JP2023004776A - High-stability measurement method and measuring instrument of temperature response signal in laser periodic heating method - Google Patents

High-stability measurement method and measuring instrument of temperature response signal in laser periodic heating method Download PDF

Info

Publication number
JP2023004776A
JP2023004776A JP2021111066A JP2021111066A JP2023004776A JP 2023004776 A JP2023004776 A JP 2023004776A JP 2021111066 A JP2021111066 A JP 2021111066A JP 2021111066 A JP2021111066 A JP 2021111066A JP 2023004776 A JP2023004776 A JP 2023004776A
Authority
JP
Japan
Prior art keywords
temperature response
laser
output
heating method
logarithmic converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021111066A
Other languages
Japanese (ja)
Inventor
順 松本
Jun Matsumoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Il Technology Corp
IL Tech Corp
Original Assignee
Il Technology Corp
IL Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Il Technology Corp, IL Tech Corp filed Critical Il Technology Corp
Priority to JP2021111066A priority Critical patent/JP2023004776A/en
Publication of JP2023004776A publication Critical patent/JP2023004776A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Radiation Pyrometers (AREA)

Abstract

To provide a method for permitting high-stability measurement of a temperature response signal in a laser periodic heating method that can cope with a request for a dynamic range having at least 80 dB (10,000 times), and to provide a high-stability measuring instrument of infrared rays.SOLUTION: A high-stability measuring instrument of infrared rays is used for execution of a laser periodic heating method for measuring thermophysical properties of a sample from a difference in an amplitude or a phase of a temperature response in a heating region when thermal energy in which intensity is modulated periodically is given to the sample. The instrument comprises: an infrared detector 1 for detecting the temperature response; a logarithmic converter 2 for logarithmically converting output of the infrared detector 1; a low-pass filter 3 for eliminating noise of the output of the logarithmic converter; and a DC component elimination circuit for speedily eliminating DC components from output of the low-pass filter.SELECTED DRAWING: Figure 1

Description

本発明は、レーザー周期加熱法における温度応答信号の高安定測定方法及び測定器に関するものである。 TECHNICAL FIELD The present invention relates to a highly stable measuring method and measuring instrument for a temperature response signal in a laser periodic heating method.

同じ物質で構成された構造物に同じ熱エネルギーを加えると、原理的には同じ温度になり、同じ赤外線量を放射する筈である。しかし、同じ金属構造物に同じ条件でレーザー熱エネルギーを加えても、レーザー吸収率αの影響(式1)で同じ温度にはならず、その結果の異なった温度から放射される赤外線量も、放射率εの影響(式2)で、更に大きく変動する。

Figure 2023004776000002
Figure 2023004776000003
< 加熱量Q[J]、上昇温度ΔT[K]、質量m[kg]、比熱c[J/kgK]、ステファン・ボルツマン定数σ[W/m] > If the same thermal energy is applied to a structure composed of the same material, in principle, it should have the same temperature and emit the same amount of infrared radiation. However, even if laser heat energy is applied to the same metal structure under the same conditions, the temperature will not be the same due to the influence of the laser absorption coefficient α (Equation 1), and the amount of infrared rays radiated from different temperatures as a result will also be Due to the influence of the emissivity ε (Equation 2), it fluctuates even more.
Figure 2023004776000002
Figure 2023004776000003
<Amount of heating Q [J], temperature rise ΔT [K], mass m [kg], specific heat c [J/kgK], Stefan-Boltzmann constant σ [W/m 2 T 4 ] >

金属表面の正確な温度測定をするために、2波長放射赤外線量比較法で放射率をキャンセルする2色放射温度計が実用化されている。しかし、この2色放射温度計で小さな領域の温度や低い温度の測定を行うことは、技術的難易度が高い。それは、赤外線ディテクタでセンシングされる赤外線量が極めて小さくなるので、S/N比(信号とノイズの比率)が悪く、信号を検出できない場合が多いからである(大きい領域の高い温度の場合は、S/N比が高くなるため検出が容易である。)。 In order to accurately measure the temperature of a metal surface, a two-color radiation thermometer that cancels the emissivity by the two-wavelength radiation infrared dose comparison method has been put to practical use. However, it is technically difficult to measure the temperature of a small area or a low temperature with this two-color radiation thermometer. This is because the amount of infrared rays sensed by the infrared detector is extremely small, so the S/N ratio (ratio of signal to noise) is poor and the signal cannot be detected in many cases. The detection is easy because the S/N ratio is high.).

