JP2023006065A - Ceramic joined body and method for producing the same - Google Patents

Ceramic joined body and method for producing the same Download PDF

Info

Publication number
JP2023006065A
JP2023006065A JP2021108458A JP2021108458A JP2023006065A JP 2023006065 A JP2023006065 A JP 2023006065A JP 2021108458 A JP2021108458 A JP 2021108458A JP 2021108458 A JP2021108458 A JP 2021108458A JP 2023006065 A JP2023006065 A JP 2023006065A
Authority
JP
Japan
Prior art keywords
ceramic
ceramic member
groove
recess
joined body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021108458A
Other languages
Japanese (ja)
Inventor
茂伸 古川
Shigenobu Furukawa
倫太郎 花谷
Rintaro Hanatani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2021108458A priority Critical patent/JP2023006065A/en
Publication of JP2023006065A publication Critical patent/JP2023006065A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Ceramic Products (AREA)

Abstract

To provide a ceramic joined body having excellent thermal conductivity, wherein a joining failure is reduced between a rear face of a joining layer and a concave portion, so that the rear face thereof and the concave portion are joined firmly.SOLUTION: A ceramic joined body according to this invention includes: a first ceramic member having a flat front face and a rear face positioned opposite to the front face; a second ceramic member having a concave portion for housing the first ceramic member; and a glassy joining layer for joining the rear face of the first ceramic member and a bottom face of the concave portion in the second ceramic member. The bottom face of the concave portion in the second ceramic member includes a groove portion and a flat portion other than the groove portion. An arithmetic average roughness of the surface of the groove part is larger than that of the surface of the flat portion. The joining layer joins at least the groove portion and the rear face.SELECTED DRAWING: Figure 1

Description

本開示は、セラミック接合体およびその製造方法に関する。 TECHNICAL FIELD The present disclosure relates to a ceramic bonded body and a manufacturing method thereof.

半導体製品の製造工程において、製膜、加工、配線形成、検査などの工程で、被吸着体を吸着して保持するために真空チャックが使用されている。真空チャックは、例えば特許文献1に示すように、基板や素子などの被吸着体を吸着して保持する吸着面を有する多孔質体からなる吸着部と、多孔質体を収納する凹部を有する緻密質体からなる支持部とを接合して形成される。 2. Description of the Related Art Vacuum chucks are used to adsorb and hold objects to be adsorbed in processes such as film formation, processing, wiring formation, and inspection in the manufacturing process of semiconductor products. A vacuum chuck, for example, as shown in Patent Document 1, is a dense structure having a suction portion made of a porous body having a suction surface for holding a substrate, an element, or other object to be sucked by suction, and a concave portion for accommodating the porous body. It is formed by joining a support portion made of a solid body.

凹部の平面度が大きいと、吸着部を挿入した際に吸着部裏面との間隔が大きくなり、接合不良の空間が生じやすい。接合不良が存在すると、接合強度の低下、吸着力や温度分布のばらつきなどの原因となる。真空チャックが研削装置や熱圧着装置などに使用されると、押圧時の負荷で吸着部が変形する。その結果、加工精度が低下したり、圧着不良の原因となったりする。ウエハーなどの被吸着体の加工精度などを向上させるためには、凹部の底面の平面度は高い方がよい。 If the flatness of the concave portion is large, the gap between the suction portion and the rear surface of the suction portion becomes large when the suction portion is inserted, and a space for defective bonding is likely to occur. The presence of defective bonding causes a decrease in bonding strength, variations in the adsorption force and temperature distribution, and the like. When a vacuum chuck is used in a grinding device, a thermocompression bonding device, or the like, the suction portion is deformed by the load during pressing. As a result, the processing accuracy is lowered, or it becomes a cause of defective crimping. In order to improve the processing accuracy of an object to be adsorbed such as a wafer, the flatness of the bottom surface of the concave portion should be high.

一方、接合強度を向上させるためには、凹部の底面は、アンカー効果を期待して、適度に荒れているのがよい。吸着部の裏面のようにラップ加工が可能な面は、適度に荒れた平坦な面を形成しやすい。しかし、凹部の底面は、平坦化加工(例えば、研削加工)により表面粗さが小さくなりやすい。平坦化加工後に粗面化加工(例えば、ブラスト加工)を行うと、平面度が大きくなりやすい。 On the other hand, in order to improve the bonding strength, the bottom surface of the recess should be moderately rough in anticipation of an anchor effect. A surface that can be lapped, such as the back surface of the suction part, tends to form a moderately rough and flat surface. However, the bottom surface of the concave portion tends to have a small surface roughness due to flattening processing (for example, grinding processing). Roughening (for example, blasting) after flattening tends to increase flatness.

特開2012-140257号公報JP 2012-140257 A

本開示の課題は、接合層裏面と凹部との接合不良が低減されて、接合層裏面と凹部とが強固に接合され、優れた熱伝導性を有するセラミック接合体を提供することである。 An object of the present disclosure is to provide a ceramic bonded body that reduces bonding failure between the back surface of the bonding layer and the recess, firmly bonds the back surface of the bonding layer and the recess, and has excellent thermal conductivity.

本開示に係るセラミック接合体は、平坦な表面および表面の反対側に位置する裏面を有する第1セラミック部材と、第1セラミック部材を収納する凹部を有する第2セラミック部材と、第1セラミック部材の裏面と第2セラミック部材の凹部の底面とを接合するガラス質の接合層とを含む。第2セラミック部材の凹部の底面は、溝部と溝部以外の平坦部とを含む。溝部表面の算術平均粗さは、平坦部表面の算術平均粗さよりも大きい。接合層は、少なくとも溝部と裏面とを接合している。 A ceramic joined body according to the present disclosure includes a first ceramic member having a flat surface and a back surface located on the opposite side of the surface, a second ceramic member having a recess for accommodating the first ceramic member, and the first ceramic member. A vitreous bonding layer bonding the back surface and the bottom surface of the recess of the second ceramic member. The bottom surface of the concave portion of the second ceramic member includes a groove portion and a flat portion other than the groove portion. The arithmetic mean roughness of the groove surface is greater than the arithmetic mean roughness of the flat part surface. The joining layer joins at least the groove and the back surface.

本開示に係るセラミック接合体の製造方法は、平坦な表面および表面の反対側に位置する裏面を有する第1セラミック部材を準備する工程と;第1セラミック部材を収納する凹部を有する第2セラミック部材を準備する工程と;第2セラミック部材の凹部の底面を平坦化加工する工程と;第2セラミック部材の凹部の底面に、レーザ加工によって溝部を形成する工程と;第1セラミック部材の裏面および第2セラミック部材の凹部の少なくとも一方にガラスペーストを塗布し、貼り合わせて焼成し、少なくとも溝部と裏面とをガラス質の接合層で接合する工程とを含む。 A method for manufacturing a ceramic bonded body according to the present disclosure includes steps of preparing a first ceramic member having a flat surface and a back surface located opposite the surface; and a second ceramic member having a recess for accommodating the first ceramic member. flattening the bottom surface of the recess of the second ceramic member; forming a groove in the bottom surface of the recess of the second ceramic member by laser processing; (2) applying a glass paste to at least one of the concave portions of the ceramic member;

本開示に係るセラミック接合体によれば、第2セラミック部材の凹部の底面は、溝部と溝部以外の平坦部とを含み、溝部表面の算術平均粗さは、平坦部表面の算術平均粗さよりも大きい。したがって、本開示に係るセラミック接合体は、接合層裏面と凹部との接合不良が低減されて、接合層裏面と凹部とが強固に接合され、優れた熱伝導性を有する。 According to the ceramic bonded body according to the present disclosure, the bottom surface of the concave portion of the second ceramic member includes the groove portion and the flat portion other than the groove portion, and the arithmetic mean roughness of the surface of the groove portion is higher than the arithmetic mean roughness of the surface of the flat portion. big. Therefore, the ceramic bonded body according to the present disclosure reduces bonding failure between the back surface of the bonding layer and the recess, firmly bonds the back surface of the bonding layer and the recess, and has excellent thermal conductivity.

