JP2023005976A - Composite sliding component and method for manufacturing the same - Google Patents

Composite sliding component and method for manufacturing the same Download PDF

Info

Publication number
JP2023005976A
JP2023005976A JP2021108311A JP2021108311A JP2023005976A JP 2023005976 A JP2023005976 A JP 2023005976A JP 2021108311 A JP2021108311 A JP 2021108311A JP 2021108311 A JP2021108311 A JP 2021108311A JP 2023005976 A JP2023005976 A JP 2023005976A
Authority
JP
Japan
Prior art keywords
iron
alloy
layer
strength
composite sliding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021108311A
Other languages
Japanese (ja)
Inventor
克之 舟木
Katsuyuki Funaki
隆史 明石
Takashi Akashi
進弘 中井
Nobuhiro Nakai
一善 大橋
Kazuyoshi Ohashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AKASHI GODO KK
SAN-ETSU METALS CO Ltd
San Etsu Metals Co Ltd
Nippon Shindo Co Ltd
Original Assignee
AKASHI GODO KK
SAN-ETSU METALS CO Ltd
San Etsu Metals Co Ltd
Nippon Shindo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AKASHI GODO KK, SAN-ETSU METALS CO Ltd, San Etsu Metals Co Ltd, Nippon Shindo Co Ltd filed Critical AKASHI GODO KK
Priority to JP2021108311A priority Critical patent/JP2023005976A/en
Publication of JP2023005976A publication Critical patent/JP2023005976A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide an iron-copper composite sliding component in which a high strength brass alloy layer excellent in abrasion resistance and seizure resistance is formed on a sliding surface of a ferrous material, and a method for manufacturing the same.SOLUTION: A composite sliding component has a body part composed of a ferrous material, a Zn-Fe alloy layer formed on the surface of the body part, and a high strength brass alloy layer which is joined to the surface of the alloy layer and is excellent in abrasion resistance and seizure resistance.SELECTED DRAWING: Figure 2

Description

本発明は、鉄系材料の摺動面に耐摩耗性や耐焼き付き性に優れた高力黄銅合金層を形成した、鉄-銅系複合摺動部品及びその製造方法に関する。 TECHNICAL FIELD The present invention relates to an iron-copper-based composite sliding part, in which a high-strength brass alloy layer having excellent wear resistance and seizure resistance is formed on the sliding surface of an iron-based material, and a method for manufacturing the same.

従来、高荷重用途の軸受材やアキシャル・ピストン・ポンプの斜板やピストンシュー等の摺動部品には、繰り返し荷重に耐えうる高い疲労強度と耐摩耗性、耐焼き付き性が要求されることから、JIS H3250高力黄銅棒が使用されているが、近年の高速・高圧油圧ポンプではその強度が不十分であるため、強靭な鉄系材料と摩擦摩耗特性に優れた耐摩耗性高力黄銅合金を接合した複合摺動部材が使用される(特許文献1)。
油圧ピストンポンプの斜板やピストンシュー等の摺動部品に使用されている耐摩耗性高力黄銅合金としては、JISの高力黄銅にアルミニウムやシリコンを添加して、高硬度のマンガンシリサイド(MnSi)を析出させたものが使用されている。
Conventionally, bearing materials for high-load applications and sliding parts such as swash plates and piston shoes for axial piston pumps require high fatigue strength, wear resistance, and seizure resistance to withstand repeated loads. , JIS H3250 high-strength brass rods are used, but their strength is insufficient for recent high-speed and high-pressure hydraulic pumps. is used (Patent Document 1).
As wear-resistant high-strength brass alloys used for sliding parts such as swash plates and piston shoes of hydraulic piston pumps, aluminum and silicon are added to JIS high-strength brass to produce high-hardness manganese silicide (Mn 5 Si 3 ) is used.

従来、鉄系材料に耐摩耗性高力黄銅合金を接合する場合には、次のいずれかの方法が用いられている。
1)ロウ付け
2)肉盛溶接
3)鋳ぐるみ
4)溶射
5)焼結接合
6)リン青銅やニッケルインサート材を使用した拡散接合
上記のような接合方法では、技術的に困難、コスト面や量産に不適、接合強度が低い等の問題がある。
Conventionally, when joining a wear-resistant high-strength brass alloy to a ferrous material, one of the following methods is used.
1) Brazing 2) Overlay welding 3) Casting 4) Thermal spraying 5) Sintering bonding 6) Diffusion bonding using phosphor bronze or nickel insert There are problems such as unsuitability for mass production and low bonding strength.

特許文献1には、鉄系材料と耐摩耗性高力黄銅合金を接合する方法が開示されている。
特許文献1の接合方法では、何らインサート材を用いることなく、鉄系材料をフラックスで覆った、または真空等の方法で酸素を遮断した状態で加熱して、高温の鉄系材料と溶融状態の高力黄銅合金を直接接触させ、シャワー水冷により急冷することで接合界面での化合物層生成を抑制して接合している。
しかし、高温の鉄系材料をシャワー水冷するとマルテンサイト変態を生じて焼き入れされて高硬度になるため、高力黄銅合金の接合後に機械加工する際には600℃程度の焼き戻しが必須となる。
しかし、鉄との親和性が高いAlやSiの合金元素は、焼き戻しにおいて鉄との化合物層を生成して接合強度を著しく低下させるので、機械加工を必要とする実部品への応用は極めて困難である。
Patent Literature 1 discloses a method of joining a ferrous material and a wear-resistant high-strength brass alloy.
In the joining method of Patent Document 1, without using any insert material, the iron-based material is covered with flux or heated in a state where oxygen is blocked by a method such as a vacuum, so that the high-temperature iron-based material and the molten state are heated. The high-strength brass alloy is brought into direct contact and is rapidly cooled by shower water cooling, thereby suppressing the formation of a compound layer at the bonding interface.
However, when a high-temperature iron-based material is shower water-cooled, it undergoes martensitic transformation and is quenched to a high degree of hardness. .
However, alloy elements such as Al and Si, which have a high affinity with iron, form a compound layer with iron during tempering, which significantly reduces the bonding strength. Have difficulty.

