JP2023013034A - 画像処理装置、画像処理方法、およびプログラム - Google Patents

画像処理装置、画像処理方法、およびプログラム Download PDF

Info

Publication number
JP2023013034A
JP2023013034A JP2021116925A JP2021116925A JP2023013034A JP 2023013034 A JP2023013034 A JP 2023013034A JP 2021116925 A JP2021116925 A JP 2021116925A JP 2021116925 A JP2021116925 A JP 2021116925A JP 2023013034 A JP2023013034 A JP 2023013034A
Authority
JP
Japan
Prior art keywords
correction target
target value
value
image processing
recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021116925A
Other languages
English (en)
Other versions
JP2023013034A5 (ja
Inventor
美乃子 加藤
Minoko Kato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2021116925A priority Critical patent/JP2023013034A/ja
Priority to US17/860,282 priority patent/US11836554B2/en
Publication of JP2023013034A publication Critical patent/JP2023013034A/ja
Publication of JP2023013034A5 publication Critical patent/JP2023013034A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K15/00Arrangements for producing a permanent visual presentation of the output data, e.g. computer output printers
    • G06K15/02Arrangements for producing a permanent visual presentation of the output data, e.g. computer output printers using printers
    • G06K15/027Test patterns and calibration
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K15/00Arrangements for producing a permanent visual presentation of the output data, e.g. computer output printers
    • G06K15/02Arrangements for producing a permanent visual presentation of the output data, e.g. computer output printers using printers
    • G06K15/10Arrangements for producing a permanent visual presentation of the output data, e.g. computer output printers using printers by matrix printers
    • G06K15/102Arrangements for producing a permanent visual presentation of the output data, e.g. computer output printers using printers by matrix printers using ink jet print heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/21Ink jet for multi-colour printing
    • B41J2/2132Print quality control characterised by dot disposition, e.g. for reducing white stripes or banding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/21Ink jet for multi-colour printing
    • B41J2/2132Print quality control characterised by dot disposition, e.g. for reducing white stripes or banding
    • B41J2/2146Print quality control characterised by dot disposition, e.g. for reducing white stripes or banding for line print heads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K15/00Arrangements for producing a permanent visual presentation of the output data, e.g. computer output printers
    • G06K15/02Arrangements for producing a permanent visual presentation of the output data, e.g. computer output printers using printers
    • G06K15/18Conditioning data for presenting it to the physical printing elements
    • G06K15/1848Generation of the printable image
    • G06K15/1856Generation of the printable image characterized by its workflow
    • G06K15/186Generation of the printable image characterized by its workflow taking account of feedback from an output condition, e.g. available inks, time constraints
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/40Picture signal circuits
    • H04N1/407Control or modification of tonal gradation or of extreme levels, e.g. background level
    • H04N1/4076Control or modification of tonal gradation or of extreme levels, e.g. background level dependent on references outside the picture
    • H04N1/4078Control or modification of tonal gradation or of extreme levels, e.g. background level dependent on references outside the picture using gradational references, e.g. grey-scale test pattern analysis

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Quality & Reliability (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Ink Jet (AREA)

Abstract

【課題】記録ヘッドの構成に関わらず、記録ヘッドにおける複数のノズル間の吐出特性のばらつきを含む記録特性のばらつきに起因するムラの発生を抑制することが可能な技術を提供する。【解決手段】1または複数のノズルに対応する単位領域を含む補正ターゲット値生成領域に設定された第1設定補正ターゲット値と、当該補正ターゲット値生成領域に対応する前記単位領域による記録濃度との差に応じて、前記第1設定補正ターゲット値を更新する。また、補正ターゲット値を更新した前記補正ターゲット値生成領域である更新領域に隣接し、かつ、未だ前記補正ターゲット値を更新していない前記補正ターゲット値生成領域に設定された第2設定補正ターゲット値と、前記更新領域の補正ターゲット値との差に応じて、前記第2設定補正ターゲット値を更新する。【選択図】図10

