter in the test sample was isolated by a ring gasket, injected with electrolyte and saturated with nitrogen. As the electrolytic solution, a borate buffer solution of pH 8.4 prepared with pure water so as to contain 6.18 g/L of boric acid and 9.55 g/L of sodium tetraborate decahydrate was used. After that, a current density of 150 μA/cm 2 was applied, and the reduction reaction time (seconds) appearing at −0.35 to −0.60 V (Cu 2 O) and −0.60 to −0.85 V (CuO) was measured. bottom.

計測された還元反応時間に基づいて、下記式を用いてCuOの厚さ(T1)及びCuOの厚さ(T2)を算出した。また、算出したCuOの厚さ(T1)及びCuOの厚さ(T2)から厚さ合計(T1+T2)及び厚さ比(T2/T1)を算出した。それらの結果を表1に示す。 Based on the measured reduction reaction time, the thickness of Cu 2 O (T1) and the thickness of CuO (T2) were calculated using the following equations. Also, the total thickness (T1+T2) and the thickness ratio (T2/T1) were calculated from the calculated thickness (T1) of Cu 2 O and thickness (T2) of CuO. Those results are shown in Table 1.

T1(nm)=0.001236×電流密度(μA/cm)×還元時間(秒)
T2(nm)=0.000639×電流密度(μA/cm)×還元時間(秒)
T1 (nm) = 0.001236 x current density (μA/cm 2 ) x reduction time (seconds)
T2 (nm) = 0.000639 x current density (μA/cm 2 ) x reduction time (seconds)

Figure 2023022645000001
加熱処理における温度及び時間を変更することにより、第1パラメータである厚さ合計(T1+T2)、及び第2パラメータである厚さ比(T2/T1)がそれぞれ異なる酸化表面を有する実施例1~7及び比較例1~4の表面処理銅材が得られた。なお、比較例2は、酸化銅の厚さの値よりも亜酸化銅の厚さの値が大きいことから、特許文献1及び特許文献2の実施例欄に開示される実験例に相当する。また、得られた各例の表面処理銅材の酸化表面を目視にて観察した結果、変色及び加熱むらは確認されなかった。
Figure 2023022645000001
By changing the temperature and time in the heat treatment, the first parameter, the total thickness (T1 + T2), and the second parameter, the thickness ratio (T2/T1), are different from each other Examples 1 to 7 having an oxidized surface And surface-treated copper materials of Comparative Examples 1 to 4 were obtained. Comparative Example 2 corresponds to the experimental example disclosed in the Examples column of Patent Documents 1 and 2, since the value of the thickness of cuprous oxide is larger than the value of the thickness of copper oxide. Moreover, as a result of visually observing the oxidized surface of the surface-treated copper material obtained in each example, no discoloration or uneven heating was observed.

(試験例1~12)
各実施例及び各比較例の表面処理銅材の酸化表面に厚さ25μmの樹脂フィルムを積層してバッチプレスにより熱圧着することにより、表面処理銅材からなる銅層と樹脂フィルムからなる樹脂層とを備える試験例1~12の銅張積層板を作製した。各試験例における表面処理銅材と樹脂フィルムとの組み合わせ及び樹脂フィルムの種別は、表2に示すとおりである。表2に示す樹脂フィルムの種別及び熱圧着条件の詳細は、以下に記載するとおりである。
(Test Examples 1 to 12)
A 25 μm-thick resin film was laminated on the oxidized surface of the surface-treated copper material of each example and each comparative example and thermocompression bonded by a batch press to obtain a copper layer made of the surface-treated copper material and a resin layer made of the resin film. Copper clad laminates of Test Examples 1 to 12 were produced. Table 2 shows the combination of the surface-treated copper material and the resin film and the type of the resin film in each test example. Details of the types of resin films and thermocompression bonding conditions shown in Table 2 are as described below.

