JP2023003666A - Positive electrode active material for sodium secondary battery - Google Patents

Positive electrode active material for sodium secondary battery Download PDF

Info

Publication number
JP2023003666A
JP2023003666A JP2021104883A JP2021104883A JP2023003666A JP 2023003666 A JP2023003666 A JP 2023003666A JP 2021104883 A JP2021104883 A JP 2021104883A JP 2021104883 A JP2021104883 A JP 2021104883A JP 2023003666 A JP2023003666 A JP 2023003666A
Authority
JP
Japan
Prior art keywords
positive electrode
electrode active
active material
secondary battery
sodium secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021104883A
Other languages
Japanese (ja)
Inventor
紘子 桑田
Hiroko Kuwata
啓太 二井谷
Keita Niitani
伸 後田
Shin Nochida
淳 吉田
Atsushi Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2021104883A priority Critical patent/JP2023003666A/en
Publication of JP2023003666A publication Critical patent/JP2023003666A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

To provide a positive electrode active material capable of improving charge and discharge cycle characteristics of a sodium secondary battery at high potential.SOLUTION: The positive electrode active material for a sodium secondary battery has a P2 type structure, includes Na, Mn, Ni, Co and O as constituting elements, and has a composition satisfying the relationship in the following formula (1). 0.30≤Co/(Mn+Ni+Co)≤0.35 ...(1)SELECTED DRAWING: None

Description

本願はナトリウム二次電池用正極活物質を開示する。 The present application discloses a positive electrode active material for a sodium secondary battery.

非特許文献1には、P2型構造を有し、Na0.70Mn0.60Ni0.30Co0.10で表される組成を有するナトリウム二次電池用正極活物質が開示されている。 Non-Patent Document 1 discloses a positive electrode active material for a sodium secondary battery having a P2 type structure and a composition represented by Na 0.70 Mn 0.60 Ni 0.30 Co 0.10 O 2 . ing.

Journal of The Electrochemical Society, 161(14), A1987-A1991 (2014)Journal of The Electrochemical Society, 161(14), A1987-A1991 (2014)

P2型構造を有し、Na0.70Mn0.60Ni0.30Co0.10で表される組成を有する正極活物質は、高電位(例えば、4.0V vs. Na/Naを超えるような電位)において相転移を起こし、P2型構造を維持することができなくなる。このような正極活物質を用いて構成されたナトリウム二次電池に対して、高電位を含む範囲で充放電を繰り返すと、電池の容量が低下し易い。すなわち、従来技術にあっては、高電位におけるナトリウム二次電池の充放電サイクル特性について改善の余地がある。 A positive electrode active material having a P2-type structure and having a composition represented by Na 0.70 Mn 0.60 Ni 0.30 Co 0.10 O 2 has a high potential (for example, 4.0 V vs. Na + / At a potential exceeding Na), a phase transition occurs and the P2-type structure cannot be maintained. If a sodium secondary battery configured using such a positive electrode active material is repeatedly charged and discharged in a range including a high potential, the capacity of the battery tends to decrease. That is, in the prior art, there is room for improvement in the charge-discharge cycle characteristics of sodium secondary batteries at high potentials.

本願は上記課題を解決するための手段の一つとして、
P2型構造を有し、
構成元素としてNa、Mn、Ni、Co及びOを含み、
下記式(1)の関係を満たす組成を有する、
ナトリウム二次電池用正極活物質
を開示する。
As one means for solving the above problems, the present application provides
having a P2-type structure,
Containing Na, Mn, Ni, Co and O as constituent elements,
Having a composition that satisfies the relationship of the following formula (1),
A cathode active material for a sodium secondary battery is disclosed.

0.30≦Co/(Mn+Ni+Co)≦0.35 …(1) 0.30≦Co/(Mn+Ni+Co)≦0.35 (1)

本開示の正極活物質を用いてナトリウム二次電池を構成することで、高電位におけるナトリウム二次電池の充放電サイクル特性が改善され易い。 By configuring a sodium secondary battery using the positive electrode active material of the present disclosure, the charge-discharge cycle characteristics of the sodium secondary battery at high potentials are likely to be improved.

実施例1~4及び比較例1の各々のナトリウム二次電池について、ナトリウム電位で4.3V-1.5Vの範囲での充放電を5サイクル行った後の容量維持率を示している。1 shows the capacity retention rate after 5 cycles of charging and discharging in the sodium potential range of 4.3 V to 1.5 V for each of the sodium secondary batteries of Examples 1 to 4 and Comparative Example 1. FIG. 実施例2及び比較例1の各々の正極活物質について、4.3Vで維持した後のX線回折パターンを示している。4 shows X-ray diffraction patterns after maintaining at 4.3 V for each of the positive electrode active materials of Example 2 and Comparative Example 1. FIG. 実施例1~4の各々について、正極活物質の平均一次粒子径と、充放電を5サイクル行った後の放電容量との関係を示している。For each of Examples 1 to 4, the relationship between the average primary particle size of the positive electrode active material and the discharge capacity after 5 cycles of charging and discharging is shown.

