JP2022553088A - 画像追跡中のアクション検出 - Google Patents
画像追跡中のアクション検出 Download PDFInfo
- Publication number
- JP2022553088A JP2022553088A JP2022523937A JP2022523937A JP2022553088A JP 2022553088 A JP2022553088 A JP 2022553088A JP 2022523937 A JP2022523937 A JP 2022523937A JP 2022523937 A JP2022523937 A JP 2022523937A JP 2022553088 A JP2022553088 A JP 2022553088A
- Authority
- JP
- Japan
- Prior art keywords
- person
- tracking system
- sensor
- rack
- action
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000009471 action Effects 0.000 title claims abstract description 95
- 238000001514 detection method Methods 0.000 title claims description 86
- 238000005259 measurement Methods 0.000 claims abstract description 15
- 238000000034 method Methods 0.000 claims description 362
- 230000004044 response Effects 0.000 claims description 155
- 238000013528 artificial neural network Methods 0.000 claims description 38
- 230000008859 change Effects 0.000 claims description 25
- 230000003139 buffering effect Effects 0.000 claims 3
- 238000013459 approach Methods 0.000 abstract description 40
- 239000003550 marker Substances 0.000 description 534
- 230000008569 process Effects 0.000 description 89
- 230000015654 memory Effects 0.000 description 60
- 239000013598 vector Substances 0.000 description 56
- 239000002245 particle Substances 0.000 description 52
- 238000004590 computer program Methods 0.000 description 48
- 230000007717 exclusion Effects 0.000 description 36
- 208000016261 weight loss Diseases 0.000 description 34
- 230000004580 weight loss Effects 0.000 description 34
- 238000012545 processing Methods 0.000 description 22
- 230000003993 interaction Effects 0.000 description 21
- 238000010586 diagram Methods 0.000 description 15
- 208000021017 Weight Gain Diseases 0.000 description 12
- 238000004891 communication Methods 0.000 description 12
- 238000013507 mapping Methods 0.000 description 12
- 230000004584 weight gain Effects 0.000 description 12
- 235000019786 weight gain Nutrition 0.000 description 12
- 238000010801 machine learning Methods 0.000 description 10
- 239000011159 matrix material Substances 0.000 description 9
- 238000012986 modification Methods 0.000 description 9
- 230000004048 modification Effects 0.000 description 9
- 238000007792 addition Methods 0.000 description 8
- 230000010339 dilation Effects 0.000 description 8
- 230000001629 suppression Effects 0.000 description 8
- 230000001537 neural effect Effects 0.000 description 6
- 238000003708 edge detection Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 238000000513 principal component analysis Methods 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 230000003190 augmentative effect Effects 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 239000003086 colorant Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 230000037308 hair color Effects 0.000 description 3
- 238000003384 imaging method Methods 0.000 description 3
- 230000007257 malfunction Effects 0.000 description 3
- 238000013519 translation Methods 0.000 description 3
- 241000282412 Homo Species 0.000 description 2
- 235000013361 beverage Nutrition 0.000 description 2
- 238000012790 confirmation Methods 0.000 description 2
- 235000019800 disodium phosphate Nutrition 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 230000001131 transforming effect Effects 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 241000473391 Archosargus rhomboidalis Species 0.000 description 1
- 230000001594 aberrant effect Effects 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000003416 augmentation Effects 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000012804 iterative process Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000005055 memory storage Effects 0.000 description 1
- 238000012015 optical character recognition Methods 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
- -1 poster board Substances 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000001568 sexual effect Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 238000013024 troubleshooting Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/20—Analysis of motion
- G06T7/292—Multi-camera tracking
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01G—WEIGHING
- G01G3/00—Weighing apparatus characterised by the use of elastically-deformable members, e.g. spring balances
- G01G3/12—Weighing apparatus characterised by the use of elastically-deformable members, e.g. spring balances wherein the weighing element is in the form of a solid body stressed by pressure or tension during weighing
- G01G3/14—Weighing apparatus characterised by the use of elastically-deformable members, e.g. spring balances wherein the weighing element is in the form of a solid body stressed by pressure or tension during weighing measuring variations of electrical resistance
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q20/00—Payment architectures, schemes or protocols
- G06Q20/08—Payment architectures
- G06Q20/20—Point-of-sale [POS] network systems
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce
- G06Q30/06—Buying, selling or leasing transactions
- G06Q30/0601—Electronic shopping [e-shopping]
- G06Q30/0633—Lists, e.g. purchase orders, compilation or processing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/20—Analysis of motion
- G06T7/215—Motion-based segmentation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/20—Analysis of motion
- G06T7/223—Analysis of motion using block-matching
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/20—Analysis of motion
- G06T7/246—Analysis of motion using feature-based methods, e.g. the tracking of corners or segments
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/20—Analysis of motion
- G06T7/246—Analysis of motion using feature-based methods, e.g. the tracking of corners or segments
- G06T7/248—Analysis of motion using feature-based methods, e.g. the tracking of corners or segments involving reference images or patches
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/80—Analysis of captured images to determine intrinsic or extrinsic camera parameters, i.e. camera calibration
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/77—Processing image or video features in feature spaces; using data integration or data reduction, e.g. principal component analysis [PCA] or independent component analysis [ICA] or self-organising maps [SOM]; Blind source separation
- G06V10/80—Fusion, i.e. combining data from various sources at the sensor level, preprocessing level, feature extraction level or classification level
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/82—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/50—Context or environment of the image
