JP2023003830A - Copper pillar production method - Google Patents

Copper pillar production method Download PDF

Info

Publication number
JP2023003830A
JP2023003830A JP2021105135A JP2021105135A JP2023003830A JP 2023003830 A JP2023003830 A JP 2023003830A JP 2021105135 A JP2021105135 A JP 2021105135A JP 2021105135 A JP2021105135 A JP 2021105135A JP 2023003830 A JP2023003830 A JP 2023003830A
Authority
JP
Japan
Prior art keywords
plating
copper
flow rate
copper pillar
liquid flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021105135A
Other languages
Japanese (ja)
Inventor
正博 小杉
Masahiro Kosugi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2021105135A priority Critical patent/JP2023003830A/en
Publication of JP2023003830A publication Critical patent/JP2023003830A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a copper pillar production method capable of easily shaping the shape of a copper pillar top face into a flat or almost flat one.SOLUTION: A substrate having a hole structure surrounded by a resist pattern formed on a conductive layer, in which a bottom face of the hole structure is provided with a recessed part and the bottom face including the recessed part is covered with the conductive layer is dipped into a tank of a copper plating liquid, electrolytic copper plating is performed while stirring the copper plating liquid at a set liquid flow rate, and the recessed part-including hole structure is filled with a plating metal to acquire a copper pillar. At this time, a plating time is bisected into a first half and a second half, and the electrolytic copper plating is performed so that a value obtained by dividing the liquid flow rate in the first half by the liquid flow rate in the second half reaches 0.8 or less or 1.2 or more. Plating treatment in a state where a promotion effect with respect to copper precipitation is high and plating treatment in a state where a suppression effect with respect thereto is high are performed to perform plating treatment so that a top face of the copper pillar is made almost flat.SELECTED DRAWING: Figure 4

Description

本発明は、銅ピラー(銅ポスト)の製造方法に関する。 The present invention relates to a method for manufacturing a copper pillar (copper post).

近年、半導体配線の微細化が進むに連れて、半導体とマザーボードの配線幅を調整するFC-BGA(Flip Chip-Ball Grid Array)などのパッケージ基板において、半導体とパッケージ基板との接続面で、半田バンプの短絡(ブリッジ)を防ぐ為に、銅ピラーの採用が進んでいる。
銅ピラー上に半田バンプを形成する場合、その接続面はなるべく平坦に近いことが望ましい。そして、半田バンプと銅ピラーとの接続面の形状を平坦に近い形状にするためには、銅ピラーの天面を平坦に近い形状とすることが、効果的である。
In recent years, with the progress of miniaturization of semiconductor wiring, in package substrates such as FC-BGA (Flip Chip-Ball Grid Array) that adjusts the wiring width of the semiconductor and the mother board, solder is being used on the connection surface between the semiconductor and the package substrate. Copper pillars are being used to prevent short-circuiting (bridging) of bumps.
When solder bumps are formed on copper pillars, it is desirable that the connection surface is as flat as possible. In order to make the shape of the connection surface between the solder bump and the copper pillar nearly flat, it is effective to make the top surface of the copper pillar nearly flat.

銅ピラーの形成方法の一つとして、電解銅めっきがある。この方法は、通電のために導電層を施した基板の上にレジスト層を成膜し、銅ピラーを形成する部分のレジストを除去して凹部となるレジストパターンを形成し、電解銅めっきによって、レジストパターンのブランクつまり凹部に銅を析出させて柱状構造を作っている。
電解銅めっきにより銅ピラーを形成する場合、めっき浴には主成分である硫酸銅、硫酸、塩酸のほかに、促進剤と呼ばれる添加剤、及び抑制剤と呼ばれる添加剤が入っている。促進剤、抑制剤はめっき液中の僅かな濃度の違いなどによって、めっきの成長を促進、抑制する効果を発現する成分であり、電解銅めっきにより銅を析出させて所望の形状に仕上げる目的で、添加される。
One method of forming copper pillars is electrolytic copper plating. In this method, a resist layer is formed on a substrate provided with a conductive layer for electrical conduction, the resist is removed from the portions where the copper pillars are to be formed to form a resist pattern that will become recesses, and electrolytic copper plating is performed to form a resist pattern. A columnar structure is formed by depositing copper in the blanks or recesses of the resist pattern.
When copper pillars are formed by electrolytic copper plating, the plating bath contains additives called accelerators and inhibitors in addition to the main components copper sulfate, sulfuric acid, and hydrochloric acid. Accelerators and inhibitors are components that promote or suppress the growth of plating due to slight differences in concentration in the plating solution. , is added.

電解銅めっきによる成型においては、例えば銅ピラーの側壁のように、レジストパターンによって形状が規定されるところでは、ある程度所望の形状が得られやすい。逆に銅ピラーの天面のように、形状の自由度が高い部位においては、完全に一様なめっき析出が起こり平坦な天面を得ることは、まず不可能である。
実際の電解銅めっき工程によって得られる銅ピラーの天面の形状は凸状に膨らんだり凹んだりすることが通常である。
このように天面が凸状又は凹状となる事象に対する解決法として、たとえば、特許文献1においては、促進効果の大きいめっき浴で電解めっきした後、促進剤を剥離し、更に促進効果の小さいめっき浴で電解めっきして、ビア形状を平坦にする方法が開示されている。
In molding by electrolytic copper plating, it is easy to obtain a desired shape to some extent where the shape is defined by the resist pattern, such as the side wall of a copper pillar. Conversely, in a portion with a high degree of freedom in shape, such as the top surface of a copper pillar, it is almost impossible to obtain a completely uniform plating deposition and a flat top surface.
The shape of the top surface of the copper pillar obtained by the actual electrolytic copper plating process is usually convex or concave.
As a solution to the phenomenon that the top surface becomes convex or concave in this way, for example, in Patent Document 1, after electrolytic plating is performed in a plating bath with a large acceleration effect, the accelerator is removed, and plating with a small acceleration effect is performed. A method of electroplating in a bath to flatten the via geometry is disclosed.

特許第3594894号公報Japanese Patent No. 3594894

しかしながら、特許文献1に記載の方法においては、促進効果の異なる二つのめっき浴のほかに、一回目のめっき浴での促進剤を剥離するための浴も必要であり、浴を設けるスペースや浴を移す際の間接時間などの点で、生産効率に問題があると考えられる。
上記の事情に鑑み、本発明は、生産効率を低下させることなく、天面が平坦な銅ピラーを得ることが可能な銅ピラーの製造方法を提供することを目的としている。
However, in the method described in Patent Document 1, in addition to two plating baths with different acceleration effects, a bath for removing the accelerator in the first plating bath is also required, and the space for providing the bath and the bath It is thought that there is a problem with production efficiency in terms of indirect time when transferring.
In view of the above circumstances, it is an object of the present invention to provide a copper pillar manufacturing method capable of obtaining a copper pillar with a flat top surface without lowering production efficiency.