特開平11-58034号公報JP-A-11-58034

フラックスで覆った高温の鉄系材料と溶融状態の黄銅合金とを直接接触させる鋳込み溶着法は、普通黄銅では比較的容易な接合方法である。
しかし、アルミニウムやシリコンを添加した耐摩耗性高力黄銅合金の場合、接合界面でFeAlやFeSi系の脆弱な金属間化合物膜を生成し、接合強度が著しく低下するという問題があり、この脆弱な膜状金属間化合物を発生させずに鉄系材料と高い接合強度を得ることが課題である。
したがって本発明は、鉄系材料と高力黄銅合金との接合強度に優れた複合摺動部品及びその製造方法の提供を目的とする。
Cast-in welding, in which a hot ferrous material covered with flux is brought into direct contact with a molten brass alloy, is a relatively easy joining method for ordinary brass.
However, in the case of wear-resistant high-strength brass alloys to which aluminum and silicon are added, there is a problem that a brittle intermetallic compound film of FeAl or FeSi system is generated at the joint interface, and the joint strength is significantly reduced. The challenge is to obtain a high bonding strength with iron-based materials without generating a film-like intermetallic compound.
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a composite sliding part having excellent bonding strength between a ferrous material and a high-strength brass alloy, and a method for manufacturing the same.

本発明に係る複合摺動部品は、鉄系材料からなる本体部と、前記本体部の表面に形成したZn-Fe系合金層と、前記合金層の表面に接合した耐摩耗性及び耐焼き付け性に優れた高力黄銅合金層を有していることを特徴とする。
このようにすると、従来鋳込み溶着で発生する脆弱なFeAlやFeSi系の膜状金属間化合物を、本発明では金属間化合物と銅合金が3次元的に入り組んだ複合形態に変化させて脆弱性を改善し、接合強度の高い鉄系材料と耐摩耗性高力黄銅からなる複合摺動部品が得られる。
A composite sliding part according to the present invention comprises a main body made of an iron-based material, a Zn—Fe-based alloy layer formed on the surface of the main body, and wear resistance and seizure resistance bonded to the surface of the alloy layer. It is characterized by having a high-strength brass alloy layer with excellent strength.
In this way, the brittle FeAl and FeSi-based intermetallic compounds generated by conventional casting welding are changed into a composite form in which the intermetallic compounds and the copper alloy are three-dimensionally intricate in the present invention to reduce brittleness. A composite sliding part made of a ferrous material with high joint strength and wear-resistant high-strength brass can be obtained.

本発明を適用したピストンシューの例を図1に示す。
疲労耐久性の高いクロムモリブデン鋼製のシュー本体1の摺動面にマンガンとシリコンを含む耐摩耗の高力黄銅合金2を溶融接合している。
また、接合界面の金属組織には、FeSi系の柱状金属間化合物と銅合金が3次元的に入り組んだ接合層を有している。
シュー本体1は、球状部12をピストン5の第一端部51に形成した収容凹部31に回転可能に収容し、カシメにより結合され、40MPaのピストン吐出の反力を受けながら、斜板4上を10m/sの高速で摺動する。
シュー表面の潤滑は、ピストン中心部に設けた第一流通孔3および第二流通孔32によりピストン油圧の一部を導入し、環状突起21でシールすることでピストンシュー表面の油圧バランスを保っている。
An example of a piston shoe to which the present invention is applied is shown in FIG.
A wear-resistant high-strength brass alloy 2 containing manganese and silicon is fusion-bonded to the sliding surface of a shoe body 1 made of chromium-molybdenum steel with high fatigue durability.
The metallographic structure of the bonding interface has a bonding layer in which FeSi-based columnar intermetallic compounds and copper alloys are three-dimensionally intricate.
Shoe body 1 rotatably accommodates spherical portion 12 in accommodation recess 31 formed in first end portion 51 of piston 5 and is joined by caulking. is slid at a high speed of 10 m/s.
The shoe surface is lubricated by introducing a portion of the piston hydraulic pressure through the first through hole 3 and the second through hole 32 provided in the center of the piston, and by sealing with the annular projection 21, the oil pressure balance on the piston shoe surface is maintained. there is

アキシャル・ピストン・ポンプのシューは、相手材となる浸炭鋼製の高硬度な斜板と高圧下での摺動性や耐摩耗性が要求されることから、Al、Mn、Si、Ni等の成分が添加された高力黄銅合金が好ましいが、これらの溶融銅合金を高温の鉄系材料に直接接触させ、マルテンサイト変態を生じないように高圧エアー冷却を用いて溶着すると、接合面にFe-Si-Mn化合物等の脆弱な膜状析出物が発生して、接合面に剥離欠陥を生じ、著しく接合強度が低下することが本発明者らの検討により明らかになった。
また、AlもFeとの親和性が高く、Al-Fe系の脆弱な金属間化合物層を接合面に析出することが知られている。
The shoe of the axial piston pump is required to have a high hardness swash plate made of carburized steel, which is the mating material, and slidability and wear resistance under high pressure. High-strength brass alloys with added components are preferable, but when these molten copper alloys are brought into direct contact with high-temperature ferrous materials and welded using high-pressure air cooling so as not to cause martensite transformation, Fe The study by the inventors of the present invention revealed that brittle film-like precipitates such as Si--Mn compounds are generated to cause peeling defects on the joint surface, resulting in a marked decrease in joint strength.
Al also has a high affinity with Fe, and is known to deposit an Al—Fe-based brittle intermetallic compound layer on the joint surface.