1.ナトリウム二次電池用正極活物質
本開示の正極活物質は、ナトリウム二次電池用正極活物質であって、P2型構造を有し、構成元素としてNa、Mn、Ni、Co及びOを含み、下記式(1)の関係を満たす組成を有する。
1. Positive electrode active material for sodium secondary battery The positive electrode active material of the present disclosure is a positive electrode active material for a sodium secondary battery, has a P2 type structure, and contains Na, Mn, Ni, Co and O as constituent elements, It has a composition that satisfies the relationship of the following formula (1).

0.30≦Co/(Mn+Ni+Co)≦0.35 …(1) 0.30≦Co/(Mn+Ni+Co)≦0.35 (1)

1.1 結晶構造
本開示の正極活物質はP2型構造を有する。正極活物質がP2型構造を有しているか否かについては、X線回折測定等によって容易に判断できる。
1.1 Crystal Structure The positive electrode active material of the present disclosure has a P2 type structure. Whether or not the positive electrode active material has a P2 type structure can be easily determined by X-ray diffraction measurement or the like.

1.2 組成
本開示の正極活物質は、構成元素としてNa、Mn、Ni、Co及びOを含む。また、本開示の正極活物質は、上記式(1)の関係を満たす組成を有する。例えば、本開示の正極活物質は、NaMnNiCo(0.50≦a≦1.00、0<x、0<y、0<z、3.00≦4x+2y+3z≦3.50、0.30≦z/(x+y+z)≦0.35)で示される組成を有していてもよい。aは0.60以上又は0.64以上であってもよく、0.80以下又は0.74以下であってもよい。xは0.40以上又は0.46以上であってもよく、0.55以下又は0.50以下であってもよい。zは0.30以上であってもよく、0.35以下であってもよい。
1.2 Composition The positive electrode active material of the present disclosure contains Na, Mn, Ni, Co and O as constituent elements. In addition, the positive electrode active material of the present disclosure has a composition that satisfies the relationship of formula (1) above. For example, the cathode active material of the present disclosure is NaaMnxNiyCozO2 (0.50≤a≤1.00, 0< x , 0< y , 0< z , 3.00≤4x + 2y+3z≤3 .50, 0.30≦z/(x+y+z)≦0.35). a may be 0.60 or more or 0.64 or more, and may be 0.80 or less or 0.74 or less. x may be 0.40 or more or 0.46 or more, and may be 0.55 or less or 0.50 or less. z may be 0.30 or more and may be 0.35 or less.

本発明者の新たな知見によれば、上記のP2型構造を有する正極活物質を用いたナトリウム二次電池において、正極活物質に含まれるCoが一定以上であると、ナトリウム二次電池の高電位における充放電サイクル特性が改善され易い。これは、正極活物質において、高電位でレドックスが起きるCoが多くなり、高電位においてP2型構造の相転移が生じ難くなるため、すなわち、高電位においてP2型構造を維持し易くなるためと考えられる。ただし、正極活物質に含まれるCoが多くなり過ぎると、正極活物質においてP2型構造が維持され難くなる。本開示の正極活物質においては、上記式(1)のように、Mn、Ni及びCoの合計に対するCoの組成比(モル比)が0.30以上0.35以下の範囲内にあることで、低電位から高電位においてP2型構造を維持しつつ、高電位における充放電サイクル特性が改善され易い。本開示の正極活物質は、例えば、4.0V vs. Na/Na超を含む範囲で充放電を行うナトリウム二次電池においても使用可能である。 According to new knowledge of the present inventors, in a sodium secondary battery using a positive electrode active material having the above P2 type structure, if the Co contained in the positive electrode active material is a certain amount or more, the sodium secondary battery has a high Charge-discharge cycle characteristics at potential are likely to be improved. This is thought to be because, in the positive electrode active material, the amount of Co that causes redox at high potential increases, and the phase transition of the P2-type structure is less likely to occur at high potential, that is, it becomes easier to maintain the P2-type structure at high potential. be done. However, if the amount of Co contained in the positive electrode active material is too large, it becomes difficult to maintain the P2 type structure in the positive electrode active material. In the positive electrode active material of the present disclosure, as in the above formula (1), the composition ratio (molar ratio) of Co to the total of Mn, Ni, and Co is in the range of 0.30 or more and 0.35 or less. , while maintaining the P2 type structure from low to high potentials, the charge-discharge cycle characteristics at high potentials are likely to be improved. The positive electrode active material of the present disclosure is, for example, 4.0 V vs. It can also be used in a sodium secondary battery that charges and discharges in a range containing more than Na + /Na.

1.3 形状
本開示の正極活物質の形状は、例えば、粒子状であってもよい。正極活物質は、一次粒子であってもよいし、一次粒子が凝集してなる二次粒子であってもよい。本発明者が確認した限りでは、正極活物質の一次粒子径や二次粒子径が変化すると、当該正極活物質を用いて構成されるナトリウム二次電池の容量も変化する。ナトリウム二次電池においてより大きな容量が確保され易い観点から、正極活物質の平均一次粒子径は10μm未満又は7μm以下であってもよく、また、平均二次粒子径は25μm未満又は20μm以下であってもよい。正極活物質の平均一次粒子径や平均二次粒子径の下限値は特に限定されない。
1.3 Shape The shape of the positive electrode active material of the present disclosure may be, for example, particulate. The positive electrode active material may be primary particles or secondary particles formed by agglomeration of primary particles. As far as the inventors have confirmed, when the primary particle size and secondary particle size of the positive electrode active material change, the capacity of the sodium secondary battery configured using the positive electrode active material also changes. From the viewpoint of ensuring a larger capacity in a sodium secondary battery, the average primary particle size of the positive electrode active material may be less than 10 μm or 7 μm or less, and the average secondary particle size may be less than 25 μm or 20 μm or less. may The lower limits of the average primary particle size and average secondary particle size of the positive electrode active material are not particularly limited.