Description

本発明は、複数のノズルを用いて、当該複数のノズルと相対移動する記録媒体に対して画像を記録するための記録データを生成する画像処理装置、画像処理方法、およびプログラムに関する。
インクジェット方式により複数のノズルからインクを吐出可能な記録ヘッドの、各ノズルにおけるインクの吐出特性に起因する濃度ムラや色ムラなどを補正する技術として、ヘッドシェーディング技術、カラーシェーディング技術が知られている。これらの技術では、吐出特性に基づく吐出量が所定範囲外となる領域において記録ドット数を増減することにより、当該領域の、当該吐出量が所定範囲内となる領域との間での濃度差や色差などを補正する。
なお、吐出特性に基づく吐出量が所定範囲外となる領域において、その吐出量が、所定範囲から大きく外れていると、ヘッドシェーディング技術による記録ドット数の変動が大きくなる。これにより、吐出量が所定範囲外となる領域と吐出量が所定範囲内となる領域との間で、記録されるドットパターンが大きく異なり、こうしたドットパターンの差が、空間周波数のムラとして視認されてしまうことがある。こうした課題を解決するための技術として、例えば、特許文献1では、サイズの小さいドット、濃度の低いインクによるドットを用いて、空間周波数のムラの発生を抑制する技術が開示されている。
特開2004-168000号公報
しかしながら、特許文献1に開示の技術では、記録ヘッドは、小サイズのドットを吐出可能なノズルを備えたり、濃度の低いインクを吐出可能であったりする必要があり、こうした構成を備えていない記録ヘッドには上記技術を適用することができない。
本発明は、上記課題に鑑みていなされたものであり、記録ヘッドの構成に関わらず、記録ヘッドにおける複数のノズル間の吐出特性のばらつきを含む記録特性のばらつきに起因するムラの発生を抑制することが可能な技術を提供することを目的とする。
上記目的を達成するために、本発明の一実施形態は、インクを吐出する1または複数のノズルに対応する単位領域での記録特性に応じた記録濃度を取得する取得手段と、ヘッドシェーディング処理で用いる補正値を生成する際の目標濃度値となる補正ターゲット値を、前記取得手段で取得した記録濃度に応じて生成する補正ターゲット値生成手段と、を備えた画像処理装置であって、前記補正ターゲット値生成手段は、前記単位領域を含む補正ターゲット値生成領域に設定された第1設定補正ターゲット値と、前記補正ターゲット値生成領域に対応する前記単位領域による記録濃度との差に応じて、前記第1設定補正ターゲット値を更新する第1の更新を行い、前記補正ターゲット値を更新した前記補正ターゲット値生成領域である更新領域に隣接し、かつ、未だ前記補正ターゲット値を更新していない前記補正ターゲット値生成領域に設定された第2設定補正ターゲット値と、前記更新領域における更新された前記補正ターゲット値である第1更新補正ターゲット値との差に応じて、前記第2設定補正ターゲット値を更新する第2の更新を行う、ことを特徴とする。
本発明によれば、記録ヘッドの構成に関わらず、記録ヘッドにおける複数のノズル間の吐出特性のばらつきを含む記録特性のばらつきに起因するムラの発生を抑制することができるようになる。
実施形態の画像処理装置を備えた記録システムの概略構成図。 記録ヘッドにおけるノズルの配置の一例を説明する図。 記録装置およびホストPCの制御系のブロック構成図。 記録システムにおける画像処理に関する機能的構成のブロック図。 画像処理の処理ルーチンを示すフローチャート。 補正値を生成する生成処理の処理ルーチンを示すフローチャート。 読み取り値から階調特性を推定する際に用いる関係図。 補正ターゲット値生成処理の処理ルーチンを示すフローチャート。 補正ターゲット値生成領域における記録濃度を示す図。 更新処理の処理ルーチンを示すフローチャート。 注目領域の補正ターゲット値の更新を説明する図。 対象領域の補正ターゲット値の更新を説明する図。 色差の許容差に応じた、許容の範囲および色差の程度を示す図。 補正値の取得方法を説明する図。 補正ターゲット値生成領域の変形例を示す図。
以下、添付の図面を参照しながら、画像処理装置、画像処理方法、およびプログラムの実施形態の一例を詳細に説明する。なお、以下の実施形態は、本発明を限定するものではなく、また、本実施形態で説明されている特徴の組み合わせのすべてが本発明の解決手段に必須のものとは限らない。また、実施形態に記載されている構成要素の相対位置、形状などは、あくまで例示であり、この発明の範囲をそれらのみに限定する趣旨のものではない。
図1は、実施形態による画像処理装置を備えた記録システムの概略構成図である。図1の記録システム10は、記録媒体に対してインクを吐出して記録する記録装置100と、記録装置100のホスト装置としてのパーソナルコンピュータ(PC)200とを備えている。本実施形態では、ホストPC200が画像処理装置として機能している。
<記録装置>
記録装置100は、フルラインタイプのインクジェット記録装置である。記録装置100は、記録媒体Mに対してインクを吐出して記録する記録ヘッド102と、記録媒体Mを搬送する搬送ローラ104と、記録媒体Mに記録された画像を読取可能なスキャナ106とを備えている。
記録ヘッド102は、記録ヘッド102K、102C、102M、102Yの4つが、Y方向に沿って並設されている。記録ヘッド102Kは、+Y方向の最も上流側に位置し、ブラックインク(Kインク)を吐出する。記録ヘッド102Cは、記録ヘッド102Kの+Y方向下流側に位置し、シアンインク(Cインク)を吐出する。記録ヘッド102Mは、記録ヘッド102Cの+Y方向下流側に位置し、マゼンタインク(Mインク)を吐出する。記録ヘッド102Yは、記録ヘッド102Mの+Y方向下流側に位置し、イエローインク(Yインク)を吐出する。
記録ヘッド102は、Y方向と交差(本実施形態では直交)するX方向に延在しており、Y方向に搬送される記録媒体Mの幅方向における記録領域に対応して、複数のノズルが1200dpiのピッチでX方向に配列して形成されるノズル列を備えている。記録ヘッド102におけるノズルは、対応するインクを吐出するための構成である。記録装置100は、記録ヘッド102に対して対応するインクを供給する供給機構を備えている。
搬送ローラ104は、搬送モータ(不図示)の駆動力によって回転して、記録媒体MをY方向に搬送する。なお、記録装置100では、搬送ローラ104以外にも搬送モータにより駆動されるローラが設けられており、このローラと搬送ローラ104とによって記録媒体Mが搬送される。記録装置100における記録媒体Mの搬送機構としては、こうした搬送ローラ104などのローラに限定されるものではなく、公知の種々の技術を適用することができる。
搬送ローラ104などによって記録媒体Mが搬送されている間に、記録ヘッド102K、102C、102M、102Yにおけるノズルから、記録媒体Mの搬送速度に応じた周波数で、記録データに基づいてインクの吐出動作が行われる。これにより、各色のインクドットが記録データに対応して記録媒体Mに付与されて、記録媒体Mに画像が形成される。
スキャナ106は、記録ヘッド102の+Y方向下流側に設けられ、その読取領域は、記録媒体MのX方向における記録領域をカバーする長さを備えている。具体的には、スキャナ106には、記録媒体Mと対向する面に、X方向に沿って所定ピッチで読取素子(不図示)が配列されている。スキャナ106は、記録ヘッド102により記録された画像など、搬送ローラ104などにより搬送される記録媒体Mに記録された画像を読み取り、RGBの多値データとして出力することができる。本実施形態では、ヘッドシェーディング処理(HS処理)を行う際に記録されるテストパターンの読み取りに用いられる。記録装置100における読取機構としては、スキャナ106に限定されるものではない。つまり、読取機構は、記録装置100と別体で設けられてもよいし、X方向に移動しながら記録媒体Mに記録された画像を読み取る形態としてもよい。
<記録ヘッド>
図2は、インクを吐出するノズルが形成されたチップの記録ヘッドにおける配置例を示す図であり、(a)は長方形のチップを千鳥状に配置した例であり、(b)は平行四辺形のチップを所定方向に沿って配置した例である。
記録ヘッド102には、記録媒体Mと対向する面において、インクを吐出する複数のノズル210がX方向に配列されてノズル列が形成されている。このノズル列の長さは、X方向において、記録媒体Mの記録領域の幅に対応して形成されている。
より詳細には、記録ヘッド102にはそれぞれ、ノズル列が形成された複数のチップ202が、隣り合うチップ同士がY方向において隣接し、かつ、その一部がX方向で重なり合うようにずれて配置されている(図2(a)参照)。具体的には、チップ202は長方形である。そして、+X方向の最も上流側に位置するチップ202‐1およびチップ202-1に隣接するチップ202-2については、チップ202-1の+Y方向下流側に、X方向においてその一部が重なるようにして、チップ202-2が配置される。また、チップ202-2およびチップ202-2に隣接するチップ202-3については、チップ202-2の+Y方向上流側に、X方向においてその一部が重なるようにして、チップ202‐3が配置される。そして、チップ202-3に隣接するチップ以降については、上記した配置が繰り返されている。即ち、チップ202は、千鳥配列され、全体としてX方向に延在するように配置されていることとなる。チップ202にはそれぞれ、複数のノズル210がX方向に配列されて形成されたノズル列が、Y方向に4列形成されている。4つのノズル列は、+Y方向の下流側に向かうに従って、所定量ずつ+X方向にずれて形成されている。そして、各チップ202により構成されるノズル列は、選択的に吐出動作を実行されることにより、記録領域212に対して、1200dpiのピッチでドットを記録することができるように構成されている。記録領域212のX方向の長さは、記録ヘッド102によりX方向での記録可能な範囲、つまり、X方向においてノズルが形成されている範囲に対応している。
記録ヘッド102のチップ構成については、上記した形態に限定されるものではく、図2(b)のようなチップ構成としてもよい。図2(b)では、記録ヘッド102には、ノズル列が形成された複数のチップ204がX方向に沿って一列に配置されている。具体的には、チップ204は平行四辺形である。そして、隣接するチップ同士の短辺が平行となるように、Y方向にずれることなく複数のチップ204がX方向に沿って配置されている。チップ204にはそれぞれ、複数のノズル210がX方向に配列されて形成されたノズル列が、Y方向に3列形成されている。3つのノズル列は、+Y方向の下流側に向かうに従って、所定量ずつ-X方向にずれて形成されている。そして、各チップ204により構成されるノズル列は、選択的に吐出動作を実行されることにより、記録領域212に対して、1200dpiのピッチでドットを記録することができるように構成されている。
図2(a)(b)には、記録領域212を分割するように形成された領域220が示されている。この領域220は、HS処理で用いる補正値を取得する際に利用される補正ターゲット値を生成する領域であり、補正ターゲット値を含むその詳細については、後述する。以下、領域220は、補正ターゲット値生成領域220と称する。