そこで本発明では、鉄系材料表面に亜鉛メッキを施すと、溶融銅合金との接触により銅合金中に亜鉛が溶け出し、接触面近傍における溶質濃度勾配が大きくなり、脆弱な金属間化合物が膜状ではなく、柱状晶として凝固成長することを見出した。
詳細は後述するが、図2(a)は鉄系材料からなる鉄素地に溶融亜鉛メッキをした上に、高力黄銅の溶湯を接触させたものであり、図2(b)は溶融亜鉛メッキの替わりに電気Cuメッキを施したものである。
柱状晶成長に十分な濃度勾配を生じさせるためには、亜鉛メッキの厚さは15ミクロン以上であることが好ましく、例えば溶融亜鉛メッキでは、膜厚の大きな亜鉛メッキが容易に得られる。
ただし、亜鉛の膜厚が過大であると接触面近傍における黄銅合金の亜鉛当量が高くなりすぎて、δ銅が晶出して接合強度が低下することから、亜鉛メッキは300ミクロン以下とすることが好ましい。
Therefore, in the present invention, when the surface of an iron-based material is plated with zinc, zinc dissolves into the copper alloy due to contact with the molten copper alloy, and the solute concentration gradient in the vicinity of the contact surface increases. It was found that the crystals solidify and grow as columnar crystals, not as crystals.
Although the details will be described later, FIG. 2(a) is a hot-dip galvanized iron base made of an iron-based material and then contacted with a molten high-strength brass, and FIG. 2(b) is a hot-dip galvanized Instead of , it is electroplated with Cu.
In order to generate a concentration gradient sufficient for columnar crystal growth, the thickness of the zinc plating is preferably 15 microns or more. For example, hot-dip galvanization can easily provide a thick zinc plating.
However, if the zinc film thickness is too large, the zinc equivalent of the brass alloy in the vicinity of the contact surface will become too high, and δ copper will crystallize and the joint strength will decrease, so the zinc plating should be 300 microns or less. preferable.

接合界面となる鉄素地表面をZn-Fe系の合金層とすることで、Fe-Si系化合物の不均一凝固核となる鉄の表面積が減少し、柱状晶成長するFe-Si系化合物の間隔は疎となる。
柱状晶の隙間が銅合金で満たされた金属と化合物の複合体は、接合界面で生成する金属間化合物の脆弱性を著しく改善し、高い接合強度が得られる。
By making the surface of the iron substrate, which is the joint interface, a Zn-Fe-based alloy layer, the surface area of the iron that becomes the heterogeneous solidification nucleus of the Fe-Si-based compound is reduced, and the space between the Fe-Si-based compounds that grow columnar crystals. becomes sparse.
A composite of a metal and a compound in which the gaps between the columnar crystals are filled with a copper alloy significantly improves the fragility of the intermetallic compound generated at the bonding interface, resulting in high bonding strength.

一方、溶融亜鉛メッキは、メッキプロセス中に亜鉛が鉄素地中に拡散して、Zn-Fe系合金層を形成する。
特に、溶融亜鉛メッキ後に放冷すると合金層の厚さを増大できる。
また、Zn-Fe系合金層は、電気亜鉛メッキ後に350℃~500℃で熱処理することでも得られるが、溶着工程においてフラックスが溶融する温度(800℃以上)まで加熱することで得ることもできる。
Zn-Fe合金層のうち、ζ層と称される合金層の組成は、FeZn13と推定され、鉄と亜鉛の比較的結合性の低い合金層である。
溶融銅合金と接触して銅合金中に亜鉛が溶け出すと鉄のスケルトンが残り、この空隙に銅合金が濡れて侵入して、鉄と銅合金が3次元的に入り組んだ接合層が形成される。
図3(a)に、図2(a)の接合部の拡大写真を示し、図3(b)にCu-Kαの解析(分布)像を示す。
この接合層により接合強度が著しく改善され、鉄系材料と高力黄銅合金の接合品質が向上する。
On the other hand, in hot-dip galvanizing, zinc diffuses into the iron substrate during the plating process to form a Zn--Fe alloy layer.
In particular, the thickness of the alloy layer can be increased by allowing it to cool after hot-dip galvanizing.
The Zn—Fe alloy layer can also be obtained by heat treatment at 350° C. to 500° C. after electrogalvanization, but it can also be obtained by heating to a temperature (800° C. or higher) at which the flux melts in the welding process. .
Among the Zn—Fe alloy layers, the composition of the alloy layer called the ζ layer is presumed to be FeZn 13 , which is an alloy layer with relatively low bonding between iron and zinc.
When zinc comes into contact with the molten copper alloy and dissolves into the copper alloy, an iron skeleton remains, and the copper alloy wets and penetrates into these voids, forming a three-dimensionally intricate bonding layer of iron and copper alloy. be.
FIG. 3(a) shows an enlarged photograph of the joint in FIG. 2(a), and FIG. 3(b) shows an analysis (distribution) image of Cu—Kα.
This bonding layer significantly improves the bonding strength and improves the quality of bonding between ferrous materials and high-strength brass alloys.