尚、正極活物質の平均一次粒子径や平均二次粒子径は、SEMやTEM等による観察によって特定され得る。具体的には、SEMやTEM等によって正極活物質を撮影して画像を得る。当該画像に含まれる正極活物質の一次粒子のうち、ランダムに20個以上の一次粒子について、各々、投影面積円相当径を測定する。測定値について個数平均をとることで、正極活物質の平均一次粒子径が特定され得る。平均二次粒子径の測定方法についても同様であり、当該画像に含まれる二次粒子の投影面積円相当径の個数平均値として特定されればよい。 The average primary particle size and average secondary particle size of the positive electrode active material can be specified by observation using SEM, TEM, or the like. Specifically, an image is obtained by photographing the positive electrode active material by SEM, TEM, or the like. Among the primary particles of the positive electrode active material contained in the image, 20 or more primary particles are randomly measured for their projected area equivalent circle diameters. By averaging the number of measured values, the average primary particle size of the positive electrode active material can be specified. The same applies to the method of measuring the average secondary particle diameter, and it may be specified as the number average value of the projected area circle equivalent diameters of the secondary particles contained in the image.

2.ナトリウム二次電池用正極活物質の製造方法
本開示の正極活物質は、例えば、以下の通りにして製造することができる。まず、遷移金属イオン(Mnイオン、Niイオン及び/又はCoイオン)を含む第1溶液と、Naイオンを含む第2溶液とを準備する。第1溶液はイオンの種類毎に別々の溶液として準備してもよい。次に、第1溶液と第2溶液とを用いて共沈法によってNaと遷移金属とを含む前駆体を合成する。その後、当該前駆体を任意にNa源等とともに焼成することで、本開示の正極活物質が得られる。
2. Method for Producing Positive Electrode Active Material for Sodium Secondary Battery The positive electrode active material of the present disclosure can be produced, for example, as follows. First, a first solution containing transition metal ions (Mn ions, Ni ions and/or Co ions) and a second solution containing Na ions are prepared. The first solution may be prepared as separate solutions for each type of ion. Next, a precursor containing Na and a transition metal is synthesized by a coprecipitation method using the first solution and the second solution. Thereafter, the precursor is optionally calcined with a Na source or the like to obtain the positive electrode active material of the present disclosure.

遷移金属イオンは、例えば、遷移金属の硝酸塩由来のものであってもよいし、その水和物由来のものであってもよい。Naイオンは、例えば、炭酸ナトリウム由来のものであってもよい。溶液を構成する溶媒は、例えば、水であってもよい。溶液中に、酸やアルカリが含まれていてもよい。第1溶液や第2溶液における各イオンの濃度等を調整することで、製造される正極活物質の組成を調整することができる。 The transition metal ion may be derived from, for example, a transition metal nitrate or its hydrate. Na ions may be derived, for example, from sodium carbonate. The solvent that constitutes the solution may be, for example, water. The solution may contain acid or alkali. The composition of the produced positive electrode active material can be adjusted by adjusting the concentration of each ion in the first solution and the second solution.

共沈法にて前駆体を合成する際は、第1溶液と第2溶液とを各々滴下してもよい。また、共沈法にて前駆体を合成した後、遠心分離機等を用いて当該前駆体を洗浄してもよい。 When synthesizing the precursor by the coprecipitation method, the first solution and the second solution may be added dropwise. Moreover, after synthesizing the precursor by the coprecipitation method, the precursor may be washed using a centrifuge or the like.

前駆体を焼成して正極活物質を得る際の焼成温度は、P2型構造が得られる温度であればよく、例えば、700℃以上又は800℃以上であってもよく、900℃以下であってもよい。焼成雰囲気は、複合酸化物を得ることが可能な雰囲気であればよい。例えば、空気雰囲気等の酸素含有雰囲気が挙げられる。焼成時間等のその他の条件についても特に限定されるものではない。 The firing temperature for obtaining the positive electrode active material by firing the precursor may be a temperature at which a P2 type structure is obtained, for example, it may be 700° C. or higher, or 800° C. or higher, and 900° C. or lower. good too. The sintering atmosphere may be any atmosphere as long as it is possible to obtain a composite oxide. For example, an oxygen-containing atmosphere such as an air atmosphere can be used. Other conditions such as baking time are not particularly limited.

或いは、共沈法以外の方法(例えば、溶液法や固相反応法等)によって本開示の正極活物質を製造することもあり得る。 Alternatively, the positive electrode active material of the present disclosure may be produced by methods other than the coprecipitation method (eg, solution method, solid phase reaction method, etc.).