さらに、本開示に係るセラミック接合体の製造方法によれば、接合層裏面と凹部との接合不良が低減されて、接合層裏面と凹部とが強固に接合され、優れた熱伝導性を有するセラミック接合体を提供することができる。 Furthermore, according to the method for manufacturing a ceramic bonded body according to the present disclosure, the bonding failure between the back surface of the bonding layer and the recess is reduced, the back surface of the bonding layer and the recess are firmly bonded, and the ceramic having excellent thermal conductivity A conjugate can be provided.

(A)は、本開示の一実施形態に係るセラミック接合体を示す斜視図であり、(B)は、(A)に示すセラミック接合体に含まれる第2セラミック部材を示す斜視図である。(A) is a perspective view showing a ceramic joined body according to an embodiment of the present disclosure, and (B) is a perspective view showing a second ceramic member included in the ceramic joined body shown in (A). (A)は、図1(A)に示すX-X線で切断した際の断面を示す断面図であり、(B)は、(A)に示す領域Yの拡大図である。(A) is a cross-sectional view showing a cross section taken along line XX shown in FIG. 1(A), and (B) is an enlarged view of a region Y shown in (A). 本開示の一実施形態に係るセラミック接合体において、第2セラミック部材の凹部の底面に形成された溝部を示す電子顕微鏡写真である。4 is an electron micrograph showing grooves formed in the bottom surface of the recess of the second ceramic member in the ceramic joined body according to the embodiment of the present disclosure. (A)は、図3に示す矢印A方向に切断した場合の溝の断面形状、幅および深さを示すグラフであり、(B)は、図3に示す矢印B方向に切断した場合の溝底面の起伏を示すグラフである。(A) is a graph showing the cross-sectional shape, width and depth of the groove when cut in the direction of arrow A shown in FIG. 3, and (B) is a graph showing the groove when cut in the direction of arrow B shown in FIG. It is a graph which shows the undulation of the bottom face.

本開示に係るセラミック接合体は、上記のように、平坦な表面および平坦な表面の反対側に位置する裏面を有する第1セラミック部材と、第1セラミック部材を収納する凹部を有する第2セラミック部材と、第1セラミック部材の裏面と第2セラミック部材の凹部の底面とを接合するガラス質の接合層とを含む。本開示に係るセラミック接合体を、図1および2に基づいて説明する。 As described above, the ceramic bonded body according to the present disclosure includes a first ceramic member having a flat surface and a back surface located on the opposite side of the flat surface, and a second ceramic member having a recess for accommodating the first ceramic member. and a vitreous bonding layer that bonds the back surface of the first ceramic member and the bottom surface of the recess of the second ceramic member. A ceramic joined body according to the present disclosure will be described based on FIGS. 1 and 2. FIG.

本開示の一実施形態に係るセラミック接合体1は真空チャックであり、図1(A)および図2(A)に示すように、第1セラミック部材11が、第2セラミック部材12の凹部12aに収納され、第1セラミック部材11の裏面11bと第2セラミック部材12の凹部12aの底面とが、接合層13で接合されている。図1(A)は、一実施形態に係るセラミック接合体1を示す斜視図である。図2(A)は、図1(A)に示すX-X線で切断した際の断面を示す断面図である。 A ceramic bonded body 1 according to an embodiment of the present disclosure is a vacuum chuck, and as shown in FIGS. The back surface 11 b of the first ceramic member 11 and the bottom surface of the recess 12 a of the second ceramic member 12 are joined with the joining layer 13 . FIG. 1(A) is a perspective view showing a ceramic joined body 1 according to one embodiment. FIG. 2A is a cross-sectional view taken along line XX shown in FIG. 1A.

第1セラミック部材11は、セラミックで形成されていれば限定されない。第1セラミック部材11は、例えば、セラミック粒子をガラスなどの結合剤で連結した多孔質セラミックからなる。第1セラミック部材11を形成しているセラミックとしては、例えば、炭化ケイ素などの炭化物、窒化ケイ素、窒化ホウ素、窒化アルミニウムなどの窒化物、酸化アルミニウムなどの酸化物が挙げられる。本開示において、多孔質とは、セラミック部材の断面における閉気孔の面積比率が10%より大きい状態を意味する。 The first ceramic member 11 is not limited as long as it is made of ceramic. The first ceramic member 11 is made of, for example, a porous ceramic in which ceramic particles are connected with a binder such as glass. Examples of the ceramic forming the first ceramic member 11 include carbides such as silicon carbide, nitrides such as silicon nitride, boron nitride, and aluminum nitride, and oxides such as aluminum oxide. In the present disclosure, porous means a state in which the area ratio of closed pores in the cross section of the ceramic member is greater than 10%.

第1セラミック部材11の形状および大きさは限定されず、得られるセラミック接合体1の用途や被吸着体の形状に応じて適宜設定される。第1セラミック部材11は、平面視した場合、図1(A)に示すように円形状を有している。しかし、第1セラミック部材11の形状は円形状に限定されず、例えば、楕円形状または多角形状(三角形状、四角形状、五角形状、六角形状など)を有していてもよい。多角形状の場合、正多角形でもよく、不等辺多角形であってもよい。 The shape and size of the first ceramic member 11 are not limited, and are appropriately set according to the application of the ceramic bonded body 1 to be obtained and the shape of the object to be adsorbed. The first ceramic member 11 has a circular shape in plan view as shown in FIG. 1(A). However, the shape of the first ceramic member 11 is not limited to a circular shape, and may have, for example, an elliptical shape or a polygonal shape (triangular, quadrangular, pentagonal, hexagonal, etc.). In the case of a polygonal shape, it may be a regular polygon or a scalene polygon.

第1セラミック部材11の大きさは限定されず、例えば、直径が10mm以上500mm以下であってもよい。第1セラミック部材11が楕円形状の場合、長径および短径のいずれもが、このような範囲であればよい。第1セラミック部材11が多角形状の場合、1辺の長さは、例えば10mm以上500mm以下である。第1セラミック部材11の厚みは、例えば、1mm以上50mm以下である。 The size of the first ceramic member 11 is not limited, and for example, the diameter may be 10 mm or more and 500 mm or less. When the first ceramic member 11 has an elliptical shape, both the major axis and the minor axis should be within such ranges. When the first ceramic member 11 is polygonal, the length of one side is, for example, 10 mm or more and 500 mm or less. The thickness of the first ceramic member 11 is, for example, 1 mm or more and 50 mm or less.