本発明の一態様によれば、導電層上に形成されたレジストパターンで囲まれた孔構造を備え、孔構造の底面に凹部を有し且つ凹部を含めて底面が導電層で覆われている基板を、銅めっき液の槽に浸漬し、設定した液流量にて槽内の銅めっき液を攪拌しながら電解銅めっきを行い、凹部を含む孔構造をめっき金属によって充填して銅ピラーを取得する銅ピラーの製造方法であって、基板に対するめっき時間を前半及び後半に二等分し、前半における液流量を後半における液流量で除した値が、0.8以下または1.2以上となるように電解銅めっきを行う銅ピラーの製造方法が提供される。なお、二等分とは、厳密に同じ時間長さに二つに分けるという場合のみならず、前半後半の時間の長さに多少の差があってもよい。 According to one aspect of the present invention, the hole structure is surrounded by a resist pattern formed on the conductive layer, the bottom surface of the hole structure has a recess, and the bottom surface including the recess is covered with the conductive layer. The substrate is immersed in a bath of copper plating solution, electrolytic copper plating is performed while stirring the copper plating solution in the bath at a set solution flow rate, and the hole structure including the recesses is filled with plating metal to obtain copper pillars. In the copper pillar manufacturing method, the plating time for the substrate is divided into the first half and the second half, and the value obtained by dividing the liquid flow rate in the first half by the liquid flow rate in the second half is 0.8 or less or 1.2 or more. A method for manufacturing a copper pillar is provided by electrolytic copper plating. It should be noted that the halving is not limited to the case of dividing into two parts having exactly the same length of time, but may have a slight difference in the length of time between the first half and the second half.

本発明によれば、めっき浴を追加したり、めっき液の組成を変化させたりすることなしに、簡便に銅ピラー天面の形状を平坦又はほぼ平坦に整えることができ、半導体チップなどとの信頼性の高い接続を得ることができる。 According to the present invention, the shape of the top surface of the copper pillar can be easily adjusted to be flat or almost flat without adding a plating bath or changing the composition of the plating solution, and the shape of the top surface of the copper pillar can be easily adjusted to a semiconductor chip or the like. You can get a reliable connection.

めっき液の液流の強弱による銅ピラー形状変化を示す概略図である。FIG. 4 is a schematic diagram showing changes in the shape of a copper pillar depending on the strength of the plating solution flow; めっき液の液流の強弱による銅ピラー形状変化を示す概略図である。FIG. 4 is a schematic diagram showing changes in the shape of a copper pillar depending on the strength of the plating solution flow; 図2の銅ピラーの断面の一例を示す概略図である。FIG. 3 is a schematic diagram showing an example of a cross section of the copper pillar of FIG. 2; めっき液の液流の強弱による添加剤の挙動を示す概略図である。FIG. 4 is a schematic diagram showing the behavior of an additive depending on the strength of the flow of a plating solution; 銅ピラーの下に樹脂の開口部がある場合のめっきの成長過程を示す概略図である。FIG. 4 is a schematic diagram showing the plating growth process when there is a resin opening under the copper pillar;

以下、図面を参照しながら本発明の実施形態を説明する。なお、重複する説明を省略するべく、図では同一又は類似の機能を発揮する構成要素には同一の符号を付している。ただし、図面は模式的なものであり、厚みと平面寸法との関係、各層の厚みの比率等は現実のものとは異なることに留意すべきである。したがって、具体的な厚みや寸法は以下の説明を参酌して判断すべきものである。又、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることはもちろんである。 Embodiments of the present invention will be described below with reference to the drawings. In order to omit redundant description, constituent elements having the same or similar functions are denoted by the same reference numerals in the drawings. However, it should be noted that the drawings are schematic, and the relationship between thickness and planar dimension, the ratio of thickness of each layer, and the like are different from the actual ones. Therefore, specific thicknesses and dimensions should be determined with reference to the following description. In addition, it is a matter of course that there are portions with different dimensional relationships and ratios between the drawings.

また、以下に示す実施形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであって、本発明の技術的思想は、構成部品の材質、形状、構造、配置等を下記のものに特定するものでない。本発明の技術的思想は、特許請求の範囲に記載された請求項が規定する技術的範囲内において、種々の変更を加えることができる。 Further, the embodiments shown below are examples of devices and methods for embodying the technical idea of the present invention. etc. are not specified below. Various modifications can be made to the technical idea of the present invention within the technical scope defined by the claims.

本発明の一実施形態に係る銅ピラーの製造方法では、導電層上に形成されたレジストパターンで囲まれた孔構造を備え、この孔構造の底面に凹部を有し且つこの凹部を含めて底面が導電層で覆われている基板を、銅めっき液の槽に浸漬し、設定した液流量にて槽内の銅めっき液を攪拌しながら電解銅めっきを行い、凹部を含む孔構造をめっき金属によって充填して銅ピラーを取得する銅ピラーの製造方法であって、基板に対するめっき時間を前半及び後半に二等分し、前半における液流量を後半における液流量で除した値が、0.8以下または1.2以上となるように電解銅めっきを行う。
つまり、たとえば、銅ピラーを形成するためにレジスト層に形成した孔構造に電解めっきにて銅を充填する場合、孔構造の内部にてめっき液が良好に循環するようにするために、めっき浴内に液流を発生させている。
In a method for manufacturing a copper pillar according to an embodiment of the present invention, a hole structure surrounded by a resist pattern formed on a conductive layer is provided. The substrate covered with the conductive layer is immersed in a bath of copper plating solution, electrolytic copper plating is performed while stirring the copper plating solution in the bath at a set solution flow rate, and the hole structure including the recesses is formed into the plating metal. A copper pillar manufacturing method for obtaining copper pillars by filling with by dividing the plating time for the substrate into the first half and the second half, and the value obtained by dividing the liquid flow rate in the first half by the liquid flow rate in the second half is 0.8 Electrolytic copper plating is performed so that the value becomes less than or equal to or greater than 1.2.
That is, for example, when a hole structure formed in a resist layer for forming a copper pillar is filled with copper by electrolytic plating, the plating bath It creates a liquid flow inside.