3.ナトリウム二次電池
本開示の技術は、ナトリウム二次電池としての側面も有する。すなわち、本開示のナトリウム二次電池は、上記の正極活物質を含む正極と、負極活物質を含む負極と、正極と負極との間に配置された電解質とを備え得る。また、これら以外に、電池ケースや接続端子等、電池として一般的な部材を備え得る。
3. Sodium Secondary Battery The technology of the present disclosure also has aspects as a sodium secondary battery. That is, the sodium secondary battery of the present disclosure can include a positive electrode containing the positive electrode active material, a negative electrode containing the negative electrode active material, and an electrolyte disposed between the positive electrode and the negative electrode. In addition to these, members such as a battery case, connection terminals, and the like, which are commonly used as batteries, may be provided.

3.1 正極
ナトリウム二次電池が電解液系の電池である場合、正極には上記の正極活物質の他、任意に上記以外の正極活物質や導電助剤やバインダー等が含まれていてもよい。また、正極は電解液に含浸された状態にあってもよい。一方で、ナトリウム二次電池が電解質として固体電解質を含むものである場合、正極には上記の正極活物質の他、任意に上記以外の正極活物質や固体電解質や導電助剤やバインダー等が含まれていてもよい。導電助剤やバインダーは、ナトリウム二次電池の正極を構成するものとして一般的なものを用いればよい。電解液や固体電解質については後述する。正極に含まれる各成分の割合は特に限定されるものではない。
3.1 Positive Electrode When the sodium secondary battery is an electrolyte-based battery, the positive electrode may contain, in addition to the positive electrode active materials described above, optionally other positive electrode active materials, conductive aids, binders, and the like. good. Moreover, the positive electrode may be in a state of being impregnated with the electrolytic solution. On the other hand, when the sodium secondary battery contains a solid electrolyte as an electrolyte, the positive electrode optionally contains other positive electrode active materials, solid electrolytes, conductive aids, binders, etc. in addition to the above positive electrode active materials. may As the conductive aid and the binder, those generally used for constructing the positive electrode of the sodium secondary battery may be used. The electrolytic solution and solid electrolyte will be described later. The ratio of each component contained in the positive electrode is not particularly limited.

正極は正極集電体を備えるものであってもよい。すなわち、上記の正極活物質等を含む正極活物質層と正極集電体とを備えるものであってもよい。正極集電体は、例えば、金属箔からなるものであってもよい。正極の作製方法については、上記の正極活物質を用いること以外は、従来と同様とすればよい。 The positive electrode may include a positive electrode current collector. That is, it may include a positive electrode active material layer containing the above positive electrode active material and the like and a positive electrode current collector. The positive electrode current collector may be made of, for example, metal foil. The method of manufacturing the positive electrode may be the same as the conventional method, except that the positive electrode active material described above is used.

3.2 負極
ナトリウム二次電池が電解液系の電池である場合、負極には負極活物質の他、任意に導電助剤やバインダー等が含まれていてもよい。また、負極は電解液に含浸された状態にあってもよい。一方で、ナトリウム二次電池が電解質として固体電解質を含むものである場合、負極には負極活物質の他、任意に固体電解質や導電助剤やバインダー等が含まれていてもよい。負極活物質は、上記の正極活物質と比較して、ナトリウムイオンを吸蔵、放出する電位が卑であるものを用いればよい。例えば、金属ナトリウム等の無機系の負極活物質を用いてもよいし、有機化合物からなる負極活物質を用いてもよい。導電助剤やバインダーは、ナトリウム二次電池の負極を構成するものとして一般的なものを用いればよい。電解液や固体電解質については後述する。負極に含まれる各成分の割合は特に限定されるものではない。
3.2 Negative Electrode When the sodium secondary battery is an electrolyte-based battery, the negative electrode may optionally contain a conductive aid, a binder, and the like in addition to the negative electrode active material. Moreover, the negative electrode may be in a state of being impregnated with the electrolytic solution. On the other hand, when the sodium secondary battery contains a solid electrolyte as an electrolyte, the negative electrode may optionally contain a solid electrolyte, a conductive aid, a binder, etc. in addition to the negative electrode active material. As the negative electrode active material, a material having a base potential at which sodium ions are occluded and released as compared with the above positive electrode active material may be used. For example, an inorganic negative electrode active material such as metallic sodium may be used, or a negative electrode active material made of an organic compound may be used. As the conductive aid and the binder, those generally used for constituting the negative electrode of the sodium secondary battery may be used. The electrolytic solution and solid electrolyte will be described later. The ratio of each component contained in the negative electrode is not particularly limited.

負極は負極集電体を備えるものであってもよい。すなわち、上記の負極活物質等を含む負極活物質層と負極集電体とを備えるものであってもよい。負極集電体は、例えば、金属箔からなるものであってもよい。負極の作製方法については従来と同様とすればよい。 The negative electrode may include a negative electrode current collector. That is, it may include a negative electrode active material layer containing the above negative electrode active material and the like and a negative electrode current collector. The negative electrode current collector may be made of, for example, metal foil. The method of manufacturing the negative electrode may be the same as the conventional method.