PI-A:ポリイミドフィルム(宇部興産株式会社製ユーピレックス-VT)
LCP :液晶ポリマーフィルム(株式会社クラレ製CTZ)
PI-B:ポリイミドフィルム(東レ・デュポン株式会社製カプトンAENC)
条件1:最高温度330℃、圧力106kg/cm、加熱時間30分
条件2:最高温度305℃、圧力106kg/cm、加熱時間10分
(密着性の評価)
製造後、常温常圧で保管した各試験例の銅張積層板を幅寸法10mmの短冊状に切断することで試験サンプルを作製した。JIS C6471に規定される“方法A”(90°方向引きはがし方法、ただし、銅層における樹脂層が積層されている面に対して樹脂層を90°方向に引きはがす方法)に基づいて、試験サンプルの銅層と樹脂層との層間における剥離強度を測定した。ここで測定された値を常態の剥離強度とした。その結果を表2に示す。
PI-A: polyimide film (Upilex-VT manufactured by Ube Industries, Ltd.)
LCP: liquid crystal polymer film (CTZ manufactured by Kuraray Co., Ltd.)
PI-B: polyimide film (Kapton AENC manufactured by Toray DuPont Co., Ltd.)
Condition 1: maximum temperature of 330°C, pressure of 106 kg/cm 2 , heating time of 30 minutes Condition 2: maximum temperature of 305°C, pressure of 106 kg/cm 2 , heating time of 10 minutes (Evaluation of Adhesion)
After the production, test samples were prepared by cutting the copper-clad laminate of each test example stored at normal temperature and normal pressure into strips having a width of 10 mm. Based on "Method A" specified in JIS C6471 (90 ° direction peeling method, however, the method of peeling off the resin layer in the direction of 90 ° to the surface where the resin layer is laminated in the copper layer) The peel strength between the copper layer and the resin layer of the sample was measured. The value measured here was taken as the normal peel strength. Table 2 shows the results.

次に、常態の剥離強度が1.0N/mm以上であった試験例の銅張積層板について、150℃の高温環境に1000時間、暴露させる暴露処理を行った後、幅寸法10mmの短冊状に切断することで試験サンプルを作製した。暴露処理後の銅張積層板から得られた試験サンプルの銅層と樹脂層との層間における剥離強度を上記と同様の方法により測定した。測定された値を高温暴露後の剥離強度とし、下記式を用いて、暴露処理の前後における剥離強度の保持率を算出した。その結果を表2に示す。 Next, the copper-clad laminate of the test example having a normal peel strength of 1.0 N / mm or more was exposed to a high temperature environment of 150 ° C. for 1000 hours. Test samples were prepared by cutting into . The peel strength between the copper layer and the resin layer of the test sample obtained from the copper-clad laminate after the exposure treatment was measured by the same method as above. Using the measured value as the peel strength after exposure to high temperature, the retention rate of peel strength before and after the exposure treatment was calculated using the following formula. Table 2 shows the results.

保持率(%)=(高温暴露後の剥離強度/常態の剥離強度)×100 Retention rate (%) = (peel strength after high temperature exposure/normal peel strength) x 100

Figure 2023022645000002
表2に示すように、試験例1~7は、厚さ合計(T1+T2)が1nm以上40nm以下であり、厚さ比(T2/T1)が1以上9以下である実施例1~7の表面処理銅材を用いている。試験例1~7の常態の剥離強度は、比較例1の表面処理銅材を用いた試験例8及び試験例12と比較して高い値であった。加えて、試験例1~7の剥離強度の保持率は、60%以上であった。試験例1~7のなかでも、厚さ比(T2/T1)が3以上6以下である実施例1~4の表面処理銅材を用いた試験例1~4は、70%以上という高い保持率であった。また、これらの効果は、銅箔の種別及び厚さ、並びに樹脂の種別を変更した場合にも得られたことから、銅箔の種別及び厚さ、並びに樹脂の種別に依存しない効果であると考えられる。
Figure 2023022645000002
As shown in Table 2, Test Examples 1 to 7 have a total thickness (T1+T2) of 1 nm or more and 40 nm or less, and a thickness ratio (T2/T1) of 1 or more and 9 or less. Treated copper material is used. The normal peel strengths of Test Examples 1 to 7 were higher than those of Test Examples 8 and 12 using the surface-treated copper material of Comparative Example 1. In addition, the peel strength retention rate of Test Examples 1 to 7 was 60% or more. Among Test Examples 1 to 7, Test Examples 1 to 4 using the surface-treated copper materials of Examples 1 to 4 having a thickness ratio (T2/T1) of 3 to 6 have a high retention of 70% or more. was the rate. In addition, since these effects were obtained even when the type and thickness of the copper foil and the type of resin were changed, it was concluded that the effects were independent of the type and thickness of the copper foil and the type of resin. Conceivable.

厚さ合計(T1+T2)が上記範囲内であり、厚さ比(T2/T1)が上記範囲外である比較例2及び比較例4の表面処理銅材を用いた試験例9,11は、常態の剥離強度が試験例1~7と同程度であるものの、剥離強度の保持率が略ゼロであった。この結果から、高温暴露後も剥離強度を保持するためには、亜酸化銅よりも酸化銅を多く含むように酸化表面を形成することが重要であると考えられる。 Test Examples 9 and 11 using the surface-treated copper materials of Comparative Examples 2 and 4, in which the total thickness (T1+T2) is within the above range and the thickness ratio (T2/T1) is outside the above range, were normal. Although the peel strength of was comparable to that of Test Examples 1 to 7, the peel strength retention rate was substantially zero. From this result, it is considered important to form an oxidized surface containing more copper oxide than cuprous oxide in order to maintain the peel strength even after high temperature exposure.