液流の大きさと向きによって、孔構造内部と孔構造入り口の周辺部分とでは、さまざまな液流の差異が生じ得るが、それが適度な場合に、促進剤が孔構造内部に滞留し、孔構造周囲よりも孔構造内部のほうが、めっき成長速度が大きくなり、孔構造内部が銅で充填される。また、孔構造内部と孔構造周辺とで液流の差が小さ過ぎる場合は促進剤が孔構造内に蓄積せず、孔構造内部と孔構造周辺とのめっき成長速度にはほとんど差が生じず、孔構造内部の充填が不十分となる可能性が高くなる。また同じ理由で、孔構造内のめっきの天面は凹んだ形状になりやすい。逆に、孔構造内部と孔構造の周辺とで液流の差が大き過ぎる場合は孔構造内部の液交換速度が大きく、孔構造内部の促進剤がかき出される為、促進剤が孔構造内部に蓄積せず、孔構造内部と孔構造入り口付近とのめっき成長速度にほとんど差は生じない。したがって、これらの液流の効果を用いることで、天面の平坦又はほぼ平坦な銅ピラーを形成することができる。 Depending on the size and direction of the liquid flow, various differences in liquid flow may occur between the inside of the pore structure and the surrounding area of the pore structure entrance. The plating growth rate is higher inside the hole structure than around the structure, and the inside of the hole structure is filled with copper. Also, when the difference in liquid flow between the inside of the pore structure and the periphery of the pore structure is too small, the accelerator does not accumulate in the pore structure, and there is almost no difference in the plating growth rate between the inside of the pore structure and the periphery of the pore structure. , the possibility of insufficient filling inside the pore structure increases. For the same reason, the top surface of the plating in the hole structure tends to be concave. Conversely, if the difference in liquid flow between the inside of the pore structure and the periphery of the pore structure is too large, the liquid exchange rate inside the pore structure is high, and the accelerator inside the pore structure is scraped out. There is almost no difference in the plating growth rate between the inside of the hole structure and the vicinity of the hole structure entrance. Therefore, by using the effect of these liquid flows, it is possible to form a copper pillar with a flat or almost flat top surface.

具体的には、一連の電解銅めっき工程のなかに、促進剤が十分に作用して、孔構造内部のめっき金属の天面がやや突出した形状になる段階と、促進剤の作用が不十分であり、抑制剤の作用が支配的になって、孔構造内のめっき金属の成長がやや鈍化する段階とを設ける。そして、各段階において、促進剤の作用を変化させるために、めっき浴の液流量を操作する。 Specifically, in a series of electrolytic copper plating processes, the accelerator acts sufficiently to form a slightly protruding top surface of the plated metal inside the hole structure, and the accelerator does not work sufficiently. and a stage in which the action of the inhibitor becomes dominant and the growth of the plated metal in the pore structure is somewhat slowed down. Then, at each stage, the liquid flow rate of the plating bath is manipulated to vary the action of the accelerator.

図1は電解めっき方法によって形成された銅ピラー1の一例であり、銅ピラー1の円柱部分の断面形状の概略を示す。図1中、実線で示す断面形状2は、めっき液の液流を、銅ピラー1を形成するための孔構造内部に促進剤が滞留し、促進剤が十分に作用する条件にて一定にして形成した場合の銅ピラー1の天面を含む断面形状の概略図であり、銅ピラー1の天面形状が凸状に大きく膨らんでいる。図1中、破線で示す断面形状3は本発明に係る銅ピラーの製造方法を適用した電解めっき方法で形成した銅ピラー1の一例を示す断面形状の概略図であり、電解めっきの途中でめっき液の液流を変更した場合の断面形状の概略図である。図1に示すように、本発明に係る銅ピラーの製造方法を適用した電解めっき方法で形成した銅ピラー1は、銅ピラー1の天面形状の膨らみが抑えられていることがわかる。 FIG. 1 shows an example of a copper pillar 1 formed by electroplating, and shows an outline of the cross-sectional shape of the cylindrical portion of the copper pillar 1. FIG. In FIG. 1, the cross-sectional shape 2 indicated by the solid line is obtained by setting the liquid flow of the plating solution constant under the condition that the accelerator stays inside the hole structure for forming the copper pillar 1 and the accelerator works sufficiently. It is a schematic diagram of the cross-sectional shape including the top surface of the copper pillar 1 when formed, and the top surface shape of the copper pillar 1 swells greatly in a convex shape. In FIG. 1, a cross-sectional shape 3 indicated by a dashed line is a schematic diagram of a cross-sectional shape showing an example of a copper pillar 1 formed by an electrolytic plating method to which the copper pillar manufacturing method according to the present invention is applied. It is the schematic of the cross-sectional shape at the time of changing the liquid flow of a liquid. As shown in FIG. 1, the copper pillar 1 formed by the electroplating method to which the method for manufacturing a copper pillar according to the present invention is applied has a suppressed swelling of the top surface of the copper pillar 1. As shown in FIG.

図2は電解めっき方法によって形成された銅ピラー19の一例であり、銅ピラー19の円柱部分の断面形状の概略を示す。図2中、破線で示す断面形状20はめっき液の液流を、銅ピラー19を形成するための孔構造内に促進剤が十分に浸入しないか、あるいは浸入してもすぐに排出されるような条件にて一定にして形成した場合の銅ピラー19の断面形状の概略図であり、銅ピラー19の天面形状が大きく凹んでいる。図2中、実線で示す断面形状21は本発明に係る銅ピラーの製造方法を適用した電解めっき方法で形成した銅ピラー19の一例を示す断面形状の概略図であり、電解めっきの途中でめっき液の液流を変更した場合の断面形状の概略図である。図2に示すように、本発明に係る銅ピラーの製造方法を適用した電解めっき方法で形成した銅ピラー19は、銅ピラー19の天面形状の凹みが抑制されていることがわかる。 FIG. 2 shows an example of the copper pillar 19 formed by the electroplating method, and shows an outline of the cross-sectional shape of the cylindrical portion of the copper pillar 19. As shown in FIG. In FIG. 2, the cross-sectional shape 20 indicated by the dashed line is such that the flow of the plating solution is such that the promoter does not sufficiently penetrate into the hole structure for forming the copper pillar 19, or is immediately discharged even if it penetrates. FIG. 3 is a schematic diagram of a cross-sectional shape of a copper pillar 19 formed under constant conditions, and the top surface shape of the copper pillar 19 is greatly recessed. In FIG. 2, a cross-sectional shape 21 indicated by a solid line is a schematic diagram of a cross-sectional shape showing an example of a copper pillar 19 formed by an electrolytic plating method to which the copper pillar manufacturing method according to the present invention is applied. It is the schematic of the cross-sectional shape at the time of changing the liquid flow of a liquid. As shown in FIG. 2, it can be seen that the copper pillar 19 formed by the electroplating method to which the copper pillar manufacturing method according to the present invention is applied suppresses the depression of the top surface shape of the copper pillar 19 .