3.3 電解質
ナトリウム二次電池が電解液系の電池である場合、当該電解液としては、電解質を溶媒に溶解させたものが用いられる。この場合の電解質は、例えば、NaPF等のナトリウム化合物であってもよい。溶媒は、例えば、エチレンカーボネート(EC)やジエチルカーボネート(DEC)等のカーボネート系溶媒であってもよい。電解液系のナトリウム二次電池は、例えば、上記の正極と負極との間にセパレータを配置したうえで、これらを電解液に浸漬すること等によって構成され得る。この場合のセパレータは、ポリエチレンやポリプロピレン等の樹脂、不織布又はセラミックからなるものであってもよい。
3.3 Electrolyte When the sodium secondary battery is an electrolytic solution-based battery, a solution obtained by dissolving an electrolyte in a solvent is used as the electrolytic solution. The electrolyte in this case may be, for example, a sodium compound such as NaPF6 . The solvent may be, for example, a carbonate solvent such as ethylene carbonate (EC) or diethyl carbonate (DEC). An electrolytic solution-based sodium secondary battery can be constructed, for example, by disposing a separator between the positive electrode and the negative electrode and immersing them in an electrolytic solution. The separator in this case may be made of a resin such as polyethylene or polypropylene, non-woven fabric, or ceramic.

一方で、ナトリウム二次電池が固体電解質を含むものである場合、当該固体電解質は、無機系の固体電解質であっても、有機系の固体電解質(ポリマー電解質)であってもよい。無機系の固体電解質としては、NaZrPSi12やNaO-11Al等の酸化物;NaBH、NaB1010、NaCB10、NaCB1112、NaB12Cl12といった水素化物やホウ素化物;NaPS、NaSbS、Na2.88Sb0.880.12等の硫化物;NaPF、NaBF等のフッ化物から選ばれる少なくとも1種が挙げられる。固体電解質を含むナトリウム二次電池は、例えば、上記の正極と負極との間に当該固体電解質からなる層を配置すること等によって構成され得る。 On the other hand, when the sodium secondary battery contains a solid electrolyte, the solid electrolyte may be an inorganic solid electrolyte or an organic solid electrolyte (polymer electrolyte). Examples of inorganic solid electrolytes include oxides such as Na 3 Zr 2 PSi 2 O 12 and Na 2 O - 11Al 2 O 3 ; hydrides and borides such as Cl 12 ; sulfides such as Na 3 PS 4 , Na 3 SbS 4 , Na 2.88 Sb 0.88 W 0.12 S 4 ; fluorides such as NaPF 6 and NaBF 4 At least 1 type is mentioned. A sodium secondary battery containing a solid electrolyte can be constructed, for example, by disposing a layer of the solid electrolyte between the positive electrode and the negative electrode.

以下、実施例を示しつつ、本開示の技術についてさらに詳細に説明するが、本開示の技術は以下の実施例に限定されるものではない。 Hereinafter, the technology of the present disclosure will be described in more detail with reference to examples, but the technology of the present disclosure is not limited to the following examples.

1.ナトリウム二次電池の作製
1.1 実施例1
1.1.1 正極活物質の合成
硝酸マンガン四水和物(Aldrich社製)、硝酸ニッケル六水和物(ナカライテスク社製)及び硝酸コバルト(Aldrich社製)を各々秤量し、純水に溶解させることで、第1溶液を得た。一方で、炭酸ナトリウム及びアンモニア水を各々秤量し、純水に溶解させることで、第2溶液を得た。第1溶液と第2溶液とを滴下し、共沈法によって前駆体を合成した。合成した前駆体を遠心分離機で洗浄した。その後、前駆体と炭酸ナトリウムとを混合し、空気雰囲気で、900℃で12時間焼成することで、正極活物質を合成した。
1. Preparation of Sodium Secondary Battery 1.1 Example 1
1.1.1 Synthesis of Positive Electrode Active Material Manganese nitrate tetrahydrate (manufactured by Aldrich), nickel nitrate hexahydrate (manufactured by Nacalai Tesque) and cobalt nitrate (manufactured by Aldrich) were each weighed and added to pure water. A first solution was obtained by dissolving. On the other hand, sodium carbonate and ammonia water were each weighed and dissolved in pure water to obtain a second solution. The first solution and the second solution were added dropwise to synthesize a precursor by a coprecipitation method. The synthesized precursor was washed with a centrifuge. After that, the precursor and sodium carbonate were mixed and baked at 900° C. for 12 hours in an air atmosphere to synthesize a positive electrode active material.

得られた正極活物質は、Na0.64Mn0.48Ni0.20Co0.322±δで示される組成を有するものであった。また、得られた正極活物質に対してCuKα線を用いたX線回折測定を行ったところ、当該正極活物質はP2型構造を有するものであった。さらに、得られた正極活物質をSEMで観察したところ、当該正極活物質の平均一次粒子径は3μmで、平均二次粒子径は15μmであった。 The obtained positive electrode active material had a composition represented by Na 0.64 Mn 0.48 Ni 0.20 Co 0.32 O 2±δ . Moreover, when the obtained positive electrode active material was subjected to X-ray diffraction measurement using CuKα rays, the positive electrode active material had a P2 type structure. Furthermore, when the obtained positive electrode active material was observed with an SEM, the average primary particle size of the positive electrode active material was 3 μm, and the average secondary particle size was 15 μm.