溶融状態の高力黄銅合金と高温の鉄系材料を直接接触させれば、接触面から溶け出した鉄との親和力が高いAl、Si等の合金元素との脆弱な金属間化合物生成を避けられず、この金属間化合物が膜状に生成することで接合強度は著しく低下する。
本発明に係る摺動部品は、接合面に生成する金属間化合物を銅合金と化合物の複合体に変化させるとともに、鉄と銅合金が3次元的に入り組んだ接合層が形成されており、接合品質に優れる。
Direct contact between a molten high-strength brass alloy and a high-temperature iron-based material avoids the formation of brittle intermetallic compounds with alloy elements such as Al and Si, which have a high affinity for iron melted from the contact surface. However, the intermetallic compound is formed in the form of a film, which significantly reduces the bonding strength.
In the sliding part according to the present invention, the intermetallic compound generated on the joint surface is changed into a composite of copper alloy and compound, and a joint layer in which iron and copper alloy are three-dimensionally intricate is formed. Excellent quality.

本発明に係る摺動部品ピストンシューの態様 本発明を適用するアキシャル・ピストン・ポンプのシューの断面図を示す。本体と斜板との摺動面に高力黄銅合金層が形成されている。Aspect of Sliding Part Piston Shoe According to the Present Invention A cross-sectional view of a shoe of an axial piston pump to which the present invention is applied is shown. A high-strength brass alloy layer is formed on the sliding surface between the main body and the swash plate. 接合界面に生成する金属間化合物の形態を示した組織写真 a)は鉄系材料の表面に直接高力黄銅を鋳込み溶着した接合面、b)は本発明を適用した鉄系材料に高力黄銅を鋳込み溶着した接合面である。接合界面で生成する金属間化合物の形態に変化が見られる。A structure photograph showing the form of intermetallic compounds generated at the joint interface. is the joint surface where the is cast and welded. A change is seen in the form of the intermetallic compound generated at the joint interface. 銅合金が3次元的に入り組んだ接合層を示した走査電子顕微鏡写真 a)は化合物層と接合層の拡大写真であり、b)は同視野における銅の分布である。化合物層は銅と複合体を形成し、その下の鉄素地に鉄と銅が3次元的に入り組んだ接合層を確認することができる。Scanning electron micrographs showing a bonding layer in which a copper alloy is three-dimensionally intricate a) is an enlarged photograph of a compound layer and a bonding layer, and b) is a distribution of copper in the same field of view. The compound layer forms a composite with copper, and a bonding layer in which iron and copper are three-dimensionally intricate can be confirmed on the underlying iron base. 鋳込み溶着の製造方法を示した図Diagram showing the manufacturing method of casting welding 本実施例に用いた高力黄銅合金の成分を示した表Table showing the components of the high-strength brass alloy used in this example せん断試験方法を示した図Diagram showing the shear test method 溶着性の評価結果を示した表Table showing evaluation results of weldability

従来の硼砂等のフラックスで覆って大気中、または還元性雰囲気中や真空中で酸化しないように加熱した高温の鉄系材料にアルミニウムやシリコンを含む高力黄銅の溶湯を接触させて溶着すると、溶湯との接触面で鉄系の脆弱な化合物層を生じるため、接合強度が低く、摺動部品の使用中に剥離し易い。化合物層は膜状であり、黄銅合金の凝固後の冷却過程で拡散反応によって生成している。
従来、銅やニッケルをメッキして鉄の拡散を抑制しようとする試みもあるが、メッキが溶融黄銅合金と接触すると直ちに溶解し、黄銅合金の凝固後の冷却過程における化合物の生成を抑制することはできない。そのため、高力黄銅と鉄系材料の接合では、ロウ付けなどの方法で銅合金を溶かさずに、かつ高温の鉄と銅合金を直接接触させずに複合摺動部品を製造している。
これに対して、本発明は鋳込み溶着における化合物の生成を抑制するのではなく、生成する化合物の形態を変えて、接合性を向上させる新たな発想に基づいている。
When molten metal of high-strength brass containing aluminum or silicon is brought into contact with a high-temperature iron-based material that has been covered with conventional flux such as borax and heated in the air, in a reducing atmosphere, or in a vacuum so as not to oxidize, Since a brittle iron-based compound layer is formed on the contact surface with the molten metal, the bonding strength is low and the sliding parts are easily peeled off during use. The compound layer is film-like and is produced by a diffusion reaction during the cooling process after solidification of the brass alloy.
Conventionally, there have been attempts to suppress the diffusion of iron by plating copper or nickel. can't. Therefore, in joining high-strength brass and iron-based materials, composite sliding parts are manufactured without melting the copper alloy by a method such as brazing and without bringing the high-temperature iron and copper alloy into direct contact.
In contrast, the present invention is based on a new idea of improving the bondability by changing the form of the compound that is produced, rather than suppressing the production of the compound in casting welding.