図3は、図1及び図2に示す銅ピラー1、19の全体の断面形状の一例である。銅ピラー1、19は、図3に示すように、円柱部8の直下に、いわゆるビアに相当するビア部7を備えた構造を有する。
図3において、5はソルダーレジストなどの絶縁樹脂層、6はシード層と呼ばれる給電部、5aは絶縁樹脂層5の開口部であって、絶縁樹脂層5の開口部5a内には電解めっき法によって析出した銅が充填されてビア部7が形成されている。そして、ビア部7とビア部7の直上に形成された円柱部8とで銅ピラー4が形成されている。
FIG. 3 is an example of the overall cross-sectional shape of the copper pillars 1 and 19 shown in FIGS. 1 and 2. FIG. The copper pillars 1 and 19, as shown in FIG. 3, have a via portion 7 corresponding to a so-called via directly below the cylindrical portion 8. As shown in FIG.
In FIG. 3, 5 is an insulating resin layer such as a solder resist, 6 is a power supply part called a seed layer, 5a is an opening of the insulating resin layer 5, and the opening 5a of the insulating resin layer 5 is filled with electrolytic plating. The via portion 7 is formed by filling with the copper deposited by . A copper pillar 4 is formed by the via portion 7 and the cylindrical portion 8 formed directly above the via portion 7 .

図3に示す構造は、SMDパッド(Solder Mask Defined)と呼ばれる構造であって、銅ピラー4の円柱部8の下にブラインドビアとしてのビア部7がある。SMDパッド構造の場合、絶縁樹脂層5に形成されたビア部7の充填と銅ピラー4の円柱部8の形成とを行って、銅ピラー4の天面形状を平坦にする必要がある。前述のように、円柱部8を形成する際の促進効果が弱すぎると銅ピラー4の天面形状は凹み、促進効果が強すぎると銅ピラー4の天面形状は凸状に膨らみ、促進効果が適当な場合は銅ピラー4の天面形状はほぼ平坦になる。 The structure shown in FIG. 3 is a structure called an SMD pad (Solder Mask Defined), and has a via portion 7 as a blind via below the cylindrical portion 8 of the copper pillar 4 . In the case of the SMD pad structure, it is necessary to fill the via portion 7 formed in the insulating resin layer 5 and form the cylindrical portion 8 of the copper pillar 4 to flatten the top surface of the copper pillar 4 . As described above, if the promoting effect in forming the cylindrical portion 8 is too weak, the top surface shape of the copper pillar 4 is recessed, and if the promoting effect is too strong, the top surface shape of the copper pillar 4 swells into a convex shape, resulting in the promoting effect. is appropriate, the top surface of the copper pillar 4 is substantially flat.

図4はめっき液の液流の強弱による添加剤の挙動を示す概略図である。図4において、9はめっき浴、10は絶縁樹脂層であり、11は感光性レジストであり、12はシード層と呼ばれる給電部であり、13は析出した銅からなる銅ピラーであり、14はめっき液であり、15はめっき液の液流(流れ)を示しており、16はめっき液に含まれる促進剤であり、17はめっき液に含まれる抑制剤であり、18は感光性レジストの開口部(以下、感光性レジスト開口部ともいう。)を示している。 FIG. 4 is a schematic diagram showing the behavior of the additive depending on the strength of the flow of the plating solution. In FIG. 4, 9 is a plating bath, 10 is an insulating resin layer, 11 is a photosensitive resist, 12 is a power supply part called a seed layer, 13 is a copper pillar made of deposited copper, and 14 is 15 indicates the liquid flow (flow) of the plating solution; 16 is an accelerator contained in the plating solution; 17 is a suppressor contained in the plating solution; An opening (hereinafter also referred to as a photosensitive resist opening) is shown.

電解銅めっき浴中の促進剤16の特徴として、感光性レジスト開口部18内と感光性レジスト11の表面とのめっき液の液流15の差が生じると、めっき液の液流15が小さい部位、すなわち感光性レジスト開口部18内に促進剤16の蓄積が進む。しかし、感光性レジスト開口部18内と感光性レジスト11の表面とのめっき液の液流15の差が十分でない場合は、感光性レジスト開口部18への促進剤16の蓄積は進まない。また感光性レジスト開口部18と感光性レジスト11の表面とのめっき液の液流15の差が過剰な場合は、感光性レジスト開口部18内のめっき液14の入れ替わりが速く、感光性レジスト開口部18への促進剤16の蓄積は進まない。 As a feature of the accelerator 16 in the electrolytic copper plating bath, when a difference in flow rate 15 of the plating solution occurs between the inside of the photosensitive resist opening 18 and the surface of the photosensitive resist 11, the flow rate 15 of the plating solution is small. That is, the accelerator 16 accumulates in the photosensitive resist opening 18 . However, if the difference in flow 15 of the plating solution between the inside of the photosensitive resist opening 18 and the surface of the photosensitive resist 11 is insufficient, the accumulation of the accelerator 16 in the photosensitive resist opening 18 does not progress. Further, when the difference in the flow 15 of the plating solution between the photosensitive resist opening 18 and the surface of the photosensitive resist 11 is excessive, the plating solution 14 in the photosensitive resist opening 18 is quickly replaced, and the photosensitive resist opening 14 is changed rapidly. Accumulation of accelerator 16 in portion 18 does not progress.

つまり図4(a)に示すように感光性レジスト開口部18内と感光性レジスト11の表面とのめっき液の液流15の差が十分でない場合は、感光性レジスト開口部18内への促進剤16の蓄積は進まず、抑制効果が強くなり抑制剤17に含まれる成分の一つである平滑剤によって、銅ピラー13の天面形状はやや凹んだめっき形状となる。
一方、図4(b)に示すように感光性レジスト開口部18内と感光性レジスト11の表面とのめっき液の液流15の差が十分な場合は、感光性レジスト開口部18内の促進剤16の蓄積が進み、促進効果が強くなり、銅ピラー13の天面形状は、凸状に膨らんだめっき形状となる。
That is, as shown in FIG. 4(a), when the difference in the flow 15 of the plating solution between the inside of the photosensitive resist opening 18 and the surface of the photosensitive resist 11 is not sufficient, the flow of the plating solution is accelerated into the photosensitive resist opening 18. The accumulation of the agent 16 does not proceed, and the inhibitory effect becomes stronger, and the smoothing agent, which is one of the components contained in the inhibitor 17, makes the top surface of the copper pillar 13 a slightly concave plated shape.
On the other hand, as shown in FIG. 4(b), when the difference in flow 15 of the plating solution between the inside of the photosensitive resist opening 18 and the surface of the photosensitive resist 11 is sufficient, the flow inside the photosensitive resist opening 18 is accelerated. As the accumulation of the agent 16 progresses, the acceleration effect becomes stronger, and the top surface of the copper pillar 13 becomes a convex plated shape.