記録装置100は、フルラインタイプのインクジェット記録装置に限定されるものではなく、記録ヘッドやスキャナをX方向に走査して記録や読み取りを行う、所謂、シリアルスキャンタイプのインクジェット記録装置であってもよい。また、記録装置100は、記録媒体Mに対して記録ヘッド102から直接インクを付与する形態に限定されるものではない。即ち、中間転写体に一旦インク層を形成してから、記録媒体Mに当該インク層を転写する形態であってもよい。記録装置100では、記録ヘッド102により記録可能なインクを、種類の異なる4色のインクとしたが、これに限定されるものではなく、1~3、あるいは5色以上のインクを用いるようにしてもよい。
<記録装置の制御系構成>
図3は、記録システムを構成する記録装置および画像処理装置の制御系のブロック構成図である。なお、図3には、主要な構成が示されているものであり、記録装置100および画像処理装置としてのホストPC200は、図3に示す構成以外の構成を備えていてもよい。
記録装置100は、記録装置100全体の制御を行う主制御部302を備えている。主制御部302は、例えば、中央処理装置(CPU)、ROM、RAMなどによって構成されている。また、記録装置100は、記録ヘッド102に出力する前の記録データが、ラスタデータとして格納される記録バッファ304と、記録ヘッド102の制御を行うヘッドドライバ306とを備えている。ヘッドドライバ306は、記録バッファ304に格納された記録データに従って、各ノズルからインクを吐出させる。さらに、記録装置100は、搬送モータの制御を行う搬送モータドライバ308と、ホストPC200との間でデータ信号の送受信を行うための通信インタフェース(I/F)310とを備えている。さらにまた、記録装置100は、ホストPC200から受信した画像データを一時的に格納するデータバッファ312を備えている。上記した各構成についてはそれぞれ、システムバス314により接続されている。
<画像処理装置の制御系構成>
画像処理装置として機能するホストPC200は、画像データの作成、作成した画像データへの各種の処理、実行する処理時に用いる情報の生成などを実行可能な主制御部322を備えている。主制御部322は、例えば、CPU、ROM、RAMなどによって構成されている。また、ホストPC200は、記録装置100との間でデータ信号の送受信を行うための通信I/F324を備えている。通信I/F324は、信号線332により記録装置100の通信I/F310と接続されている。
さらに、ホストPC200は、表示部としてのディスプレイ(不図示)に接続されるディスプレイI/F326と、操作部としてのキーボード(不図示)、マウス(不図示)に接続されるキーボード・マウスI/F328とを備えている。主制御部322は、ディスプレイI/F326を介して、ディスプレイの表示を制御する。また、主制御部322には、キーボードおよびマウスを用いたユーザの操作内容が、キーボード・マウスI/F328を介して入力される。そして、主制御部322は、入力された操作内容に基づいて各種の処理を実行する。上記した各構成についてはそれぞれ、システムバス330により接続されている。
<記録システムの機能的構成>
次に、記録システム10の機能的構成について説明する。なお、以下の説明では、記録媒体上の各画素に対するインクの吐出、非吐出を表す2値データである記録データを得るための画像処理に関する構成について説明し、記録システム10に備わる公知の種々の構成については、その説明を省略する。図4は、記録システムにおける機能的構成を示すブロック図である。
記録システム10は、画像データが入力される入力部402と、入力部402から出力された画像データを、記録装置100の色再現域に対応した画像データに変換する入力色変換処理部404とを備えている。また、主制御部322は、入力色変換処理部404によって変換された画像データの色信号値を、記録装置100で用いるインクに対応した色信号値に変換するインク色分解処理部406を備えている。さらに、主制御部322は、インク色分解処理部406で変換したインク色信号値を有する画像データに対して、記録ヘッド102における各ノズルの吐出特性に応じた補正を行うHS処理部408を備えている。
主制御部322はさらに、HS処理部408で得られた色信号値を有する画像データに対して、インク色ごとに、出力部414(後述する)で記録されるインクドットの数を調整する補正を行う出力階調補正処理部410を備えている。また、主制御部322は、出力階調補正処理部410で得られた色信号値を有する画像データに対して、量子化処理を行う量子化処理部412と、量子化処理により得られた2値データ(ドットデータ)を記録装置100に出力する出力部414とを備えている。
なお、上記した構成については、主制御部302または主制御部322に備えられるようにしてもよいし、一部の構成が主制御部302に備えられ、残りの構成が主制御部322に備えられるようにしてもよい。以下の説明では、理解を容易にするために、上記構成は、主制御部322が備えているものとして説明する。
<画像処理>
以上において説明した記録システム10において、記録媒体Mに対して記録を行うこととなる。この記録システム10では、ホストPC200により、画像データを記録装置100で記録可能な記録データに変換する画像処理を行い、得られた画像処理に基づいて記録装置100により記録媒体に対して記録が実行される。記録システム10では、例えば、ホストPC200を介するユーザからの指示により画像処理が開始される。
図5は、画像処理の詳細な処理ルーチンを示すフローチャートである。図5のフローチャートで示される一連の処理は、主制御部322において、CPUがROMに記憶されているプログラムコードをRAMに展開して実行されることにより行われる。あるいはまた、図5におけるステップの一部または全部の機能をASICまたは電気回路などのハードウェアで実行してもよい。また、本願明細書での各処理の説明における符号Sは、各処理の内容を示すフローチャートにおけるステップであることを意味する。以下のフローチャートについても同様である。
画像処理が開始されると、まず、入力部402が画像データを取得する(S502)。ホストPC200には、ホストPC200や他のコンピュータなどにおいて作成された画像データが、記憶領域に格納されている。従って、入力部402は、記憶領域に格納されている画像データを取得することとなる。この画像データは、R(レッド)、G(グリーン)、およびB(ブルー)で表される8ビットの輝度データである。
次に、入力色変換処理部404が、入力された画像データのRGBの入力信号値を、記録装置100の色再現域に対応するR´、G´、B´のデバイス色信号値に変換する色変換処理を行う(S504)。この変換には、マトリクス演算処理、三次元ルックアップテーブル(LUT)を用いる公知の技術を用いることができる。
その後、インク色分解処理部406が、入力色変換処理部404で変換されたデバイス色信号値を、記録装置100で用いられるインク色に対応し色信号値に変換する色分解処理を行う(S506)。具体的には、記録装置100では、K(ブラック)、C(シアン)、マゼンタ(M)、およびY(イエロー)のインクが用いられるため、S506では、デバイス色信号値(R´、G´、B´)を、インク色信号値(K、C、M、Y)に変換する。K,C、M、Yの値は、R、G、Bの値と同様に、それぞれ8ビットで表される。この変換では、S504と同様に、三次元LUTなどの公知の技術を用いることができる。
インク色信号値を取得すると、次に、HS処理部408が、インク色信号値を、記録ヘッド102を構成する各ノズルの吐出特性のばらつきに起因するムラに対応するよう補正するHS処理を行う(S508)。S508では、一次元LUTを用いてインク色信号値(K、C、M、Y)を変換して、HS色信号値(K´、C´、M´、Y´)を取得する。そして、HS信号値を取得すると、次に、出力階調補正処理部410は、HS処理されたHS色信号値を有する画像データに対して、インク色ごとに、記録されるインクドットの数を調整するための補正を行う(S510)。
その後、量子化処理部412は、出力階調補正処理部410で補正された色信号値を有する画像データに対して、量子化処理を行い(S512)、主制御部322は、記録データ生成処理としての画像処理を終了する。量子化処理としては、誤差拡散法、ディザ法などの公知の技術を用いることができる。なお、量子化レベルは、2値であっても、3値以上の多値であってもよい。2値であれば、各画素におけるインク吐出のON(吐出する)/OFF(吐出しない)に変換される。3値以上の多値であれば、さらにインデックス展開で各画素におけるインク吐出のON/OFFの2値データに展開する。インデックス展開は、公知の技術を用いることができる。例えば、予め量子化レベルに応じたドット配置をテーブルとして保持しておき、量子化レベルに基づいてドット配置(インク吐出のON/OFFの2値)を決定する。
こうして画像処理により取得した2値データ、つまり、記録データは、出力部414によって通信I/F324を介して記録装置100に出力される。記録装置100では、ユーザから記録開始が指示されると、入力された2値データに基づいて、記録媒体に対して記録を行う記録処理が実行される。
上記した画像処理は、以下のように変形してもよい。入力部402が保持する画像データは、RGB形式で表現されるデータとしたが、これに限定されるものではない。各画素の表現形式は、CMYK形式であってもよい。あるいは、既存の規格で、入力非依存色空間、例えば、Labで表現される色と対応付けられた色番号の形式であってもよい。また、画像処理の各処理のビット数は8ビットとしたが、これに限定されるものではなく、16ビットなどの高階調としてもよい。さらに、上記画像処理では特に記載しなかったが、S506の色分解処理においてインク色信号値に変換した以降の処理では、インク色ごとに処理を行うこととなる。
S504の色変換処理では、入力された画像データのRGBやCMYKといったデバイス依存の色空間のデータ形式から、LabやXYZといったデバイス非依存の色空間に変換し、さらにデバイス依存の色空間に変換する手法を用いてもよい。S506の色分解処理では、CMYKの4色への変換を例として示したが、変換される色については、これら4色に限定されるものではない。例えば、粒状感の低減を目的として、CMYKの色相と同等の色相で、かつ、濃度の低い淡色インクなど、記録装置100が更に他の種類のインクを備えていれば、それに対応したインク色への変換を行う。また、記録装置100では、インク色として、例えば、オレンジ、グリーン、バイオレット、ブルーといった、基本色(CMYK)と色相の異なる特別色を備えていてもよい。
<HS処理で用いる補正値の生成>
次に、HS処理で用いる補正値の生成について説明する。具体的には、階調値を変換する変換テーブルである一次元ルックアップテーブルを補正値として生成する。図6は、HS処理で用いる補正値を生成する生成処理の詳細な処理ルーチンを示すフローチャートである。図6のフローチャートで示される一連の処理は、主制御部322において、CPUがROMに記憶されているプログラムコードをRAMに展開して実行されることにより行われる。あるいはまた、図6におけるステップの一部または全部の機能をASICまたは電気回路などのハードウェアで実行してもよい。