現在本出願人により実用化されているレーザー正弦波変調加熱による非破壊金属接合界面検査方法(例えば、特許文献1参照)は、温度の絶対値に影響を受けない周期加熱法による方法であるが、その場合でも、上述したレーザー吸収率や赤外線放射率の影響で赤外線ディテクタの測定値が大きく変動するため、実用性の高い安定した測定は難しい。例えば、レーザー吸収率と赤外線放射率が各々10倍変動すると、赤外線放射エネルギーは1,000倍変動する。従って、その大きく変動する赤外線放射エネルギーをセンシングする赤外線ディテクタも、広いダイナミックレンジ(処理可能な信号の最小値と最大値の比率を表した数値で、単位はdBで表現)の測定が可能であることが必要となる。 The non-destructive metal joint interface inspection method by laser sinusoidal modulation heating currently put into practical use by the present applicant (see, for example, Patent Document 1) is a method based on a periodic heating method that is not affected by the absolute value of temperature. However, even in that case, the measured value of the infrared detector fluctuates greatly due to the influence of the laser absorptivity and the infrared emissivity described above, so it is difficult to perform highly practical and stable measurements. For example, if the laser absorptance and infrared emissivity each vary by a factor of 10, the infrared radiant energy will vary by a factor of 1,000. Therefore, an infrared detector that senses the widely fluctuating infrared radiant energy can also measure a wide dynamic range (a numerical value representing the ratio of the minimum and maximum values of the signal that can be processed, expressed in dB). is required.

高速温度変移を高感度で測定する赤外線ディテクタとしては、一般に、アンチモン化インジウム(InSb)やテルル化カドミウム水銀(MCT/HgCdTe)等の量子型ディテクタが用いられ、これを、トランスインピーダンスアンプ(電流電圧線形変換器)で増幅して使用している。また、一般的な前記量子型ディテクタは、80dB(10,000倍)~100dB(100,000倍)以上の広いダイナミックレンジを有している。 Quantum detectors such as indium antimonide (InSb) and mercury cadmium telluride (MCT/HgCdTe) are generally used as infrared detectors for measuring high-speed temperature transitions with high sensitivity. used after being amplified by a linear converter). In addition, the general quantum type detector has a wide dynamic range of 80 dB (10,000 times) to 100 dB (100,000 times) or more.

このトランスインピーダンスアンプのダイナミックレンジは、低ノイズアンプで構成しても60dB(1,000倍)程度であるが、吸収率や放射率の変動幅が10倍としても、センサ出力は60dB(1,000倍)以上変動することになる。 検出信号のS/N比は最低でも20dB(10倍)以上必要であることを考慮すると、放射赤外線測定系のダイナミックレンジは、最低でも80dB(10,000倍)以上であることが要請されるが、一般的に用いられている従来の赤外線ディテクタアンプ(上記、トランスインピーダンスアンプ)では、この要請に応えることができない。 The dynamic range of this transimpedance amplifier is about 60 dB (1,000 times) even when configured with a low-noise amplifier. 000 times) or more. Considering that the S/N ratio of the detection signal must be at least 20 dB (10 times) or more, the dynamic range of the radiant infrared measurement system must be at least 80 dB (10,000 times) or more. However, conventional infrared detector amplifiers (the transimpedance amplifiers described above) that are generally used cannot meet this demand.

特許第6620499号公報Japanese Patent No. 6620499

上述したように、レーザー周期加熱法における温度応答信号の測定のために従来用いられている赤外線ディテクタアンプの場合は、ダイナミックレンジが最低でも80dB(10,000倍)以上という要請に応えることができない。 As described above, the infrared detector amplifier conventionally used to measure the temperature response signal in the laser periodic heating method cannot meet the requirement that the dynamic range be at least 80 dB (10,000 times) or more. .