- G06V20/52—Surveillance or monitoring of activities, e.g. for recognising suspicious objects
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/20—Movements or behaviour, e.g. gesture recognition
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10016—Video; Image sequence
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10016—Video; Image sequence
- G06T2207/10021—Stereoscopic video; Stereoscopic image sequence
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30196—Human being; Person
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30204—Marker
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30232—Surveillance
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Business, Economics & Management (AREA)
- Accounting & Taxation (AREA)
- Finance (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- General Business, Economics & Management (AREA)
- Evolutionary Computation (AREA)
- Strategic Management (AREA)
- Software Systems (AREA)
- Computing Systems (AREA)
- Artificial Intelligence (AREA)
- Databases & Information Systems (AREA)
- Human Computer Interaction (AREA)
- Social Psychology (AREA)
- Development Economics (AREA)
- Economics (AREA)
- Marketing (AREA)
- Psychiatry (AREA)
- Medical Informatics (AREA)
- Computational Linguistics (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Data Mining & Analysis (AREA)
- Molecular Biology (AREA)
- General Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Image Analysis (AREA)
- Motorcycle And Bicycle Frame (AREA)
- Control Of Vending Devices And Auxiliary Devices For Vending Devices (AREA)
- Cash Registers Or Receiving Machines (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
図1は、空間102内のオブジェクトを追跡するように構成された追跡システム100の実施形態の概略図である。上述のように、追跡システム100は、買い物客が従来のチェックアウト過程に従事する必要がないように、空間102(たとえば、店舗)に設置されてもよい。本開示では店舗の例を使用するが、本開示は、追跡システム100を任意の種類の物理的空間(たとえば、部屋、オフィス、屋外スタンド、モール、スーパーマーケット、コンビニエンスストア、ポップアップストア、倉庫、保管センター、アミューズメント・パーク、空港、オフィスビルなど)に設置して使用することができることを考えている。一般に、追跡システム100(またはその構成要素)は、任意の適切な目的のために、これらの空間102内の人および/またはオブジェクトの位置を追跡するために使用される。たとえば、空港では、追跡システム100は、セキュリティ目的で旅行者および従業員の位置を追跡することができる。別の例として、アミューズメント・パークでは、追跡システム100は、アトラクションの人気を測定するために、パーク・ゲストの位置を追跡することができる。さらに別の例として、オフィスビルでは、追跡システム100は、従業員およびスタッフの位置を追跡し、その生産性レベルをモニターすることができる。
空間102内の人およびオブジェクトの物理的位置を記述するために、空間102についてグローバルプレーン104が定義される。グローバルプレーン104は、物理領域(すなわち空間102)内のオブジェクトの位置を識別するために追跡システム100によって使用される、ユーザー定義の座標系である。一例として図1を参照すると、グローバルプレーン104は、x軸およびy軸が空間102の床面と平行になるように定義される。この例では、グローバルプレーン104のz軸は、空間102の床面に対して垂直である。空間102内のある位置が、グローバルプレーン104についての基準位置101または原点として定義される。図1において、グローバルプレーン104は、基準位置101が店舗のコーナーに対応するように定義される。他の例では、基準位置101は、空間102内の任意の他の適切な位置に配置されてもよい。
ある実施形態では、追跡システム100は、一つまたは複数のクライアント105、一つまたは複数のサーバー106、一つまたは複数のスキャナ115、一つまたは複数のセンサー108、および一つまたは複数の重量センサー110を備える。一つまたは複数のクライアント105、一つまたは複数のサーバー106、一つまたは複数のスキャナ115、一つまたは複数のセンサー108、および一つまたは複数の重量センサー110は、ネットワーク107を介して互いに信号通信することができる。ネットワーク107は、インターネットの全部または一部、イントラネット、Bluetoothネットワーク、WIFIネットワーク、Zigbeeネットワーク、Z波ネットワーク、私設ネットワーク、公衆ネットワーク、ピアツーピアネットワーク、公衆交換電話ネットワーク、セルラーネットワーク、ローカルエリアネットワーク(LAN)、都市圏ネットワーク(MAN)、広域ネットワーク(WAN)、および衛星ネットワークを含むが、これらに限定されない、任意の適切なタイプの無線および/または有線ネットワークであってもよい。ネットワーク107は、当業者には理解されるように、任意の適切なタイプの通信プロトコルをサポートするように構成することができる。追跡システム100は、図示のように、または任意の他の適切な構成で構成されうる。
追跡システム100は、空間102内の人およびオブジェクトの位置を識別し追跡するためにセンサー108を使用するように構成される。たとえば、追跡システム100は、店内を移動する買い物客の画像またはビデオを捕捉するためにセンサー108を使用する。追跡システム100は、センサー108によって提供される画像またはビデオを処理して、買い物客、買い物客の位置、および/または買い物客がピックアップする任意の品目を識別することができる。
追跡システム100は、重量センサー110を使用して、人が空間102内でピックアップする品目を検出し、識別するように構成される。たとえば、追跡システム100は、買い物客がラック112から品目を取り出す時を検出するために、ラック112の棚に位置する重量センサー110を使用する。各重量センサー110は、特定の品目に関連付けられていてもよく、これにより、追跡システム100は、買い物客がどの品目をピックアップしたかを識別することができる。重量センサー110は、一般に、重量センサー110の上または近傍に配置されるオブジェクト(たとえば、製品)の重量を測定するように構成される。たとえば、重量センサー110は、入力の機械的力(たとえば、重量、張力、圧縮、圧力、またはトルク)を出力の電気信号(たとえば、電流または電圧)に変換するトランスデューサを含んでいてもよい。入力の力が増加するにつれて、出力の電気信号は比例して増加しうる。追跡システム100は、重量センサー110上の品目についての全体重量を決定するために出力の電気信号を解析するように構成される。重量センサー110の例は、圧電ロードセルまたは圧力センサーを含むが、これらに限定されない。たとえば、重量センサー110は、ロードセルが受ける重量を示す電気信号を通信するように構成された一つまたは複数のロードセルを含んでいてもよい。たとえば、ロードセルは、ロードセルが受ける重量または力に依存して変化する電流を生成してもよい。ロードセルは、生成された電気信号を処理のためにサーバー105および/またはクライアント106に通信するように構成される。重量センサー110は、一つまたは複数の品目を保持するために空間102内の家具(たとえば、ラック112)上に位置されてもよい。たとえば、一つまたは複数の重量センサー110がラック112の棚に位置されてもよい。別の例として、一つまたは複数の重量センサー110が冷蔵庫または冷却器の棚に配置されてもよい。別の例として、一つまたは複数の重量センサー110がラック112の棚と統合されてもよい。他の例では、重量センサー110は、空間102内の任意の他の適切な位置に配置されてもよい。
サーバー106は、追跡システム100のためのサービスおよび資源(たとえば、データおよび/またはハードウェア資源)を提供するように構成された一つまたは複数の物理装置によって形成されてもよい。サーバー106のハードウェア構成に関する追加情報は、図38に記載されている。ある実施形態では、サーバー106は、一つまたは複数のセンサー108および/または重量センサー110に動作可能に結合されてもよい。追跡システム100は、任意の適切な数のサーバー106を含んでいてもよい。たとえば、追跡システム100は、センサー・アレイ内の第1の複数のセンサー108と信号通信する第1のサーバー106と、センサー・アレイ内の第2の複数のセンサー108と信号通信する第2のサーバー106とを含んでいてもよい。別の例として、追跡システム100は、複数のセンサー108と信号通信する第1のサーバー106と、複数の重量センサー110と信号通信する第2のサーバー106とを含んでいてもよい。他の例では、追跡システム100は、それぞれが一つまたは複数のセンサー108および/または重量センサー110と信号通信している任意の他の適切な数のサーバー106を含んでいてもよい。
いくつかの実施形態では、一つまたは複数のセンサー108および/または重量センサー110は、クライアント105を介してサーバー106に動作可能に結合される。ある実施形態では、追跡システム100は、それぞれが一つまたは複数のセンサー108および/または重量センサー110に動作可能に結合されうる複数のクライアント105を備える。たとえば、第1のクライアント105が、一つまたは複数のセンサー108および/または重量センサー110に動作可能に結合されてもよく、第2のクライアント105が、一つまたは複数の他のセンサー108および/または重量センサー110に動作可能に結合されてもよい。クライアント105は、一つまたは複数のセンサー108および/または重量センサー110のためのデータ(たとえば、フレーム302および/またはビデオ)を処理するように構成された一つまたは複数の物理的な装置によって形成されてもよい。クライアント105は、サーバー106と一つまたは複数のセンサー108および/または重量センサー110との間でデータを交換するための仲介者として機能することができる。一つまたは複数のクライアント105とサーバー106の組み合わせは、追跡サブシステムと呼ばれることもある。この構成では、クライアント105は、センサー108によって捕捉される画像またはフレーム302についての画像処理能力を提供するように構成されうる。クライアント105は、さらなる処理および解析のために、画像、処理済み画像、または他の任意の適切なタイプのデータをサーバー106に送信するようにさらに構成される。いくつかの実施形態では、クライアント105は、サーバー106について上述のプロセスのうちの一つまたは複数を実行するように構成されてもよい。
図2は、追跡システム100のためのセンサー・マッピング方法200のある実施形態のフローチャートである。追跡システム100は、センサー108についてのホモグラフィー118を生成するために方法200を使用してもよい。上述したように、ホモグラフィー118により、追跡システム100は、人が空間102全体のどこに物理的に位置しているかを、人がどのセンサー108が現れるかと、そのセンサー108によって捕捉されたフレーム302内のその位置とに基づいて決定することができる。ひとたび生成されると、ホモグラフィー118は、センサー108によって捕捉された画像(たとえば、フレーム302)内のピクセル位置402と、グローバルプレーン104内の(x,y)座標306(すなわち、空間102内の物理的位置)との間で変換するために使用できる。以下は、単一のセンサー108についてのホモグラフィー118を生成するプロセスの非限定的な例である。この同じプロセスを、他のセンサー108についてのホモグラフィー118を生成するために繰り返すことができる。
センサー108についてのホモグラフィー118の一例が図5Aおよび5Bに示される。図5Aを参照すると、ホモグラフィー118は、フレーム302内のピクセル位置402とグローバルプレーン104内の物理的位置(たとえば、(x,y)座標306)との間で変換するように構成された複数の係数を含む。この例では、ホモグラフィー118は行列として構成され、ホモグラフィー118の係数は、H11、H12、H13、H14、H21、H22、H23、H24、H31、H32、H33、H34、H41、H42、H43、およびH44として表される。追跡システム100は、該係数を使用して、フレーム302内のピクセル位置402とグローバルプレーン104内の物理的位置(たとえば、(x,y)座標306)との間の関係または関数を定義することによって、ホモグラフィー118を生成することができる。たとえば、追跡システム100は、該係数を使用して一つまたは複数の関数を定義することができ、回帰(たとえば、最小二乗回帰)を実行して、センサーのフレーム302のピクセル位置402をグローバルプレーン104内の(x,y)座標306に投影する係数の値について解くことができる。図3の例を参照すると、センサー108についてのホモグラフィー118は、第1のマーカー304Aについてのフレーム302内の第1のピクセル位置402Aを、第1のマーカー304Aについてのグローバルプレーン104内の第1の(x,y)座標306Aに投影し、第2のマーカー304Bについてのフレーム302内の第2のピクセル位置402Bを、第2のマーカー304Bについてのグローバルプレーン104内の第2の(x,y)座標306Bに投影するように構成される。他の例では、追跡システム100は、任意の他の適切な技術を用いてホモグラフィー118の係数について解くことができる。図5Aに示される例では、ピクセル位置402におけるz値は、ピクセル値404に対応しうる。この場合、ホモグラフィー118は、フレーム302内のピクセル値404と、グローバルプレーン104内のz座標(たとえば、高さまたは標高)との間で変換するようにさらに構成される。