図6の生成処理では、まず、主制御部322は、記録装置100において、記録媒体Mに所定のテストパターンを記録する(S602)。所定のテストパターンは、補正値を取得するための単位領域(後述する)におけるノズルの吐出特性を取得するための公知のパターンであり、X方向において記録領域212全体に記録される。次に、主制御部322は、スキャナ106により、記録されたテストパターンを読み取る(S604)。即ち、主制御部322は、記録装置100に対して、所定のテストパターンを記録させ、記録された所定のテストパターンを読み取るように制御する。
その後、主制御部322は、記録領域212における単位領域ごとに読み取り値を解析し、当該単位領域におけるインクの吐出量を推定する(S606)。そして、推定した吐出量に基づいて、単位領域における入力階調と記録濃度との関係である階調特性を推定する(S608)。単位領域とは、補正値を取得するための領域であり、1またはX方向で連続する複数のノズルに対応する領域である。なお、この単位領域は、X方向において、後述する補正ターゲット値生成領域よりも小さい。
ホストPC200は、記憶領域などに、スキャナ106により読み取られた信号値(読み取り値)と記録される濃度(記録濃度)との対応関係を保持している。このため、特定の階調のパターン、つまり、所定のテストパターンを記録して読み取ることで、入力階調と記録濃度との対応関係である階調特性を推定することができる。
図7(a)は、スキャナによる読み取り値と記録濃度との関係を示すグラフである。ホストPC200の記憶領域には、図7(a)のような、スキャナ106による読み取り値と記録濃度との対応関係を示す情報が格納されている。図7(a)では、横軸は、スキャナ106による読み取り値を示し、0~255の値をとる。スキャナ106によって、想定する最も明るい色が読み取られた場合の信号値を「255」、想定する最も暗い色が読み取られた場合の信号値を「0」とする。縦軸は記録濃度を示す。図7(a)では、例えば、単位領域において、読み取り値がP1のときには、記録濃度はP2となる。こうして単位領域での記録濃度を取得すると、次に、取得した記録濃度から、当該単位領域におけるインクの吐出量(以下、単に「吐出量」とも称する。)を推定する。
従って、S606では、単位領域ごとに、スキャナ106による読み取り値から記録濃度を取得し、この記録濃度に基づいて、当該単位領域に対応におけるインクの吐出量を推定する。図7(b)は、記録濃度と吐出量との関係を示すグラフである。この記録濃度と吐出量との対応関係示す情報についても、ホストPC200の記憶領域に格納されている。図7(b)では、横軸は記録濃度、縦軸は推定されるインクの吐出量を示す。図7(b)では、記録濃度がP2のとき、推定されるインクの吐出量はP3となっている。つまり、S606では、スキャナ106の読み取り値がP1のときに、推定されるインクの吐出量としてP3が取得されることとなる。
なお、図7(b)では、縦軸の、推定されるインクの吐出量については、具体的な吐出量の値であってもよいし、設定された基準に従って定められたランク数であってもよい。ランクとしては、例えば、大中小の3つのランクとしてもよいし、大から小までの4以上の複数のランクとし、各ランクは、推定されるインクの吐出量の大小と関連付けられる。
インクの吐出量が推定されると、S608において、当該吐出量に基づいて階調特性を推定する。図7(c)は、吐出量ランクに応じた階調特性の一例を示すグラフである。この吐出量ランクに応じた階調特性についても、ホストPC200の記憶領域に格納されている。図7(c)では、横軸は、記録のために入力する信号値、つまり、入力階調値を示し、縦軸は記録濃度を示す。横軸は、0~255の8ビットの階調値である。図7(c)の階調特性では、階調値が大きくなるほど記録されるドットの数が多くなる、つまり、記録濃度が大きくなる。
図7(c)の3つの階調特性702、704、706は、それぞれ異なる吐出量ランクに対する階調特性を示している。階調特性702は、大きな吐出量で記録される際の入力階調値と記録濃度との関係を示している。階調特性702では、階調特性704、706と比較して、低階調値側で記録濃度が高くなっており、最大の入力階調値よりも低階調値側で記録濃度が飽和している、つまり、記録濃度の上限に達している。従って、S606で推定された吐出量あるいは吐出量ランクが大きい場合には、S608では、推定される階調特性として、階調特性702が選択される。
階調特性704は、中程度の吐出量で記録される際の入力階調値と記録濃度との関係を示している。階調特性704では、階調特性702と比較して、各階調値における記録濃度が低くなっている。一方、階調特性706と比較して、低階調値側で記録濃度が高くなっている。階調特性704では、最大の入力階調値で記録濃度の上限に達している。従って、S606で推定された吐出量あるいは吐出量ランクが中程度の場合には、S608では、推定される階調特性として、階調特性704が選択される。
階調特性706は、小さな吐出量で記録される際の入力階調値と記録濃度との関係を示している。階調特性706は、階調特性702、704と比較して、各階調値における記録濃度が低くなっている。階調特性706では、最大の入力階調値でも記録濃度の上限に達していない。従って、S606で推定された吐出量あるいは吐出量ランクが小さい場合には、S608では、推定される階調特性として、階調特性706が選択される。
本実施形態では、1つの階調のテストパターンを記録した後に読み取って、吐出量を推定し、階調特性を推定するようにしたが、これに限定されるものではない。つまり、階調の異なる複数のテストパターンを記録して読み取り、この読み取り値から階調特性を生成するようにしてもよい。この場合、図7(a)で示される読み取り値と記録濃度の関係から、図7(c)で示される入力階調値と記録濃度の関係である階調特性を生成することができる。
図6に戻る。階調特性を推定すると、次に、主制御部322は、補正ターゲット値生成領域ごとに、補正する際の目標濃度値となる補正ターゲット値を生成する補正ターゲット値生成処理を行う(S610)。図8は、生成処理のサブルーチンである補正ターゲット値生成処理の処理ルーチンを示すフローチャートである。
補正ターゲット値生成処理が開始されると、まず、主制御部322は、補正ターゲット値を生成する補正ターゲット値生成領域を設定する(S802)。S802では、記録領域212を複数の領域に分割し、補正ターゲット値生成領域220(図2参照)を設定する。補正ターゲット値生成領域220としては、例えば、ノズルが生成されたチップにおいて、X方向において、規則性を持って連続して配置された複数のノズルに対応する領域とする。具体的には、記録ヘッド102において、図2(a)のようにチップ202が配置されている場合、例えば、Y方向において異なる位置に配置され、かつ、X方向において連続する4つのノズル210を含む領域を補正ターゲット値生成領域220とする。また、記録ヘッド102において、図2(b)のようにチップ204が配置されている場合、例えば、1つのチップ204に形成されたすべてのノズル210を含む領域を補正ターゲット値生成領域220とする。
また、補正ターゲット値生成領域220は、スキャナ106による読み取りによって記録濃度を検出する単位領域、つまり、HS処理で用いる補正値を生成する領域よりも大きく、例えば、単位領域の整数倍となっている。補正ターゲット値生成領域220が、単位領域より大きい理由としては、チップ202、204内のノズルのばらつきが高周波成分を持つことによる。記録濃度の検出、HS処理で用いる補正値の算出については、チップ内のノズルのばらつきを補正するものであり、数ノズル単位の細かい領域で行う必要がある。これに対して、補正ターゲット値の算出では、チップ間のばらつきなど、低周波のばらつきに対応するものであるためである。
なお、補正ターゲット値生成領域220および単位領域については、それぞれ記録システム10の構成に適した大きさとする。補正ターゲット値生成領域220は、例えば、数mm~十数mm程度とする。また、単位領域については、例えば、数ノズル分である0.1mm程度とする。これらの領域の大きさは、ホストPC200における演算スピードなどに応じて、より大きく設定してもよいし、より小さく設定してもよい。
次に、主制御部322は、各補正ターゲット値生成領域220に対して、所定の補正ターゲット値を設定する(S804)。そして、各補正ターゲット値生成領域220において、所定の補正ターゲット値を用いてHS処理を行った場合の補正量(図9参照)を算出する(S806)。所定の補正ターゲット値は、ホストPC200の記憶領域などに保持されている値である。S804では、補正ターゲット値生成領域220のすべてに対して、同一の所定の補正ターゲット値を設定する。なお、S804では、所定の補正ターゲット値を、各補正ターゲット値生成領域220に個別に設定されるようにしてもよい。また、S806では、所定の補正ターゲット値を用いて、HS処理を行った場合の補正量を算出する。つまり、S806では、各補正ターゲット値生成領域220における記録濃度と、所定の補正ターゲット値との差分を算出する。各補正ターゲット値生成領域220における記録濃度とは、記録されたテストパターンのスキャナ106による読み取り値から得られた記録濃度とする。即ち、S604で読み取った値から得られた記録濃度とする。
その後、主制御部322は、補正ターゲット値生成領域220ごとにHS処理による記録濃度の変化量を取得する(S808)。そして、取得した変化量と、予め設定された閾値Fとを比較し、各補正ターゲット値生成領域220において、変化量が閾値F以下であるか否かを判定する(S810)。S808では、S806で算出した補正量、つまり、HS処理の前後の濃度値の差分に応じたドット数を変化量とする。第1閾値としての閾値Fについては、ドットパターンの差がムラとして視認されるドット数の差分の下限値より所定量だけ小さい値とする。換言すると、閾値Fは、ドットパターンの差がムラとして視認されないドット数の変化量の上限値となる。所定量については、例えば、インクの種類、記録媒体の種類などに応じて適宜に変更することができる。
S810において、各補正ターゲット値生成領域220において、変化量が閾値F以下であると判定されると、所定の補正ターゲット値を、補正値を生成するための補正ターゲット値としたまま、S612に進む。また、S810において、各補正ターゲット値生成領域において変化量が閾値F以下でない、つまり、変化量が閾値Fより大きくなる補正ターゲット値生成領域が存在すると判定されると、主制御部322は補正ターゲット値を更新する更新処理を行う(S812)。そして、更新処理が終了すると、S612に進む。即ち、S810の判定処理では、すべての補正ターゲット値生成領域220において、変化量が閾値F以下である場合には、S812を経由することなく、S612に進む。一方、S810の判定処理では、変化量が閾値Fよりも大きくなる補正ターゲット値生成領域220が1つでも存在する場合には、S812に進む。