また、厚さ合計(T1+T2)及び厚さ比(T2/T1)が共に上記範囲外である比較例3の表面処理銅材を用いた試験例10は、常態の剥離強度が試験例1~7よりも低く、加熱処理による剥離強度の向上効果は得られなかった。試験例10で用いた比較例3の表面処理銅材の酸化表面は、酸化銅が過剰に形成されたことにより、構造的に脆くなってしまったと考えられる。
In addition, Test Example 10 using the surface-treated copper material of Comparative Example 3, in which both the total thickness (T1+T2) and the thickness ratio (T2/T1) are outside the above ranges, had peel strength in the normal state of Test Examples 1 to 7. , and the effect of improving the peel strength by heat treatment was not obtained. It is considered that the oxidized surface of the surface-treated copper material of Comparative Example 3 used in Test Example 10 became structurally fragile due to the excessive formation of copper oxide.

Claims (8)

亜酸化銅及び酸化銅を含む酸化表面を有する表面処理銅材であって、
前記酸化表面は、連続電気化学還元分析により決定される亜酸化銅の厚さ(T1)及び酸化銅の厚さ(T2)の合計が1nm以上40nm以下であり、亜酸化銅の厚さ(T1)に対する酸化銅の厚さ(T2)の比(T2/T1)が1以上9以下であることを特徴とする表面処理銅材。
A surface-treated copper material having an oxidized surface containing cuprous oxide and copper oxide,
The oxidized surface has a total of 1 nm or more and 40 nm or less of the cuprous oxide thickness (T1) and the copper oxide thickness (T2) determined by continuous electrochemical reduction analysis, and the cuprous oxide thickness (T1 ), wherein the ratio (T2/T1) of the thickness (T2) of copper oxide to ) is 1 or more and 9 or less.
前記酸化表面における亜酸化銅の厚さ(T1)は、0.1nm以上20nm以下である請求項1に記載の表面処理銅材。 The surface-treated copper material according to claim 1, wherein the thickness (T1) of the cuprous oxide on the oxidized surface is 0.1 nm or more and 20 nm or less. 前記酸化表面における酸化銅の厚さ(T2)は、0.9nm以上36nm以下である請求項1又は請求項2に記載の表面処理銅材。 The surface-treated copper material according to claim 1 or 2, wherein the thickness (T2) of the copper oxide on the oxidized surface is 0.9 nm or more and 36 nm or less. 請求項1~3のいずれか一項に記載の表面処理銅材により構成される銅層と、前記銅層の前記酸化表面に積層される絶縁樹脂層とを備える銅張積層板。 A copper-clad laminate comprising a copper layer composed of the surface-treated copper material according to any one of claims 1 to 3, and an insulating resin layer laminated on the oxidized surface of the copper layer. 前記絶縁樹脂層を構成する樹脂は、熱可塑性樹脂を含む請求項4に記載の銅張積層板。 5. The copper-clad laminate according to claim 4, wherein the resin constituting the insulating resin layer contains a thermoplastic resin. 前記熱可塑性樹脂は、ポリイミド、液晶ポリマー、ポリエーテルエーテルケトン、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、ポリテトラフルオロエチレンから選ばれる少なくとも一種である請求項5に記載の銅張積層板。 The thermoplastic resin is at least one selected from polyimide, liquid crystal polymer, polyetheretherketone, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, tetrafluoroethylene-hexafluoropropylene copolymer, and polytetrafluoroethylene. The copper-clad laminate according to claim 5. 銅材の表面に、亜酸化銅及び酸化銅を含む酸化表面を形成する表面処理工程を有し、
前記表面処理工程では、連続電気化学還元分析により決定される亜酸化銅の厚さ(T1)及び酸化銅の厚さ(T2)の合計が1nm以上40nm以下であり、亜酸化銅の厚さ(T1)に対する酸化銅の厚さ(T2)の比(T2/T1)が1以上9以下となるように、前記銅材の表面を酸化させる表面処理銅材の製造方法。
Having a surface treatment step of forming an oxidized surface containing cuprous oxide and copper oxide on the surface of the copper material,
In the surface treatment step, the sum of the cuprous oxide thickness (T1) and the copper oxide thickness (T2) determined by continuous electrochemical reduction analysis is 1 nm or more and 40 nm or less, and the cuprous oxide thickness ( A method for producing a surface-treated copper material, wherein the surface of the copper material is oxidized so that the ratio (T2/T1) of the thickness (T2) of the copper oxide to T1) is 1 or more and 9 or less.
銅層と、前記銅層の表面に積層される絶縁樹脂層とを備える銅張積層板の製造方法であって、
請求項1~3のいずれか一項に記載の表面処理銅材の前記酸化表面に、絶縁性樹脂を積層して接合する積層工程を備える銅張積層板の製造方法。
A method for manufacturing a copper clad laminate comprising a copper layer and an insulating resin layer laminated on the surface of the copper layer,
A method for producing a copper-clad laminate, comprising a lamination step of laminating and bonding an insulating resin to the oxidized surface of the surface-treated copper material according to any one of claims 1 to 3.
JP2021127630A 2021-08-03 2021-08-03 Surface-treated copper material, copper-clad laminate sheet, method for manufacturing surface-treated copper material and method for manufacturing copper-clad laminate sheet Pending JP2023022645A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021127630A JP2023022645A (en) 2021-08-03 2021-08-03 Surface-treated copper material, copper-clad laminate sheet, method for manufacturing surface-treated copper material and method for manufacturing copper-clad laminate sheet
TW111128445A TW202323026A (en) 2021-08-03 2022-07-28 Surface-treated copper material, copper-clad laminate,method for manufacturing surface-treated copper material,and method for manufacturing copper-clad laminate
PCT/JP2022/029333 WO2023013552A1 (en) 2021-08-03 2022-07-29 Surface-treated copper material, copper-clad laminate, method for producing surface-treated copper material, and method for producing copper-clad laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021127630A JP2023022645A (en) 2021-08-03 2021-08-03 Surface-treated copper material, copper-clad laminate sheet, method for manufacturing surface-treated copper material and method for manufacturing copper-clad laminate sheet