1.1.2 正極の作製
上記の正極活物質と導電助剤とバインダーとを、質量比で、正極活物質:導電助剤:バインダー=85:10:5となるように混合した。混合の際、分散材としてN-メチル-2-ピロリドン(キシダ化学社製)を用いることで、スラリー状の正極合剤を得た。得られたスラリーをアルミニウム箔上に塗布して乾燥し、圧延することで、正極を得た。
1.1.2 Preparation of Positive Electrode The positive electrode active material, the conductive aid, and the binder were mixed in a mass ratio of positive electrode active material:conductive aid:binder=85:10:5. During the mixing, N-methyl-2-pyrrolidone (manufactured by Kishida Chemical Co., Ltd.) was used as a dispersing agent to obtain a slurry positive electrode mixture. The obtained slurry was applied onto an aluminum foil, dried, and rolled to obtain a positive electrode.

1.1.3 負極の準備
負極として金属ナトリウムを用いた。
1.1.3 Preparation of Negative Electrode Metallic sodium was used as the negative electrode.

1.1.4 電解液の準備
ECとDECとを、体積比で、EC:DEC=1:1となるように混合した溶媒に、電解質としてNaPFを1mol/Lの濃度で溶解させた電解液(キシダ化学社製)を用いた。
1.1.4 Preparation of Electrolyte Solution An electrolysis was prepared by dissolving NaPF 6 as an electrolyte at a concentration of 1 mol/L in a solvent in which EC and DEC were mixed in a volume ratio of EC:DEC = 1:1. A liquid (manufactured by Kishida Chemical Co., Ltd.) was used.

1.1.5 セパレータの準備
ポリエチレンとポリプロピレンとの混合物からなるセパレータを用いた。
1.1.5 Preparation of Separator A separator made of a mixture of polyethylene and polypropylene was used.

1.1.6 コインセルの作製
上記の正極、負極、電解液及びセパレータを用いて、評価用のナトリウム二次電池としてのコインセルを作製した。
1.1.6 Fabrication of Coin Cell A coin cell as a sodium secondary battery for evaluation was fabricated using the positive electrode, negative electrode, electrolytic solution, and separator described above.

1.2 実施例2
第1溶液及び第2溶液の濃度を調整して正極活物質の組成を変化させたこと以外は、実施例1と同様にしてコインセルを作製した。得られた正極活物質は、Na0.68Mn0.50Ni0.20Co0.302±δで示される組成を有するものであった。また、得られた正極活物質に対してCuKα線を用いたX線回折測定を行ったところ、当該正極活物質はP2型構造を有するものであった。さらに、得られた正極活物質をSEMで観察したところ、当該正極活物質の平均一次粒子径は4μmで、平均二次粒子径は8μmであった。
1.2 Example 2
A coin cell was produced in the same manner as in Example 1, except that the concentrations of the first solution and the second solution were adjusted to change the composition of the positive electrode active material. The obtained positive electrode active material had a composition represented by Na 0.68 Mn 0.50 Ni 0.20 Co 0.30 O 2±δ . Moreover, when the obtained positive electrode active material was subjected to X-ray diffraction measurement using CuKα rays, the positive electrode active material had a P2 type structure. Furthermore, when the obtained positive electrode active material was observed by SEM, the average primary particle size of the positive electrode active material was 4 μm, and the average secondary particle size was 8 μm.

1.3 実施例3
第1溶液及び第2溶液の濃度を調整して正極活物質の組成を変化させたこと以外は、実施例1と同様にしてコインセルを作製した。得られた正極活物質は、Na0.67Mn0.46Ni0.19Co0.352±δで示される組成を有するものであった。また、得られた正極活物質に対してCuKα線を用いたX線回折測定を行ったところ、当該正極活物質はP2型構造を有するものであった。さらに、得られた正極活物質をSEMで観察したところ、当該正極活物質の平均一次粒子径は7μmで、平均二次粒子径は20μmであった。
1.3 Example 3
A coin cell was produced in the same manner as in Example 1, except that the concentrations of the first solution and the second solution were adjusted to change the composition of the positive electrode active material. The obtained positive electrode active material had a composition represented by Na 0.67 Mn 0.46 Ni 0.19 Co 0.35 O 2±δ . Moreover, when the obtained positive electrode active material was subjected to X-ray diffraction measurement using CuKα rays, the positive electrode active material had a P2 type structure. Furthermore, when the obtained positive electrode active material was observed with an SEM, the average primary particle size of the positive electrode active material was 7 μm, and the average secondary particle size was 20 μm.