ここで、変化量が閾値F以上となる補正ターゲット値生成領域220が存在する場合について説明する。図9は、変化量が閾値Fより大きくなっている補正ターゲット値生成領域の近傍の領域を示す図である。図9において、領域1~5は、X方向に並んだ補正ターゲット値生成領域220を示し、X方向に平行な太い実線は、補正ターゲット値生成領域220に対応するノズル210で記録された記録濃度を示している。記録濃度は、S402でのスキャナ106による読み取り値から算出されている。また、図9では、領域1にのみ図示したが、各領域内には複数のノズルが対応しており、ノズルごとに吐出量のばらつきがある。図示した記録濃度は、領域内のノズルごとの吐出量のばらつきを平均化したものである。なお、X方向に延在する破線については、所定の補正ターゲット値を示している。
図9では、領域1、2、4、5において、それぞれの対応するノズル210からの吐出量はほぼ同等となっており、記録濃度がほぼ一致している。一方、領域3では、対応するノズル210の吐出量は大きくなっており、他の領域と比べて記録濃度が大きくなっている。領域1、2、4、5の記録濃度は、所定の補正ターゲット値とほぼ同等であり、HS処理の際の補正量、つまり、ドット数の増減は微小となる。一方、領域3の記録濃度は所定の補正ターゲット値よりも非常に大きく、所定の補正ターゲット値に合わせようとすると、ドット数を大きく低減する必要がある。この場合、ドットパターンの差がムラとして視認されないドット数の変化量の上限値とする閾値Fを超えてしまう。従って、領域3を所定の補正ターゲット値に合わせるように補正した場合には、領域3と、領域3に隣接する領域2、4とでドット数の差が大きくなり、これらの領域において空間周波数のムラが生じてしまう。一方、領域3への補正量を閾値F以下とすると、領域3と、領域2、4とで濃度差が解消されず、これらの領域において濃度ムラが生じてしまう。
そこで、本実施形態では、変化量が閾値Fを超える補正ターゲット値生成領域が存在する場合には、当該補正ターゲット値生成領域を中心に複数の領域を対象として、隣接する領域間での変化量が閾値F以下となるように、補正ターゲット値を更新するようにした。つまり、本実施形態では、S812の更新処理において、補正ターゲット値を変更する必要のある補正ターゲット値生成領域を含む複数の領域を対象として、補正ターゲット値の更新を検討し、その結果に応じて補正ターゲット値を更新するようにした。以下、S812の更新処理について、図10を参照しながら詳細に説明する。図10は、補正ターゲット値生成処理のサブルーチンである更新処理の処理ルーチンを示すフローチャートである。
更新処理が開始されると、まず、主制御部322は、補正ターゲット値生成領域220において、補正ターゲット値を更新する注目領域を決定する(S1002)。S1002では、S810における比較で、変化量が閾値Fを超えたと判定された補正ターゲット値生成領域220を注目領域に決定する。例えば、図9では、領域3が注目領域として決定される。以下の説明では、理解を容易にするために、1つの補正ターゲット値生成領域を注目領域として決定する場合について説明する。なお、変化量が閾値Fを超えたと判定された補正ターゲット値生成領域220が複数存在する場合には、当該補正ターゲット値生成領域220をすべて注目領域として、以下の処理を実行することとなる。
次に、主制御部322は、注目領域の補正ターゲット値を、所定の補正ターゲット値から新たな補正ターゲット値に更新する(S1004)。つまり、S1004では、注目領域に設定されている所定の補正ターゲット値である第1設定補正ターゲット値を更新する第1の更新を行う。S1004では、所定の補正ターゲット値を、記録濃度側であり、記録濃度との記録する際のドット数の差分が閾値F以下となる濃度値を、新たな補正ターゲット値である第1更新補正ターゲット値とする。記録濃度から新たな補正ターゲット値(第1更新補正ターゲット値)への変化量については、記録濃度および新たな補正ターゲット値で記録した際のドット数の差分が閾値F以下であればよく、例えば、予め設定されている固定値とする。なお、当該変化量は、注目領域の記録濃度の所定の補正ターゲット値からの差分に応じて変動する変動値としてもよい。
ここで、注目領域近傍の領域の記録濃度値と補正ターゲット値とについて説明する。図11(a)は、図9と同様に、補正ターゲット値生成領域220である領域1~5における記録濃度を示す図である。図11(b)は、S1004で更新した補正ターゲット値を示す図である。図11(a)では、領域3のみが記録濃度が高くなっており、所定の補正ターゲット値に合わせたときのドット数の差分が閾値Fを超えており、S1002において領域3が注目領域として設定される。そして、S1004では、領域3の補正ターゲット値を、図11(b)のように、所定の補正ターゲット値から新たな補正ターゲット値1102に更新する。補正ターゲット値1102は、領域3における記録濃度1104に対して、HS処理に用いる補正値を取得する際に用いる補正ターゲット値である。このため、領域3では、HS処理によって補正ターゲット値1102の記録濃度で記録されることとなる。HS処理により、記録濃度1104から変更されて補正ターゲット値1102の記録濃度で記録されるために、補正ターゲット値1102の記録濃度は、記録濃度1104のドット数から閾値F以下の所定数だけドット数を低減させた濃度値となっている。
ところで、注目領域である領域3に隣接する領域2では、所定の補正ターゲット値と同等の記録濃度となっている。なお、領域2については、S810で変化量が閾値F以下であると判定されており、S1002で注目領域とされず、S1004において補正ターゲット値の更新が行われない。しかしながら、領域2における所定の補正ターゲット値と、領域3の補正ターゲット値1102とに、ドット数の差分が閾値Fを超える濃度差があり、かつ、色差が許容色差閾値Fcを超えていると、HS処理後の記録にドットパターン差ムラ、濃度ムラや色ムラが生じてしまう。許容色差閾値Fcについては、後述する。なお、領域3に隣接する領域4についても同様である。
こうしたムラの発生を抑制するために、本実施形態では、補正ターゲット値を更新した領域に隣接する領域についても補正ターゲット値を更新するか否かを検討するようにした。即ち、S1004で、注目領域の補正ターゲット値を更新すると、次に、主制御部322は、補正ターゲット値を更新した更新領域に隣接し、かつ、未だ補正ターゲット値を更新していない領域を対象領域に決定する(S1006)。その後、主制御部322は、更新領域の補正ターゲット値と、対象領域の補正ターゲット値とを比較する(S1008)。そして、主制御部322は、更新領域の補正ターゲット値と対象領域の補正ターゲット値とが、ドット数の差分が閾値F以下であり、かつ、色差が許容色差閾値Fc以下であるか否かを判定する(S1010)。
更新領域が注目領域の場合(図11(b)参照)、S1006では、更新領域となる領域3に隣接し、かつ、未だ補正ターゲット値を更新していない領域2、4を対象領域に決定する。そして、S1008では、領域3の補正ターゲット値1102と、対象領域である領域2における所定の補正ターゲット値および対象領域である領域4における所定の補正ターゲット値とを比較する。更新領域が注目領域、つまり、領域3でない場合については、後述する。なお、S1006では、直近で補正ターゲット値を更新した領域を更新領域とする。
S1010において、更新領域の補正ターゲット値と対象領域の補正ターゲット値とについて、ドット数の差分が閾値F以下、かつ、色差が許容色差閾値Fc以下であると判定されると、更新処理を終了して、補正ターゲット値生成処理を終了する。また、S1010において、更新処理の補正ターゲット値と対象領域の補正ターゲット値とについて、ドット数の差分が閾値F以下、かつ、色差が許容色差閾値Fc以下でないと判定されると、S1012に進む。
S1012では、主制御部322は、対象領域の補正ターゲット値を、新たな補正ターゲット値に更新する。つまり、S1012では、対象領域に設定されている所定の補正ターゲット値である第2設定補正ターゲット値を更新する第2の更新を行う。対象領域の新たな補正ターゲット値である第2更新補正ターゲット値は、更新領域の補正ターゲット値よりも所定の補正ターゲット値側(第2設定補正ターゲット値側)に位置する。そして、更新領域の補正ターゲット値に対して、記録した際のドット数の差分が閾値F以下、かつ、色差が許容色差閾値Fc以下となる濃度値とする。
例えば、図11(b)の場合、S1012では、領域2および領域4の補正ターゲット値を更新する。図12(a)は、対象領域の新たな補正ターゲット値を示す図である。この場合、S1012では、領域2において、所定の補正ターゲット値側であって、補正ターゲット値1102に対して、ドット数の差分が閾値F以下、かつ、色差が許容色差閾値Fc以下となる濃度値を、新たな補正ターゲット値1202とする。そして、領域2の補正ターゲット値を、所定の補正ターゲット値から補正ターゲット値1202に更新する。また、領域4において、所定の補正ターゲット値側であって、補正ターゲット値1102に対して、ドット数の差分が閾値F以下、かつ、色差が許容色差閾値Fc以下となる濃度値を、新たな補正ターゲット値1204とする。そして、領域4の補正ターゲット値を、所定の補正ターゲット値から補正ターゲット値1204に更新する。
なお、S1010では、すべての対象領域について、その補正ターゲット値と更新領域の補正ターゲット値との差分が、ドット数の差分が閾値F以下、かつ、色差が許容色差閾値Fc以下であると判定されると、更新処理を終了することとなる。一方、対象領域の1つでも、その補正ターゲット値と更新領域の補正ターゲット値との差分が、ドット数の差分が閾値F以下、かつ、色差が許容色差閾値Fc以下でないと判定されると、S1012に進む。
その後、S1006に進み、以降の処理を行う。具体的には、図12(a)のように、領域2、4の補正ターゲット値を更新した直後では、S1006では、領域2、4が更新領域となり、この領域2、4に隣接し、かつ、未だ補正ターゲット値を更新していない領域1、5を対象領域に決定する。つまり、既に補正ターゲット値が更新されている領域3は、対象領域から除外される。そして、S1008では、領域2の補正ターゲット値1202と、対象領域である領域1における所定の補正ターゲット値とを比較するとともに、領域4の補正ターゲット値1204と、対象領域である領域5における所定の補正ターゲット値とを比較する。そして、S1010以降の処理を実行する。
図12(b)は、図12(a)に対応する図であって、各領域について更新処理により更新した補正ターゲット値の分布を示す図である。図12(b)では、領域2、3、4について、補正ターゲット値が更新されている。更新された補正ターゲット値は、隣接する領域における補正ターゲット値との差が、ドット数の差が閾値F以下、かつ、色差が許容色差閾値Fc以下となっている。このため、更新された補正ターゲット値に合わせて算出された補正値によってHS処理されることで、記録結果に、濃度ムラや色ムラ、およびドットパターン差による空間周波数のムラなどの発生が抑制される。