また、図4(c)のように感光性レジスト開口部18内と感光性レジスト11の表面とのめっき液の液流15の差が過剰な場合は、感光性レジスト開口部18内のめっき液14の入れ替わりが速く、感光性レジスト開口部18内への促進剤16の蓄積は進まず、抑制効果が強くなり抑制剤17に含まれる成分の一つである平滑剤によって、銅ピラー13の天面形状はやや凹んだめっき形状となる。 4(c), when the difference in flow 15 of the plating solution between the inside of the photosensitive resist opening 18 and the surface of the photosensitive resist 11 is excessive, the plating solution inside the photosensitive resist opening 18 14 is replaced quickly, the accumulation of the accelerator 16 in the photosensitive resist opening 18 does not progress, the inhibitory effect becomes stronger, and the smoothing agent, which is one of the components contained in the inhibitor 17, smoothes the top of the copper pillar 13. The surface shape becomes a slightly concave plating shape.

次に、配線基板に配置された銅ピラーの周辺構造について、促進剤の効果の大小による電解めっきの付きまわりの差異について説明する。
図3に示すように、銅ピラーの円柱部8の直下にビア部7を備えた銅ピラー4を形成する場合の電解めっきの成長過程の構造の一例を図5に示す。図5において、5は絶縁樹脂層、5aは絶縁樹脂層に形成された開口部、6は給電部、11は感光性レジスト、23は析出した銅である。
Next, regarding the peripheral structure of a copper pillar arranged on a wiring board, the difference in throwing power of electrolytic plating depending on the magnitude of the effect of the accelerator will be described.
FIG. 5 shows an example of the structure in the growth process of electrolytic plating when forming the copper pillar 4 having the via portion 7 directly below the cylindrical portion 8 of the copper pillar as shown in FIG. In FIG. 5, 5 is an insulating resin layer, 5a is an opening formed in the insulating resin layer, 6 is a power supply portion, 11 is a photosensitive resist, and 23 is deposited copper.

図5(a)は促進効果が強い状態での電解めっきの成長過程を示したものである。促進効果が強い場合、図4(b)で示した様に、促進剤16が、絶縁樹脂層5の開口部5a内に蓄積して、絶縁樹脂層5の開口部5a内では電解めっきで析出した銅23は凸状に膨らんだ形状となる。
図5(b)は抑制効果が強い状態での電解めっきの成長過程を示したものである。図4(a)或いは図4(c)で示した様に、促進剤16の偏りがない場合、電解めっきで析出した銅23は給電部6の形状に追従した形状、或いは抑制剤17に含まれる成分の一つである平滑剤によってほぼ平坦あるいはやや凹んだ形状となる。電解めっきで析出した銅23が給電部6の形状に追従した形状のまま成長すると、電解めっきで析出した銅23は窪んだ形状になる。この様な窪みを発生させない為に、促進剤による促進効果が必要である。
FIG. 5(a) shows the growth process of electrolytic plating in a state where the acceleration effect is strong. When the acceleration effect is strong, as shown in FIG. 4B, the accelerator 16 accumulates in the openings 5a of the insulating resin layer 5 and is deposited by electrolytic plating in the openings 5a of the insulating resin layer 5. The copper 23 thus formed has a convex shape.
FIG. 5(b) shows the growth process of electrolytic plating in a state where the suppressing effect is strong. As shown in FIG. 4(a) or FIG. 4(c), when the accelerator 16 is not biased, the copper 23 deposited by electrolytic plating has a shape following the shape of the power supply portion 6 or is contained in the suppressor 17. The smoothing agent, which is one of the ingredients used in the coating, makes the shape almost flat or slightly concave. If the copper 23 deposited by electrolytic plating grows in a shape that follows the shape of the power supply portion 6, the copper 23 deposited by electrolytic plating becomes recessed. In order to prevent such depressions from occurring, an accelerating effect by an accelerator is required.

図5(c)は抑制効果が強い状態での電解めっきの成長過程の他の例を示したものである。図4(a)或いは図4(c)で示した様に、促進剤16の偏りがない場合、電解めっきで析出した銅23は給電部6の形状に追従した形状、或いは抑制剤17に含まれる成分の一つである平滑剤によってほぼ平坦な形状となるが、電解めっきで析出した銅23の不均一な成長により、絶縁樹脂層5の開口部5aは間隙24を残したまま電解めっきで析出した銅23で充填されることがある。この様な間隙24を発生させない為に、促進剤16による促進効果は必要である。 FIG. 5(c) shows another example of the growth process of electrolytic plating in a state where the suppressing effect is strong. As shown in FIG. 4(a) or FIG. 4(c), when the accelerator 16 is not biased, the copper 23 deposited by electrolytic plating has a shape following the shape of the power supply portion 6 or is contained in the suppressor 17. Although the smoothing agent, which is one of the components of the insulating resin layer 5, forms a substantially flat shape, due to uneven growth of the copper 23 deposited by electrolytic plating, the opening 5a of the insulating resin layer 5 can be formed by electrolytic plating while leaving the gap 24. It may be filled with deposited copper 23 . In order not to generate such a gap 24, the acceleration effect of the accelerator 16 is necessary.

このように、孔構造(図5の開口部5aに相当)を含む配線基板に対して、電解めっきをする場合、促進剤16の効果が大きすぎるか、不十分であるかの二極化する傾向にあり、双方を併用することで、良好な形状に調節できる。具体的には、始めに促進剤16の作用が大きすぎる条件にてめっきをした場合には、後に促進剤16の効果を抑えた条件にてめっきをすることによって、最終的に天面形状がほぼ平坦なめっき形状を得ることができ、逆に、始めに促進剤16の効果を抑えた条件にてめっきをした場合には、後に促進剤16の作用の大きな条件にてめっきすることによって、最終的にほぼ平坦なめっき形状を得ることができる。 In this way, when electrolytic plating is performed on a wiring substrate including a hole structure (corresponding to the opening 5a in FIG. 5), the effect of the accelerator 16 is polarized as to whether the effect is too large or insufficient. By using both of them together, it is possible to adjust to a good shape. Specifically, when plating is first performed under conditions in which the action of the accelerator 16 is too large, plating is performed later under conditions in which the effect of the accelerator 16 is suppressed, so that the shape of the top surface is finally changed. A substantially flat plating shape can be obtained, and conversely, when plating is first performed under conditions in which the effect of the accelerator 16 is suppressed, by plating later under conditions in which the effect of the accelerator 16 is large, Finally, a substantially flat plated shape can be obtained.