ひとたび追跡システム100がホモグラフィー118を生成すると、追跡システム100は、ホモグラフィー118を使用して、センサー108のフレーム302内のオブジェクトのピクセル位置402に基づいて、空間102内のオブジェクト(たとえば、人)の位置を決定することができる。たとえば、追跡システム100は、第1のフレーム302内のピクセル位置402とホモグラフィー118との間で行列乗算を実行し、グローバルプレーン104内の対応する(x,y)座標306を決定することができる。たとえば、追跡システム100は、センサー108からの第1のフレーム302を受領し、空間102内のオブジェクトについてフレーム302内の第1のピクセル位置を決定する。次いで、追跡システム100は、センサー108に関連するホモグラフィー118をオブジェクトの第1のピクセル位置402に適用して、オブジェクトが位置する、グローバルプレーン104内での第1のx値および第1のy値を同定する第1の(x,y)座標306を決定することができる。
図6は、マーカ・グリッド702を使用する追跡システム100のためのセンサー・マッピング方法600の一実施形態のフローチャートである。追跡システム100は、センサー108についてホモグラフィー118を生成するのに要する時間を短縮するために、方法600を使用してもよい。たとえば、マーカ・グリッド702を使用することにより、センサー108についてのホモグラフィー118を生成するために必要なセットアップ時間の量が減少する。典型的には、各マーカー304は空間102内に配置され、各マーカー304の物理的位置は独立して決定される。このプロセスは、センサー・アレイ内の各センサー108について繰り返される。対照的に、マーカ・グリッド702は、複数のマーカー304を含むポータブル表面である。マーカ・グリッド702は、カーペット、布、ポスターボード、発泡板、ビニール、紙、木材、または他の任意の適切なタイプの材料を用いて形成されうる。各マーカー304は、マーカ・グリッド702上の特定の位置を同定するオブジェクトである。マーカー304の例としては、形状、記号、およびテキストを含むが、これらに限定されない。マーカ・グリッド702上の各マーカー304の物理的位置は既知であり、メモリに記憶される(たとえば、マーカ・グリッド情報716)。マーカ・グリッド702を使用すると、マーカー304を個別に移動させたり、新しいマーカー304を空間102に追加したりすることなく、マーカ・グリッド702およびそのマーカー304は空間102内のどこにでも迅速に位置変更できるため、マーカー304を配置し、その位置を決定するプロセスが簡略化され、高速化される。ひとたび生成されると、ホモグラフィー118は、センサー108によって捕捉されたフレーム302内のピクセル位置402と、グローバルプレーン104内の(x,y)座標306との間を変換するために使用できる(すなわち、空間102内の物理的位置)。
図8は、追跡システム100のための棚位置較正方法800の実施形態のフローチャートである。追跡システム100は、ラック112またはセンサー108が空間102内を移動したかどうかを定期的にチェックする方法800を採用することができる。たとえば、ラック112は、偶発的に人がぶつかったり、人によって動かされたりすることがあり、すると、ラック112の位置はグローバルプレーン104に対して移動する。別の例として、センサー108がその取り付け構造(mounting structure)から緩むことがあり、それによりセンサー108が垂れたり、もとの位置から移動したりすることがある。追跡システム100が較正された後でのラック112および/またはセンサー108の位置のいかなる変化も、空間102内のオブジェクトを追跡するときの追跡システム100の精度および性能を低下させる。追跡システム100は、ラック112またはセンサー108のいずれかが移動したときを検出し、次いで、ラック112またはセンサー108の新しい位置に基づいて自身を再較正するために方法800を使用する。
図10は、追跡システム100についての追跡ハンドオフ〔引き渡し〕方法1000の実施形態のフローチャートである。追跡システム100は、隣接するセンサー108の視野の間を移動するオブジェクト(たとえば、人)の追跡情報を引き渡すために方法1000を使用してもよい。たとえば、追跡システム100は、人(たとえば、買い物客)が空間102の内部を動き回るときの位置を追跡することができる。各センサー108は、限定された視野を有し、これは、各センサー108が、空間102の一部分の中の人物の位置を追跡できるだけであることを意味する。追跡システム100は、空間102全体の中での人の動きを追跡するために、複数のセンサー108を使用する。各センサー108は、互いに独立して動作し、これは、追跡システム100が、あるセンサー108の視野から隣接するセンサー108の視野に移動する人を追跡することを意味する。
図12は、追跡システム100についての棚相互作用検出方法1200のある実施形態のフローチャートである。追跡システム100は、人がラック112の棚と相互作用している場所を決定するために方法1200を使用してもよい。人が空間102内でどこに位置するかを追跡することに加えて、追跡システム100は、人がラック112からどの品目1306をピックアップするかも追跡する。買い物客がラック112から品目1306をピックアップすると、追跡システム100は、買い物客がどの品目1306をピックアップしたかを識別し、追跡し、それらの品目が自動的に、その買い物客に関連付けられたデジタル・カート1410に追加されることができる。このプロセスは、買い物客がスキャンしたり、または他の方法でピックアップした品目1306を同定したりすることなく、品目1306を人のデジタル・カート1410に追加することを可能にする。デジタル・カート1410は、買い物客が購入のためにピックアップした品目1306に関する情報を含む。ある実施形態では、デジタル・カート1410は、品目識別子と、デジタル・カート1410内の各品目に関連付けられた数量とを含む。たとえば、買い物客が缶飲料をピックアップすると、その飲料の品目識別子がその買い物客のデジタル・カート1410に追加される。デジタル・カート1410はまた、買い物客がピックアップした飲み物の数を示す。ひとたび買い物客が空間102を離れると、買い物客は自動的に、デジタル・カート1410内の品目1306について課金される。
図15は、追跡システム100についての品目割り当て方法1500のある実施形態のフローチャートである。追跡システム100は、ラック112から品目1306がピックアップされたときを検出し、ラック112に関連付けられたあらかじめ定義されたゾーン1808を使用して、その品目をどの人物に割り当てるかを決定するために、方法1500を使用してもよい。店舗などの繁忙な環境では、品目がラック112から取り除かれるときに、ラック112の近くに複数の人が立っていることがある。品目1306をピックアップした正しい人物を特定することは、困難である可能性がある。この場合、追跡システム100は、ラック112から品目1306をピックアップする人を識別する際に、探索空間を減らすために使用できる、あらかじめ定義されたゾーン1808を使用する。あらかじめ定義されたゾーン1808は、ラック112に関連付けられ、人がラック112から品目1306をピックアップすることができる領域を同定するために使用される。あらかじめ定義されたゾーン1808は、追跡システム100が、人がラック112から品目1306をピックアップすることができる領域内にない、たとえばラック112背後にいる人を、迅速に無視することを可能にする。ひとたび品目1306および人物が識別されると、追跡システム100は、識別された人物に関連付けられたデジタル・カート1410に品目を追加する。
図16は、追跡システム100についての品目識別方法1600の実施形態のフローチャートである。追跡システム100は、方法1600を使用して、一様でない重量を有する品目1306を識別し、品目1306を人のデジタル・カート1410に割り当てることができる。一様な重量を有する品目1306については、追跡システム100は、重量センサー110上の重量差に基づいて重量センサー110から取り除かれた品目1306の数を決定することができる。しかしながら、生鮮食品のような品目1306は、一様な重量を有しない。つまり、追跡システム100は、重量測定に基づいて棚1302から取り除かれた品目1306の数を決定することはできない。この構成では、追跡システム100は、センサー108を使用して、ピックアップされた品目1306上のマーカー1820(たとえば、テキストまたは記号)を識別し、品目1306がピックアップされたラック112の近くの人を識別する。たとえば、マーカー1820は、品目1806のパッケージ上、または品目1806を運ぶためのストラップ上に位置してもよい。ひとたび品目1306および人物が識別されると、追跡システム100は、識別された人物に関連付けられたデジタル・カート1410に品目1306を追加することができる。
図17は、追跡システム100のための誤配置品目識別方法1700のある実施形態のフローチャートである。追跡システム100は、ラック112上に誤って置かれた品目1306を識別するために方法1700を使用してもよい。ある人が買い物をしている間、買い物客は、前にピックアップした一つまたは複数の品目1306を置くことにすることがある。この場合、追跡システム100は、どの品目1306がラック112に戻され、どの買い物客が品目1306を戻したのかを識別するべきである。それにより、追跡システム100はその人のデジタル・カート1410から品目1306を除去できる。ラック112に戻された品目1306を識別することは、買い物客が品目1306をその正しい位置に戻さない可能性があるため、困難である。たとえば、買い物客は、品目1306をラック112上の間違った位置に、または間違ったラック112上に戻すことがある。これらのいずれの場合も、追跡システム100は、買い物客が空間102を離れるときに品目1306について課金されないように、その人と品目1306の両方を正確に識別しなければならない。この構成では、追跡システム100は、重量センサー110を使用して、まず、品目1306がその正しい位置に戻されなかったことを判別する。次いで、追跡システム100は、センサー108を使用して、ラック112上に品目1306を置いた人を識別し、そのデジタル・カート1410を解析して、デジタル・カート1410内の品目1306の重量に基づいて、その人がどの品目1306を戻した可能性が最も高いかを決定する。
空間102内の人の動きを追跡するために、追跡システム100は、一般に、人(すなわち、目標オブジェクト)と他のオブジェクト(すなわち非目標オブジェクト)、たとえば、ラック112、ディスプレイ、および空間102内の他の任意の人間でないオブジェクトとを区別することができるべきである。そうでなければ、追跡システム100は、これらの非目標オブジェクトを検出して追跡しようとして、メモリおよび処理資源を浪費することがありうる。本開示の他の箇所に(たとえば、図24~図26および以下の対応する説明において)記載されているように、場合によっては、人は、一組の画像フレーム(たとえば、ビデオ)内の一つまたは複数の輪郭を検出し、フレーム間での該輪郭の動きをモニターすることによって、追跡されうる。輪郭は、一般に、画像内の人物の表現のエッジに関連する曲線である。追跡システム100は、人を追跡するために輪郭を検出することができるが、場合によっては、人(たとえば、または他の目標オブジェクト)に対応する輪郭と、非目標オブジェクト、たとえばラック112、標識、製品ディスプレイ等のような非目標オブジェクトに関連する輪郭とを区別することが困難なことがある。
場合によっては、2人の人が互いに近接していて、従来のツールを使用して各人物(たとえば、または他の目標オブジェクト)を確実に検出および/または追跡することが困難または不可能になる。場合によっては、人は、ほぼ腰の深さ(すなわち、追跡される平均的な人の腰の高さに対応する深さ)における深さ(depth)画像を使用して、初期に検出され追跡されうる。ほぼ腰の深さで追跡を行うことは、身長や移動モードに関係なく、すべての人をより効果的に撮影しうる。たとえば、人をほぼ腰の深さで検出し追跡することによって、追跡システム100は、背の高いおよび背の低い個人ならびに代替的な移動方法(たとえば、車椅子など)を使用していることがありうる個人を検出する可能性が高い。しかしながら、似通った身長の2人の人が互いに近くに立っていると、ほぼ腰の深さでのトップビュー画像において2人を区別することが困難になることがある。追跡システム100は、2人の別個の人を検出する代わりに、初期には、それらの人を単一の、より大きなオブジェクトとして検出することがありうる。
本開示の他の箇所に(たとえば、上述の図19~図23に関して)記載されているように、複数のセンサー108を用いて空間102内の人(たとえば、他の目標オブジェクト)を追跡することは、これまで認識されていなかったいくつかの課題を提起する。本開示には、これらの課題の認識だけでなく、これらの課題に対する独自の解決策をも包含する。たとえば、ローカルに(たとえば、各センサー108から受領された画像内のピクセル位置を追跡することによって)およびグローバルに(たとえば、空間102内の物理的座標に対応するグローバルプレーン上の物理的位置を追跡することによって)人を追跡するシステムおよび方法が、本開示に記載される。人の追跡は、ローカルおよびグローバルの両方で実行されるときに、より信頼性が高いことがありうる。たとえば、人がローカルに「見失われる」場合(たとえば、センサー108がフレームを捕捉できず、人がセンサー108によって検出されない場合)、その人は、依然として、近くのセンサー108(たとえば、上述の図22に関して説明した傾斜視センサー108b)からの画像、局所追跡アルゴリズムを用いて決定されたその人の推定される局所的位置、および/または、グローバル追跡アルゴリズムを用いて決定された推定されるグローバル位置に基づいて、グローバルに追跡されてもよい。