そこで本発明は、ダイナミックレンジが最低でも80dB(10,000倍)以上という要請に応えることができ、また、室温や装置温度等の周辺環境温度変化によるディテクタ出力ドリフトの低減を図ることができ、以て、レーザー周期加熱法における温度応答信号の高安定測定を可能にする方法及び測定器を提供することを課題とする。 Therefore, the present invention can meet the demand that the dynamic range is at least 80 dB (10,000 times) or more, and can reduce the detector output drift due to changes in ambient environmental temperature such as room temperature and device temperature. Accordingly, it is an object of the present invention to provide a method and a measuring instrument that enable highly stable measurement of a temperature response signal in the laser periodic heating method.

上記課題を解決するための請求項1に記載の発明は、強度を周期的に変調させた熱エネルギーを試料に与えた時の、加熱領域における温度応答の振幅又は位相差から、試料の熱物性を測定するレーザー周期加熱法の実施に当たり、
前記温度応答を検出する赤外線ディテクタ出力を、対数変換した後、直流成分の除去処理を行って温度応答による変移信号のみ抽出することにより、前記赤外線ディテクタのダイナミックレンジを拡大することを特徴とするレーザー周期加熱法における温度応答信号の高安定測定方法である。
The invention according to claim 1 for solving the above-mentioned problems is a thermophysical property of the sample from the amplitude or phase difference of the temperature response in the heating region when the sample is given thermal energy whose intensity is periodically modulated. In implementing the laser periodic heating method to measure
A laser characterized in that the dynamic range of the infrared detector is expanded by logarithmically transforming the output of the infrared detector that detects the temperature response and then removing the DC component to extract only the transition signal due to the temperature response. This is a highly stable measurement method for temperature response signals in the periodic heating method.

一実施形態においては、対数変換した対数変換器出力を、ローパスフィルタを通してノイズを除去した後に、前記直流成分除去処理を行う。また、一実施形態においては、前記対数変換を行う対数変換器は、80dB(10,000倍)以上のダイナミックレンジであることが望まれる。 In one embodiment, the logarithmically transformed output of the logarithmic converter is passed through a low-pass filter to remove noise, and then the DC component removal processing is performed. In one embodiment, the logarithmic converter that performs the logarithmic conversion is desired to have a dynamic range of 80 dB (10,000 times) or more.

上記課題を解決するための請求項4に記載の発明は、強度を周期的に変調させた熱エネルギーを試料に与えた時の、加熱領域における温度応答の振幅又は位相差から、試料の熱物性を測定するレーザー周期加熱法の実施に用いる赤外線の高安定測定器であって、
前記温度応答を検出する赤外線ディテクタと、前記赤外線ディテクタ出力を対数変換する対数変換器と、対数変換した対数変換器出力から直流成分を除去する直流成分除去回路とから成ることを特徴とするレーザー周期加熱法における温度応答信号の高安定測定器である。
According to a fourth aspect of the invention for solving the above problems, the thermophysical properties of the sample can be determined from the amplitude or phase difference of the temperature response in the heating region when thermal energy whose intensity is periodically modulated is applied to the sample. A highly stable infrared measuring instrument for use in performing a laser periodic heating method for measuring
A laser cycle characterized by comprising an infrared detector for detecting the temperature response, a logarithmic converter for logarithmically converting the output of the infrared detector, and a DC component removal circuit for removing a DC component from the output of the logarithmically converted logarithmic converter. This is a highly stable measuring instrument for temperature response signals in the heating method.

一実施形態においては、前記対数変換器と直流成分除去回路の間に、前記対数変換器出力のノイズを除去するローパスフィルタを介在させる。 In one embodiment, a low-pass filter for removing noise from the output of the logarithmic converter is interposed between the logarithmic converter and the DC component removing circuit.

本発明に係るレーザー周期加熱法における温度応答信号の高安定測定方法及び測定器は上記のとおりであって、その方法並びに測定器によれば、吸収率の影響で大きく変動するレーザー加熱面から、放射率の影響で大きく変動する赤外線放射エネルギーを検出する赤外線ディテクタの出力を、80dB以上の広ダイナミックレンジで扱うことができ、また、周辺環境温度変化によるディテクタドリフトを低減することで、測定許容範囲を拡大することができ、以て、実用性の高い安定した測定を行うことが可能となる効果がある。 The highly stable measuring method and measuring device of the temperature response signal in the laser periodic heating method according to the present invention are as described above. The output of the infrared detector, which detects infrared radiant energy that fluctuates greatly due to the influence of emissivity, can be handled with a wide dynamic range of 80 dB or more. can be expanded, and therefore, there is an effect that it becomes possible to perform highly practical and stable measurement.