発明者は、鋭意検討を重ねることによって、電解銅めっき工程の中で、液流量をどのように切り替えれば、促進剤の効果の過剰、不足が打ち消し合って、全体として良好なめっき形状を得られるかを見出した。
すなわち、一連の電解銅めっき工程のなかに、促進剤が十分に作用して、孔構造内部のめっき金属の天面がやや突出した形状になる段階と、促進剤の作用が不十分であり、抑制剤の作用が支配的になって、孔構造内のめっき金属の成長がやや鈍化する段階とを設け、各段階において、促進剤の作用を変化させるために、めっき浴の液流量を操作する。
Through extensive research, the inventors found out how to change the liquid flow rate in the electrolytic copper plating process to cancel out the excessive and insufficient effects of the accelerator, and to obtain a good plating shape as a whole. I found something.
That is, in a series of electrolytic copper plating processes, the accelerator acts sufficiently, and the top surface of the plated metal inside the hole structure becomes a slightly protruding shape, and the accelerator does not work sufficiently. and at each stage the flow rate of the plating bath is manipulated to vary the action of the accelerator in order to slightly slow down the growth of the plating metal within the pore structure as the action of the inhibitor becomes dominant. .

つまり、図4に示す電解銅めっき浴9において、感光性レジスト11の表面のめっき液の液流15と、感光性レジストの開口部18とのめっき液の液流15との差により、感光性レジストの開口部18に促進剤16が蓄積して促進効果が大きくなり、めっき被膜がボトムアップ析出する。ボトムアップ析出するめっき被膜は膨らむが、膨らみを平坦にする為に、噴流量を調節して感光性レジスト11の表面のめっき液の液流15の流量を例えば2倍にすると、感光性レジストの開口部18のめっき液14とバルクとの液交換速度が大きくなり、感光性レジストの開口部18への促進剤の蓄積が抑えられ抑制効果が大きくなり、めっき被膜表面がほぼ平坦になる。 That is, in the electrolytic copper plating bath 9 shown in FIG. The accelerator 16 accumulates in the openings 18 of the resist, increasing the acceleration effect and depositing the plated film from the bottom up. The bottom-up deposited plating film swells, but in order to flatten the swell, if the flow rate of the liquid flow 15 of the plating solution on the surface of the photosensitive resist 11 is adjusted by adjusting the flow rate of the plating solution, for example, by doubling, the thickness of the photosensitive resist increases. The liquid exchange rate between the plating solution 14 in the opening 18 and the bulk is increased, the accumulation of the accelerator in the opening 18 of the photosensitive resist is suppressed, and the inhibitory effect is increased, and the plated film surface becomes substantially flat.

そこで、図5に示すように、シード層(導電層)6上に形成された感光性レジスト(レジストパターン)11で囲まれて図3に示す銅ピラー4の円柱部8となる孔構造を備え、孔構造の底面に図3のビア部7となる開口部(凹部)5aを有し且つ開口部(凹部)5aを含めて底面がシード層(導電層)6で覆われている基板を、銅めっき液の槽に浸漬し、設定した液流量にて槽内の銅めっき液を攪拌しながら電解銅めっきを行って、開口部(凹部)5aを含む孔構造をめっき金属によって充填する際に、基板に対するめっき時間を、前半と後半とに二等分し、前半における液流量を後半における液流量で除した値が、0.8以下または1.2以上となるように電解銅めっきを行うことによって、ビアに間隙が生じることを抑制しつつ銅ピラー天面の形状をほぼ平坦にできることを見出した。なお、ここでいうめっき時間とは、開口部(凹部)5a内への充填を開始してから、析出した銅の高さが円柱部8として必要な高さに到達するまでの時間をいう。 Therefore, as shown in FIG. 5, a hole structure is provided which is surrounded by a photosensitive resist (resist pattern) 11 formed on the seed layer (conductive layer) 6 and becomes the cylindrical portion 8 of the copper pillar 4 shown in FIG. , a substrate having an opening (recess) 5a to be the via portion 7 in FIG. It is immersed in a bath of a copper plating solution, electrolytic copper plating is performed while stirring the copper plating solution in the bath at a set solution flow rate, and the hole structure including the opening (recess) 5a is filled with the plating metal. , The plating time for the substrate is divided into the first half and the second half, and electrolytic copper plating is performed so that the value obtained by dividing the liquid flow rate in the first half by the liquid flow rate in the second half is 0.8 or less or 1.2 or more. As a result, the top surface of the copper pillar can be made substantially flat while suppressing the formation of gaps in the via. The plating time referred to here means the time from the start of filling the opening (recess) 5 a until the height of the deposited copper reaches the height required for the cylindrical portion 8 .

このように、電解銅めっき工程中に、液流量を切り替えることによって、銅ピラー4の天面をほぼ平坦とすることができ、また、ビア部7に間隙が生じることを抑制し、銅ピラー4全体として良好なめっき形状を得ることができる。そのため、半導体チップなどとの信頼性の高い接続を得ることができる。 In this way, by switching the liquid flow rate during the electrolytic copper plating process, the top surface of the copper pillar 4 can be made substantially flat, and the formation of a gap in the via portion 7 can be suppressed, so that the copper pillar 4 A good plating shape can be obtained as a whole. Therefore, a highly reliable connection with a semiconductor chip or the like can be obtained.