追跡システム100が空間102において人を追跡しているとき、自動除外ゾーン(人が図19~図21および上述の対応する説明を参照)に入るとき、他の人の近くに立っているとき(図22~図23および上述の対応する説明を参照)、および/またはセンサー108、クライアント105、および/またはサーバー106のうちの一つまたは複数が誤動作するときなど、ある種の状況下では、人を確実に識別することは困難であることがある。たとえば、第1の人物が第2の人物に近づいた後、またはさらには第2の人物と接触(たとえば「衝突」)した後、誰がどれであるかを決定することが困難であることがある(たとえば、図22に関して上述したように)。従来の追跡システムは、人々の推定された軌跡(たとえば、人々があたかも、衝突し、運動量の保存などに従って軌道を変化させるおはじきであるかのように推定される)に基づいて誰がどれであるかを決定しようとする試みにおいて、物理ベースの追跡アルゴリズムを使用してもよい。しかしながら、動きがランダムであることがあるため、人々の素性を確実に追跡することはより困難であることがある。上述のように、追跡システム100は、空間102における人々の追跡を改善するために、粒子フィルタ追跡を用いることができる(たとえば、図24~図26および上述の対応する説明を参照)。しかしながら、これらの進歩があっても、追跡対象となっている人々の素性を特定することは、ある時点では困難な場合がある。本開示は、特に、店舗において買い物をしている(すなわち、空間を動きまわり、品目を選択し、品目をピックアップすること)人々の位置が、以前に利用可能であった技術を用いて追跡することが困難または不可能であるという認識を含む。これらの人々の動きがランダムであり、容易に定義されるパターンまたはモデル(たとえば、以前のアプローチの物理ベースのモデル)に従わないためである。よって、人々(たとえば、または他の目標オブジェクト)を確実かつ効率的に追跡するためのツールが不足している。
上述したように、場合によっては、追跡される人の素性が不明になることがあり(たとえば、図27~図28に関して上述したように、人々が近接する、または「衝突」するとき、またはある人の候補リストが、その人物の素性が知られていないことを示すとき)、その人を再度素性確認する必要があることがある。本開示は、追跡システム100によって効率的かつ信頼性をもって人を再識別するための独特なアプローチを考えている。たとえば、人を再識別するために資源的に高価な機械学習に基づくアプローチに完全に依存するのではなく、人の観察可能な特徴(たとえば、高さ、色、幅、体積など)に関連する「低コスト」の記述子が、人の再識別のために最初に使用される、より効率的で特別に構造化されたアプローチが使用されうる。「高コスト」の記述子(たとえば、人工ニューラルネットワーク・モデルを用いて決定される)は、低コストの方法では信頼できる結果が得られない場合にのみ使用される。たとえば、いくつかの実施形態では、人は、まず、高さ、髪の色、および/または靴の色に基づいて、再識別されてもよい。しかしながら、これらの記述子が、人を確実に再識別するのに十分でない場合(たとえば、追跡される他の人が同様の特徴を有するため)、次第に高レベルのアプローチ(たとえば、人を認識するようにトレーニングされた人工ニューラルネットワークに関わるもの)を用いてもよい。かかるアプローチは、人の識別においてより効果的であるが、一般的には、より多くの処理資源の使用を伴う。
図12~図15に関して上述したように、ラック112で重量事象が検出された場合、アクティブ化された重量センサー110に関連する品目が、ラック112に最も近い人に割り当てられてもよい。しかしながら、場合によっては、2人以上の人がラック112の近くにいることがあり、誰が品目をピックアップしたのかがはっきりしないことがある。よって、当その目を正しい人に適切に割り当てるために、さらなるアクションが必要とされることがある。
上述したように、いくつかの場合には、図33C、図34に関して上述した人工ニューラルネットワーク・ベースの姿勢推定などの高レベルのアルゴリズムを用いても、品目3306a~cを正しい人に割り当てることができない場合がある。これらの場合、品目3306cを正しい人3302、3304に割り当てるために、品目3306cがラック112を出た後の品目3306cの位置が追跡されうる。いくつかの実施形態では、追跡システム100は、品目3306cがラック112を出た後に品目3306cを追跡し、品目が移動を止める位置を識別し、どの人3302、3304が停止した品目3306cに最も近いかを判別することによって、これを行う。最も近い人3302、3304が、一般に、品目3306cを割り当てられる。
図38は、空間102内のオブジェクトおよび人を追跡するように構成された装置3800(たとえば、サーバー106またはクライアント105)の実施形態である。装置3800は、プロセッサ3802、メモリ3804、およびネットワークインターフェース3806を含む。装置3800は、図示のように、または任意の他の適切な構成で構成されてもよい。
オブジェクト追跡システムであって:
空間の少なくとも第1の部分についてグローバルプレーンの第1のフレームを捕捉するように構成された第1のセンサーであって:
前記グローバルプレーンは、前記空間の前記少なくとも一部分についての(x,y)座標を表し;
前記第1のフレームは複数のピクセルを含み;
前記複数のピクセルからの各ピクセルは、ピクセル行およびピクセル列を含むピクセル位置に関連付けられている、第1のセンサーと;
前記空間の少なくとも第2の部分の第2のフレームを捕捉するように構成された第2のセンサーであって、前記空間の前記第2の部分は、前記空間の前記第1の部分と少なくとも部分的に重なって、重なり領域を画定する、第2のセンサーと;
前記第1のセンサーおよび前記第2のセンサーに動作可能に結合された追跡システムとを有しており、前記追跡システムは:
一つまたは複数のメモリであって:
前記第1のセンサーに関連付けられた第1のホモグラフィーであって、前記第1のホモグラフィーは、前記第1のフレーム内のピクセル位置と前記グローバルプレーン内の(x,y)座標との間で変換するように構成される、第1のホモグラフィー;
前記第2のセンサーに関連付けられた第2のホモグラフィーであって、前記第2のホモグラフィーは、前記第2のフレーム内のピクセル位置と前記グローバルプレーン内の(x,y)座標との間で変換するように構成される、第2のホモグラフィー;および
前記第1のセンサーに関連付けられた第1の追跡リストであって、前記第1の追跡リストは:
前記第1のセンサーによって追跡されているオブジェクトのオブジェクト識別子;および
前記第1のフレームにおける前記オブジェクトの位置に対応するピクセル位置情報を含む、第1の追跡リストと;
前記第2のセンサーに関連付けられた第2の追跡リストを記憶するように動作可能である、メモリと;
前記一つまたは複数のメモリに動作可能に結合された一つまたは複数のプロセッサであって:
前記第1のフレームを受領する段階と;
前記第1のフレーム内で前記オブジェクトを識別する段階と;
前記オブジェクトについての前記第1のフレームの中の第1のピクセル位置を決定する段階であって、前記第1のピクセル位置は、前記第1のフレームの第1のピクセル行および第1のピクセル列を含む、段階と;
前記第1のピクセル位置に基づいて、前記オブジェクトが前記第2のセンサーとの重なり領域内にあると判定する段階と;
前記第1のホモグラフィーを前記第1のピクセル位置に適用して、前記オブジェクトが位置する前記グローバルプレーンにおけるx値およびy値を識別する第1の(x,y)座標を決定する段階と;
前記第1の追跡リストから前記オブジェクトについての前記オブジェクト識別子を識別する段階と;
前記第2の追跡リストにおいて前記オブジェクトについての前記オブジェクト識別子を格納する段階と;
前記第2のホモグラフィーを前記第1の(x,y)座標に適用して、前記オブジェクトについての前記第2のフレームにおける第2のピクセル位置を決定する段階であって、前記第2のピクセル位置は、前記第2のフレームの第2のピクセル行および第2のピクセル列を含む、段階と;
前記第2のピクセル位置を、前記オブジェクトについての前記オブジェクト識別子とともに、前記第2の追跡リストに格納する段階とを実行するように構成されている、プロセッサとを有する、
システム。
〔条項2〕
前記第1の追跡リストにおける前記ピクセル位置情報は、前記オブジェクトについての以前のピクセル位置を同定し;
前記一つまたは複数のプロセッサがさらに:
前記オブジェクトについての前のピクセル位置に基づいて前記オブジェクトについての移動方向を決定し;
前記オブジェクトについての前記オブジェクト識別子とともに前記オブジェクトについての前記移動方向を前記第2の追跡リストに格納するように構成されている、
条項1に記載のシステム。
〔条項3〕
前記第1のフレームにおける各ピクセルは、ピクセル値に関連付けられ;
前記第1のホモグラフィーは、前記第1のフレームにおけるピクセル値とz座標との間で変換するようにさらに構成される、
条項1に記載のシステム。
〔条項4〕
前記一つまたは複数のメモリは、さらに、前記第1のフレームと前記第2のフレームとの間の重なり領域に対応する前記第1のフレーム内のピクセルの第1の範囲を同定する隣接リストを格納するように動作可能であり、
前記人が重なり領域内にあると判定することは、前記人についてのピクセル位置が前記第1のフレーム内のピクセルの第1の範囲内にあることを判定することを含む、
条項1に記載のシステム。
〔条項5〕
前記空間の少なくとも第3の部分の第3のフレームを捕捉するように構成された第3のセンサーをさらに有しており、前記空間の前記第3の部分は、前記空間の前記第1の部分と少なくとも部分的に重なり、第2の重なり領域を画定し;
前記一つまたは複数のメモリは、隣接リストを格納するようにさらに動作可能であり、該隣接リストは:
前記第1のフレームと前記第2のフレームの間の重なり領域に対応する前記第1のフレームにおけるピクセルの第1の範囲を同定し;
前記第1のフレームと前記第3のフレームの間の第2の重複領域に対応する前記第1のフレームにおけるピクセルの第2の範囲を同定する、
条項1に記載のシステム。
〔条項6〕
前記第1のセンサーおよび前記第2のセンサーは、センサー・アレイとして構成された複数のセンサーの要素であり;
前記センサー・アレイは、前記グローバルプレーンと平行に位置される、
条項1に記載のシステム。
〔条項7〕
前記一つまたは複数のプロセッサは、さらに:
前記第1のセンサーから第3のフレームを受領する段階と;
前記オブジェクトが前記第3のフレームに存在しないことを判別する段階と;
前記オブジェクトが前記第3のフレームに存在しないことを判別することに応答して、前記第1の追跡リストから前記オブジェクトに関連する情報を破棄する段階とを実行するように構成されている、
条項1に記載のシステム。
〔条項8〕
オブジェクト追跡方法であって:
第1のセンサーから、空間の少なくとも第1の部分についてのグローバルプレーンの第1のフレームを受領する段階であって:
前記グローバルプレーンは、前記空間の前記少なくとも一部分についての(x,y)座標を表し;
前記第1のフレームは複数のピクセルを含み;
前記複数のピクセルからの各ピクセルは、ピクセル行およびピクセル列を含むピクセル位置に関連付けられている、段階と;
前記第1のフレーム内で前記オブジェクトを識別する段階と;
前記オブジェクトについての前記第1のフレームの中の第1のピクセル位置を決定する段階であって、前記第1のピクセル位置は、前記第1のフレームの第1のピクセル行および第1のピクセル列を含む、段階と;
前記第1のピクセル位置に基づいて、前記オブジェクトが第2のセンサーとの重なり領域内にあると判定する段階であって、前記第2のセンサーは、前記空間の少なくとも第2の部分の第2のフレームを捕捉するように構成されている、段階と;
第1のホモグラフィーを前記第1のピクセル位置に適用して、前記オブジェクトが位置する前記グローバルプレーンにおけるx値およびy値を識別する第1の(x,y)座標を決定する段階であって、前記第1のホモグラフィーは、前記第1のフレーム内のピクセル位置と前記グローバルプレーン内の(x,y)座標との間で変換するように構成される、段階と;
第1の追跡リストから前記オブジェクトについてのオブジェクト識別子を識別する段階であって、前記第1の追跡リストは:
前記第1のセンサーによって追跡されているオブジェクトのオブジェクト識別子;および
前記第1のフレームにおける前記オブジェクトの位置に対応するピクセル位置情報を同定する、段階と;
前記第2のセンサーに関連付けられた第2の追跡リストにおいて前記オブジェクトについての前記オブジェクト識別子を格納する段階と;
第2のホモグラフィーを前記第1の(x,y)座標に適用して、前記オブジェクトについての前記第2のフレームにおける第2のピクセル位置を決定する段階であって、
前記第2のピクセル位置は、前記第2のフレームの第2のピクセル行および第2のピクセル列を含み、
前記第2のホモグラフィーは、前記第2のフレーム内のピクセル位置と前記グローバルプレーン内の(x,y)座標との間で変換するように構成される、段階と;
前記第2のピクセル位置を、前記オブジェクトについての前記オブジェクト識別子とともに、前記第2の追跡リストに格納する段階とを含む、
方法。
〔条項9〕
前記オブジェクトについての以前のピクセル位置に基づいて前記オブジェクトについての移動方向を決定する段階と;
前記オブジェクトについての前記オブジェクト識別子とともに前記オブジェクトについての前記移動方向を前記第2の追跡リストに格納する段階とをさらに含む、
条項8に記載の方法。
〔条項10〕
前記第1のフレームにおける各ピクセルは、ピクセル値に関連付けられ;
前記第1のホモグラフィーは、前記第1のフレームにおけるピクセル値とz座標との間で変換するようにさらに構成される、
条項8に記載の方法。
〔条項11〕
前記人が重なり領域内にあると判定することは、前記人についてのピクセル位置が、前記第1のフレームにおける、前記第1のフレームと前記第2のフレームとの間の重なり領域に対応するピクセルの第1の範囲内にあることを判定することを含む、
条項8に記載の方法。
〔条項12〕
前記第1のセンサーから第3のフレームを受領する段階と;
前記オブジェクトが前記第3のフレームに存在しないことを判別する段階と;
前記オブジェクトが前記第3のフレームに存在しないことを判別することに応答して、前記第1の追跡リストから前記オブジェクトに関連する情報を破棄する段階とをさらに含む、
条項8に記載の方法。
〔条項13〕
前記第1のセンサーおよび前記第2のセンサーは、センサー・アレイとして構成された複数のセンサーの要素であり;
前記センサー・アレイは、前記グローバルプレーンと平行に位置される、
条項8に記載の方法。
〔条項14〕
非一時的なコンピュータ読み取り可能な媒体に記憶された実行可能な命令を含むコンピュータ・プログラムであって、前記命令はプロセッサによって実行されると、該プロセッサに:
第1のセンサーから、空間の少なくとも第1の部分についてのグローバルプレーンの第1のフレームを受領する段階であって:
前記グローバルプレーンは、前記空間の前記少なくとも一部分についての(x,y)座標を表し;
前記第1のフレームは複数のピクセルを含み;
前記複数のピクセルからの各ピクセルは、ピクセル行およびピクセル列を含むピクセル位置に関連付けられている、段階と;
前記第1のフレーム内で前記オブジェクトを識別する段階と;
前記オブジェクトについての前記第1のフレームの中の第1のピクセル位置を決定する段階であって、前記第1のピクセル位置は、前記第1のフレームの第1のピクセル行および第1のピクセル列を含む、段階と;
前記第1のピクセル位置に基づいて、前記オブジェクトが第2のセンサーとの重なり領域内にあると判定する段階であって、前記第2のセンサーは、前記空間の少なくとも第2の部分の第2のフレームを捕捉するように構成されている、段階と;