本発明に係るレーザー周期加熱法における温度応答信号の高安定測定方法及び高安定赤外線測定器を説明するための機能系統図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a functional system diagram for explaining a highly stable temperature response signal measuring method and a highly stable infrared measurement device in a laser periodic heating method according to the present invention;

本発明を実施するための形態につき、添付図面に依拠して説明する。本発明に係るレーザー周期加熱法における温度応答信号の高安定測定方法は、強度を周期的に変調させた熱エネルギーを試料に与えた時の、加熱領域における温度応答の振幅又は位相差から、試料の熱物性を測定するレーザー周期加熱法を実施するに当たり、前記温度応答を検出する赤外線ディテクタ出力を、対数変換した後、ローパスフィルタを通してノイズを除去し、更に、直流成分を除去して温度応答による変移信号のみ抽出することにより、前記ディテクタ出力のダイナミックレンジを拡大することを特徴とするものである。 A mode for carrying out the present invention will be described with reference to the accompanying drawings. A highly stable method for measuring a temperature response signal in the periodic laser heating method according to the present invention is a method for measuring the temperature response of a sample from the amplitude or phase difference of the temperature response in the heating region when thermal energy whose intensity is periodically modulated is applied to the sample. In carrying out the laser periodic heating method for measuring the thermophysical properties of, the infrared detector output for detecting the temperature response is logarithmically transformed, then noise is removed through a low-pass filter, and the DC component is removed. It is characterized in that the dynamic range of the detector output is expanded by extracting only the transition signal.

また、本発明に係るレーザー周期加熱法における温度応答信号の高安定測定器は、強度を周期的に変調させた熱エネルギーを試料に与えた時の、加熱領域における温度応答の振幅又は位相差から、試料の熱物性を測定するレーザー周期加熱法の実施に用いる赤外線測定器であって、前記温度応答を検出する赤外線ディテクタ1と、赤外線ディテクタ1の出力を対数変換する対数変換器2と、対数変換した対数変換器出力から直流成分を除去する直流成分除去回路4とから成ることを特徴とする。好ましい実施形態においては、対数変換器2と直流成分除去回路4の間に、センサ出力のノイズを除去するローパスフィルタ3を介在させる(図1参照)。 In addition, the highly stable temperature response signal measuring device in the laser periodic heating method according to the present invention is based on the amplitude or phase difference of the temperature response in the heating region when thermal energy whose intensity is periodically modulated is applied to the sample. , an infrared measuring instrument used for implementing a laser periodic heating method for measuring thermophysical properties of a sample, comprising an infrared detector 1 for detecting the temperature response, a logarithmic converter 2 for logarithmically converting the output of the infrared detector 1, and a logarithmic and a DC component removing circuit 4 for removing the DC component from the converted output of the logarithmic converter. In a preferred embodiment, a low-pass filter 3 for removing noise from the sensor output is interposed between the logarithmic converter 2 and the DC component removing circuit 4 (see FIG. 1).

対数変換を行う対数変換器2は、80dB(10,000倍)以上のダイナミックレンジであることが望まれる。 The logarithmic converter 2 that performs logarithmic conversion is desired to have a dynamic range of 80 dB (10,000 times) or more.

周期加熱法は、強度を周期的に変調させた熱エネルギー(レーザー光)を試料に与えた時の、加熱領域からある距離だけ離れた位置における温度応答の振幅又は位相差から、試料の熱物性(熱拡散率)を測定する方法である。そして、熱拡散率がα[m/s]である試料表面を周期加熱し、その温度T[K]が周期f[Hz]、振幅Tm[K]で式3のように変化する場合、加熱表面からx[m]の位置における温度応答は、式4のように表される(時間t[s])。

Figure 2023004776000004
Figure 2023004776000005
In the periodic heating method, when thermal energy (laser light) whose intensity is periodically modulated is applied to the sample, the thermophysical properties of the sample can be determined from the amplitude or phase difference of the temperature response at a certain distance from the heating area. (thermal diffusivity). Then, when a sample surface having a thermal diffusivity of α [m 2 /s] is cyclically heated, and the temperature T [K] changes with a period of f [Hz] and an amplitude of Tm [K] as shown in Equation 3, A temperature response at a position x[m] from the heating surface is expressed as Equation 4 (time t[s]).
Figure 2023004776000004
Figure 2023004776000005