高力黄銅合金中に含まれるシリコンやマンガンの量は、鉄系材料の間で生成する化合物層の厚さに関係し、本発明の実施では、高力黄銅合金の成分を以下全て質量%で、Mn:2.0~5.0%、Si:0.5~2.0%とすることにより、鉄系材料と強力に接合する。
マンガンはシリコンと結合して、金属組織中にMnSiの針状金属間化合物を生成し、高力黄銅合金の耐摩耗性や耐焼き付き性を向上させる。
マンガンが2.0%よりも少ないと、耐摩耗性の向上に十分な針状金属間化合物が得られず、5.0%よりも多いと接合部に脆弱な金属間化合物層が生成し、接合強度が低下する。
また、シリコンが0.5%よりも少ないと、耐摩耗性の向上に十分な針状金属間化合物が得られず、2.0%よりも多いと接合部に脆弱な金属間化合物層が生成し、接合強度が低下する。
The amount of silicon and manganese contained in the high-strength brass alloy is related to the thickness of the compound layer generated between the iron-based materials. , Mn: 2.0 to 5.0%, and Si: 0.5 to 2.0%, strong bonding with ferrous materials is achieved.
Manganese combines with silicon to form a needle-like intermetallic compound of Mn 5 Si 3 in the metal structure, which improves the wear resistance and seizure resistance of high-strength brass alloys.
If the manganese content is less than 2.0%, a needle-shaped intermetallic compound sufficient for improving wear resistance cannot be obtained, and if the manganese content is more than 5.0%, a brittle intermetallic compound layer is formed at the joint. Bonding strength is reduced.
If the silicon content is less than 0.5%, a needle-shaped intermetallic compound sufficient for improving wear resistance cannot be obtained, and if it exceeds 2.0%, a fragile intermetallic compound layer is formed at the joint. and the bonding strength decreases.

複合摺動部品に溶着する高力黄銅合金に求められる特性を得るため、この高力黄銅合金に添加するその他元素の選定理由と添加量の制限範囲については、次のとおりである。
Cu:55.0~65.0%
銅は合金の主成分で、65.0%よりも多いと、高力黄銅合金としての引張強さや硬さ、耐摩耗性が得られない。また、55.0%よりも少ないと黄銅合金の亜鉛当量が大きすぎて伸びが低下し、靭性が不足する。好ましくは、Cu:58.0~63.0%である。
Al:0.5~2.0%
本発明においてAlは必須成分ではないが、Alは銅に固溶して黄銅合金の引張強さや硬さを上昇させる。
0.5%よりも少ないとその効果は低く、2.0%よりも多いと、接合部に脆弱な金属間化合物層が生成し、接合強度が低下する。
Pb:0.5~4.0%
本発明においてPbは必須成分ではないが、鉛は黄銅合金の被削性と耐焼き付き性を向上させる。
一方、RoHS指令等で環境有害元素として指定されており、その添加は少量に留める必要がある。
なお、0.5%よりも少ないとその効果は低い。
現在、RoHS指令では、銅合金中に含まれる4.0%未満の鉛を許容している。
Sn:1.0%以下
本発明においてSnは必須成分ではないが、Snは少量でも高力黄銅の脱亜鉛腐食を防止する。
しかし、Snが1%以上含まれるとCuSn相が現われて、黄銅合金を脆化させるので、1.0%以下とする。
P:0.1%以下
本発明においてPは必須成分ではないが、Pを添加した溶湯は滓を含まず、流動性に富むため、接合時に用いたフラックスの浮上除去を容易にする効果がある。
しかし、0.1%を越えて含まれると黄銅合金を硬くし、また気泡巣を生じ易くなるため、その量は0.1%以下とする。
Zn:残部
亜鉛は銅とともに合金の主成分で、高力黄銅合金としての引張強さや硬さ、耐摩耗性を決定する。合金中の亜鉛量は、銅の成分量によりコントロールされる。
In order to obtain the properties required for the high-strength brass alloy to be welded to the composite sliding parts, the reasons for selecting the other elements to be added to the high-strength brass alloy and the limits of the amount of addition are as follows.
Cu: 55.0-65.0%
Copper is the main component of the alloy, and if it exceeds 65.0%, the tensile strength, hardness, and wear resistance of a high-strength brass alloy cannot be obtained. On the other hand, if it is less than 55.0%, the zinc equivalent of the brass alloy is too large, the elongation is lowered, and the toughness is insufficient. Preferably, Cu: 58.0 to 63.0%.
Al: 0.5-2.0%
Although Al is not an essential component in the present invention, Al dissolves in copper and increases the tensile strength and hardness of the brass alloy.
If it is less than 0.5%, the effect is low, and if it is more than 2.0%, a brittle intermetallic compound layer is formed at the joint and the joint strength is lowered.
Pb: 0.5-4.0%
Although Pb is not an essential component in the present invention, lead improves the machinability and seizure resistance of the brass alloy.
On the other hand, it is designated as an environmentally hazardous element by the RoHS Directive, etc., and its addition must be limited to a small amount.
If the content is less than 0.5%, the effect is low.
Currently, the RoHS Directive allows less than 4.0% lead in copper alloys.
Sn: 1.0% or less Sn is not an essential component in the present invention, but even a small amount of Sn prevents dezincification corrosion of high-strength brass.
However, if Sn is contained in an amount of 1% or more, a Cu 4 Sn phase appears and embrittles the brass alloy.
P: 0.1% or less In the present invention, P is not an essential component, but the molten metal containing P does not contain slag and has high fluidity, so it has the effect of facilitating removal of the flux used during joining. .
However, if the content exceeds 0.1%, the brass alloy is hardened and voids are likely to occur, so the content should be 0.1% or less.
Zn: Balance Zinc is a main component of the alloy together with copper, and determines tensile strength, hardness, and wear resistance as a high-strength brass alloy. The amount of zinc in the alloy is controlled by the content of copper.