1.4 実施例4
第1溶液及び第2溶液の濃度を調整して正極活物質の組成を変化させたこと以外は、実施例1と同様にしてコインセルを作製した。得られた正極活物質は、Na0.74Mn0.50Ni0.20Co0.302±δで示される組成を有するものであった。また、得られた正極活物質に対してCuKα線を用いたX線回折測定を行ったところ、当該正極活物質はP2型構造を有するものであった。さらに、得られた正極活物質をSEMで観察したところ、当該正極活物質の平均一次粒子径は10μmで、平均二次粒子径は25μmであった。
1.4 Example 4
A coin cell was produced in the same manner as in Example 1, except that the concentrations of the first solution and the second solution were adjusted to change the composition of the positive electrode active material. The obtained positive electrode active material had a composition represented by Na 0.74 Mn 0.50 Ni 0.20 Co 0.30 O 2±δ . Moreover, when the obtained positive electrode active material was subjected to X-ray diffraction measurement using CuKα rays, the positive electrode active material had a P2 type structure. Furthermore, when the obtained positive electrode active material was observed by SEM, the average primary particle size of the positive electrode active material was 10 μm, and the average secondary particle size was 25 μm.

1.5 比較例1
第1溶液及び第2溶液の濃度を調整して正極活物質の組成を変化させたこと以外は、実施例1と同様にしてコインセルを作製した。得られた正極活物質は、Na0.66Mn0.60Ni0.30Co0.102±δで示される組成を有するものであった。また、得られた正極活物質に対してCuKα線を用いたX線回折測定を行ったところ、当該正極活物質はP2型構造を有するものであった。さらに、得られた正極活物質をSEMで観察したところ、当該正極活物質の平均一次粒子径は2μmで、平均二次粒子径は15μmであった。
1.5 Comparative Example 1
A coin cell was produced in the same manner as in Example 1, except that the concentrations of the first solution and the second solution were adjusted to change the composition of the positive electrode active material. The obtained positive electrode active material had a composition represented by Na 0.66 Mn 0.60 Ni 0.30 Co 0.10 O 2±δ . Moreover, when the obtained positive electrode active material was subjected to X-ray diffraction measurement using CuKα rays, the positive electrode active material had a P2 type structure. Furthermore, when the obtained positive electrode active material was observed with an SEM, the average primary particle size of the positive electrode active material was 2 μm, and the average secondary particle size was 15 μm.

2.ナトリウム二次電池の評価
2.1 充放電サイクル特性の評価
実施例1~4及び比較例1の各々のコインセルについて、ナトリウム電位で4.3V-1.5Vの範囲で充放電を5回繰り返した。充放電時の温度は25℃とした。各々のコインセルについて、1サイクル目の放電容量に対する5サイクル目の放電容量の割合(容量維持率)を算出し、充放電サイクル特性を評価した。
2. 2. Evaluation of Sodium Secondary Battery 2.1 Evaluation of Charge-Discharge Cycle Characteristics For each of the coin cells of Examples 1 to 4 and Comparative Example 1, charging and discharging were repeated 5 times in the sodium potential range of 4.3 V to 1.5 V. . The temperature during charging and discharging was 25°C. For each coin cell, the ratio of the discharge capacity at the 5th cycle to the discharge capacity at the 1st cycle (capacity retention rate) was calculated to evaluate the charge/discharge cycle characteristics.

2.2 高電位における正極活物質の結晶構造の評価
実施例2及び比較例1の各々の正極活物質について、4.3Vで維持した場合の結晶構造を確認した。
2.2 Evaluation of Crystal Structure of Positive Electrode Active Material at High Potential For each of the positive electrode active materials of Example 2 and Comparative Example 1, the crystal structure when maintained at 4.3 V was confirmed.

3.評価結果
下記表1及び図1~3に評価結果をまとめた。
3. Evaluation Results Evaluation results are summarized in Table 1 below and FIGS.

Figure 2023003666000001
Figure 2023003666000001

表1及び図1に示される結果から明らかなように、比較例1に係るコインセルは、充放電サイクル後の容量維持率が82%であった。これに対し、実施例1~4に係るコインセルは、充放電サイクル後の容量維持率が97%以上であり、比較例1に係るコインセルよりも、高電位における充放電サイクル特性が大幅に改善された。 As is clear from the results shown in Table 1 and FIG. 1, the coin cell according to Comparative Example 1 had a capacity retention rate of 82% after charge-discharge cycles. In contrast, the coin cells according to Examples 1 to 4 had a capacity retention rate of 97% or more after charge-discharge cycles, and the charge-discharge cycle characteristics at high potential were significantly improved as compared with the coin cell according to Comparative Example 1. rice field.

図2に示されるように、比較例1に係る正極活物質は、4.3Vで維持された場合にP2型構造を維持できないのに対し、実施例2に係る正極活物質は、4.3Vで維持された場合でもP2型構造を維持できるものであった。実施例2に係る正極活物質は、高電位でレドックスが起きるCoが多く、高電位においてP2型構造の相転移が生じ難いものと考えられる。実施例1、3及び4に係る正極活物質についても実施例2に係る正極活物質と同様であった。 As shown in FIG. 2, the positive electrode active material according to Comparative Example 1 cannot maintain the P2 type structure when maintained at 4.3 V, whereas the positive electrode active material according to Example 2 is maintained at 4.3 V. The P2-type structure could be maintained even when maintained at The positive electrode active material according to Example 2 contains a large amount of Co, which causes redox at high potentials, and is considered to be less susceptible to phase transition of the P2 type structure at high potentials. The positive electrode active materials according to Examples 1, 3 and 4 were the same as the positive electrode active material according to Example 2.