第2閾値としての許容色差閾値Fcについて説明する。人間の目では、隣接している領域の色差を感知し易く、離間している領域の色差を感知し難い。一般的に、図13に示すような色差の許容差についてランク付けがなされている。図13は、色差の許容差のランクに応じた、色差ΔEの範囲および知覚される色差の程度を示す表である。色差ΔEとは、CIE-L***より公知の式に従って算出されるものである。
図13におけるランクによると、AA級許容差において、隣接比較でわずかに色差が感じられるとされており、その上のランクのAAA級許容差では、厳格な許容色差の規格に設定できるものとされている。従って、色差が許容色差閾値Fc以下とは、例えば、色差ΔEが、AAA級許容差の上限の0.8以下とすることが好ましい。つまり、領域1と領域2との間、領域2と領域3との間、領域3と領域4との間、および領域4と領域5との間では、補正ターゲット値による色差が0,8以下とすることで、隣接する領域での色差が目立たず、色ムラが目立たなくなる。
なお、更新処理では、隣接する領域について、許容色差閾値Fcを含む条件に基づいて、新たな補正ターゲット値を取得するようにしたが、これに限定されるものではない。例えば、領域1および領域3などの互いに離間した領域の補正ターゲット値についても許容色差閾値を設けるようにしてもよい。例えば、図13のランクにおいて、A級許容差では、離間比較では、ほぼ気づかれないレベルとされている。従って、対象領域の補正ターゲット値を更新する際には、離間した領域の補正ターゲット値を考慮し、当該補正ターゲット値との色差が第3閾値以下となる補正ターゲット値に更新する。色差が第3閾値以下とは、例えば、図13の表から、A級許容差である色差ΔEが3.2以下とする。
図6に戻る。S610において、各補正ターゲット値生成領域における補正ターゲット値を生成すると、次に、主制御部322は、補正ターゲット値に応じて、単位領域ごとに、HS処理に用いる補正値を生成し(S612)、補正値生成処理としての生成処理を終了する。S612において、単位領域の補正ターゲット値については、当該単位領域を含む補正ターゲット値生成領域220に設定された補正ターゲット値が用いられる。生成された補正値は、S508のHS処理において、補正ターゲット値に合わせたHS色信号値を取得するために、インク色信号値を補正する補正値となる。つまり、この補正値は、画像処理によって得られた記録データに基づいて記録された際の色および濃度を補正ターゲット値に合わせるための値である。
図14(a)は、階調特性704を示す図である。図14(b)は、HS処理で用いる補正値である一次元LUTの一例を示す図である。ここで、入力階調値P4で記録されるべき補正ターゲット値がP6であったとする。そして、補正値を決定する単位領域の階調特性として、S608で階調特性704が推定されたとする。この階調特性704では、入力階調値P4で記録される記録濃度はP5となるから、記録濃度P6で記録されるように変換する必要がある。具体的には、入力階調値P4を、補正ターゲット値である記録濃度P6を与える入力階調値P7に変換するような、入力階調値に対する出力階調値の関係を決定する補正値を生成する。つまり、この場合、S612では、図14(b)のように、入力階調値P4を出力階調値P7に変換する変換テーブルである一次元LUTが補正値として生成される。
以上において説明したように、ホストPC200では、テストパターンの読み取り値に基づく記録濃度と、設定した補正ターゲット値とについて、記録時のドット数の差が閾値Fを超えるときには、補正ターゲット値を更新する。更新する新たな補正ターゲット値は、更新前の補正ターゲット値と比較して、ドット数の差が閾値F以下となるようにする。
また、補正ターゲット値を更新した更新領域と隣接する領域であり、かつ、未だ補正ターゲット値を更新していない領域を対象領域とし、更新領域と対象領域とで補正ターゲット値を比較する。そして、比較した補正ターゲット値間で、ドット数の差が閾値Fを超える条件、色差が許容色差閾値Fcを超える条件のどちらか一方を満たすときには、対象領域の補正ターゲット値を更新する。更新した対象領域の補正ターゲット値は、更新した更新領域の補正ターゲット値と、ドット数の差が閾値以下、かつ、色差が許容色差閾値以下となる。
従来のHS補正技術であれば、個々の補正領域の補正量は、他の領域の濃度値に依存せず、補正前において補正ターゲット値に近い濃度値を呈する領域の補正量は小さくなり、ほぼ補正しない場合もある。本発明においては、注目領域における補正量の決定のためには、注目領域における濃度値と、注目領域と異なる別領域の濃度値に依存する。そのため、ほぼ補正しないでよいような濃度値を呈する領域においても、補正の対象となる。
これにより、画像処理において生成した記録データに基づいて記録された記録結果では、ノズルの吐出特性に起因する濃度ムラおよび色ムラとともに、HS処理による空間周波数のムラの発生を抑制することができるようになる。また、上記のようにして補正ターゲット値を更新することでムラの発生を抑制するようにしており、記録ヘッドの構成によらずに、上記ムラを抑制することができるようになる。
(他の実施形態)
なお、上記実施形態は、以下の(1)乃至(6)に示すように変更してもよい。
(1)上記実施形態では特に記載しなかったが、更新処理のS1002では、変化量が閾値Fを超えたと判定された補正ターゲット値生成領域220が複数存在する場合には、例えば、記録濃度が補正ターゲット値と最も離れている領域から注目領域とする。そして、当該注目領域および当該注目領域に対応する対象領域での補正ターゲット値の更新が終了した後に、その次に記録濃度が補正ターゲット値から離れ、かつ、未だ補正ターゲット値が更新されていない領域を注目領域とする。これにより、効率的に補正ターゲット値生成領域における補正ターゲット値を更新できる。なお、注目領域の決定方法については、これに限定されるものではなく、すべての領域での記録濃度、閾値F、および許容色差閾値Fcに基づいて、多くの組み合わせで処理して最適化する手法でもよい。
(2)上記実施形態では特に記載しなかったが、閾値Fおよび許容色差閾値Fcは、インク色、入力階調値などの条件に応じてその値を変更してもよいし、上記条件に関わらず一定の値としてもよい。例えば、測定上は同じ色差であっても、人間の目には、色差を感知し易い色と感知し難い色とがある。従って、こうした、人間の目による感知のし易さに基づき、インク色や入力階調値に応じて、閾値Fおよび許容色差閾値Fcを変更してもよい。
一般的に、人間の目は、明度の高い色、彩度の高い色では色差を感知し難い。このため、許容色差閾値Fcは、明度の高い色、彩度の高い色については、大きくすることができる。許容色差閾値Fcを大きくすることができるものとしては、例えば、白に近い薄い階調、イエローなどの明るい色である。あるいは、シアンやマゼンタで、インクを多く付与する高階調部分では、低階調部分よりも彩度が高く、人間の目では色差を感知し難いため、許容色差閾値Fcを大きくすることができる。
閾値Fについても、記録条件やインク色によって、濃度ムラを人間の目で感知し易いか否かが異なる。このため、記録条件やインク色によって閾値Fを異ならせるようにしてもよい。例えば、ドットがほとんどない低階調な場合には、多少のドット数が変化してもパターン差を感知することができない。また、ドット数が多い高階調な場合には、ドットパターンが見えるほどの非記録領域がないため、多少のドット数が変化してもドットパターン差を感知することができない。また、普通紙のような滲みの大きい記録媒体を用いた場合には、光沢紙のような滲みの小さい記録媒体を用いた場合よりも、ドットパターンが目立ちにくい。従って、ドットパターンが目立ちにくい、記録媒体の特性、階調、色においては閾値Fを大きく設定してもよい。
(3)上記実施形態では、記録ヘッド102を構成するノズル210の吐出特性に基づいて、補正ターゲット値生成領域220それぞれにおいて補正ターゲット値を決定するようにしたが、これに限定されるものではない。ムラについては、記録媒体の搬送特性、つまり、搬送ローラ、搬送モータの動作ばらつき、記録媒体の特性、つまり、インクの付与により記録媒体Mに生じる波打ち、所謂、コックリングなどによっても生じることがある。つまり、記録媒体上に形成された画像では、ノズルの吐出特性のばらつきに起因する濃度ムラだけでなく、例えば、Y方向に発生する搬送ローラの偏心などによる動作ばらつきに起因する濃度ムラが生じる。また、記録媒体が水分を吸収して紙繊維が収縮することによって生じるコックリングに起因する濃度ムラが生じる。従って、上記動作ばらつきやコックリングに応じて、補正ターゲット値を決定するようにしてもよい。
この場合、記録領域1502全体を、X方向およびY方向において分割して、補正ターゲット値生成領域1504を作成する(図15参照)。図15は、補正ターゲット値生成領域の変形例を示す図である。そして、上記実施形態と同様に生成処理が行われるが、更新処理では、対象領域として、更新領域に対してX方向で隣接する領域とともに、Y方向で隣接する領域が設定されることとなる。
(4)上記実施形態では、画像処理装置としてのホストPC200は、画像データに対して、HS処理を含む画像処理を行って記録データを生成するとともに、インクの吐出特性を含む記録特性のばらつきに応じて、HS処理で用いる補正値を生成するようにした。しかしながら、こうした画像処理装置の機能を、ホストPC200を含む複数の装置により構成するようにしてもよい。例えば、本実施形態による画像処理装置は、少なくとも、HS処理に用いる補正値を取得するための補正ターゲット値を生成する機能を有していればよく、その他の構成のすべて、あるいは、一部を、他の装置で実現するようにしてもよい。また、記録装置100とホストPC200とを別体で設けるようにしたが、これに限定されるものではなく、記録装置100が、ホストPC200の画像処理装置としての各種の機能を備えるようにしてもよい。
(5)上記実施形態では、補正ターゲット値生成領域220を単位領域の整数倍としたが、これに限定されるものではなく、補正ターゲット値生成領域220は単位領域の整数倍でなくてもよい。この場合、2つの補正ターゲット値生成領域220に重なる境界位置に位置する単位領域が生じる。この単位領域については、2つの補正ターゲット値生成領域に設定された補正ターゲット値と、当該単位領域における各補正ターゲット値生成領域の比率とに基づいて補正ターゲット値を設定する。
(6)上記実施形態および(1)乃至(5)に示す各種の形態は、適宜に組み合わせるようにしてもよい。本発明は、上述の実施形態の1以上の機能を実現するプログラムを、ネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサがプログラムを読出し事項する処理でも実現可能である。また、1以上の機能を実現する回路(例えば、ASIC)によっても実現可能である。
200 ホストPC
322 主制御部