加熱表面からの位置xにおける位相差をφ[rad]、振幅をTx[K]とすると、式5により、振幅Em又は位相差θの実測値から熱拡散率αが得られる。

Figure 2023004776000006
Assuming that the phase difference at the position x from the heating surface is φ [rad] and the amplitude is Tx [K], the thermal diffusivity α can be obtained from the measured value of the amplitude Em or the phase difference θ according to Equation 5.
Figure 2023004776000006

放射赤外線は、温度に対して非線形性であることから(式2参照)、放射温度計等は、対数変換器で線形補正して温度指示している。この対数変換器はダイナミックレンジの拡大にも使用でき、高性能な変換器では、160dB(100,000,000倍)ものダイナミックレンジの信号を扱えるものもある。 Since radiant infrared rays are non-linear with respect to temperature (see Equation 2), a radiation thermometer or the like indicates temperature after linear correction with a logarithmic converter. This logarithmic converter can also be used to extend the dynamic range, and some high performance converters can handle signals with dynamic ranges as high as 160 dB (100,000,000 times).

ダイナミックレンジの拡大には非線形補正(対数変換)を行うが、ディテクタ出力信号の最低S/N比が10以上必要であることを考慮して、80dB(10,000倍)以上の広ダイナミックレンジ対数変換を実施する。このダイナミックレンジの拡大を目的とする対数変換により、放射赤外線の温度に対する非線形性も補正することができる。また、ノイズの多いディテクタ出力を対数変換するとノイズ成分を拡大させてしまうため、対数変換器2の後段に、ノイズ除去を目的としたローパスフィルタ3(低域通過フィルタ)を配置することが好ましい。 Nonlinear correction (logarithmic conversion) is performed to expand the dynamic range, but considering that the minimum S/N ratio of the detector output signal must be 10 or more, a wide dynamic range logarithm of 80 dB (10,000 times) or more Carry out the conversion. The logarithmic transformation for the purpose of expanding the dynamic range can also correct the nonlinearity of the radiated infrared rays with respect to temperature. In addition, since logarithmic conversion of a detector output with a lot of noise enlarges the noise component, it is preferable to place a low-pass filter 3 (low-pass filter) for the purpose of noise removal after the logarithmic converter 2.

また、室温や装置温度等の周辺環境温度変化等により、赤外線ディテクタの出力にドリフトが生ずる。このドリフト変動の時間軸は長く、ほぼ直流電位の変動と見做せるので、対数変換後に直流成分除去を行い、温度応答による変移信号のみを抽出することとする。 In addition, drift occurs in the output of the infrared detector due to changes in ambient environmental temperature such as room temperature and device temperature. Since the drift fluctuation has a long time axis and can be regarded as a fluctuation of the DC potential, the DC component is removed after the logarithmic conversion, and only the displacement signal due to the temperature response is extracted.

最も簡単な直流成分除去方法は、信号経路にコンデンサーを入れて直流成分をカットする方法である。但し、この方法の場合は、カットオフ周波数を小さくするために大きな容量のコンデンサーが必要となり、この大きな容量のコンデンサーは回路時定数を大きくするため、直流除去時間(整定時間)が長くなり、1点当たりの測定時間が長くなるという大きな欠点がある。そのため、ここでは、オペアンプで高速補正処理する回路である直流サーボ回路を使用することが推奨される。その場合、出力整定時間が一桁以上速くなる。 The simplest DC component removal method is to cut the DC component by inserting a capacitor in the signal path. However, in the case of this method, a large-capacity capacitor is required to reduce the cutoff frequency, and this large-capacity capacitor increases the circuit time constant, resulting in a longer DC removal time (settling time). A major drawback is the long measurement time per point. Therefore, it is recommended to use a DC servo circuit, which is a circuit for performing high-speed correction processing with an operational amplifier. In that case, the output settling time is shortened by one order of magnitude or more.