第1のホモグラフィーを前記第1のピクセル位置に適用して、前記オブジェクトが位置する前記グローバルプレーンにおけるx値およびy値を識別する第1の(x,y)座標を決定する段階であって、前記第1のホモグラフィーは、前記第1のフレーム内のピクセル位置と前記グローバルプレーン内の(x,y)座標との間で変換するように構成される、段階と;
第1の追跡リストから前記オブジェクトについてのオブジェクト識別子を識別する段階であって、前記第1の追跡リストは:
前記第1のセンサーによって追跡されているオブジェクトのオブジェクト識別子;および
前記第1のフレームにおける前記オブジェクトの位置に対応するピクセル位置情報を同定する、段階と;
前記第2のセンサーに関連付けられた第2の追跡リストにおいて前記オブジェクトについての前記オブジェクト識別子を格納する段階とを実行させるものである、
コンピュータ・プログラム。
〔条項15〕
前記プロセッサによって実行されると、該プロセッサに:
第2のホモグラフィーを前記第1の(x,y)座標に適用して、前記オブジェクトについての前記第2のフレームにおける第2のピクセル位置を決定する段階であって、
前記第2のピクセル位置は、前記第2のフレームの第2のピクセル行および第2のピクセル列を含み、
前記第2のホモグラフィーは、前記第2のフレーム内のピクセル位置と前記グローバルプレーン内の(x,y)座標との間で変換するように構成される、段階と;
前記第2のピクセル位置を、前記オブジェクトについての前記オブジェクト識別子とともに、前記第2の追跡リストに格納する段階とを実行させる命令をさらに含む、
条項14に記載のコンピュータ・プログラム。
〔条項16〕
前記プロセッサによって実行されると、該プロセッサに:
前記オブジェクトについての以前のピクセル位置に基づいて前記オブジェクトについての移動方向を決定する段階と;
前記オブジェクトについての前記オブジェクト識別子とともに前記オブジェクトについての前記移動方向を前記第2の追跡リストに格納する段階とを実行させる命令をさらに含む、
条項14に記載のコンピュータ・プログラム。
〔条項17〕
前記第1のフレームにおける各ピクセルは、ピクセル値に関連付けられ;
前記第1のホモグラフィーは、前記第1のフレームにおけるピクセル値とz座標との間で変換するようにさらに構成される、
条項14に記載のコンピュータ・プログラム。
〔条項18〕
前記人が重なり領域内にあると判定することは、前記人についてのピクセル位置が、前記第1のフレームにおける、前記第1のフレームと前記第2のフレームとの間の重なり領域に対応するピクセルの第1の範囲内にあることを判定することを含む、
条項14に記載のコンピュータ・プログラム。
〔条項19〕
前記プロセッサによって実行されると、該プロセッサに:
前記第1のセンサーから第3のフレームを受領する段階と;
前記オブジェクトが前記第3のフレームに存在しないことを判別する段階と;
前記オブジェクトが前記第3のフレームに存在しないことを判別することに応答して、前記第1の追跡リストから前記オブジェクトに関連する情報を破棄する段階とを実行させる命令をさらに含む、
条項14に記載のコンピュータ・プログラム。
〔条項20〕
前記第1のセンサーおよび前記第2のセンサーは、センサー・アレイとして構成された複数のセンサーの要素であり;
前記センサー・アレイは、前記グローバルプレーンと平行に位置される、
条項14に記載のコンピュータ・プログラム。
オブジェクト追跡システムであって:
空間についてのグローバルプレーン内のラックの少なくとも一部分のフレームを捕捉するように構成されたセンサーであって:
前記グローバルプレーンは、前記空間についての(x,y)座標を表し;
前記フレームは複数のピクセルを含み;
前記複数のピクセルからの各ピクセルは、ピクセル行、ピクセル列およびピクセル値を含むピクセル位置に関連付けられており;
前記ピクセル値は前記グローバルプレーンにおけるz座標に対応し;
前記フレームはさらに:
前記グローバルプレーンにおける前記ラックの前記第1の部分に対応する第1のゾーン;
前記グローバルプレーンにおける前記ラックの第2の部分に対応する第2のゾーン;および
前記第1のゾーンおよび前記第2のゾーンに近接する第3のゾーンを含んでおり、
前記ラックは:
前記ラック上で第1の高さにある第1の棚であって、前記第1の棚は、前記グローバルプレーンにおける前記第1のゾーンと前記グローバルプレーンにおける前記第2のゾーンによってパーティション分割されている、第1の棚;および
前記ラック上の第2の高さにある第2の棚であって、前記第2の棚は、前記グローバルプレーンにおける前記第1のゾーンと前記グローバルプレーンにおける前記第2のゾーンによってパーティション分割されている、第2の棚を含む、
センサーと;
前記センサーに動作可能に結合された追跡システムとを有しており、前記追跡システムは:
一つまたは複数のメモリであって:
人に関連付けられたデジタル・カート;および
品目マップであって:
前記ラックの前記第1の棚の前記第1のゾーンに第1の品目を;
前記ラックの前記第1の棚の前記第2のゾーンに第2の品目を;
前記ラックの前記第2の棚の前記第1のゾーンに第3の品目を;
前記ラックの前記第2の棚の前記第2のゾーンに第4の品目を関連付けるように構成された品目マップを記憶するように動作可能なメモリと;
前記一つまたは複数のメモリに動作可能に結合された一つまたは複数のプロセッサであって:
前記フレームを受領する段階と;
前記フレームの前記第3のゾーン内のオブジェクトを検出する段階と;
前記オブジェクトについてのピクセル位置を決定する段階であって、前記ピクセル位置は、第1のピクセル行、第1のピクセル列、および第1のピクセル値を含む、段階と;
前記オブジェクトについての前記ピクセル位置の前記第1のピクセル行および前記第1のピクセル列に基づいて、前記第1のゾーンおよび前記第2のゾーンのうちの1つを識別する段階と;
前記オブジェクトについての前記ピクセル位置の前記第1のピクセル値に基づいて、前記ラックの前記第1の棚と前記ラックの前記第2の棚のうちの一方を識別する段階と;
識別されたゾーンと前記ラックの識別された棚に基づいて前記品目マップにおける品目を識別する段階と;
識別された品目を、前記人に関連付けられた前記デジタル・カートに追加する段階とを実行するように構成されたプロセッサとを有する、
システム。
〔条項22〕
前記第1のゾーンは前記フレームにおけるピクセルの第1の範囲に関連付けられており;
前記第2のゾーンは前記フレームにおけるピクセルの第2の範囲に関連付けられており;
前記第1のゾーンおよび前記第2のゾーンのうちの1つを識別することが:
前記オブジェクトについての前記ピクセル位置が前記フレームにおけるピクセルの前記第1の範囲内にあるとき、前記第1のゾーンを識別し:
前記オブジェクトについての前記ピクセル位置が前記フレームにおけるピクセルの前記第2の範囲内にあるとき、前記第2のゾーンを識別することを含む、
条項21に記載のシステム。
〔条項23〕
フレームは、前記ラックの正面および前記第3のゾーンに近接する第4のゾーンをさらに含み、
前記一つまたは複数のプロセッサはさらに:
前記人についての第2のピクセル位置を決定する段階であって、前記第2のピクセル位置は、前記フレーム内の第2のピクセル行および第2のピクセル列を含む、段階と;
前記人と関連付けられた前記デジタル・カートに前記識別された品目を追加する前に、前記人が前記第4のゾーン内にあることを判別する段階とを実行するように構成されている、
条項21に記載のシステム。
〔条項24〕
前記ラックの識別された棚の上の識別されたゾーンに配置された重量センサーをさらに有しており、前記重量センサーは、該重量センサー上の品目の重量を測定するように構成されており、
前記一つまたは複数のプロセッサは、さらに:
前記重量センサー上の重量減少量を決定する段階と;
前記重量減少量に基づいて品目数量を決定する段階と;
識別された品目数量を、前記人に関連付けられた前記デジタル・カートに追加する段階とを実行するように構成されている、
条項21に記載のシステム。
〔条項25〕
前記一つまたは複数のプロセッサは、さらに:
前記人についての第2のピクセル位置を決定する段階であって、前記第2のピクセル位置は、前記フレームにおける第2のピクセル行および第2のピクセル列を含む、段階と;
第2の人についての第3のピクセル位置を決定する段階であって、前記第3のピクセル位置は、第3のピクセル行および第3のピクセル列を含む、段階と;
前記オブジェクトのピクセル位置と前記人についての前記第2のピクセル位置との間の第1の距離を決定する段階と;
前記オブジェクトのピクセル位置と前記第2の人についての前記第3のピクセル位置との間の第2の距離を決定する段階と;
前記識別された品目を前記人に関連付けられた前記デジタル・カートに追加する前に、前記第1の距離が前記第2の距離より小さいことを判別する段階とを実行するように構成されている、
条項21に記載のシステム。
〔条項26〕
前記センサーが、センサー・アレイとして構成された複数のセンサーの要素であり;
前記センサー・アレイは、前記グローバルプレーンと平行に位置される、
条項21に記載のシステム。
〔条項27〕
前記一つまたは複数のメモリは、さらに、前記センサーに関連付けられたホモグラフィーを格納するように動作可能であり;
前記ホモグラフィーは、前記フレーム内のピクセル位置と前記グローバルプレーン内の(x,y)座標との間で変換するように構成される、
条項21に記載のシステム。
〔条項28〕
前記ホモグラフィーは、前記フレーム内のピクセル値と前記グローバルプレーン内のz座標との間で変換するようにさらに構成される、条項27に記載のシステム。
〔条項29〕
前記一つまたは複数のプロセッサは、さらに:
前記人についての第2のピクセル位置を決定する段階であって、前記第2のピクセル位置は、前記フレームにおける第2のピクセル行および第2のピクセル列を含む、段階と;
前記ホモグラフィーを前記第2のピクセル位置に適用して、前記グローバルプレーンにおける第1の(x,y)座標を決定する段階とを実行するように構成されている、
条項27に記載のシステム。
〔条項30〕
前記一つまたは複数のプロセッサは、前記第1の(x,y)座標に基づいて前記ラックを識別するようにさらに構成されている、条項29に記載のシステム。
〔条項31〕
オブジェクト追跡方法であって:
センサーから、空間についてのグローバルプレーン内のラックの少なくとも一部分のフレームを受領する段階であって:
前記グローバルプレーンは、前記空間についての(x,y)座標を表し;
前記フレームは複数のピクセルを含み;
前記複数のピクセルからの各ピクセルは、ピクセル行、ピクセル列およびピクセル値を含むピクセル位置に関連付けられており;
前記ピクセル値は前記グローバルプレーンにおけるz座標に対応する、段階と;
前記フレームの第1ゾーン内のオブジェクトを検出する段階と;
前記オブジェクトについてのピクセル位置を決定する段階であって、前記ピクセル位置は、第1のピクセル行、第1のピクセル列、および第1のピクセル値を含む、段階と;
前記オブジェクトについての前記ピクセル位置の前記第1のピクセル行および前記第1のピクセル列に基づいて、前記グローバルプレーンにおける前記ラックの第1の部分に対応する第2のゾーンおよび前記グローバルプレーンにおける前記ラックの第2の部分に対応する第3のゾーンのうちの1つを識別する段階と;
前記オブジェクトについての前記ピクセル位置の前記第1のピクセル値に基づいて、前記ラックの第1の棚と前記ラックの第2の棚のうちの一方を識別する段階と;
識別されたゾーンと前記ラックの識別された棚に基づいて品目を識別する段階と;
識別された品目を、前記人に関連付けられたデジタル・カートに追加する段階とを含む、
方法。
〔条項32〕
前記人についての第2のピクセル位置を決定する段階であって、前記第2のピクセル位置は、前記フレーム内の第2のピクセル行および第2のピクセル列を含む、段階と;
前記人と関連付けられた前記デジタル・カートに前記識別された品目を追加する前に、前記人が前記ラックの正面および前記第3のゾーンに近接する第4のゾーン内にあることを判別する段階とを実行する段階とをさらに含む、
条項31に記載の方法。
〔条項33〕
重量センサー上の重量減少量を決定する段階と;
前記重量減少量に基づいて品目数量を決定する段階と;
識別された品目数量を、前記人に関連付けられた前記デジタル・カートに追加する段階とをさらに含む、
条項311に記載の方法。
〔条項34〕
前記人についての第2のピクセル位置を決定する段階であって、前記第2のピクセル位置は、前記フレームにおける第2のピクセル行および第2のピクセル列を含む、段階と;
第2の人についての第3のピクセル位置を決定する段階であって、前記第3のピクセル位置は、第3のピクセル行および第3のピクセル列を含む、段階と;
前記オブジェクトのピクセル位置と前記人についての前記第2のピクセル位置との間の第1の距離を決定する段階と;
前記オブジェクトのピクセル位置と前記第2の人についての前記第3のピクセル位置との間の第2の距離を決定する段階と;
前記識別された品目を前記人に関連付けられた前記デジタル・カートに追加する前に、前記第1の距離が前記第2の距離より小さいことを判別する段階とをさらに含む、
条項31に記載の方法。
〔条項35〕
前記人についての第2のピクセル位置を決定する段階であって、前記第2のピクセル位置は、前記フレームにおける第2のピクセル行および第2のピクセル列を含む、段階と;
ホモグラフィーを前記第2のピクセル位置に適用して、前記グローバルプレーンにおける第1の(x,y)座標を決定する段階であって、前記ホモグラフィーは、前記フレーム内のピクセル位置と前記グローバルプレーン内の(x,y)座標との間で変換するように構成される、段階とをさらに含む、
条項31に記載の方法。
オブジェクト追跡システムであって:
空間についてのグローバルプレーン内のラックの少なくとも一部分のフレームを捕捉するように構成されたセンサーであって:
前記グローバルプレーンは、前記空間についての(x,y)座標を表し;
前記フレームは複数のピクセルを含み;
前記複数のピクセルからの各ピクセルは、ピクセル行、ピクセル列およびピクセル値を含むピクセル位置に関連付けられており;
前記ピクセル値は前記グローバルプレーンにおけるz座標に対応し;
前記フレームはさらに、前記ラックの正面に近接する第1のゾーンを含んでいる、センサーと;
前記センサーに動作可能に結合された追跡システムとを有しており、前記追跡システムは:
人に関連付けられたデジタル・カートを記憶するように動作可能な一つまたは複数のメモリと;
前記一つまたは複数のメモリに動作可能に結合された一つまたは複数のプロセッサであって:
前記フレームを受領する段階と;
前記フレームの前記第1のゾーン内のオブジェクトを検出する段階と;
前記オブジェクトについてのピクセル位置を決定する段階であって、前記ピクセル位置は、第1のピクセル行、第1のピクセル列、および第1のピクセル値を含む、段階と;
前記オブジェクトについての前記ピクセル位置の前記第1のピクセル行および前記第1のピクセル列に基づいて、前記ラックの一部分を識別する段階と;
前記オブジェクトについての前記ピクセル位置の前記第1のピクセル値に基づいて、前記ラックの棚を識別する段階と;
前記ラックの前記識別された部分と前記ラックの前記識別された棚に基づいて品目を識別する段階と;