Claims (18)

  1. インクを吐出する1または複数のノズルに対応する単位領域での記録特性に応じた記録濃度を取得する取得手段と、
    ヘッドシェーディング処理で用いる補正値を生成する際の目標濃度値となる補正ターゲット値を、前記取得手段で取得した記録濃度に応じて生成する補正ターゲット値生成手段と、を備えた画像処理装置であって、
    前記補正ターゲット値生成手段は、
    前記単位領域を含む補正ターゲット値生成領域に設定された第1設定補正ターゲット値と、前記補正ターゲット値生成領域に対応する前記単位領域による記録濃度との差に応じて、前記第1設定補正ターゲット値を更新する第1の更新を行い、
    前記補正ターゲット値を更新した前記補正ターゲット値生成領域である更新領域に隣接し、かつ、未だ前記補正ターゲット値を更新していない前記補正ターゲット値生成領域に設定された第2設定補正ターゲット値と、前記更新領域における更新された前記補正ターゲット値である第1更新補正ターゲット値との差に応じて、前記第2設定補正ターゲット値を更新する第2の更新を行う、ことを特徴とする画像処理装置。
  2. 前記第1の更新では、前記第1設定補正ターゲット値と、前記第1設定補正ターゲット値が設定された前記補正ターゲット値生成領域に対応する前記単位領域による記録濃度との記録時のドット数の差が、第1閾値を超えるときに、前記第1設定補正ターゲット値を、該記録濃度側であり、該記録濃度との該ドット数の差が前記第1閾値以下となる第1更新補正ターゲット値に更新することを特徴とする請求項1に記載の画像処理装置。
  3. 前記補正ターゲット値生成手段は、前記第1設定補正ターゲット値に基づくドット数と、前記第1設定補正ターゲット値が設定された前記補正ターゲット値生成領域に対応する前記単位領域による記録濃度に基づくドット数との差が、前記第1閾値を超える前記補正ターゲット値生成領域が複数存在するときには、該差が最も大きい前記補正ターゲット値生成領域から補正ターゲット値の更新を行うことを特徴とする請求項2に記載の画像処理装置。
  4. 前記第2の更新では、前記第1更新補正ターゲット値と、前記第2設定補正ターゲット値との、記録時のドット数の差が前記第1閾値を超える条件と、色差が第2閾値を超える条件との少なくとも一方を満たすときに、前記第2設定補正ターゲット値を、前記第1設定補正ターゲット値に対して前記第2設定補正ターゲット値側であり、前記第1更新補正ターゲット値との該ドット数の差が前記第1閾値以下、かつ、前記第1更新補正ターゲット値との色差が前記第2閾値以下となる第2更新補正ターゲット値に更新する、ことを特徴とする請求項2または3に記載の画像処理装置。
  5. 前記第2閾値は、色差ΔEが0.8とすることを特徴とする請求項4に記載の画像処理装置。
  6. 前記補正ターゲット値生成手段は、互いに離間する前記補正ターゲット値生成領域の色差が第3閾値以下となるように、前記第2更新補正ターゲット値を取得することを特徴とする請求項4または5に記載の画像処理装置。
  7. 前記第3閾値は、色差ΔEが3.2とすることを特徴とする請求項6に記載の画像処理装置。
  8. 前記第1閾値は、階調値、インク色、および記録媒体の特性に応じて異なることを特徴とする請求項2から7のいずれか1項に記載の画像処理装置。
  9. 前記第2閾値は、インクの明度、彩度、および階調値に応じて異なることを特徴とする請求項4から7のいずれか1項に記載の画像処理装置。
  10. 前記記録特性は、各ノズルにおけるインクの吐出特性、記録媒体の搬送特性、記録媒体の特性を含むことを特徴とする請求項1から9のいずれか1項に記載の画像処理装置。
  11. 前記補正ターゲット値生成領域は、ノズル列が配列する方向に分割、あるいは、該方向および該方向と交差する方向に分割されて形成されることを特徴とする請求項1から10のいずれか1項に記載の画像処理装置。
  12. 前記補正ターゲット値生成領域は、前記単位領域よりも大きく、所定方向に規則性を持って連続して配置された複数のノズルに対応する領域であることを特徴とする請求項1から11のいずれか1項に記載の画像処理装置。
  13. 前記補正ターゲット値生成領域における前記補正ターゲット値に基づいて、前記単位領域ごとに前記補正値を生成する補正値生成手段をさらに有することを特徴とする請求項1から12のいずれか1項に記載の画像処理装置。
  14. 画像データに基づいて、画素に対するノズルからのインクの吐出または非吐出を表す記録データを生成する記録データ生成手段をさらに有し、
    前記記録データ生成手段では、前記記録データを生成する際、前記補正ターゲット値生成手段で生成した補正ターゲット値に基づいて生成した前記補正値を用いてヘッドシェーディング処理を行うことを特徴とする請求項1から13のいずれか1項に記載の画像処理装置。
  15. ノズルからインクを吐出して記録する記録手段をさらに有することを特徴とする請求項1から14のいずれか1項に記載の画像処理装置。
  16. 前記記録手段により記録された画像を読み取り可能な読取手段をさらに有することを特徴とする請求項15に記載の画像処理装置。
  17. ヘッドシェーディング処理で用いる補正値を生成する際の目標濃度値となる補正ターゲット値を、インクを吐出する1または複数のノズルに対応する単位領域での記録特性に応じて記録濃度に基づいて生成する画像処理方法であって、
    前記単位領域を含む補正ターゲット値生成領域に設定された第1設定補正ターゲット値と、前記補正ターゲット値生成領域に対応する前記単位領域による記録濃度との差に応じて、前記第1設定補正ターゲット値を更新する工程と、
    前記補正ターゲット値を更新した前記補正ターゲット値生成領域である更新領域に隣接し、かつ、未だ前記補正ターゲット値を更新していない前記補正ターゲット値生成領域に設定された第2設定補正ターゲット値と、前記更新領域における更新さえた前記補正ターゲット値である第1更新補正ターゲット値との差に応じて、前記第2設定補正ターゲット値を更新する工程と、を有することを特徴とする画像処理方法。
  18. 請求項1から14のいずれか1項に記載の画像処理装置として、コンピュータを機能させるためのプログラム。
JP2021116925A 2021-07-15 2021-07-15 画像処理装置、画像処理方法、およびプログラム Pending JP2023013034A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021116925A JP2023013034A (ja) 2021-07-15 2021-07-15 画像処理装置、画像処理方法、およびプログラム
US17/860,282 US11836554B2 (en) 2021-07-15 2022-07-08 Image processing apparatus, image processing method, and storage medium with generation of correction target value based on print density