第1セラミック部材11は、平坦な表面11aおよび表面11aの反対側に位置する裏面11bを有する。第1セラミック部材11が図1に示すように真空チャックである場合、表面11aが基板などの被吸着体を吸着する吸着面となる。一方、裏面11bは、第1セラミック部材11を、後述する第2セラミック部材12の凹部12aに収納した際に、凹部12aと対向する面となる。 The first ceramic member 11 has a flat surface 11a and a back surface 11b opposite the surface 11a. When the first ceramic member 11 is a vacuum chuck as shown in FIG. 1, the surface 11a serves as an attraction surface for attracting an object to be attracted such as a substrate. On the other hand, the rear surface 11b faces the recess 12a when the first ceramic member 11 is accommodated in the recess 12a of the second ceramic member 12, which will be described later.

第2セラミック部材12は、第1セラミック部材11を収納するための部材である。第2セラミック部材12は、セラミックで形成されていれば限定されない。第2セラミック部材12は、例えば、緻密質セラミックからなる。緻密質セラミックは、多孔質セラミックと比べて、機械的強度、熱伝導、気密性などに優れ、真空チャック1の主体となる基部に好適である。第2セラミック部材12を形成しているセラミックとしては、例えば、炭化ケイ素などの炭化物、窒化ケイ素、窒化ホウ素、窒化アルミニウムなどの窒化物などが挙げられる。第2セラミック部材12を形成しているセラミックは、第1セラミック部材11を形成しているセラミックと同じでもよく、異なっていてもよい。本開示において、緻密質とは、セラミック部材の断面における閉気孔の面積比率が10%より小さい状態をいう。 The second ceramic member 12 is a member for housing the first ceramic member 11 . The second ceramic member 12 is not limited as long as it is made of ceramic. The second ceramic member 12 is made of dense ceramic, for example. Dense ceramics are superior to porous ceramics in mechanical strength, thermal conductivity, airtightness, and the like, and are suitable for the base, which is the main component of the vacuum chuck 1 . Examples of the ceramic forming the second ceramic member 12 include carbides such as silicon carbide, nitrides such as silicon nitride, boron nitride, and aluminum nitride. The ceramic forming the second ceramic member 12 may be the same as or different from the ceramic forming the first ceramic member 11 . In the present disclosure, the term "dense" refers to a state in which the area ratio of closed pores in the cross section of the ceramic member is less than 10%.

第2セラミック部材12の形状および大きさは限定されず、得られるセラミック接合体1の用途や、第1セラミック部材11の形状に応じて適宜設定される。第2セラミック部材12は、平面視した場合、図1(A)に示すように円形状を有している。しかし、第2セラミック部材12の形状は円形状に限定されず、例えば、楕円形状または多角形状(三角形状、四角形状、五角形状、六角形状など)を有していてもよい。多角形状の場合、正多角形でもよく、不等辺多角形であってもよい。 The shape and size of the second ceramic member 12 are not limited, and are appropriately set according to the application of the ceramic bonded body 1 to be obtained and the shape of the first ceramic member 11 . The second ceramic member 12 has a circular shape in plan view as shown in FIG. 1(A). However, the shape of the second ceramic member 12 is not limited to a circular shape, and may have, for example, an elliptical shape or a polygonal shape (triangular, quadrangular, pentagonal, hexagonal, etc.). In the case of a polygonal shape, it may be a regular polygon or a scalene polygon.

第2セラミック部材12には、第1セラミック部材11を収納するための凹部12aが形成されている。凹部12aは、第1セラミック部材11の形状および大きさに応じて形成されている。凹部12aの底面、すなわち、第1セラミック部材11の裏面11bと対向する面は、図1(B)に示すように、溝部12bと溝部12b以外の平坦部12cとを含む。図1(B)は、図1(A)に示すセラミック接合体1に含まれる第2セラミック部材12を示す斜視図である。セラミック接合体が、セラミック接合体1のように真空チャックの場合、第2セラミック部材12の凹部12aの底面には、吸引溝14が設けられ、吸引溝14と第2セラミック部材12の下面とを接続する吸引孔(不図示)が設けられる。吸引溝14および吸引孔は、空気を吸引するための経路となり、第1セラミック部材11を介して被吸着体を吸着保持する。 The second ceramic member 12 is formed with a recess 12a for housing the first ceramic member 11 therein. The recess 12 a is formed according to the shape and size of the first ceramic member 11 . The bottom surface of the recess 12a, that is, the surface facing the back surface 11b of the first ceramic member 11 includes a groove 12b and a flat portion 12c other than the groove 12b, as shown in FIG. 1(B). FIG. 1(B) is a perspective view showing the second ceramic member 12 included in the ceramic joined body 1 shown in FIG. 1(A). When the ceramic bonded body is a vacuum chuck like the ceramic bonded body 1, a suction groove 14 is provided in the bottom surface of the concave portion 12a of the second ceramic member 12 so that the suction groove 14 and the lower surface of the second ceramic member 12 are separated. A connecting suction hole (not shown) is provided. The suction grooves 14 and the suction holes serve as paths for sucking air, and suck and hold the object to be attracted through the first ceramic member 11 .

溝部12bは、図1(B)に示すように直線状に形成されている。しかし、溝部12bは直線状に限定されず、渦巻き状や蛇行状など曲線状に形成されていてもよい。直線状の場合、図1(B)に示すように、溝部12bは交差していてもよく、一方向に平行に形成されていてもよい。溝部12bのピッチ(溝部12b間の幅)は、凹部12aの底面の大きさに応じて適宜設定され、例えば、100μm以上5000μm以下であってもよい。 The groove 12b is formed linearly as shown in FIG. 1(B). However, the groove portion 12b is not limited to a linear shape, and may be formed in a curved shape such as a spiral shape or a meandering shape. In the case of straight lines, the grooves 12b may intersect or be formed parallel to one direction, as shown in FIG. 1(B). The pitch of the grooves 12b (the width between the grooves 12b) is appropriately set according to the size of the bottom surface of the recesses 12a, and may be, for example, 100 μm or more and 5000 μm or less.

溝部12bの幅および深さは限定されない。溝部12bは、例えば100μm以下の幅を有していてもよく、30μm以上50μm以下の幅を有していてもよい。さらに、溝部12bは、例えば50μ以下の深さを有していてもよく、5μm以上15μm以下の深さを有していてもよい。 The width and depth of groove 12b are not limited. The groove portion 12b may have a width of, for example, 100 μm or less, or may have a width of 30 μm or more and 50 μm or less. Furthermore, the groove portion 12b may have a depth of, for example, 50 μm or less, or may have a depth of 5 μm or more and 15 μm or less.

溝部12bは深さよりも幅の方が長く、溝部12b表面の傾斜は緩やかな方がよい。溝部12bは浅くてなだらかな方が接合層13との隙間が生じにくく、接合不良がより生じにくくなる。溝部12b表面は、例えば、溝部12b表面を幅方向に5μm間隔でプロットした場合に、隣接する2点を結ぶ直線と幅方向に水平な面とのなす角が45°以下となるような傾斜を有しているのがよい。 The width of the groove 12b is longer than the depth, and the inclination of the surface of the groove 12b is preferably gentle. The shallower and smoother the groove portion 12b, the less likely a gap with the bonding layer 13 will occur, and the less likely a bonding failure will occur. The surface of the groove 12b is inclined such that, for example, when the surface of the groove 12b is plotted at intervals of 5 μm in the width direction, the angle between a straight line connecting two adjacent points and a plane horizontal in the width direction is 45° or less. Good to have.