次に、接合強度向上のために行う、鉄系材料の溶着前処理について説明する。
鉄系材料の接合面には溶融メッキ法、電気メッキ法、金属溶射法など適宜な方法で15μm以上の亜鉛層を形成している。
亜鉛層の厚さが不十分な場合、接合界面における溶質濃度勾配を大きくならず、膜状化合物層に形態変化が起こらない。
溶融メッキ法の場合、亜鉛層の形成時に亜鉛との合金層が形成されるが、溶融メッキ法以外の方法で亜鉛層を形成した場合には、350~500℃で30分以上の熱処理を行い、鉄表面に亜鉛との合金層を形成する。
この時形成される合金層は、ζ相と呼ばれる鉄と亜鉛の比較的に結合性の低い合金層である。
Next, the pre-welding treatment of iron-based materials, which is performed to improve the joint strength, will be described.
A zinc layer having a thickness of 15 μm or more is formed on the joining surface of the ferrous material by an appropriate method such as a hot dipping method, an electroplating method, or a metal spraying method.
If the thickness of the zinc layer is insufficient, the solute concentration gradient at the bonding interface will not increase, and the morphology of the film compound layer will not change.
In the case of the hot-dip plating method, an alloy layer with zinc is formed when the zinc layer is formed. However, when the zinc layer is formed by a method other than the hot-dip plating method, heat treatment is performed at 350 to 500° C. for 30 minutes or longer. , forms an alloy layer with zinc on the iron surface.
The alloy layer formed at this time is an alloy layer of relatively low bonding strength of iron and zinc called ζ phase.

亜鉛層と合金層を形成した鉄系材料は、フラックスで覆う等の接合面の酸化防止策を施して黄銅合金の融点(880℃)直上の温度で30分以上(製品の体積に応じて加減)予熱し、溶融高力黄銅合金を鋳込み溶着する。
溶融黄銅合金が鉄と亜鉛の結合性の低い合金層と接触すると、亜鉛が溶融黄銅合金に溶出して多孔質な鉄素地が形成されるとともに、黄銅合金が濡れて侵入し、鉄に黄銅合金が3次元的に入り組んだ複合体が形成される。
この複合体は溶着した黄銅合金と連続体であるため、接合層として溶着黄銅合金の密着強度を高めている。
Iron-based materials with a zinc layer and an alloy layer should be exposed to a temperature just above the melting point of brass alloy (880°C) for 30 minutes or more (adjusted according to the volume of the product) after taking anti-oxidation measures such as covering the joint surface with flux. ) Preheat, pour and weld molten high-strength brass alloy.
When the molten brass alloy comes into contact with an alloy layer with low bonding between iron and zinc, zinc elutes into the molten brass alloy to form a porous iron matrix, and the brass alloy gets wet and penetrates into the iron. form a three-dimensionally intricate complex.
Since this composite is a continuum with the welded brass alloy, it serves as a bonding layer to increase the adhesion strength of the welded brass alloy.

一方、鉄系材料表面の亜鉛層は、溶融黄銅合金に接して溶出し、接合界面における溶質濃度勾配が大きくなる。
その結果、鉄表面で生成する膜状Fe-Si-Mn系化合物は、溶融黄銅合金中に向けて凝固成長する柱状晶の形態に変化する。
また、亜鉛と合金化させた鉄系材料表面は不均一凝固核の生成が少なく、疎に成長した柱状晶間の隙間に残った黄銅合金と化合物が複合体を形成して、化合物層の脆弱性が改善される。
これにより、溶着黄銅合金の密着強度を高めている。
On the other hand, the zinc layer on the surface of the iron-based material is eluted in contact with the molten brass alloy, increasing the solute concentration gradient at the joint interface.
As a result, the film-like Fe--Si--Mn compound produced on the surface of the iron turns into columnar crystals that solidify and grow toward the molten brass alloy.
In addition, the surface of the iron-based material alloyed with zinc has little formation of heterogeneous solidification nuclei, and the brass alloy and the compound remaining in the gaps between the sparsely grown columnar crystals form a composite, making the compound layer fragile. improved sexuality.
This increases the adhesion strength of the welded brass alloy.

本発明で使用する鉄系材料については、軟鋼、炭素鋼、合金鋼、球状黒鉛鋳鉄などが用途に応じて適宜使用できる。 As the ferrous material used in the present invention, mild steel, carbon steel, alloy steel, spheroidal graphite cast iron, and the like can be appropriately used depending on the application.

<実施例>
次に、図1に示したピストンシューへ適用することを想定して、クロムモリブデン鋼に高力黄銅を鋳込み溶着して接合評価を実施した。
鋳込み溶着に用いた試料は、鉄系材料としてφ50mmのSCM440H丸棒に内径φ45mmの湯溜めを旋削加工して、その上に(1)厚さ50μmの溶融亜鉛メッキ(溶融Zn)、(2)厚さ25μmの電気亜鉛メッキ(電気Zn)、比較例として(3)厚さ15μmの電気銅メッキ(電気Cu)を施した。
電気亜鉛メッキしたサンプル(2)については、350~500℃にて熱処理をした。
<Example>
Next, assuming application to the piston shoe shown in FIG. 1, high-strength brass was cast and welded to chromium-molybdenum steel to evaluate bonding.
The sample used for casting and welding was made by lathing a sump with an inner diameter of φ45 mm on a SCM440H round bar of φ50 mm as a ferrous material, and then (1) hot-dip galvanized (hot-dip Zn) with a thickness of 50 μm, (2) Electrogalvanizing (electrical Zn) with a thickness of 25 μm, and as a comparative example (3) electrolytic copper plating (electrical Cu) with a thickness of 15 μm were applied.
The electrogalvanized sample (2) was heat treated at 350-500°C.