Publications (1)

Publication Number Publication Date
JP2023022645A true JP2023022645A (en) 2023-02-15

Family

ID=85154762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021127630A Pending JP2023022645A (en) 2021-08-03 2021-08-03 Surface-treated copper material, copper-clad laminate sheet, method for manufacturing surface-treated copper material and method for manufacturing copper-clad laminate sheet

Country Status (3)

Country Link
JP (1) JP2023022645A (en)
TW (1) TW202323026A (en)
WO (1) WO2023013552A1 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2928065B2 (en) * 1993-10-06 1999-07-28 日本製箔株式会社 Manufacturing method of copper foil with good water wettability
JP2016018653A (en) * 2014-07-08 2016-02-01 株式会社Shカッパープロダクツ Negative electrode current collector, nonaqueous electrolyte battery negative electrode, and nonaqueous electrolyte battery

Also Published As

Publication number Publication date
TW202323026A (en) 2023-06-16
WO2023013552A1 (en) 2023-02-09

Similar Documents

Publication Publication Date Title
JP4377867B2 (en) Copper-clad laminate, printed wiring board, multilayer printed wiring board, and methods for producing them
US10244635B2 (en) Production method for copper-clad laminate plate
TWI808183B (en) Coarse treatment of copper foil, copper-clad laminates and printed wiring boards
TWI841559B (en) Roll film, method for manufacturing roll film, method for manufacturing copper-clad laminate, and method for manufacturing printed circuit board
JP2017024265A (en) Insulating film, method for manufacturing insulating film, and method for manufacturing metal-clad laminate
JP2009172996A (en) Flexible copper clad laminated board and its manufacturing method
JP6423494B1 (en) Manufacturing method of laminate
JP2017002115A (en) Fluorine resin film, laminated body, and method for producing the laminated body
JP2007055165A (en) Flexible copper-clad laminated sheet and its manufacturing method
JP2023022645A (en) Surface-treated copper material, copper-clad laminate sheet, method for manufacturing surface-treated copper material and method for manufacturing copper-clad laminate sheet
JPH0281495A (en) Flexible double-sided metal-foil laminated sheet
WO2016031559A1 (en) Method for manufacturing flexible copper wiring board, and flexible copper-clad layered board with support film used in said copper wiring board
JP6178035B1 (en) Method for producing copper clad laminate
JP7424601B2 (en) Laminate, resin film, and method for manufacturing the laminate
JP2005324511A (en) Laminate and its manufacturing method
JP2007036098A (en) Printed wiring board and manufacturing method therefor
JP2007042945A (en) Method of preventing deterioration of liquid crystal polymer in circuit substrate and circuit substrate
JP2007260608A (en) Method for manufacturing copper-clad laminate
KR101590081B1 (en) A surface treatment method for pcb inner layer
JP7482104B2 (en) LAMINATE AND METHOD FOR MANUFACTURING LAMINATE
WO2022065250A1 (en) Metal-clad laminate and method for producing same
CN116194288A (en) Metal-clad laminate and method for producing same
JP6827022B2 (en) Copper foil for flexible printed circuit boards, copper-clad laminates using it, flexible printed circuit boards, and electronic devices
JP2024035266A (en) Method for manufacturing metal clad laminate
JP2016187893A (en) Method for producing metal foil laminated film and circuit board having metal foil laminated film produced by the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240515