溝部12bは底部において、溝部12bの延伸方向にうねりを有していてもよい。このようなうねりが存在していると、より強固なアンカー効果が発揮され、接合強度がより向上する。うねりの高さは限定されず、例えば、うねり曲線における最大高さ(最底部と最頂部との差)は1μm以上6μm以下である。さらに、うねりは、溝部12bの幅よりも小さい周期で存在しているのがよい。 The groove 12b may have undulations at the bottom in the extending direction of the groove 12b. When such undulations exist, a stronger anchor effect is exhibited, and the bonding strength is further improved. The height of the undulation is not limited, and for example, the maximum height of the undulation curve (difference between the bottom and the top) is 1 μm or more and 6 μm or less. Further, the undulations should preferably exist with a period smaller than the width of the groove 12b.

溝部12b表面(溝部12bの内周面および底面)の算術平均粗さは、平坦部12c表面の算術平均粗さよりも大きい。すなわち、溝部12b表面は粗く、平坦部12c表面は溝部12b表面よりも滑らかである。 The arithmetic average roughness of the surface of the groove portion 12b (the inner peripheral surface and the bottom surface of the groove portion 12b) is larger than the arithmetic average roughness of the surface of the flat portion 12c. That is, the surface of the groove portion 12b is rough, and the surface of the flat portion 12c is smoother than the surface of the groove portion 12b.

このように、溝部12b表面の算術平均粗さが、平坦部12c表面の算術平均粗さよりも大きいと、後述する接合層13の接合強度が向上する。具体的には、溝部12b表面が粗いと、溝部12bに流れ込んだ接合層13がアンカー効果によって強固に接合される。一方、平坦部12c表面は溝部12b表面よりも滑らかであると、平坦部12cと接合層13の裏面との間に隙間が生じにくくなる。その結果、接合不良の空間が生じにくくなる。さらに、平坦部12cに位置している接合層13の厚みは、溝部12b流れ込んでいる接合層13の厚みよりも薄い。その結果、平坦部12cに位置している厚みの薄い接合層13によって、熱伝導性が向上する。 Thus, when the arithmetic mean roughness of the surface of the groove portion 12b is larger than the arithmetic mean roughness of the surface of the flat portion 12c, the bonding strength of the bonding layer 13, which will be described later, is improved. Specifically, if the surface of the groove 12b is rough, the bonding layer 13 that has flowed into the groove 12b is strongly bonded by the anchor effect. On the other hand, when the surface of the flat portion 12c is smoother than the surface of the groove portion 12b, a gap is less likely to occur between the flat portion 12c and the back surface of the bonding layer 13. FIG. As a result, it becomes difficult to create a space for poor bonding. Furthermore, the thickness of the bonding layer 13 located in the flat portion 12c is thinner than the thickness of the bonding layer 13 flowing into the groove portion 12b. As a result, the thin bonding layer 13 positioned on the flat portion 12c improves thermal conductivity.

溝部12b表面の算術平均粗さは、例えば0.4μm以上であり、0.8μm以上であってもよい。溝部12b表面がこのような算術平均粗さを有していると、より強固なアンカー効果が発揮される。溝部12b表面の算術平均粗さの上限は、例えば3μm程度である。 The arithmetic mean roughness of the surface of the groove portion 12b is, for example, 0.4 μm or more, and may be 0.8 μm or more. When the surface of the groove portion 12b has such arithmetic mean roughness, a stronger anchor effect is exhibited. The upper limit of the arithmetic mean roughness of the surface of the groove portion 12b is, for example, about 3 μm.

平坦部12c表面の算術平均粗さは、例えば0.8μm以下であり、0.4μm以下であってもよい。平坦部12c表面がこのような算術平均粗さを有していると、平坦部12cの平面度を小さくでき、平坦部12cと接合層13の裏面との間に隙間がより生じにくくなる。その結果、接合不良の空間がより生じにくくなる。 The arithmetic mean roughness of the surface of the flat portion 12c is, for example, 0.8 μm or less, and may be 0.4 μm or less. When the surface of the flat portion 12c has such an arithmetic mean roughness, the flatness of the flat portion 12c can be reduced, and the gap between the flat portion 12c and the back surface of the bonding layer 13 is less likely to occur. As a result, it becomes more difficult for a space for poor bonding to occur.

第2セラミック部材12が、炭化物または窒化物からなる場合、凹部12aの底面において、溝部12b表面は平坦部12c表面よりも、炭素および窒素の少なくとも一方の割合が少ない方がよい。炭化物および窒化物を大気中などの酸化雰囲気で加熱して接合すると、酸化反応による脱ガスが発生して、接合層13中に気泡が生じることがある。気泡は接合強度低下の原因となりうる。凹部12aの底面において、炭素および窒素の割合が少ないと、接合時に脱ガスの発生が抑制され、気泡が減少し、接合強度が向上する。溝部12b表面において、炭素および窒素の少なくとも一方の割合が少ないと、活性なダングリングボンドが増加する。その結果、後述する接合層13に含まれる酸素と結合しやすくなり、接合強度をより向上させることができる。 When the second ceramic member 12 is made of carbide or nitride, the surface of the groove 12b on the bottom surface of the recess 12a preferably has a lower ratio of at least one of carbon and nitrogen than the surface of the flat portion 12c. When carbides and nitrides are heated and bonded in an oxidizing atmosphere such as the air, degassing may occur due to the oxidation reaction and bubbles may be generated in the bonding layer 13 . Air bubbles can cause a decrease in bonding strength. If the ratio of carbon and nitrogen in the bottom surface of the concave portion 12a is small, the occurrence of outgassing during bonding is suppressed, the number of air bubbles is reduced, and the bonding strength is improved. If the ratio of at least one of carbon and nitrogen is low on the surface of groove 12b, active dangling bonds increase. As a result, it becomes easier to bond with oxygen contained in the bonding layer 13, which will be described later, and the bonding strength can be further improved.

第1セラミック部材11と第2セラミック部材12とは、第1セラミック部材11の裏面11bと第2セラミック部材12の凹部12aの底面とにおいて、接合層13を介して接合されている。接合層13は、少なくとも凹部12aの溝部12bと第1セラミック部材11の裏面11とを接合していればよい。さらに、接合層13は、凹部12aの平坦部12cおよび凹部12aの側面に位置していてもよい。接合層13が凹部12aの溝部12bに加えて、平坦部12cおよび側面に位置していると、より接合強度を向上させることができる。 The first ceramic member 11 and the second ceramic member 12 are joined via the joining layer 13 at the back surface 11b of the first ceramic member 11 and the bottom surface of the recess 12a of the second ceramic member 12 . The bonding layer 13 may at least bond the groove portion 12 b of the recess 12 a and the back surface 11 of the first ceramic member 11 . Furthermore, the bonding layer 13 may be positioned on the flat portion 12c of the recess 12a and the side surfaces of the recess 12a. When the bonding layer 13 is positioned not only on the groove portion 12b of the concave portion 12a but also on the flat portion 12c and the side surface, the bonding strength can be further improved.

接合層13はガラス質であれば限定されない。接合層13の厚みについても限定されず、接合層13は、第1セラミック部材11の裏面11bと第2セラミック部材12の凹部12aの底面とを接合し得る厚みを有していればよい。例えば、凹部12aの平坦部12cに接合層13が存在する場合、接合層13の厚みは、凹部12aの平坦部12cの平面度と第1セラミック部材11の裏面11bの平面度の和よりも大きいのがよい。接合層13の厚みは、具体的には10μm以上30μm以下程度であるのがよい。 The bonding layer 13 is not limited as long as it is vitreous. The thickness of the bonding layer 13 is also not limited, and the bonding layer 13 may have a thickness that allows the back surface 11b of the first ceramic member 11 and the bottom surface of the recess 12a of the second ceramic member 12 to be bonded. For example, when the bonding layer 13 exists on the flat portion 12c of the recess 12a, the thickness of the bonding layer 13 is greater than the sum of the flatness of the flat portion 12c of the recess 12a and the flatness of the back surface 11b of the first ceramic member 11. It's good. Specifically, the thickness of the bonding layer 13 is preferably about 10 μm or more and 30 μm or less.