本発明に係る方法及び高安定測定器によれば、吸収率の影響で大きく変動するレーザー加熱面から、放射率の影響で大きく変動する赤外線放射エネルギーを検出する赤外線ディテクタ出力を、80dB以上の広ダイナミックレンジで扱うことができ、また、周辺環境温度変化によるディテクタドリフトを低減することで、測定許容範囲を大幅に拡大することができるので、実用性の高い安定した測定を行うことが可能となるという効果があり、その産業上の利用可能性は大である。 According to the method and highly stable measuring instrument of the present invention, the output of an infrared detector that detects infrared radiant energy that greatly fluctuates under the influence of emissivity from a laser heating surface that fluctuates greatly under the influence of absorptance can be spread over a range of 80 dB or more. The dynamic range can be handled, and by reducing detector drift due to ambient temperature changes, the allowable measurement range can be greatly expanded, making it possible to perform highly practical and stable measurements. , and its industrial applicability is great.

1 赤外線ディテクタ
2 対数変換器
3 ローパスフィルタ
4 直流成分除去回路
1 infrared detector 2 logarithmic converter 3 low-pass filter 4 DC component removal circuit

Claims (5)

強度を周期的に変調させた熱エネルギーを試料に与えた時の、加熱領域における温度応答の振幅又は位相差から、試料の熱物性を測定するレーザー周期加熱法の実施に当たり、
前記温度応答を検出する赤外線ディテクタ出力を、対数変換した後、直流成分の除去処理を行って温度応答による変移信号のみ抽出することにより、前記赤外線ディテクタのダイナミックレンジを拡大することを特徴とするレーザー周期加熱法における温度応答信号の高安定測定方法。
In implementing the laser cyclic heating method for measuring the thermophysical properties of a sample from the amplitude or phase difference of the temperature response in the heating region when thermal energy whose intensity is periodically modulated is applied to the sample,
A laser characterized in that the dynamic range of the infrared detector is expanded by logarithmically transforming the output of the infrared detector that detects the temperature response, then removing the DC component and extracting only the transition signal due to the temperature response. Highly stable measurement method of temperature response signal in cyclic heating method.
対数変換した前記対数変換器出力を、ローパスフィルタを通してノイズを除去した後に、前記直流成分除去処理を行う、請求項1に記載のレーザー周期加熱法における温度応答信号の高安定測定方法。 2. The highly stable method for measuring a temperature response signal in the laser periodic heating method according to claim 1, wherein the logarithmically transformed output of the logarithmic converter is passed through a low-pass filter to remove noise, and then subjected to the DC component removal processing. 前記対数変換は、80dB(10,000倍)以上のダイナミックレンジの対数変換器を用いて行う、請求項1又は2に記載のレーザー周期加熱法における温度応答信号の高安定測定方法。 3. The highly stable method for measuring a temperature response signal in the laser periodic heating method according to claim 1, wherein said logarithmic conversion is performed using a logarithmic converter with a dynamic range of 80 dB (10,000 times) or more. 強度を周期的に変調させた熱エネルギーを試料に与えた時の、加熱領域における温度応答の振幅又は位相差から、試料の熱物性を測定するレーザー周期加熱法の実施に用いる赤外線の高安定測定器であって、
前記温度応答を検出する赤外線ディテクタと、前記赤外線ディテクタのセンサ出力を対数変換する対数変換器と、対数変換した対数変換器出力から直流成分を除去する直流成分除去回路とから成ることを特徴とするレーザー周期加熱法における温度応答信号の高安定測定器。
High-stable measurement of infrared light used for laser cyclic heating, which measures the thermophysical properties of a sample from the amplitude or phase difference of the temperature response in the heated region when thermal energy whose intensity is periodically modulated is applied to the sample. a vessel,
It comprises an infrared detector for detecting the temperature response, a logarithmic converter for logarithmically converting the sensor output of the infrared detector, and a DC component removal circuit for removing a DC component from the output of the logarithmically converted logarithmic converter. A highly stable measuring instrument for temperature response signals in the laser periodic heating method.
前記対数変換器と直流成分除去回路の間に、前記対数変換器出力のノイズを除去するローパスフィルタを介在させた、請求項4に記載のレーザー周期加熱法における温度応答信号の高安定測定器。 5. A highly stable temperature response signal measuring instrument according to claim 4, wherein a low-pass filter for removing noise from the output of said logarithmic converter is interposed between said logarithmic converter and a DC component removing circuit.
JP2021111066A 2021-07-02 2021-07-02 High-stability measurement method and measuring instrument of temperature response signal in laser periodic heating method Pending JP2023004776A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021111066A JP2023004776A (en) 2021-07-02 2021-07-02 High-stability measurement method and measuring instrument of temperature response signal in laser periodic heating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021111066A JP2023004776A (en) 2021-07-02 2021-07-02 High-stability measurement method and measuring instrument of temperature response signal in laser periodic heating method