(実施例1)
噴流式の容積300Lの電解めっき装置に、硫酸銅、硫酸、塩酸、抑制剤、促進剤でめっき液を建浴した。前記電解めっき装置にて300mm×300mmの被めっき基板を電流密度2A/dmで20分間めっきした。前記被めっき基板には、感光性レジストが図3に示すように、ビア部7の上に円柱部8が配置された銅ピラー4ができるように形成されており、電解銅めっき工程の前半10分間の噴流量を10L/分、後半10分間の噴流量を20L/分としたところ、得られた銅ピラーの断面形状を、図1の破線で示す断面形状3のようにほぼ平坦にすることができた。このときの、電解銅めっき工程の前半における噴流量(液流量)を後半における噴流量(液流量)で除した値は、0.5であった。
(Example 1)
A plating solution was prepared with copper sulfate, sulfuric acid, hydrochloric acid, an inhibitor, and an accelerator in a jet-type electrolytic plating apparatus with a volume of 300 L. A 300 mm×300 mm substrate to be plated was plated at a current density of 2 A/dm 2 for 20 minutes in the electrolytic plating apparatus. As shown in FIG. 3, a photosensitive resist is formed on the substrate to be plated so that a copper pillar 4 having a columnar portion 8 arranged on a via portion 7 is formed. The jet flow rate per minute was 10 L/min, and the jet flow rate in the last 10 minutes was 20 L/min. was made. At this time, the value obtained by dividing the jet flow rate (liquid flow rate) in the first half of the electrolytic copper plating process by the jet flow rate (liquid flow rate) in the latter half was 0.5.

(実施例2)
前記建浴されためっき装置で、前記感光性レジストが図3に示すように、ビア部7の上に円柱部8が配置された銅ピラー4ができるように形成された、100mm×100mmの被めっき基板を電流密度2A/dmで20分間めっきした。電解銅めっき工程の前半10分間の噴流量を16L/分、後半10分間の噴流量を20L/分としたところ、得られた銅ピラーの断面形状を、図2の実線で示す断面形状21のようにほぼ平坦にすることができた。このときの、電解銅めっき工程の前半における噴流量(液流量)を後半における噴流量(液流量)で除した値は、0.8であった。
(Example 2)
In the plating apparatus in which the bath was prepared, the photosensitive resist was formed as shown in FIG. The plated substrate was plated at a current density of 2 A/dm 2 for 20 minutes. The jet flow rate for the first 10 minutes of the electrolytic copper plating process was 16 L/min, and the jet flow rate for the last 10 min was set to 20 L/min. I was able to make it almost flat. At this time, the value obtained by dividing the jet flow rate (liquid flow rate) in the first half of the electrolytic copper plating process by the jet flow rate (liquid flow rate) in the latter half was 0.8.

(実施例3)
前記建浴されためっき装置で、前記感光性レジストが図3に示すように、ビア部7の上に円柱部8が配置された銅ピラー4ができるように形成された、100mm×100mmの被めっき基板を、電流密度2A/dmで20分間めっきした。電解銅めっき工程の前半10分間の噴流量を24L/分、後半10分間の噴流量を20L/分としたところ、得られた銅ピラーの断面形状を、図2の実線で示す断面形状21のようにほぼ平坦にすることができた。このときの、電解銅めっき工程の前半における噴流量(液流量)を後半における噴流量(液流量)で除した値は、1.2であった。
(Example 3)
In the plating apparatus in which the bath was prepared, the photosensitive resist was formed as shown in FIG. The plated substrate was plated at a current density of 2 A/ dm2 for 20 minutes. The jet flow rate for the first 10 minutes of the electrolytic copper plating process was 24 L/min, and the jet flow rate for the last 10 min was set to 20 L/min. I was able to make it almost flat. At this time, the value obtained by dividing the jet flow rate (liquid flow rate) in the first half of the electrolytic copper plating process by the jet flow rate (liquid flow rate) in the latter half was 1.2.

(実施例4)
前記建浴されためっき装置で、前記感光性レジストが図3に示すように、ビア部7の上に円柱部8が配置された銅ピラー4ができるように形成された、100mm×100mmの被めっき基板を、電流密度2A/dmで20分間めっきした。電解銅めっき工程の前半10分間の噴流量を30L/分、後半10分間の噴流量を20L/分としたところ、得られた銅ピラーの断面形状を、図2の実線で示す断面形状21のようにほぼ平坦にすることができた。このときの、電解銅めっき工程の前半における噴流量(液流量)を後半における噴流量(液流量)で除した値は、1.5であった。
(Example 4)
In the plating apparatus in which the bath was prepared, the photosensitive resist was formed as shown in FIG. The plated substrate was plated at a current density of 2 A/ dm2 for 20 minutes. The jet flow rate for the first 10 minutes of the electrolytic copper plating process was 30 L/min, and the jet flow rate for the last 10 minutes was 20 L/min. I was able to make it almost flat. At this time, the value obtained by dividing the jet flow rate (liquid flow rate) in the first half of the electrolytic copper plating process by the jet flow rate (liquid flow rate) in the latter half was 1.5.

(比較例1)
前記建浴されためっき装置で、前記感光性レジストが図3に示すように、ビア部7の上に円柱部8が配置された銅ピラー4ができるように形成された、100mm×100mmの被めっき基板を電流密度2A/dmで20分間めっきした。電解銅めっき工程の前半10分間の噴流量を18L/分、後半10分間の噴流量を20L/分としたところ、銅ピラーの断面形状が図1の実線で示す断面形状2のように突出したものになった。このときの、電解銅めっき工程の前半における噴流量(液流量)を後半における噴流量(液流量)で除した値は、0.9であった。
(Comparative example 1)
In the plating apparatus in which the bath was prepared, the photosensitive resist was formed as shown in FIG. The plated substrate was plated at a current density of 2 A/dm 2 for 20 minutes. When the jet flow rate for the first 10 minutes of the electrolytic copper plating process was 18 L/min and the jet flow rate for the last 10 min was 20 L/min, the cross-sectional shape of the copper pillar protruded like the cross-sectional shape 2 indicated by the solid line in FIG. became a thing At this time, the value obtained by dividing the jet flow rate (liquid flow rate) in the first half of the electrolytic copper plating process by the jet flow rate (liquid flow rate) in the latter half was 0.9.

(比較例2)
前記建浴されためっき装置で、前記感光性レジストが図3に示すように、ビア部7の上に円柱部8が配置された銅ピラー4ができるように形成された、100mm×100mmの被めっき基板を電流密度2A/dmで20分間めっきした。電解銅めっき工程の前半10分間の噴流量を22L/分、後半10分間の噴流量を20L/分としたところ、銅ピラーの断面形状が図1の実線で示す断面形状2のように突出したものになった。このときの、電解銅めっき工程の前半における噴流量(液流量)を後半における噴流量(液流量)で除した値は、1.1であった。
(Comparative example 2)
In the plating apparatus in which the bath was prepared, the photosensitive resist was formed as shown in FIG. The plated substrate was plated at a current density of 2 A/dm 2 for 20 minutes. When the jet flow rate for the first 10 minutes of the electrolytic copper plating process was 22 L/min and the jet flow rate for the last 10 min was set to 20 L/min, the cross-sectional shape of the copper pillar protruded like cross-sectional shape 2 indicated by the solid line in FIG. became a thing At this time, the value obtained by dividing the jet flow rate (liquid flow rate) in the first half of the electrolytic copper plating process by the jet flow rate (liquid flow rate) in the latter half was 1.1.