次に、本開示のセラミック接合体を製造する方法を説明する。本開示に係るセラミック接合体の製造方法は、下記の工程(a)~(e)を含む。
(a)平坦な表面および表面の反対側に位置する裏面を有する第1セラミック部材を準備する工程。
(b)第1セラミック部材を収納する凹部を有する第2セラミック部材を準備する工程。
(c)第2セラミック部材の凹部の底面を平坦化加工する工程。
(d)第2セラミック部材の凹部の底面に溝部を形成する工程。
(e)第1セラミック部材の裏面および第2セラミック部材の凹部の少なくとも一方にガラスペーストを塗布し、貼り合わせて焼成し、少なくとも溝部と裏面とをガラス質の接合層で接合する工程。
Next, a method for manufacturing the ceramic bonded body of the present disclosure will be described. A method for manufacturing a ceramic bonded body according to the present disclosure includes the following steps (a) to (e).
(a) providing a first ceramic member having a planar surface and a back surface opposite the surface;
(b) providing a second ceramic member having a recess for accommodating the first ceramic member;
(c) flattening the bottom surface of the recess of the second ceramic member;
(d) forming a groove in the bottom surface of the recess of the second ceramic member;
(e) A step of applying a glass paste to at least one of the back surface of the first ceramic member and the concave portion of the second ceramic member, bonding and firing, and bonding at least the groove and the back surface with a vitreous bonding layer.

工程(a)は、平坦な表面および表面の反対側に位置する裏面を有する第1セラミック部材を準備する工程である。第1セラミック部材11の材質、形状および大きさについては上述の通りであり、詳細な説明は省略する。 Step (a) is providing a first ceramic member having a flat surface and a back surface opposite the surface. The material, shape and size of the first ceramic member 11 are as described above, and detailed description thereof is omitted.

工程(b)は、第1セラミック部材を収納する凹部を有する第2セラミック部材を準備する工程である。第2セラミック部材12の材質、形状および大きさについては上述の通りであり、詳細な説明は省略する。 Step (b) is a step of preparing a second ceramic member having a recess for accommodating the first ceramic member. The material, shape and size of the second ceramic member 12 are as described above, and detailed description thereof will be omitted.

工程(c)は、第2セラミック部材の凹部の底面を平坦化加工する工程である。第2セラミック部材12の凹部12aの底面を平坦化する方法は、限定されない。例えば、砥石などを用いた研磨、研削などによって、第2セラミック部材12の凹部12aの底面は平坦化される。 Step (c) is a step of flattening the bottom surface of the recess of the second ceramic member. A method for flattening the bottom surface of the recess 12a of the second ceramic member 12 is not limited. For example, the bottom surface of the concave portion 12a of the second ceramic member 12 is flattened by polishing or grinding using a whetstone or the like.

工程(d)は、第2セラミック部材の凹部の底面に、溝部を形成する工程である。凹部12aの底面の溝部12b以外の領域は平坦部12cとなる。第2セラミック部材12の凹部12aの底面に、レーザ加工によって溝部12bを形成すると、平坦部12cよりも表面粗さ(算術平均粗さ)が大きくなるとともに、溝部12溝部12bの底面にうねりが形成されやすくなる。溝部12bの底面にうねりが形成されると、より強固なアンカー効果が発揮され、接合強度がより向上するセラミック接合体1が得られる。うねりの高さは限定されず、例えば、うねり曲線における最大高さは1μm以上6μm以下である。さらに、うねりは、溝部12bの幅よりも小さい周期で存在しているのがよい。表面粗さとうねりは、レーザのスポット径や走査ピッチ、照射強度などで調節できる。溝部12bの形成は、レーザ加工に限らず、電子線加工、ドライエッチング加工、ブラスト加工など各種加工方法を用いて、平坦部12cよりも溝部12bの方が、表面粗さが大きくなるように加工してもよい。 Step (d) is a step of forming a groove on the bottom surface of the recess of the second ceramic member. A region other than the groove portion 12b on the bottom surface of the concave portion 12a becomes a flat portion 12c. When the groove portion 12b is formed on the bottom surface of the concave portion 12a of the second ceramic member 12 by laser processing, the surface roughness (arithmetic mean roughness) becomes larger than that of the flat portion 12c, and undulations are formed on the bottom surface of the groove portion 12b. easier to be When undulations are formed on the bottom surface of the groove portion 12b, a stronger anchor effect is exhibited, and the ceramic bonded body 1 with improved bonding strength can be obtained. The height of the undulation is not limited, and for example, the maximum height of the undulation curve is 1 μm or more and 6 μm or less. Further, the undulations should preferably exist with a period smaller than the width of the groove 12b. Surface roughness and waviness can be adjusted by laser spot diameter, scanning pitch, irradiation intensity, and the like. The formation of the grooves 12b is not limited to laser processing, but is performed using various processing methods such as electron beam processing, dry etching processing, and blast processing so that the surface roughness of the grooves 12b is greater than that of the flat portions 12c. You may

さらに、第2セラミック部材12が、上述のように炭化物や窒化物で形成されていると、大気などの酸化雰囲気でのレーザ加工によって溝部12bを形成する際に、溝部12b表面に存在する炭素や窒素が酸化されて気化する。そのため、溝部12b表面において、炭素および窒素の少なくとも一方の割合が少なくなる。溝部12b表面において、炭素および窒素の少なくとも一方の割合が少ないと、酸化雰囲気で加熱して接合層13を形成する際に、セラミックからの脱ガスによる接合層13中の気泡が減少する。その結果、上述のように接合強度がより向上させることができる。 Furthermore, if the second ceramic member 12 is made of a carbide or a nitride as described above, when the groove 12b is formed by laser processing in an oxidizing atmosphere such as air, the carbon and the Nitrogen is oxidized and vaporized. Therefore, the ratio of at least one of carbon and nitrogen is reduced on the surface of the groove portion 12b. If the ratio of at least one of carbon and nitrogen on the surface of the groove portion 12b is small, bubbles in the bonding layer 13 due to degassing from the ceramic are reduced when the bonding layer 13 is formed by heating in an oxidizing atmosphere. As a result, the bonding strength can be further improved as described above.

溝部12bは、上述のように直線状に形成されていてもよく、渦巻き状や蛇行状など曲線状に形成されていてもよい。さらに、溝部12bは、表面が0.4μm以上の算術平均粗さを有するように加工され、0.8μm以上の算術平均粗さを有するように加工されていてもよい。溝部12b表面がこのような算術平均粗さを有するように加工されると、より強固なアンカー効果が発揮されるセラミック接合体1が得られる。溝部12b表面の算術平均粗さの上限は、上記のように3μm程度である。 The groove portion 12b may be formed linearly as described above, or may be formed in a curved shape such as a spiral shape or a meandering shape. Furthermore, the groove portion 12b may be processed so that the surface has an arithmetic mean roughness of 0.4 μm or more, and may be processed so as to have an arithmetic mean roughness of 0.8 μm or more. When the surface of the groove portion 12b is processed to have such an arithmetic mean roughness, a ceramic joined body 1 exhibiting a stronger anchor effect can be obtained. The upper limit of the arithmetic mean roughness of the surface of the groove portion 12b is about 3 μm as described above.