Publications (1)

Publication Number Publication Date
JP2023004776A true JP2023004776A (en) 2023-01-17

Family

ID=85100880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021111066A Pending JP2023004776A (en) 2021-07-02 2021-07-02 High-stability measurement method and measuring instrument of temperature response signal in laser periodic heating method

Country Status (1)

Country Link
JP (1) JP2023004776A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54156599A (en) * 1978-05-30 1979-12-10 Mitsubishi Electric Corp Thermal diffusivity measuring apparatus
JPS58132636A (en) * 1982-02-03 1983-08-08 Chino Works Ltd Compensating circuit for temperature of radiation thermometer
JPS63180829A (en) * 1987-01-21 1988-07-25 Jeol Ltd Linearizer for infrared temperature detector
JPH07325054A (en) * 1994-05-31 1995-12-12 Shimadzu Corp Moisture measuring device
JP2011185852A (en) * 2010-03-10 2011-09-22 National Institute Of Advanced Industrial Science & Technology Device for measurement of thermal diffusivity

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54156599A (en) * 1978-05-30 1979-12-10 Mitsubishi Electric Corp Thermal diffusivity measuring apparatus
JPS58132636A (en) * 1982-02-03 1983-08-08 Chino Works Ltd Compensating circuit for temperature of radiation thermometer
JPS63180829A (en) * 1987-01-21 1988-07-25 Jeol Ltd Linearizer for infrared temperature detector
JPH07325054A (en) * 1994-05-31 1995-12-12 Shimadzu Corp Moisture measuring device
JP2011185852A (en) * 2010-03-10 2011-09-22 National Institute Of Advanced Industrial Science & Technology Device for measurement of thermal diffusivity

Similar Documents

Publication Publication Date Title
Marinetti et al. Emissivity estimation for accurate quantitative thermography
RU2523775C2 (en) Method and system for correction on basis of quantum theory to increase accuracy of radiation thermometer
US9835604B2 (en) Temperature compensation of gas sensors
Liu et al. Experimental investigation of emissivity of steel
Loarer et al. Noncontact surface temperature measurement by means of a modulated photothermal effect
Wang et al. Thermopile infrared detector with detectivity greater than 10 8 cmHz (1/2)/W
Larsen et al. Determining the infrared reflectance of specular surfaces by using thermographic analysis
Gardarein et al. Heat flux sensor calibration using noninteger system identification: Theory, experiment, and error analysis
CN111272297A (en) Electronic body temperature gun
JP2023004776A (en) High-stability measurement method and measuring instrument of temperature response signal in laser periodic heating method
Corona et al. Characterizing particle-based thermal storage performance using optical methods for use in next generation concentrating solar power plants
Battaglia et al. Photothermal radiometric characterization of a thin deposit using a linear swept-frequency heat flux waveform
Chakraborty et al. Compensation for temperature dependence of Stokes signal and dynamic self-calibration of a Raman distributed temperature sensor
Potamias et al. Double modulation pyrometry: A radiometric method to measure surface temperatures of directly irradiated samples
DeWitt et al. Measurement of surface temperatures and spectral emissivities duringlaser irradiation
Rohner et al. Measurement of high temperatures in the DLR solar furnace by UV-B detection
KR101947256B1 (en) Method for calculating calibration curve for measuring high temperature
Chen et al. Converting the infrared thermal image into temperature field for detection the defects inside materials
KR101863498B1 (en) System for calculating calibration curve for measuring high temperature
Hao et al. Study on the infrared lens-free irradiation thermometer based on InGaAs detector at NIM
Jiménez-Fortunato et al. Towards developing a calibration technique to apply TSA with micro-bolometers
Crane Pyrometric temperature measurement in concentrated sunlight with emissivity determination
CN114441045B (en) Method for accurately measuring radiation temperature
Ballestrin et al. Emittance of materials at high temperatures for solar receivers
Grigorova et al. Temperature measurement of plasma-facing surfaces in tokamaks by active pyrometry

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210705

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220622

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221209