識別された品目を、前記人に関連付けられた前記デジタル・カートに追加する段階とを実行するように構成されたプロセッサとを有する、
システム。
〔条項37〕
前記フレームは、前記ラックの正面および前記第1のゾーンに近接する第2のゾーンをさらに含み、
前記一つまたは複数のプロセッサはさらに:
前記人についての第2のピクセル位置を決定する段階であって、前記第2のピクセル位置は、前記フレーム内の第2のピクセル行および第2のピクセル列を含む、段階と;
前記人と関連付けられた前記デジタル・カートに前記識別された品目を追加する前に、前記人が前記第2のゾーン内にあることを判別する段階とを実行するように構成されている、
条項36に記載のシステム。
〔条項38〕
前記ラックに配置された重量センサーをさらに有しており、
前記一つまたは複数のプロセッサは、さらに:
前記重量センサー上の重量減少量を決定する段階と;
前記重量減少量に基づいて品目数量を決定する段階と;
識別された品目数量を、前記人に関連付けられた前記デジタル・カートに追加する段階とを実行するように構成されている、
条項36に記載のシステム。
〔条項39〕
前記一つまたは複数のプロセッサは、さらに:
前記人についての第2のピクセル位置を決定する段階であって、前記第2のピクセル位置は、前記フレームにおける第2のピクセル行および第2のピクセル列を含む、段階と;
第2の人についての第3のピクセル位置を決定する段階であって、前記第3のピクセル位置は、第3のピクセル行および第3のピクセル列を含む、段階と;
前記オブジェクトのピクセル位置と前記人についての前記第2のピクセル位置との間の第1の距離を決定する段階と;
前記オブジェクトのピクセル位置と前記第2の人についての前記第3のピクセル位置との間の第2の距離を決定する段階と;
前記識別された品目を前記人に関連付けられた前記デジタル・カートに追加する前に、前記第1の距離が前記第2の距離より小さいことを判別する段階とを実行するように構成されている、
条項36に記載のシステム。
〔条項40〕
前記センサーが、センサー・アレイとして構成された複数のセンサーの要素であり;
前記センサー・アレイは、前記グローバルプレーンと平行に位置される、
条項36に記載のシステム。
オブジェクト追跡システムであって:
空間についてのグローバルプレーン内のラックの少なくとも一部分のフレームを捕捉するように構成されたセンサーであって:
前記グローバルプレーンは、前記空間についての(x,y)座標を表し;
前記フレームは複数のピクセルを含み;
前記複数のピクセルからの各ピクセルは、ピクセル行およびピクセル列を含むピクセル位置に関連付けられており;
前記フレームは、前記ラックに関連付けられたあらかじめ定義されたゾーンを含み;
前記あらかじめ定義されたゾーンは前記ラックの正面に近接しており;
前記あらかじめ定義されたゾーンは、前記空間についてのグローバルプレーンにおける(x,y)座標の範囲に関連付けられる、センサーと;
前記ラックの棚に配置された複数の重量センサーであって、
各重量センサーは、前記ラックの前記棚の上の、その重量センサー上に格納されている品目についての品目タイプに関連付けられており;
各重量センサーは、その重量センサー上の品目についての重量を測定するように構成されている、重量センサーと;
前記センサーおよび前記重量センサーに動作可能に結合されている追跡システムとを有しており、前記追跡システムは:
一つまたは複数のメモリであって:
人に関連付けられたデジタル・カート;および
前記センサーに関連付けられたホモグラフィーを記憶するように動作可能であり、前記ホモグラフィーは、前記センサーからのフレーム内のピクセル位置と前記グローバルプレーンにおける(x,y)座標との間で変換する係数を含む、メモリと;
前記一つまたは複数のメモリに動作可能に結合された一つまたは複数のプロセッサであって:
前記複数の重量センサーのうちからのある重量センサー上の重量減少を検出する段階と;
前記ラックの前記フレームを受領する段階と;
前記人についてのピクセル位置を決定する段階であって、前記ピクセル位置は、前記フレームの第1のピクセル行および第1のピクセル列を含む、段階と;
前記ピクセル位置に前記ホモグラフィーを適用することによって前記人についての(x,y)座標を決定する段階と;
決定された(x,y)座標を、前記あらかじめ定義されたゾーンに関連付けられた前記グローバルプレーンにおける(x,y)座標の前記範囲と比較する段階と;
前記比較に基づいて、前記フレームにおいて、前記人が、前記ラックに関連付けられた前記あらかじめ定義されたゾーン内にいることを判別する段階と;
前記ラック上の前記重量センサーの位置に基づいて、前記重量センサーに関連付けられた前記品目を識別する段階と;
識別された品目を、前記人に関連付けられたデジタル・カートに追加する段階とを実行するように構成されている、プロセッサとを有する、
システム。
〔条項42〕
前記一つまたは複数のプロセッサは、さらに:
前記フレームにおいて第2の人を識別する段階と;
前記第2の人が、前記ラックに関連付けられている前記あらかじめ定義されたゾーンの外にいることを判別する段階と;
前記第2の人が前記あらかじめ定義されたゾーンの外にいることと判別することに応答して、前記第2の人を無視する段階とを実行するように構成されている、
条項1に記載のシステム。
〔条項43〕
前記一つまたは複数のプロセッサは、さらに:
第2の人についての第2のピクセル位置を決定する段階であって、前記第2のピクセル位置は、前記フレームにおける第2のピクセル行および第2のピクセル列を含む、段階と;
前記ラックについての第3のピクセル位置を決定する段階であって、前記第3のピクセル位置は、前記フレームにおける第3のピクセル行および第3のピクセル列を含む、段階と;
前記人のピクセル位置と前記ラックについての前記第3のピクセル位置との間の第1の距離を決定する段階と;
前記第2の人の前記第2のピクセル位置と前記ラックについての前記第3のピクセル位置との間の第2の距離を決定する段階と;
識別された品目を前記人に関連付けられた前記デジタル・カートに追加する前に、前記第1の距離が前記第2の距離より小さいことを判別する段階とを実行するように構成されている、
条項1に記載のシステム。
〔条項44〕
前記一つまたは複数のプロセッサは、さらに:
前記重量センサー上の重量減少量を決定する段階と;
前記重量減少量に基づいて品目数量を決定する段階と;
識別された品目数量を、前記人に関連付けられた前記デジタル・カートに追加する段階とを実行するように構成されている、
条項1に記載のシステム。
〔条項45〕
前記ラックは、前部と、第1の側部と、第2の側部と、後部とを有しており、
前記あらかじめ定義されたゾーンは、前記フレームにおいて前記ラックの前記前部、前記第1の側部、前記第2の側部の少なくとも一部と重複する、
条項1に記載のシステム。
〔条項46〕
前記あらかじめ定義された領域は、半円形領域である、条項1に記載のシステム。
〔条項47〕
オブジェクト追跡方法であって:
ラックに配置された複数の重量センサーのうちからのある重量センサー上の重量減少を検出する段階であって:
各重量センサーは、前記ラックのその重量センサー上に格納されている品目についての品目タイプに関連付けられており;
各重量センサーは、その重量センサー上の品目についての重量を測定するように構成されている、段階と;
センサーから、空間についてのグローバルプレーン内の前記ラックの少なくとも一部分のフレームを受領する段階であって:
前記グローバルプレーンは、前記空間についての(x,y)座標を表し;
前記フレームは複数のピクセルを含み;
前記複数のピクセルからの各ピクセルは、ピクセル行およびピクセル列を含むピクセル位置に関連付けられており;
前記フレームは、前記ラックに関連付けられたあらかじめ定義されたゾーンを含み;
前記あらかじめ定義されたゾーンは前記ラックの正面に近接しており;
前記あらかじめ定義されたゾーンは、前記空間についてのグローバルプレーンにおける(x,y)座標の範囲に関連付けられる、段階と;
前記人についてのピクセル位置を決定する段階であって、前記ピクセル位置は、前記フレームの第1のピクセル行および第1のピクセル列を含む、段階と;
前記ピクセル位置にホモグラフィーを適用することによって前記人についての(x,y)座標を決定する段階であって、
前記ホモグラフィーは、前記センサーに関連付けられており;
前記ホモグラフィーは、前記センサーからのフレーム内のピクセル位置と前記グローバルプレーンにおける(x,y)座標との間で変換する係数を含む、段階と;
決定された(x,y)座標を、前記あらかじめ定義されたゾーンに関連付けられた、前記グローバルプレーンにおける(x,y)座標の前記範囲と比較する段階と;
前記比較に基づいて、前記フレームにおいて、ある人が、前記ラックに関連付けられた前記あらかじめ定義されたゾーン内にいることを判別する段階と;
前記ラック上の前記重量センサーの位置に基づいて、前記重量センサーに関連付けられた前記品目を識別する段階と;
識別された品目を、前記人に関連付けられたデジタル・カートに追加する段階とを含む、
方法。
〔条項48〕
前記フレームにおいて第2の人を識別する段階と;
前記第2の人が、前記ラックに関連付けられている前記あらかじめ定義されたゾーンの外にいることを判別する段階と;
前記第2の人が前記あらかじめ定義されたゾーンの外にいることと判別することに応答して、前記第2の人を無視する段階とをさらに含む、
条項8に記載の方法。
〔条項49〕
第2の人についての第2のピクセル位置を決定する段階であって、前記第2のピクセル位置は、前記フレームにおける第2のピクセル行および第2のピクセル列を含む、段階と;
前記ラックについての第3のピクセル位置を決定する段階であって、前記第3のピクセル位置は、前記フレームにおける第3のピクセル行および第3のピクセル列を含む、段階と;
前記人のピクセル位置と前記ラックについての前記第3のピクセル位置との間の第1の距離を決定する段階と;
前記第2の人の前記第2のピクセル位置と前記ラックについての前記第3のピクセル位置との間の第2の距離を決定する段階と;
識別された品目を前記人に関連付けられた前記デジタル・カートに追加する前に、前記第1の距離が前記第2の距離より小さいことを判別する段階とをさらに含む、
条項8に記載の方法。
〔条項50〕
前記重量センサー上の重量減少量を決定する段階と;
前記重量減少量に基づいて品目数量を決定する段階と;
識別された品目数量を、前記人に関連付けられた前記デジタル・カートに追加する段階とをさらに含む、
条項8に記載の方法。
〔条項51〕
前記ラックは、前部と、第1の側部と、第2の側部と、後部とを有しており、
前記あらかじめ定義されたゾーンは、前記フレームにおいて前記ラックの前記前部、前記第1の側部、前記第2の側部の少なくとも一部と重複する、
条項8に記載の方法。
〔条項52〕
前記あらかじめ定義された領域は、半円形領域である、条項8に記載の方法。
〔条項53〕
非一時的なコンピュータ読み取り可能媒体に記憶された実行可能な命令を含むコンピュータ・プログラムであって、前記命令は、プロセッサによって実行されたときに該プロセッサに:
ラックに配置された複数の重量センサーのうちからのある重量センサー上の重量減少を検出する段階であって:
各重量センサーは、前記ラックのその重量センサー上に格納されている品目についての品目タイプに関連付けられており;
各重量センサーは、その重量センサー上の品目についての重量を測定するように構成されている、段階と;
空間についてのグローバルプレーン内の前記ラックの少なくとも一部分のフレームを受領する段階であって:
前記グローバルプレーンは、前記空間についての(x,y)座標を表し;
前記フレームは複数のピクセルを含み;
前記複数のピクセルからの各ピクセルは、ピクセル行およびピクセル列を含むピクセル位置に関連付けられており;
前記フレームは、前記ラックに関連付けられたあらかじめ定義されたゾーンを含み;
前記あらかじめ定義されたゾーンは前記ラックの正面に近接しており;
前記あらかじめ定義されたゾーンは、前記空間についてのグローバルプレーンにおける(x,y)座標の範囲に関連付けられる、段階と;
前記人についてのピクセル位置を決定する段階であって、前記ピクセル位置は、前記フレームの第1のピクセル行および第1のピクセル列を含む、段階と;
前記ピクセル位置にホモグラフィーを適用することによって前記人についての(x,y)座標を決定する段階であって、
前記ホモグラフィーは、前記センサーに関連付けられており;
前記ホモグラフィーは、前記センサーからのフレーム内のピクセル位置と前記グローバルプレーンにおける(x,y)座標との間で変換する係数を含む、段階と;
決定された(x,y)座標を、前記あらかじめ定義されたゾーンに関連付けられた、前記グローバルプレーンにおける(x,y)座標の前記範囲と比較する段階と;
前記比較に基づいて、前記フレームにおいて、ある人が、前記ラックに関連付けられた前記あらかじめ定義されたゾーン内にいることを判別する段階と;
前記ラック上の前記重量センサーの位置に基づいて、前記重量センサーに関連付けられた前記品目を識別する段階と;
識別された品目を、前記人に関連付けられたデジタル・カートに追加する段階とを含む、
コンピュータ・プログラム。
〔条項54〕
前記プロセッサによって実行されたときに該プロセッサに:
前記フレームにおいて第2の人を識別する段階と;
前記第2の人が、前記ラックに関連付けられている前記あらかじめ定義されたゾーンの外にいることを判別する段階と;
前記第2の人が前記あらかじめ定義されたゾーンの外にいることと判別することに応答して、前記第2の人を無視する段階とを実行させる命令をさらに含む、
条項15に記載のコンピュータ・プログラム。
〔条項55〕
前記プロセッサによって実行されたときに該プロセッサに:
第2の人についての第2のピクセル位置を決定する段階であって、前記第2のピクセル位置は、前記フレームにおける第2のピクセル行および第2のピクセル列を含む、段階と;
前記ラックについての第3のピクセル位置を決定する段階であって、前記第3のピクセル位置は、前記フレームにおける第3のピクセル行および第3のピクセル列を含む、段階と;
前記人のピクセル位置と前記ラックについての前記第3のピクセル位置との間の第1の距離を決定する段階と;
前記第2の人の前記第2のピクセル位置と前記ラックについての前記第3のピクセル位置との間の第2の距離を決定する段階と;
識別された品目を前記人に関連付けられた前記デジタル・カートに追加する前に、前記第1の距離が前記第2の距離より小さいことを判別する段階とを実行させるための命令をさらに含む、
条項15に記載のコンピュータ・プログラム。
〔条項56〕
前記プロセッサによって実行されたときに該プロセッサに:
前記重量センサー上の重量減少量を決定する段階と;
前記重量減少量に基づいて品目数量を決定する段階と;
識別された品目数量を、前記人に関連付けられた前記デジタル・カートに追加する段階とを実行させるための命令をさらに含む、
条項15に記載のコンピュータ・プログラム。
〔条項57〕
前記ラックは、前部と、第1の側部と、第2の側部と、後部とを有しており、
前記あらかじめ定義されたゾーンは、前記フレームにおいて前記ラックの前記前部、前記第1の側部、前記第2の側部の少なくとも一部と重複する、