上述のように、溝部12bは深さよりも幅の方が長く、溝部12b表面の傾斜は緩やかな方がよい。溝部12bは浅くてなだらかな方が、接合不良がより生じにくくなる。溝部12bは、例えば、溝部12b表面を幅方向に5μm間隔でプロットした場合に、隣接する2点を結ぶ直線と幅方向に水平な面とのなす角が45°以下となるような傾斜を有するように形成されるのがよい。 As described above, the width of the groove 12b is longer than the depth, and the slope of the surface of the groove 12b is preferably gentle. The shallower and smoother the groove 12b, the less likely it is that poor bonding will occur. For example, when the surface of the groove portion 12b is plotted at intervals of 5 μm in the width direction, the groove portion 12b has an inclination such that the angle formed by a straight line connecting two adjacent points and a plane horizontal in the width direction is 45° or less. should be formed as follows:

第2セラミック部材12の凹部12aの底面において、溝部12b以外の部分は平坦部12cである。平坦部12cは、表面が0.8μm以下の算術平均粗さを有するように加工され、0.4μm以下の算術平均粗さを有するように加工されていてもよい。平坦部12c表面がこのような算術平均粗さを有するように加工されると、平坦部12cと接合層13の裏面との間に隙間がより生じにくいセラミック接合体1が得られる。その結果、接合不良の空間がより生じにくいセラミック接合体1が得られる。平坦部12cの表面を0.8μm以下の算術平均粗さにするには、工程(c)において凹部12aの底面を平坦化加工する際に、0.8μm以下の算術平均粗さとなるように加工すればよい。 On the bottom surface of the concave portion 12a of the second ceramic member 12, the portion other than the groove portion 12b is a flat portion 12c. The flat portion 12c is processed so that the surface has an arithmetic mean roughness of 0.8 μm or less, and may be processed so as to have an arithmetic mean roughness of 0.4 μm or less. When the surface of the flat portion 12c is processed to have such an arithmetic mean roughness, the ceramic joined body 1 in which the gap between the flat portion 12c and the back surface of the joining layer 13 is less likely to occur can be obtained. As a result, it is possible to obtain a ceramic bonded body 1 in which a space for defective bonding is less likely to occur. In order to make the surface of the flat portion 12c to have an arithmetic mean roughness of 0.8 μm or less, the bottom surface of the recess 12a is flattened in step (c) so as to have an arithmetic mean roughness of 0.8 μm or less. do it.

図1に示すように、セラミック接合体1を真空チャックとして使用する場合、工程(b)~(d)のいずれかにおいて、第2セラミック部材12の凹部12aの底面に、吸引溝14を形成する。吸引溝14は、例えば、切削加工や研削加工によって形成する。さらに、吸引溝14と第2セラミック部材12の下面とを接続する吸引孔(不図示)をドリル加工などによって形成する。 As shown in FIG. 1, when the ceramic bonded body 1 is used as a vacuum chuck, in any one of steps (b) to (d), a suction groove 14 is formed in the bottom surface of the recess 12a of the second ceramic member 12. . The suction groove 14 is formed by cutting or grinding, for example. Further, a suction hole (not shown) connecting the suction groove 14 and the lower surface of the second ceramic member 12 is formed by drilling or the like.

工程(e)は、第1セラミック部材の裏面および第2セラミック部材の凹部の少なくとも一方にガラスペーストを塗布し、貼り合わせて焼成し、少なくとも溝部と裏面とをガラス質の接合層13で接合する工程である。 In step (e), glass paste is applied to at least one of the back surface of the first ceramic member and the concave portion of the second ceramic member, and the ceramic members are bonded together and fired to bond at least the groove and the back surface with a vitreous bonding layer 13 . It is a process.

具体的には、第1セラミック部材11の裏面11bおよび第2セラミック部材12の凹部12aの少なくとも一方にガラスペーストを塗布する。その後、ガラスの軟化点以上セラミック部材の焼成温度以下の温度で接合面同士を加圧しながら焼成することによって、接合層13が形成され、第1セラミック部材11の裏面11bと第2セラミック部材12の凹部12aの少なくとも溝部12bとが接合される。ガラスペーストの塗布量は、焼成後に形成される接合層13の厚みを考慮して、適宜設定すればよい。 Specifically, glass paste is applied to at least one of the back surface 11 b of the first ceramic member 11 and the concave portion 12 a of the second ceramic member 12 . After that, the bonding layer 13 is formed by firing while pressurizing the bonding surfaces at a temperature equal to or higher than the softening point of the glass and equal to or lower than the firing temperature of the ceramic member. At least the groove portion 12b of the concave portion 12a is joined. The amount of the glass paste to be applied may be appropriately set in consideration of the thickness of the bonding layer 13 formed after firing.

このように、工程(a)~工程(e)によって、本開示に係るセラミック接合体1が得られる。このようにして得られた本開示に係るセラミック接合体1は、例えば、真空チャック、ガス供給部材などに使用される。 Thus, the ceramic joined body 1 according to the present disclosure is obtained through steps (a) to (e). The ceramic bonded body 1 according to the present disclosure thus obtained is used for, for example, vacuum chucks, gas supply members, and the like.

次に、本開示の一実施形態に係るセラミック接合体1の具体的な製造方法について説明する。まず、α型炭化珪素粉末、珪素粉末および成形助剤(フェノール樹脂)を混合し、混合物を得た。次いで、得られた混合物を転動造粒機に投入して顆粒状にした後、乾式加圧成形によって成形体を得た。 Next, a specific manufacturing method of the ceramic joined body 1 according to one embodiment of the present disclosure will be described. First, α-type silicon carbide powder, silicon powder and molding aid (phenol resin) were mixed to obtain a mixture. Next, the obtained mixture was put into a tumbling granulator to form granules, and then a compact was obtained by dry pressure molding.

次いで、得られた成形体を窒素雰囲気下、500℃で脱脂処理を施した後、窒素雰囲気下、1420℃で熱処理を行い、気孔率約31%および平均気孔径が55μmの多孔質体を得た。この多孔質体が第1セラミック部材11に相当する。 Next, the obtained compact was degreased at 500° C. in a nitrogen atmosphere and then heat-treated at 1420° C. in a nitrogen atmosphere to obtain a porous body with a porosity of about 31% and an average pore diameter of 55 μm. rice field. This porous body corresponds to the first ceramic member 11 .

次に、炭化珪素を主成分とし、中央部に円形状の凹部12aを有する略円盤状の緻密質体である第2セラミック部材12を準備する。この凹部12aの底面は、例えば平面度が50μm以下、算術平均粗さが0.2μm程度となるように、砥石などで平坦化加工した。平坦化加工後、レーザ加工によって溝部12bを形成した。溝部12bは、図3に示すように、交差するように縦および横に形成されている。図3は、一実施形態に係るセラミック接合体1において、第2セラミック部材12の凹部12aの底面に形成された溝部11bを示す電子顕微鏡写真である。 Next, the second ceramic member 12 is prepared, which is a substantially disk-shaped dense body containing silicon carbide as a main component and having a circular concave portion 12a in the center. The bottom surface of the concave portion 12a is flattened with a grindstone or the like so that the flatness is 50 μm or less and the arithmetic mean roughness is about 0.2 μm. After the flattening process, the groove portion 12b was formed by laser processing. As shown in FIG. 3, the grooves 12b are formed vertically and horizontally so as to cross each other. FIG. 3 is an electron microscope photograph showing grooves 11b formed in the bottom surface of the recess 12a of the second ceramic member 12 in the ceramic bonded body 1 according to one embodiment.