(作用効果の確認)
実施例、比較例より、電解銅めっき工程の前半、後半によって、めっき浴の液流量を一定の割合以上に変化させ、促進剤の効果が不十分な段階と、促進剤の効果が過剰に発揮される状態を組み合わせることによって、電解銅めっき工程全体としては、良好な形状を得ることが確認できた。
(Confirmation of actions and effects)
From the examples and comparative examples, the liquid flow rate of the plating bath is changed by a certain ratio or more depending on the first and second halves of the electrolytic copper plating process, and the effect of the accelerator is insufficient and the effect of the accelerator is excessive. By combining these conditions, it was confirmed that a favorable shape was obtained in the electrolytic copper plating process as a whole.

1、19 銅ピラーの断面形状の概略図
2、20 めっき液の液流を一定にして形成した銅ピラーの断面形状の概略図
3、21 めっき液の液流を途中で変更して形成した銅ピラーの断面形状の概略図
4、13 銅ピラー
5、10 絶縁樹脂層
5a 絶縁樹脂層の開口部
6、12 給電部
7 銅ピラーのビア部
8 銅ピラーの円柱部
9 めっき浴
11 感光性レジスト
14 めっき液
15 めっき液の液流(流れ)
16 促進剤
17 抑制剤
18 感光性レジストの開口部
22 電解めっきの成長過程
23 電解めっきで析出した銅
24 間隙
1, 19 Schematic diagram of cross-sectional shape of copper pillar 2, 20 Schematic diagram of cross-sectional shape of copper pillar formed with constant flow of plating solution 3, 21 Copper formed by changing flow of plating solution midway Schematic diagrams of cross-sectional shapes of pillars 4 and 13 Copper pillars 5 and 10 Insulating resin layer 5a Openings 6 and 12 in the insulating resin layer Power feeding portion 7 Via portion 8 of copper pillar 8 Cylindrical portion of copper pillar 9 Plating bath 11 Photosensitive resist 14 Plating solution 15 Plating solution flow (flow)
16 Accelerator 17 Suppressor 18 Opening of photosensitive resist 22 Growth process of electrolytic plating 23 Copper deposited by electrolytic plating 24 Gap

Claims (1)

導電層上に形成されたレジストパターンで囲まれた孔構造を備え、当該孔構造の底面に凹部を有し且つ当該凹部を含めて前記底面が導電層で覆われている基板を、銅めっき液の槽に浸漬し、設定した液流量にて前記槽内の前記銅めっき液を攪拌しながら電解銅めっきを行い、前記凹部を含む前記孔構造をめっき金属によって充填して銅ピラーを取得する銅ピラーの製造方法であって、
前記基板に対するめっき時間を前半及び後半に二等分し、前記前半における前記液流量を前記後半における前記液流量で除した値が、0.8以下または1.2以上となるように前記電解銅めっきを行うことを特徴とする、銅ピラーの製造方法。
A substrate having a hole structure surrounded by a resist pattern formed on a conductive layer, having a recess in the bottom surface of the hole structure, and having the bottom surface including the recess covered with a conductive layer is coated with a copper plating solution. is immersed in a tank, electrolytic copper plating is performed while stirring the copper plating solution in the tank at a set liquid flow rate, and the hole structure including the recess is filled with plating metal to obtain a copper pillar. A method for manufacturing a pillar,
The plating time for the substrate is divided into a first half and a second half, and the electrolytic copper is adjusted so that the value obtained by dividing the liquid flow rate in the first half by the liquid flow rate in the second half is 0.8 or less or 1.2 or more. A method of manufacturing a copper pillar, comprising plating.
JP2021105135A 2021-06-24 2021-06-24 Copper pillar production method Pending JP2023003830A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021105135A JP2023003830A (en) 2021-06-24 2021-06-24 Copper pillar production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021105135A JP2023003830A (en) 2021-06-24 2021-06-24 Copper pillar production method

Publications (1)

Publication Number Publication Date
JP2023003830A true JP2023003830A (en) 2023-01-17

Family

ID=85100597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021105135A Pending JP2023003830A (en) 2021-06-24 2021-06-24 Copper pillar production method

Country Status (1)

Country Link
JP (1) JP2023003830A (en)

Similar Documents

Publication Publication Date Title
EP3439441B1 (en) Method for failure-free copper filling of a hole in a component carrier
JP4932370B2 (en) Electrolytic plating method, printed wiring board and semiconductor wafer
KR101298999B1 (en) Embedded Copper foil for fine pattern
JP2004311919A (en) Through-hole filling method
JP4755545B2 (en) Substrate manufacturing method
US20220304164A1 (en) Manufacturing sequences for high density interconnect printed circuit boards and a high density interconnect printed circuit board
JP2014225521A (en) Printed wiring board
JP4148477B2 (en) Sheet used for manufacturing multilayer wiring board, and plating method and plating apparatus used for manufacturing the sheet
KR102061026B1 (en) Plating method
JP2023003830A (en) Copper pillar production method
KR101840436B1 (en) electrolytic copper solution and copper plating method using the electrolytic copper solution
KR20130023519A (en) Flexible cupper clad laminated film for semi-additive and manufacturing method the same
JP2009167506A (en) Acid copper electroplating solution and method for producing fine wiring circuit using the same
KR20140018086A (en) Method for etching of copper and copper alloys
TWI575111B (en) Process for etching a recessed structure filled with tin or a tin alloy
JP2009242860A (en) Pretreating agent for acidic copper and plating method using the same
JP2011179053A (en) Roughened foil and method of producing the same
JP5502967B2 (en) Acid electrolytic copper plating solution
JP2021080505A (en) Production method of circuit board, and circuit board
JP2022545091A (en) Method for manufacturing high density interconnect printed circuit board containing copper-filled microvias
WO2021212490A1 (en) Circuit board and manufacturing method therefor
JP2006339483A (en) Wiring board and manufacturing method thereof
TWI638912B (en) Copper electroplating solution, method for copper electroplating and method for forming copper pillars
CN109154093B (en) Electrolytic nickel (alloy) plating solution
JP2023114933A (en) Wiring board and manufacturing method of wiring board