条項15に記載のコンピュータ・プログラム。
オブジェクト追跡システムであって:
空間についてのグローバルプレーン内のラックの少なくとも一部分のフレームを捕捉するように構成されたセンサーであって:
前記グローバルプレーンは、前記空間についての(x,y)座標を表し;
前記フレームは複数のピクセルを含み;
前記複数のピクセルからの各ピクセルは、ピクセル行およびピクセル列を含むピクセル位置に関連付けられており;
前記フレームは、前記ラックに関連付けられたあらかじめ定義されたゾーンを含み;
前記あらかじめ定義されたゾーンは前記ラックの正面に近接している、センサーと;
前記ラックの棚に配置された重量センサーであって、該重量センサーは、該重量センサー上の品目についての重量を測定するように構成されている、重量センサーと;
前記センサーおよび前記重量センサーに動作可能に結合されている追跡システムとを有しており、前記追跡システムは:
一つまたは複数のメモリであって:
第1の人に関連付けられたデジタル・カートを記憶するように動作可能であり、前記デジタル・カートは:
複数の品目;および
前記デジタル・カート内の前記複数の品目のそれぞれについての品目重量を同定する、メモリと;
前記一つまたは複数のメモリに動作可能に結合された一つまたは複数のプロセッサであって:
前記重量センサー上の重量増加を検出する段階と;
前記重量センサー上の重量増加量を決定する段階と;
前記フレームを受領する段階と;
前記第1の人についてのピクセル位置を決定する段階であって、前記ピクセル位置は、前記フレームの第1のピクセル行および第1のピクセル列を含む、段階と;
前記人についてのピクセル位置に基づいて、前記フレームにおいて、前記第1の人が、前記ラックに関連付けられた前記あらかじめ定義されたゾーン内にいることを判別する段階と;
前記第1の人に関連付けられた前記デジタル・カート内の前記複数の品目を識別する段階と;
前記第1の人に関連付けられた前記デジタル・カート内の前記複数の品目のそれぞれについての品目重量を識別する段階と;
前記重量増加量を前記デジタル・カート内の各品目に関連付けられた前記品目重量と比較する段階と;
前記第1の人に関連付けられている前記複数の品目からの第1の品目であって、前記重量増加量に最も近い品目重量をもつものを識別する段階と;
前記第1の人に関連付けられている前記デジタル・カートから、前記第1の識別された品目を除去する段階とを実行するように構成されている、プロセッサとを有する、
システム。
〔条項59〕
前記一つまたは複数のプロセッサは、さらに:
第2の人についての第2のピクセル位置を決定する段階であって、前記第2のピクセル位置は、前記フレームにおける第2のピクセル行および第2のピクセル列を含む、段階と;
前記重量センサーについての第3のピクセル位置を決定する段階であって、前記第3のピクセル位置は、前記フレームにおける第3のピクセル行および第3のピクセル列を含む、段階と;
前記人のピクセル位置と前記重量センサーについての前記第3のピクセル位置との間の第1の距離を決定する段階と;
前記第2の人の前記第2のピクセル位置と前記重量センサーについての前記第3のピクセル位置との間の第2の距離を決定する段階と;
前記第1の識別された品目を前記第1の人に関連付けられた前記デジタル・カートに除去する前に、前記第1の距離が前記第2の距離より小さいことを判別する段階とを実行するように構成されている、
条項58に記載のシステム。
〔条項60〕
前記ラックに関連付けられた前記あらかじめ定義されたゾーンは、前記フレームにおけるピクセル列の範囲および前記フレームにおけるピクセル行の範囲に関連付けられ;
前記第1の人が前記ラックに関連付けられた前記あらかじめ定義されたゾーン内にあることを判別することは:
前記第1の人についてのピクセル位置の前記第1のピクセル列が、前記フレームにおけるピクセル列の前記範囲内にあり;
前記第1の人についてのピクセル位置の前記第1のピクセル行が、前記フレームにおけるピクセル行の前記範囲内にあることを判別することを含む、
条項58に記載のシステム。
〔条項61〕
前記重量センサーは、該重量センサー上の品目についての個々の品目重量に関連付けられており;
前記一つまたは複数のプロセッサがさらに:
前記第1の人に関連付けられた前記デジタル・カート内の前記複数の品目のそれぞれについて前記品目重量を識別する前に、前記重量センサーの前記重量増加量が、重量棚上の品目についての個々の品目重量と一致しないことを判別するようにさらに構成されている、
条項58に記載のシステム。
〔条項62〕
前記一つまたは複数のプロセッサは、さらに:
前記第1の識別された品目と前記重量増加量との間の第1の重量差を決定する段階と;
前記ラックに関連付けられている前記あらかじめ定義されたゾーン内に第2の人がいることを判別する段階と;
前記第2の人に関連するデジタル・カート内の第2の複数の品目を識別する段階と;
前記第2の人に関連付けられている前記デジタル・カート内の前記第2の複数の品目からの第2の品目であって、前記重量増加量に最も近く一致する品目重量をもつものを識別する段階と;
前記第2の識別された品目と前記重量増加量との間の第2の重量差を決定する段階と;
前記第1の人に関連付けられた前記デジタル・カートから前記第1の識別された品目を除去する前に、前記第1の重量差が前記第2の重量差より小さいことを判別する段階とを実行するようにさらに構成されている、
条項58に記載のシステム。
〔条項63〕
前記一つまたは複数のプロセッサは、さらに:
前記デジタル・カート内の前記複数の品目のそれぞれについての確率を、対応する品目の重量および前記重量増加量に基づいて決定する段階と;
前記第1の人に関連付けられた前記デジタル・カートから前記第1の識別された品目を除去する前に、前記第1の識別された品目が、前記デジタル・カート内の複数の品目についての決定された確率のうち最も高い確率に関連付けられていることを判別する段階とを実行するように構成されている、
条項58に記載のシステム。
〔条項64〕
前記デジタル・カート内の前記複数の品目のそれぞれについての前記確率は、前記第1の人と前記ラックとの間の距離に反比例する、条項63に記載のシステム。
〔条項65〕
オブジェクト追跡システムであって:
ラックの棚に配置された重量センサー上の重量増加を検出する段階と;
前記重量センサー上の重量増加量を決定する段階と;
空間についてのグローバルプレーン内の前記ラックの少なくとも一部分のフレームを受領する段階であって:
前記グローバルプレーンは、前記空間についての(x,y)座標を表し;
前記フレームは複数のピクセルを含み;
前記複数のピクセルからの各ピクセルは、ピクセル行およびピクセル列を含むピクセル位置に関連付けられており;
前記フレームは、前記ラックに関連付けられたあらかじめ定義されたゾーンを含み;
前記あらかじめ定義されたゾーンは前記ラックの正面に近接している、段階と;
前記第1の人についてのピクセル位置を決定する段階であって、前記ピクセル位置は、前記フレームの第1のピクセル行および第1のピクセル列を含む、段階と;
前記人についてのピクセル位置に基づいて、前記フレームにおいて、前記第1の人が、前記ラックに関連付けられた前記あらかじめ定義されたゾーン内にいることを判別する段階と;
前記第1の人に関連付けられたデジタル・カート内の複数の品目を識別する段階と;
前記第1の人に関連付けられた前記デジタル・カート内の前記複数の品目のそれぞれについての品目重量を識別する段階と;
前記重量増加量を前記デジタル・カート内の各品目に関連付けられた前記品目重量と比較する段階と;
前記第1の人に関連付けられている前記複数の品目からの第1の品目であって、前記重量増加量に最も近い品目重量をもつものを識別する段階と;
前記第1の人に関連付けられている前記デジタル・カートから、前記第1の識別された品目を除去する段階とを含む、
方法。
〔条項66〕
第2の人についての第2のピクセル位置を決定する段階であって、前記第2のピクセル位置は、前記フレームにおける第2のピクセル行および第2のピクセル列を含む、段階と;
前記重量センサーについての第3のピクセル位置を決定する段階であって、前記第3のピクセル位置は、前記フレームにおける第3のピクセル行および第3のピクセル列を含む、段階と;
前記人のピクセル位置と前記重量センサーについての前記第3のピクセル位置との間の第1の距離を決定する段階と;
前記第2の人の前記第2のピクセル位置と前記重量センサーについての前記第3のピクセル位置との間の第2の距離を決定する段階と;
前記第1の識別された品目を前記第1の人に関連付けられた前記デジタル・カートに除去する前に、前記第1の距離が前記第2の距離より小さいことを判別する段階とをさらに含む、
条項65に記載の方法。
〔条項67〕
前記第1の人が前記ラックに関連付けられた前記あらかじめ定義されたゾーン内にあることを判別することが:
前記第1の人についてのピクセル位置の前記第1のピクセル列が、前記フレームにおけるピクセル列のある範囲内にあり;
前記第1の人についてのピクセル位置の前記第1のピクセル行が、前記フレームにおけるピクセル行のある範囲内にあることを判別することを含む、
条項65に記載の方法。
〔条項68〕
前記第1の人に関連付けられた前記デジタル・カート内の前記複数の品目のそれぞれについて前記品目重量を識別する前に、前記重量センサーの前記重量増加量が、前記重量棚上の品目についての個々の品目重量と一致しないことを判別する段階をさらに含む、条項65に記載の方法。
〔条項69〕
前記第1の識別された品目と前記重量増加量との間の第1の重量差を決定する段階と;
前記ラックに関連付けられている前記あらかじめ定義されたゾーン内に第2の人がいることを判別する段階と;
前記第2の人に関連するデジタル・カート内の第2の複数の品目を識別する段階と;
前記第2の人に関連付けられている前記デジタル・カート内の前記第2の複数の品目からの第2の品目であって、前記重量増加量に最も近く一致する品目重量をもつものを識別する段階と;
前記第2の識別された品目と前記重量増加量との間の第2の重量差を決定する段階と;
前記第1の人に関連付けられた前記デジタル・カートから前記第1の識別された品目を除去する前に、前記第1の重量差が前記第2の重量差より小さいことを判別する段階とをさらに含む、
条項65に記載の方法。
〔条項70〕
前記デジタル・カート内の前記複数の品目のそれぞれについての確率を、対応する品目重量および前記重量増加量に基づいて決定する段階と;
前記第1の人に関連付けられた前記デジタル・カートから前記第1の識別された品目を除去する前に、前記第1の識別された品目が、前記デジタル・カート内の前記複数の品目についての決定された確率のうち最も高い確率に関連付けられていることを判別する段階とをさらに含む、
条項65に記載の方法。
〔条項71〕
非一時的なコンピュータ読み取り可能媒体に記憶された実行可能な命令を含むコンピュータ・プログラムであって、前記命令は、プロセッサによって実行されたときに、該プロセッサに:
ラックの棚に配置された重量センサー上の重量増加を検出する段階と;
前記重量センサー上の重量増加量を決定する段階と;
センサーから、空間についてのグローバルプレーン内の前記ラックの少なくとも一部分のフレームを受領する段階であって:
前記グローバルプレーンは、前記空間についての(x,y)座標を表し;
前記フレームは複数のピクセルを含み;
前記複数のピクセルからの各ピクセルは、ピクセル行およびピクセル列を含むピクセル位置に関連付けられており;
前記フレームは、前記ラックに関連付けられたあらかじめ定義されたゾーンを含み;
前記あらかじめ定義されたゾーンは前記ラックの正面に近接している、段階と;
前記第1の人についてのピクセル位置を決定する段階であって、前記ピクセル位置は、前記フレームの第1のピクセル行および第1のピクセル列を含む、段階と;
前記人についてのピクセル位置に基づいて、前記フレームにおいて、第1の人が、前記ラックに関連付けられた前記あらかじめ定義されたゾーン内にいることを判別する段階と;
前記第1の人に関連付けられたデジタル・カート内の複数の品目を識別する段階と;
前記第1の人に関連付けられた前記デジタル・カート内の前記複数の品目のそれぞれについての品目重量を識別する段階と;
前記重量増加量を前記デジタル・カート内の各品目に関連付けられた前記品目重量と比較する段階と;
前記第1の人に関連付けられている前記複数の品目からの第1の品目であって、前記重量増加量に最も近い品目重量をもつものを識別する段階と;
前記第1の人に関連付けられている前記デジタル・カートから、前記第1の識別された品目を除去する段階とを実行させるものである、
コンピュータ・プログラム。
〔条項72〕
前記プロセッサによって実行されたときに、該プロセッサに:
第2の人についての第2のピクセル位置を決定する段階であって、前記第2のピクセル位置は、前記フレームにおける第2のピクセル行および第2のピクセル列を含む、段階と;
前記重量センサーについての第3のピクセル位置を決定する段階であって、前記第3のピクセル位置は、前記フレームにおける第3のピクセル行および第3のピクセル列を含む、段階と;
前記人のピクセル位置と前記重量センサーについての前記第3のピクセル位置との間の第1の距離を決定する段階と;
前記第2の人の前記第2のピクセル位置と前記重量センサーについての前記第3のピクセル位置との間の第2の距離を決定する段階と;
前記第1の識別された品目を前記第1の人に関連付けられた前記デジタル・カートに除去する前に、前記第1の距離が前記第2の距離より小さいことを判別する段階とを実行させるための命令をさらに含む、
条項71に記載のコンピュータ・プログラム。
〔条項73〕
前記第1の人が前記ラックに関連付けられた前記あらかじめ定義されたゾーン内にあることを判別することが:
前記第1の人についてのピクセル位置の前記第1のピクセル列が、前記フレームにおけるピクセル列のある範囲内にあり;
前記第1の人についてのピクセル位置の前記第1のピクセル行が、前記フレームにおけるピクセル行のある範囲内にあることを判別することを含む、
条項71に記載のコンピュータ・プログラム。
〔条項74〕
前記プロセッサによって実行されたときに、該プロセッサに:
前記第1の人に関連付けられた前記デジタル・カート内の前記複数の品目のそれぞれについて前記品目重量を識別する前に、前記重量センサーの前記重量増加量が、前記重量棚上の品目についての個々の品目重量と一致しないことを判別する段階を実行させるための命令をさらに含む、条項71に記載のコンピュータ・プログラム。
〔条項75〕
前記プロセッサによって実行されたときに、該プロセッサに:
前記第1の識別された品目と前記重量増加量との間の第1の重量差を決定する段階と;
前記ラックに関連付けられている前記あらかじめ定義されたゾーン内に第2の人がいることを判別する段階と;
前記第2の人に関連するデジタル・カート内の第2の複数の品目を識別する段階と;
前記第2の人に関連付けられている前記デジタル・カート内の前記第2の複数の品目からの第2の品目であって、前記重量増加量に最も近く一致する品目重量をもつものを識別する段階と;
前記第2の識別された品目と前記重量増加量との間の第2の重量差を決定する段階と;
前記第1の人に関連付けられた前記デジタル・カートから前記第1の識別された品目を除去する前に、前記第1の重量差が前記第2の重量差より小さいことを判別する段階とを実行させるための命令をさらに含む、