図4(A)に示すように、溝部12bの幅は50μm程度であり、溝部12bの深さは6~10μm程度であった。図4(A)は、図3に示す矢印A方向に切断した場合の溝の幅および深さを示すグラフである。さらに、図4(B)に示すように、溝部12bの底部において、溝部12bの延伸方向にうねりが存在している。図4(B)は、図3に示す矢印B方向に切断した場合の溝底面の起伏を示すグラフである。図4(B)に示すように、うねりは、5μm程度の最大高さ(最底部と最頂部との差)を有し、周期的に形成されている。溝部12b以外の平坦部12cにおいて、表面の算術平均粗さは0.16μmであった。一方、溝部12bの表面の算術平均粗さは0.85μmであった。 As shown in FIG. 4A, the groove portion 12b had a width of about 50 μm and a depth of about 6 to 10 μm. FIG. 4A is a graph showing the width and depth of the groove when cut in the direction of arrow A shown in FIG. Furthermore, as shown in FIG. 4B, undulations exist in the extending direction of the groove 12b at the bottom of the groove 12b. FIG. 4(B) is a graph showing undulations of the bottom surface of the groove when cut in the direction of arrow B shown in FIG. As shown in FIG. 4B, the undulations have a maximum height (difference between the bottom and top) of about 5 μm and are formed periodically. The surface arithmetic mean roughness of the flat portion 12c other than the groove portion 12b was 0.16 μm. On the other hand, the arithmetic average roughness of the surface of the groove portion 12b was 0.85 μm.

得られた第2セラミック部材12の凹部12aの底面において、エネルギー分散型X線分析(EDS)によって、溝部12b表面および平坦部12c表面における元素のカウント数の比率(Si/C)を算出した。結果は、溝部12b表面が12であり、平坦部12c表面が10であった。この結果から、溝部12b表面の方が平坦部12c表面よりも炭素の割合が少ないことがわかる。 On the bottom surface of the concave portion 12a of the obtained second ceramic member 12, the element count ratio (Si/C) on the surface of the groove portion 12b and the surface of the flat portion 12c was calculated by energy dispersive X-ray analysis (EDS). The results were 12 for the surface of the groove portion 12b and 10 for the surface of the flat portion 12c. From this result, it can be seen that the surface of the groove portion 12b contains less carbon than the surface of the flat portion 12c.

次いで、得られた第1セラミック部材11と第2セラミック部材12とを接合した。具体的には、第1セラミック部材11の裏面11bと側面、第2セラミック部材12の凹部12aの底面の吸引溝14以外の領域および凹部12aの内周面にガラスペーストを塗布し、第1セラミック部材11の裏面11bと第2セラミック部材12の凹部12aの底面とが対向するように、第2セラミック部材12の凹部12aに第1セラミック部材11を挿入した。その後、接合面を加圧しながら980℃程度で焼成してガラス質の接合層13を形成し、第1セラミック部材11の裏面11bと第2セラミック部材12の凹部12aの底面とを接合した。このようにして、真空チャックであるセラミック接合体1を得た。 Next, the obtained first ceramic member 11 and second ceramic member 12 were joined. Specifically, the glass paste is applied to the back surface 11b and the side surface of the first ceramic member 11, the area other than the suction grooves 14 on the bottom surface of the recess 12a of the second ceramic member 12, and the inner peripheral surface of the recess 12a. The first ceramic member 11 was inserted into the recess 12a of the second ceramic member 12 so that the back surface 11b of the member 11 and the bottom surface of the recess 12a of the second ceramic member 12 faced each other. After that, the bonding surfaces were fired at about 980° C. while applying pressure to form a vitreous bonding layer 13, and the back surface 11b of the first ceramic member 11 and the bottom surface of the concave portion 12a of the second ceramic member 12 were bonded. Thus, a ceramic joined body 1, which is a vacuum chuck, was obtained.

試験用試料として、第1セラミック部材11と、凹部12aのない板状の第2セラミック部材12に対して同様の加工および接合を行い、得られたセラミック接合体について、ねじりせん断強度試験を行った。具体的には、セラミック接合体をバイスで固定し、トルクレンチでねじって破壊し、破壊時のトルクを測定した。セラミック接合体1を3つ準備し、3回試験を行った。第1セラミック部材11と第2セラミック部材12との接合界面では破断しておらず、第1セラミック部材11部分から破断していた。さらに、ガラス質の接合層13も剥離していなかった。 As test samples, the first ceramic member 11 and the plate-shaped second ceramic member 12 without the recess 12a were processed and joined in the same manner, and the resulting ceramic joined body was subjected to a torsional shear strength test. . Specifically, the ceramic bonded body was fixed with a vice, twisted with a torque wrench and broken, and the torque at the time of breaking was measured. Three ceramic bonded bodies 1 were prepared and tested three times. The joint interface between the first ceramic member 11 and the second ceramic member 12 was not broken, but the first ceramic member 11 was broken. Furthermore, the vitreous bonding layer 13 was not peeled off either.

比較用試料として、凹部12aのない板状の第2セラミック部材12の表面(凹部12aの底面に相当)に溝部12bを設けずに、研削加工したセラミック接合体、およびラップ加工して第1セラミック部材11と接合したセラミック接合体を得た。溝部12bを設けない以外は、セラミック接合体1と同様の条件で製造した。研削面としたセラミック接合体およびラップ面としたセラミック接合体について、試験用試料と同様、ねじりせん断強度試験を3回行った。測定されたせん断応力の平均は、いずれも試験用試料よりも低かった。さらに、いずれのセラミック接合体も、接合界面で破断しており、ガラス質の接合層13が剥離していた。 As comparative samples, a ceramic joined body was ground without forming grooves 12b on the surface of a plate-shaped second ceramic member 12 without recesses 12a (corresponding to the bottom surface of recesses 12a), and the first ceramic was lapped. A ceramic bonded body bonded to the member 11 was obtained. It was manufactured under the same conditions as the ceramic bonded body 1 except that the groove portion 12b was not provided. The torsional shear strength test was performed three times in the same manner as the test samples for the ceramic bonded body with the ground surface and the ceramic bonded body with the lapped surface. All measured average shear stresses were lower than the test samples. Furthermore, all ceramic bonded bodies were fractured at the bonding interface, and the vitreous bonding layer 13 was peeled off.