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021116925A JP2023013034A (ja) 2021-07-15 2021-07-15 画像処理装置、画像処理方法、およびプログラム

Publications (2)

Publication Number Publication Date
JP2023013034A true JP2023013034A (ja) 2023-01-26
JP2023013034A5 JP2023013034A5 (ja) 2024-07-12

Family

ID=84976085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021116925A Pending JP2023013034A (ja) 2021-07-15 2021-07-15 画像処理装置、画像処理方法、およびプログラム

Country Status (2)

Country Link
US (1) US11836554B2 (ja)
JP (1) JP2023013034A (ja)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6292621B1 (en) 1996-02-05 2001-09-18 Canon Kabushiki Kaisha Recording apparatus for newly recording a second encoded data train on a recording medium on which an encoded data train is recorded
JP2004168000A (ja) 2002-11-22 2004-06-17 Canon Inc インクジェット記録装置
US7432985B2 (en) 2003-03-26 2008-10-07 Canon Kabushiki Kaisha Image processing method
JP4743418B2 (ja) * 2006-03-03 2011-08-10 富士フイルム株式会社 画像形成装置及び画像形成方法
JP2009190324A (ja) * 2008-02-15 2009-08-27 Seiko Epson Corp 補正値取得方法、液体吐出方法、及び、プログラム
JP6122260B2 (ja) 2012-07-09 2017-04-26 キヤノン株式会社 画像処理装置及びその方法とプログラム
JP6021600B2 (ja) * 2012-11-16 2016-11-09 キヤノン株式会社 画像処理装置および画像処理方法
JP2019018131A (ja) 2017-07-13 2019-02-07 キヤノン株式会社 画像処理装置、画像処理方法、プログラムおよび記憶媒体
JP7204420B2 (ja) * 2018-10-25 2023-01-16 キヤノン株式会社 画像処理装置、及び、画像処理方法
JP2021053995A (ja) * 2019-09-30 2021-04-08 キヤノン株式会社 画像処理装置、画像処理方法及びプログラム

Also Published As

Publication number Publication date
US11836554B2 (en) 2023-12-05
US20230028103A1 (en) 2023-01-26

Similar Documents

Publication Publication Date Title
US8240795B2 (en) Printing method and printing apparatus
US10469710B2 (en) Image processing apparatus and image processing method quantizing data for different types of ink based on a type of print operation to be performed
US8743420B2 (en) Image processor and image processing method
US8616668B2 (en) Image processing apparatus, printing apparatus, and image processing method
US9030712B2 (en) Image processing apparatus, printing apparatus, and image processing method
US8705128B2 (en) Image processing device, printing device, image processing method, and image processing program
US9815274B2 (en) Image recording apparatus and control method therefor
US11090932B2 (en) Image processing apparatus, image processing method and storage medium
US8896883B2 (en) Image processing apparatus, printing apparatus, and image processing method
US20090147283A1 (en) Ejecion control of quality-enhancing ink
US8896884B2 (en) Image processing apparatus, printing apparatus, and image processing method
CA2349314C (en) Multi-level semi-vector error diffusion
US20110043838A1 (en) Image processing device and image processing method
US11652951B2 (en) Image processing apparatus, image processing method, and storage medium for correcting a measurement value using a recording element that ejects ink
JP2011259121A (ja) 画像処理装置及びプログラム
US10919313B2 (en) Image processing apparatus controlling printing according to unidirectional printing method or bidirectional printing method
US8456693B2 (en) Image-processing apparatus and image-processing method
US8619323B2 (en) Image processing apparatus and image processing method for processing multivalued image data and recording an image in a pixel area on recording medium by a plurality of relative scans of recording head and recording medium
JP2023013034A (ja) 画像処理装置、画像処理方法、およびプログラム
US11679599B2 (en) Image processing apparatus and control method thereof generating quantized based on multinary color data and a threshold matrix
US11936835B2 (en) Image processing apparatus, image processing method, and storage medium which reduce a color difference and a frequency difference between two images
US20230385584A1 (en) Printing apparatus, method of controlling printing apparatus, and storage medium
JP7471791B2 (ja) 画像処理装置、画像処理方法及びプログラム
JP2015228587A (ja) 画像処理装置およびその方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240704

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240704