表1及び図3に示されるように、正極活物質の平均一次粒子径や平均二次粒子径が小さい実施例1~3については、正極活物質の平均一次粒子径や平均二次粒子径が大きい実施例4と比較して、ナトリウム二次電池の容量が高いことが分かった。 As shown in Table 1 and FIG. 3, for Examples 1 to 3 in which the average primary particle size and the average secondary particle size of the positive electrode active material are small, the average primary particle size and the average secondary particle size of the positive electrode active material are It was found that the capacity of the sodium secondary battery was higher than that of Example 4, which was large.

以上の結果から、ナトリウム二次電池において以下の構成を有する正極活物質を採用することで、ナトリウム二次電池の高電位における充放電サイクル特性を改善することができるといえる。 From the above results, it can be said that by adopting the positive electrode active material having the following structure in the sodium secondary battery, the charge-discharge cycle characteristics at high potential of the sodium secondary battery can be improved.

(1)P2型構造を有すること。
(2)構成元素としてNa、Mn、Ni、Co及びOを含み、0.30≦Co/(Mn+Ni+Co)≦0.35なる関係を満たす組成を有すること。
(1) Having a P2 type structure.
(2) Containing Na, Mn, Ni, Co and O as constituent elements and having a composition satisfying the relationship 0.30≦Co/(Mn+Ni+Co)≦0.35;

Claims (1)

P2型構造を有し、
構成元素としてNa、Mn、Ni、Co及びOを含み、
下記式(1)の関係を満たす組成を有する、
ナトリウム二次電池用正極活物質。
0.30≦Co/(Mn+Ni+Co)≦0.35 …(1)
having a P2-type structure,
Containing Na, Mn, Ni, Co and O as constituent elements,
Having a composition that satisfies the relationship of the following formula (1),
Positive electrode active material for sodium secondary batteries.
0.30≦Co/(Mn+Ni+Co)≦0.35 (1)
JP2021104883A 2021-06-24 2021-06-24 Positive electrode active material for sodium secondary battery Pending JP2023003666A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021104883A JP2023003666A (en) 2021-06-24 2021-06-24 Positive electrode active material for sodium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021104883A JP2023003666A (en) 2021-06-24 2021-06-24 Positive electrode active material for sodium secondary battery

Publications (1)

Publication Number Publication Date
JP2023003666A true JP2023003666A (en) 2023-01-17

Family

ID=85100397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021104883A Pending JP2023003666A (en) 2021-06-24 2021-06-24 Positive electrode active material for sodium secondary battery

Country Status (1)

Country Link
JP (1) JP2023003666A (en)

Similar Documents

Publication Publication Date Title
JP5228292B2 (en) A method for producing a lithium-nickel-manganese-cobalt composite oxide.
US8986571B2 (en) Lithium composite compound particles and process for producing the same, and non-aqueous electrolyte secondary battery
US9960413B2 (en) LMFP cathode materials with improved electrochemical performance
JP6662198B2 (en) Nickel composite hydroxide, method for producing the same, positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
US20220052339A1 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and process for producing same, and non-aqueous electrolyte secondary battery
US9825294B2 (en) Positive electrode active material for lithium secondary battery and method for preparing the same
JP2003059490A (en) Positive active material for nonaqueous electrolyte secondary battery and its manufacturing method
JP2007091573A (en) Lithium-nickel-manganese-cobalt multiple oxide, method for producing the same, and application of the multiple oxide
JP2017226576A (en) Lithium-nickel-containing composite oxide and nonaqueous electrolyte secondary battery
JPH11292547A (en) Lithium cobaltate, its production and lithium cell using that
JP2003208895A (en) Lithium-nickel compound oxide for lithium secondary battery positive electrode active material, manufacturing method thereof and lithium secondary battery using the same
JP2018014208A (en) Positive electrode active material for nonaqueous electrolyte secondary battery and method for manufacturing the same
JP2015072801A (en) Method for manufacturing positive electrode active material for nonaqueous electrolyte secondary batteries, positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
JP2012023006A (en) Anode material for lithium secondary battery, method for manufacturing the same, and lithium secondary battery including the material
JP2019216069A (en) Cathode active material for nonaqueous electrolyte secondary battery and manufacturing method of the same
JP2014167873A (en) Negative electrode active material for lithium ion secondary battery, process of manufacturing the same, and lithium ion secondary battery
JP2512239B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
WO2021229956A1 (en) Nonaqueous magnesium battery
JP2023003666A (en) Positive electrode active material for sodium secondary battery
JP2019131417A (en) Nickel composite hydroxide, method for producing the same, and method for producing positive electrode active material
JP6155957B2 (en) Positive electrode active material particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
JP4969051B2 (en) Method for producing lithium cobaltate positive electrode active material
JP4168609B2 (en) Positive electrode active material for lithium ion secondary battery
WO2018181967A1 (en) Manganese oxide, production method therefor, and lithium secondary battery
JP3079577B2 (en) Lithium-containing manganese dioxide, method for producing the same, and use thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240125