1 セラミック接合体(真空チャック)
11 第1セラミック部材
11a 表面
11b 裏面
12 第2セラミック部材
12a 凹部
12b 溝部
12c 平坦部
13 接合層
14 吸引溝
1 Ceramic bonded body (vacuum chuck)
REFERENCE SIGNS LIST 11 first ceramic member 11a front surface 11b rear surface 12 second ceramic member 12a recess 12b groove 12c flat portion 13 bonding layer 14 suction groove

Claims (12)

平坦な表面および該表面の反対側に位置する裏面を有する第1セラミック部材と、
前記第1セラミック部材を収納する凹部を有する第2セラミック部材と、
前記第1セラミック部材の裏面と前記第2セラミック部材の凹部の底面とを接合するガラス質の接合層と、
を含み、
前記第2セラミック部材の凹部の底面は、溝部と該溝部以外の平坦部とを含み、
前記溝部表面の算術平均粗さは、前記平坦部表面の算術平均粗さよりも大きく、
前記接合層は、少なくとも前記溝部と前記裏面とを接合している、
セラミック接合体。
a first ceramic member having a flat surface and a back surface opposite the surface;
a second ceramic member having a recess for accommodating the first ceramic member;
a vitreous bonding layer that bonds the back surface of the first ceramic member and the bottom surface of the recess of the second ceramic member;
including
the bottom surface of the recess of the second ceramic member includes a groove and a flat portion other than the groove;
The arithmetic mean roughness of the groove surface is greater than the arithmetic mean roughness of the flat part surface,
The bonding layer bonds at least the groove and the back surface,
ceramic joints.
前記溝部が、直線状の溝および曲線状の溝の少なくとも一方を含む、請求項1に記載のセラミック接合体。 2. The ceramic joined body according to claim 1, wherein said groove portion includes at least one of linear grooves and curved grooves. 前記溝部表面の算術平均粗さは、0.4μm以上である、請求項1または2に記載のセラミック接合体。 3. The ceramic joined body according to claim 1, wherein said groove surface has an arithmetic mean roughness of 0.4 [mu]m or more. 前記溝部表面の算術平均粗さは、0.8μm以上である、請求項1~3のいずれかに記載のセラミック接合体。 4. The ceramic joined body according to claim 1, wherein said groove surface has an arithmetic mean roughness of 0.8 μm or more. 前記平坦部表面の算術平均粗さは、0.8μmより小さい、請求項1、2または4に記載のセラミック接合体。 5. The ceramic joined body according to claim 1, 2 or 4, wherein said flat surface has an arithmetic mean roughness of less than 0.8 [mu]m. 前記平坦部表面の算術平均粗さは、0.4μmより小さい、請求項1~5のいずれかに記載のセラミック接合体。 The ceramic joined body according to any one of claims 1 to 5, wherein the surface of said flat portion has an arithmetic mean roughness of less than 0.4 µm. 前記溝部は、深さよりも幅の方が長く、前記溝部表面を前記幅方向に5μm間隔でプロットした場合に、隣接する2点を結ぶ直線と前記幅方向に水平な面とのなす角が45°以下である、請求項1~6のいずれかに記載のセラミック接合体。 The width of the groove is longer than the depth, and when the surface of the groove is plotted in the width direction at intervals of 5 μm, the angle between a straight line connecting two adjacent points and a plane horizontal in the width direction is 45. ° or less. 前記溝部は、底部において、前記溝部の延伸方向にうねりを有する、請求項1~7のいずれかに記載のセラミック接合体。 8. The ceramic joined body according to claim 1, wherein said groove has undulations in the extending direction of said groove at its bottom. 前記うねりは、前記溝部の幅よりも小さい周期で存在している、請求項8に記載のセラミック接合体。 9. The ceramic joined body according to claim 8, wherein said undulations are present with a period smaller than the width of said groove. 前記第2セラミック部材は炭化物または窒化物からなり、前記溝部の表面は、前記平坦部の表面よりも炭素および窒素の少なくとも一方の割合が小さい、請求項1~9のいずれかに記載のセラミック接合体。 The ceramic joint according to any one of claims 1 to 9, wherein the second ceramic member is made of carbide or nitride, and the surface of the groove has a smaller ratio of at least one of carbon and nitrogen than the surface of the flat portion. body. 真空チャックである、請求項1~10のいずれかに記載のセラミック接合体。 The ceramic joined body according to any one of claims 1 to 10, which is a vacuum chuck. 平坦な表面および該表面の反対側に位置する裏面を有する第1セラミック部材を準備する工程と、
前記第1セラミック部材を収納する凹部を有する第2セラミック部材を準備する工程と、
前記第2セラミック部材の凹部の底面を平坦化加工する工程と、
前記第2セラミック部材の凹部の底面に、レーザ加工によって溝部を形成する工程と、
前記第1セラミック部材の裏面および前記第2セラミック部材の凹部の少なくとも一方にガラスペーストを塗布し、貼り合わせて焼成し、少なくとも前記溝部と前記裏面とをガラス質の接合層で接合する工程と、
を含む、セラミック接合体の製造方法。
providing a first ceramic member having a planar surface and a back surface opposite the planar surface;
preparing a second ceramic member having a recess for accommodating the first ceramic member;
flattening the bottom surface of the recess of the second ceramic member;
forming a groove on the bottom surface of the recess of the second ceramic member by laser processing;
a step of applying a glass paste to at least one of the back surface of the first ceramic member and the concave portion of the second ceramic member, bonding and firing, and bonding at least the groove portion and the back surface with a vitreous bonding layer;
A method for manufacturing a ceramic bonded body, comprising:
JP2021108458A 2021-06-30 2021-06-30 Ceramic joined body and method for producing the same Pending JP2023006065A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021108458A JP2023006065A (en) 2021-06-30 2021-06-30 Ceramic joined body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021108458A JP2023006065A (en) 2021-06-30 2021-06-30 Ceramic joined body and method for producing the same

Publications (1)

Publication Number Publication Date
JP2023006065A true JP2023006065A (en) 2023-01-18

Family

ID=85107421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021108458A Pending JP2023006065A (en) 2021-06-30 2021-06-30 Ceramic joined body and method for producing the same

Country Status (1)

Country Link
JP (1) JP2023006065A (en)

Similar Documents

Publication Publication Date Title
JP4666656B2 (en) Vacuum adsorption apparatus, method for producing the same, and method for adsorbing an object to be adsorbed
JP2008132562A (en) Vacuum chuck and vacuum suction device using it
JP4545536B2 (en) Vacuum suction jig
US20190263724A1 (en) Component for semiconductor production device, and production method of component for semiconductor production device
KR100989752B1 (en) Wafer transfer blade
JP2023006065A (en) Ceramic joined body and method for producing the same
JP3685962B2 (en) Susceptor and manufacturing method thereof
JP3325441B2 (en) Vacuum suction device
KR102447586B1 (en) A method for manufacturing a holding device, and a holding device
JP5279550B2 (en) Vacuum adsorption apparatus and method for manufacturing the same
JP2005022966A (en) Aluminum nitride joined body and its producing method
JP2002151580A (en) Wafer holding jig and method for manufacturing the same
JP3909248B2 (en) Sample heating device
TWI267498B (en) Aluminum nitride conjugate body and method of producing the same
JP3389484B2 (en) Aluminum nitride bonded structure and method of manufacturing the same
JP2004209633A (en) Apparatus for securing work substrate and method for manufacturing the same
JP6804053B2 (en) Electrostatic chuck
JP2009107880A (en) Joined body, adsorption member, adsorption device, and working apparatus
JPWO2007000963A1 (en) Method for manufacturing ceramic substrate having steps
JP2005158962A (en) Electrostatic chuck and method for manufacturing the same
JP3965470B2 (en) Electrostatic chuck and manufacturing method thereof
WO2023181499A1 (en) Semiconductor device and electric power conversion device
JP2007165322A (en) Sample heating device and its manufacturing method
JP7517630B2 (en) Substrate holding member and manufacturing method thereof
CN112166496B (en) Holding device and method for manufacturing holding device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240823