それぞれの試料の湯溜めに硼砂等のフラックスを充填し、910℃の炉で35分間加熱してフラックスを溶解し、図4に示す如く、柄杓5aで鉄系材料1aに、高周波溶解炉で溶解した図5の組成の高力黄銅合金2aを流し込んだ。
接合面では溶融フラックス4aが押し流され、空気と触れずに高力黄銅合金と置換される。
銅合金を流し込んだ後、直ちに底面から高圧エアーで冷却して、接合面から溶湯中へ方向性をもって凝固が進むようにした。
図5の表にて、実施例1~5はAlが実質的に含まれていない黄銅合金であり、実施例6はPbの含有量を抑え、Al:1.62%含有する黄銅合金を用いたが、いずれも本発明にて設定した範囲であり、接合部は図2(a)に示したものに近かった。
これに対して比較例7,10は、電気Cuメッキをしたもので、図2(b)に近い接合構造であった。
The hot water reservoir of each sample is filled with flux such as borax, heated in a furnace at 910° C. for 35 minutes to melt the flux, and as shown in FIG. The high-strength brass alloy 2a having the composition shown in FIG. 5 was poured.
The molten flux 4a is swept away from the joint surface and replaced with a high-strength brass alloy without coming into contact with air.
After pouring the copper alloy, it was immediately cooled from the bottom surface with high-pressure air so that solidification progressed directionally from the joining surface into the molten metal.
In the table of FIG. 5, Examples 1 to 5 are brass alloys that do not substantially contain Al, and Example 6 suppresses the Pb content and uses a brass alloy containing 1.62% Al. However, all were within the range set in the present invention, and the joint was close to that shown in Fig. 2(a).
On the other hand, Comparative Examples 7 and 10, which were electroplated with Cu, had a joint structure similar to that shown in FIG. 2(b).

鋳込み溶着後の評価については、浸透探傷試験及びせん断強度試験により行った。
浸透探傷試験は、銅合金を溶着した試料を縦割り切断し、JIS Z2343の試験方法に従って、接合界面における探傷反応(溶着不良)の有無を目視で調べた。
合否判定は、長さ1.6mm未満の探傷反応が3個以内とした。
また、せん断強度試験は、銅合金を溶着した試料を機械加工して断面が5mm角の試験片とし、図6に示すダイセットを使用して、固定ダイ62と可動パンチ61との間に荷重Pを加え、接合界面のせん断に要する荷重を測定し、断面積で除してせん断強度とした。
評価結果は、図7にまとめて示した。
Evaluation after casting and welding was performed by penetrant testing and shear strength testing.
In the penetrant testing, the copper alloy welded sample was longitudinally cut, and the presence or absence of flaw detection reaction (defective welding) at the joint interface was visually examined according to the test method of JIS Z2343.
The pass/fail judgment was based on three or less flaw detection reactions with a length of less than 1.6 mm.
In the shear strength test, a sample welded with copper alloy was machined into a test piece having a cross section of 5 mm square, and a die set shown in FIG. P was added, the load required for shearing the joint interface was measured, and the shear strength was obtained by dividing it by the cross-sectional area.
The evaluation results are collectively shown in FIG.

本発明を適用した実施例1から6では、浸透探傷試験がすべて合格となり、せん断強度も120N/mm以上の値が得られた。
一方、比較例の7から10では、接合界面における探傷反応長さが大きく、せん断試験では、ごく小さな力で銅合金が剥離したため、せん断強度を求めることができなかった。
In Examples 1 to 6 to which the present invention was applied, all penetrant testing passed, and a shear strength of 120 N/mm 2 or more was obtained.
On the other hand, in Comparative Examples 7 to 10, the flaw detection reaction length at the bonding interface was large, and in the shear test, the copper alloy was peeled off with a very small force, so the shear strength could not be obtained.

1 シュー本体
2 高力黄銅合金
3 第一流通孔
4 斜板
5 ピストン
12 球状部
21 環状突起
31 収容凹部
32 第二流通孔
51 第一端部
61 可動パンチ
62 固定ダイ
P 荷重
1 Shoe body 2 High-strength brass alloy 3 First flow hole 4 Swash plate 5 Piston 12 Spherical part 21 Annular projection 31 Accommodating recess 32 Second flow hole 51 First end 61 Movable punch 62 Fixed die P Load

Claims (7)

鉄系材料からなる本体部と、前記本体部の表面に形成したZn-Fe系合金層と、前記合金層の表面に接合した耐摩耗性及び耐焼き付け性に優れた高力黄銅合金層を有することを特徴とする複合摺動部品。 A main body made of an iron-based material, a Zn-Fe-based alloy layer formed on the surface of the main body, and a high-strength brass alloy layer having excellent wear resistance and seizure resistance joined to the surface of the alloy layer. A composite sliding component characterized by: 前記高力黄銅合金は以下質量%で、Cu:55.0~65.0%,Mn:2.0~5.0%,Si:0.5~2.0%含有し、さらにAl:0.5~2.0%,Pb:0.5~4.0%,Sn:1.0%以下,P:0.1%以下のうち、いずれか1つ以上含有し、残部がZn及び不可避的不純物であることを特徴とする請求項1記載の複合摺動部品。 The high-strength brass alloy contains the following mass%, Cu: 55.0 to 65.0%, Mn: 2.0 to 5.0%, Si: 0.5 to 2.0%, and further Al: 0 .5 to 2.0%, Pb: 0.5 to 4.0%, Sn: 1.0% or less, P: 0.1% or less, containing one or more, the balance being Zn and unavoidable 2. The composite sliding part according to claim 1, wherein the sludge is an organic impurity. 請求項1又は2記載の複合摺動部品の製造方法であって、
前記鉄系材料の表面にZn-Fe系合金層を形成するステップと、その上に溶融状態の前記高力黄銅合金を接触させて亜鉛を高力黄銅合金中に溶解させるステップと、を有することを特徴とする複合摺動部品の製造方法。
A method for manufacturing a composite sliding component according to claim 1 or 2,
forming a Zn--Fe alloy layer on the surface of the iron-based material; and contacting the high-strength brass alloy in a molten state thereon to dissolve zinc in the high-strength brass alloy. A method for manufacturing a composite sliding part, characterized by:
前記Zn-Fe系合金層を形成するステップは、前記鉄系材料の表面に溶融亜鉛メッキにより15μm以上の厚みを有する亜鉛層を形成することで、その界面下にZn-Fe系合金層を形成することを特徴とする請求項3記載の複合摺動部品の製造方法。 The step of forming the Zn-Fe-based alloy layer includes forming a zinc layer having a thickness of 15 μm or more on the surface of the iron-based material by hot-dip galvanization to form a Zn-Fe-based alloy layer under the interface. 4. The method of manufacturing a composite sliding component according to claim 3, wherein: 前記Zn-Fe系合金層を形成するステップは、前記鉄系材料の表面に15μm以上の厚みを有する亜鉛層を形成した後に350~500℃の熱処理を行い、その界面下にZn-Fe系合金層を形成することを特徴とする請求項3記載の複合摺動部品の製造方法。 The step of forming the Zn-Fe-based alloy layer includes forming a zinc layer having a thickness of 15 μm or more on the surface of the iron-based material, performing heat treatment at 350 to 500 ° C., and forming a Zn-Fe-based alloy under the interface. 4. The method of manufacturing a composite sliding component according to claim 3, wherein layers are formed. 前記亜鉛層と鉄材料との界面にZn-Fe系合金層を形成した後に接合面をフラックスで覆い、前記フラックスが溶融する温度まで加熱するステップと、溶融した前記高力黄銅合金を流し込み溶着するステップとを有することを特徴とする請求項4又は5記載の複合摺動部品の製造方法。 After forming a Zn-Fe alloy layer on the interface between the zinc layer and the iron material, the joint surface is covered with flux, heated to a temperature at which the flux melts, and the molten high-strength brass alloy is poured and welded. 6. The method of manufacturing a composite sliding part according to claim 4, further comprising the steps of: 前記亜鉛層の厚さは15~300μmの範囲であることを特徴とする、請求項1~5のいずれかに記載の複合摺動部品又はその製造方法。 A composite sliding part or a manufacturing method thereof according to any one of claims 1 to 5, characterized in that said zinc layer has a thickness in the range of 15 to 300 µm.
JP2021108311A 2021-06-30 2021-06-30 Composite sliding component and method for manufacturing the same Pending JP2023005976A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021108311A JP2023005976A (en) 2021-06-30 2021-06-30 Composite sliding component and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021108311A JP2023005976A (en) 2021-06-30 2021-06-30 Composite sliding component and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2023005976A true JP2023005976A (en) 2023-01-18

Family

ID=85107314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021108311A Pending JP2023005976A (en) 2021-06-30 2021-06-30 Composite sliding component and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2023005976A (en)

Similar Documents

Publication Publication Date Title
EP3372699B1 (en) Sliding member
US11035024B2 (en) Copper-nickel-tin alloy, method for the production thereof and use thereof
Hurricks Some aspects of the metallurgy and wear resistance of surface coatings
Liu et al. Interfacial microstructures and properties of aluminum alloys/galvanized low-carbon steel under high-pressure torsion
US11035030B2 (en) Copper-nickel-tin alloy, method for the production and use thereof
US11041233B2 (en) Copper-nickel-tin alloy, method for the production and use thereof
US10982302B2 (en) Copper-nickel-tin alloy, method for the production and use thereof
Ramadan et al. Influence of tinning material on interfacial microstructures and mechanical properties of Al12Sn4Si1Cu/carbon steel bimetallic castings for bearing applications
CN101326296A (en) Sn-containing heavy-duty material composition, method for the production of a heavy-duty coating, and use thereof
Amelzadeh et al. Dissimilar joining of WC-Co to steel by low-temperature brazing
Tavakoli et al. Influences of coating type on microstructure and strength of aluminum–steel bimetal composite interface
US11035025B2 (en) Copper-nickel-tin alloy, method for the production and use thereof
JPH1158034A (en) Joining method of ferrous material and high tension brass alloy and composite material joined by the method
CN107790679A (en) A kind of plunger pump rotor copper base-steel bi-metal composite casting method
US20120258809A1 (en) Copper-tin multicomponent bronze containing hard phases, production process and use
Teng et al. Microstructure and mechanical properties of overcast aluminum joints
Wang et al. Microstructure evolution and mechanical properties of CuW/Al interface fabricated by infiltration and vacuum hot-pressing diffusion bonding
JP2023005976A (en) Composite sliding component and method for manufacturing the same
Zhang et al. Study on preparation, microstructure and properties of gradient composite interlayer with copper/steel
Kota et al. Joining of cast iron and phosphor bronze through liquid–solid interaction: effect of Ni and Cu coating on interfacial microstructures and mechanical properties of bimetallic composites
JP2002194477A (en) Member for molten nonferrous metal
Fathy Interfacial Microstructure and Bonding Area of Sn-based Alloy-GG25 Gray Iron Bimetallic Material Using Flux, Sn, and Sn-Zn Interlayer Compound Casting
Zhao et al. Impacts of zinc layer and pouring method on interface performance for Al-22Si/ZL104 bi-metal
CN113528997B (en) Plating assistant agent, hot dip plating process method and thick-wall aluminum-based bimetallic bearing
周方明 et al. Interface microstructure and properties of submerged arc brazing tin-based babbit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240123