条項71に記載のコンピュータ・プログラム。
〔条項76〕
前記プロセッサによって実行されたときに、該プロセッサに:
前記デジタル・カート内の前記複数の品目のそれぞれについての確率を、対応する品目重量および前記重量増加量に基づいて決定する段階と;
前記第1の人に関連付けられた前記デジタル・カートから前記第1の識別された品目を除去する前に、前記第1の識別された品目が、前記デジタル・カート内の前記複数の品目についての決定された確率のうち最も高い確率に関連付けられていることを判別する段階とを実行させるための命令をさらに含む、
条項71に記載のコンピュータ・プログラム。
〔条項77〕
前記デジタル・カート内の前記複数の品目のそれぞれについての前記確率は、前記第1の人と前記ラックとの間の距離に反比例する、条項76に記載のコンピュータ・プログラム。
オブジェクト追跡システムであって:
空間の少なくとも一部分についてのグローバルプレーンの第1のフレームを捕捉するように構成された第1のセンサーであって:
前記グローバルプレーンは、前記空間の前記少なくとも一部分についての(x,y)座標を表し;
前記第1のフレームが複数のピクセルを含み;
前記複数のピクセルからの各ピクセルは、ピクセル行およびピクセル列を含むピクセル位置に関連付けられている、第1のセンサーと;
前記第1のセンサーに動作可能に結合される追跡システムであって:
前記第1のセンサーに関連付けられた第1のホモグラフィーを記憶するように動作可能な一つまたは複数のメモリであって、
前記第1のホモグラフィーは、前記第1のフレームにおけるピクセル位置と前記グローバルプレーンにおける(x,y)座標との間で変換する係数を含む、メモリと;
前記一つまたは複数のメモリに動作可能に結合された一つまたは複数のプロセッサであって:
前記空間において第1のマーカーが位置しているところの前記グローバルプレーンにおける第1のx値および第1のy値を同定する第1の(x,y)座標を受領する段階であって、前記第1のマーカーは前記空間における第1の位置を同定する第1のオブジェクトである、段階と;
前記空間において第2のマーカーが位置しているところの前記グローバルプレーンにおける第2のx値および第2のy値を同定する第2の(x,y)座標を受領する段階であって、前記第2のマーカーは前記空間における第2の位置を同定する第2のオブジェクトである、段階と;
前記第1のフレームを受領する段階と;
前記第1のフレーム内で前記第1のマーカーおよび前記第2のマーカーを識別する段階と;
前記第1のマーカーについての前記第1のフレームにおける第1のピクセル位置を決定する段階であって、前記第1のピクセル位置は、前記第1のフレームの第1のピクセル行および第1のピクセル列を含む、段階と;
前記第2のマーカーについての前記第1のフレームにおける第2のピクセル位置を決定する段階であって、前記第2のピクセル位置は、前記第1のフレームの第2のピクセル行および第2のピクセル列を含む、段階と;
前記第1の(x,y)座標、前記第2の(x,y)座標、前記第1のピクセル位置、および前記第2のピクセル位置に基づいて前記第1のホモグラフィーを生成する段階とを実行するように構成されているプロセッサとを有する、
システム。
〔条項79〕
前記一つまたは複数のプロセッサは、さらに:
前記第1のフレーム内での識別されたマーカーの数を決定する段階と;
識別されたマーカーの数が所定の閾値を超えていることを判別する段階と;
識別されたマーカーの数が前記所定の閾値を超えていることを判別することに応答して、前記第1のマーカーについての前記第1のピクセル位置を決定する段階とを実行するように構成されている、
条項78に記載のシステム。
〔条項80〕
前記第1のフレームにおける各ピクセルは、ピクセル値に関連付けられており;
前記第1のホモグラフィーは、前記第1のフレームにおけるピクセル値と前記グローバルプレーンにおけるz座標との間で変換するようにさらに構成される、
条項78に記載のシステム。
〔条項81〕
前記一つまたは複数のプロセッサは、前記第1のセンサーと前記第1のホモグラフィーとの間の関連付けを記憶するようにさらに構成されている、条項78に記載のシステム。
〔条項82〕
前記グローバルプレーンは、前記空間の床面と平行である、条項78に記載のシステム。
〔条項83〕
前記空間の少なくとも第2の部分についての前記グローバルプレーンの第2のフレームを捕捉するように構成された、前記追跡システムに動作可能に結合された第2のセンサーをさらに有しており、
前記一つまたは複数のプロセッサは、さらに:
前記第1のマーカーについての前記第2のフレームにおける第3のピクセル位置を決定する段階と;
前記第2のマーカーについての前記第2のフレームにおける第4のピクセル位置を決定する段階と;
前記第3のピクセル位置、前記第4のピクセル位置、前記第1のマーカーについての前記第1の(x,y)座標、および前記第2のマーカーについての前記第2の(x,y)座標に基づいて第2のホモグラフィーを生成する段階とを実行するように構成されており、
前記第2のホモグラフィーは、前記第2のフレームにおけるピクセル位置と前記グローバルプレーンにおける(x,y)座標との間で変換する係数を含み、
前記第2のホモグラフィーの係数は、前記第1のホモグラフィーの係数とは異なる、
条項78に記載のシステム。
〔条項84〕
前記空間の少なくとも第2の部分の第2のフレームを捕捉するように構成された、前記追跡システムに動作可能に結合された第2のセンサーをさらに有しており、
前記第1のセンサーおよび前記第2のセンサーは、センサー・アレイとして構成された複数のセンサーの要素であり;
前記センサー・アレイは、前記グローバルプレーンと平行に位置される、
条項78に記載のシステム。
〔条項85〕
センサー・マッピング方法であって:
空間において第1のマーカーが位置しているところのグローバルプレーンにおける第1のx値および第1のy値を同定する第1の(x,y)座標を受領する段階であって、
前記グローバルプレーンは、前記空間の前記少なくとも一部分についての(x,y)座標を表し;
前記第1のマーカーは前記空間における第1の位置を同定する第1のオブジェクトである、段階と;
前記空間において第2のマーカーが位置しているところの前記グローバルプレーンにおける第2のx値および第2のy値を同定する第2の(x,y)座標を受領する段階であって、前記第2のマーカーは前記空間における第2の位置を同定する第2のオブジェクトである、段階と;
第1のセンサーから、前記空間の少なくとも一部分についての前記グローバルプレーンの第1のフレームを受領する段階であって:
前記第1のフレームが複数のピクセルを含み;
前記複数のピクセルからの各ピクセルは、ピクセル行およびピクセル列を含むピクセル位置に関連付けられている、段階と;
前記第1のフレーム内で前記第1のマーカーおよび前記第2のマーカーを識別する段階と;
前記第1のマーカーについての前記第1のフレームにおける第1のピクセル位置を決定する段階であって、前記第1のピクセル位置は、前記第1のフレームの第1のピクセル行および第1のピクセル列を含む、段階と;
前記第2のマーカーについての前記第1のフレームにおける第2のピクセル位置を決定する段階であって、前記第2のピクセル位置は、前記第1のフレームの第2のピクセル行および第2のピクセル列を含む、段階と;
前記第1の(x,y)座標、前記第2の(x,y)座標、前記第1のピクセル位置、および前記第2のピクセル位置に基づいて前記第1のホモグラフィーを生成する段階であって、前記第1のホモグラフィーは、前記第1のフレームにおけるピクセル位置と前記グローバルプレーンにおける(x,y)座標との間で変換する係数を含む、段階とを含む、
方法。
〔条項86〕
前記第1のフレーム内での識別されたマーカーの数を決定する段階と;
識別されたマーカーの数が所定の閾値を超えていることを判別する段階と;
識別されたマーカーの数が前記所定の閾値を超えていることを判別することに応答して、前記第1のマーカーについての前記第1のピクセル位置を決定する段階とをさらに含む、
条項85に記載の方法。
〔条項87〕
前記第1のフレームにおける各ピクセルは、ピクセル値に関連付けられており;
前記第1のホモグラフィーは、前記第1のフレームにおけるピクセル値と前記グローバルプレーンにおけるz座標との間で変換するようにさらに構成される、
条項85に記載の方法。
〔条項88〕
前記第1のセンサーと前記第1のホモグラフィーとの間の関連付けを記憶する段階をさらに含む、条項85に記載の方法。
〔条項89〕
前記グローバルプレーンは、前記空間の床面と平行である、条項85に記載の方法。
〔条項90〕
第2のセンサーから、前記空間の少なくとも第2の部分についての前記グローバルプレーンの第2のフレームを受領する段階と;
前記第1のマーカーについての前記第2のフレームにおける第3のピクセル位置を決定する段階と;
前記第2のマーカーについての前記第2のフレームにおける第4のピクセル位置を決定する段階と;
前記第3のピクセル位置、前記第4のピクセル位置、前記第1のマーカーについての前記第1の(x,y)座標、および前記第2のマーカーについての前記第2の(x,y)座標に基づいて第2のホモグラフィーを生成する段階とをさらに含み、
前記第2のホモグラフィーは、前記第2のフレームにおけるピクセル位置と前記グローバルプレーンにおける(x,y)座標との間で変換する係数を含み、
前記第2のホモグラフィーの係数は、前記第1のホモグラフィーの係数とは異なる、
条項85に記載の方法。
〔条項91〕
第2のセンサーから、前記空間の少なくとも第2の部分についての前記グローバルプレーンの第2のフレームを受領する段階をさらに含み、
前記第1のセンサーおよび前記第2のセンサーは、センサー・アレイとして構成された複数のセンサーの要素であり;
前記センサー・アレイは、前記グローバルプレーンと平行に位置される、
条項85に記載の方法。
〔条項92〕
非一時的なコンピュータ読み取り可能媒体に記憶された実行可能な命令を含むコンピュータ・プログラムであって、前記命令は、プロセッサによって実行されたときに該プロセッサに:
空間において第1のマーカーが位置しているところのグローバルプレーンにおける第1のx値および第1のy値を同定する第1の(x,y)座標を受領する段階であって、
前記グローバルプレーンは、前記空間の前記少なくとも一部分についての(x,y)座標を表し;
前記第1のマーカーは前記空間における第1の位置を同定する第1のオブジェクトである、段階と;
前記空間において第2のマーカーが位置しているところの前記グローバルプレーンにおける第2のx値および第2のy値を同定する第2の(x,y)座標を受領する段階であって、前記第2のマーカーは前記空間における第2の位置を同定する第2のオブジェクトである、段階と;
第1のセンサーから、前記空間の少なくとも一部分についての前記グローバルプレーンの第1のフレームを受領する段階であって:
前記第1のフレームが複数のピクセルを含み;
前記複数のピクセルからの各ピクセルは、ピクセル行およびピクセル列を含むピクセル位置に関連付けられている、段階と;
前記第1のフレーム内で前記第1のマーカーおよび前記第2のマーカーを識別する段階と;
前記第1のマーカーについての前記第1のフレームにおける第1のピクセル位置を決定する段階であって、前記第1のピクセル位置は、前記第1のフレームの第1のピクセル行および第1のピクセル列を含む、段階と;
前記第2のマーカーについての前記第1のフレームにおける第2のピクセル位置を決定する段階であって、前記第2のピクセル位置は、前記第1のフレームの第2のピクセル行および第2のピクセル列を含む、段階と;
前記第1の(x,y)座標、前記第2の(x,y)座標、前記第1のピクセル位置、および前記第2のピクセル位置に基づいて前記第1のホモグラフィーを生成する段階であって、前記第1のホモグラフィーは、前記第1のフレームにおけるピクセル位置と前記グローバルプレーンにおける(x,y)座標との間で変換する係数を含む、段階とを実行させるものである、
コンピュータ・プログラム。
〔条項93〕
前記プロセッサによって実行されたときに該プロセッサに:
前記第1のフレーム内での識別されたマーカーの数を決定する段階と;
識別されたマーカーの数が所定の閾値を超えていることを判別する段階と;
識別されたマーカーの数が前記所定の閾値を超えていることを判別することに応答して、前記第1のマーカーについての前記第1のピクセル位置を決定する段階とを実行させるための命令をさらに含む、
条項92に記載のコンピュータ・プログラム。
〔条項94〕
前記第1のフレームにおける各ピクセルは、ピクセル値に関連付けられており;
前記第1のホモグラフィーは、前記第1のフレームにおけるピクセル値と前記グローバルプレーンにおけるz座標との間で変換するようにさらに構成される、
条項92に記載のコンピュータ・プログラム。
〔条項95〕
前記プロセッサによって実行されたときに該プロセッサに、前記第1のセンサーと前記第1のホモグラフィーとの間の関連付けを記憶させるための命令をさらに含む、条項92に記載のコンピュータ・プログラム。
〔条項96〕
前記グローバルプレーンは、前記空間の床面と平行である、条項92に記載のコンピュータ・プログラム。
〔条項97〕
前記プロセッサによって実行されたときに該プロセッサに:
第2のセンサーから、前記空間の少なくとも第2の部分についての前記グローバルプレーンの第2のフレームを受領する段階と;
前記第1のマーカーについての前記第2のフレームにおける第3のピクセル位置を決定する段階と;
前記第2のマーカーについての前記第2のフレームにおける第4のピクセル位置を決定する段階と;
前記第3のピクセル位置、前記第4のピクセル位置、前記第1のマーカーについての前記第1の(x,y)座標、および前記第2のマーカーについての前記第2の(x,y)座標に基づいて第2のホモグラフィーを生成する段階とを実行させるための命令をさらに含み、
前記第2のホモグラフィーは、前記第2のフレームにおけるピクセル位置と前記グローバルプレーンにおける(x,y)座標との間で変換する係数を含み、
前記第2のホモグラフィーの係数は、前記第1のホモグラフィーの係数とは異なる、
条項92に記載のコンピュータ・プログラム。
オブジェクト追跡システムであって:
空間内のマーカ・グリッドの少なくとも一部について、グローバルプレーンの第1のフレームを捕捉するように構成された第1のセンサーであって、:
前記グローバルプレーンは、前記空間の少なくとも一部についての(x,y)座標を表し;
前記マーカ・グリッドは、前記第1のマーカーおよび第2のマーカーを含み;
前記第1のマーカーは、前記マーカ・グリッド上の第1の位置を識別する第1のオブジェクトであり;
前記第2のマーカーは、前記マーカ・グリッド上の第2の位置を識別する第2のオブジェクトであり;
前記第1のフレームが複数のピクセルを含み;
前記複数のピクセルからの各ピクセルは、ピクセル行およびピクセル列を含むピクセル位置に関連付けられている、第1のセンサーと;
前記第1のセンサーに動作可能に結合される追跡システムとを有しており、前記追跡システムは:
前記第1のセンサーに関連付けられた第1のホモグラフィーであって、
前記第1のホモグラフィーは、前記第1のフレームにおけるピクセル位置と前記グローバルプレーンにおける(x,y)座標との間で変換する係数を含む、第1のホモグラフィーと;
前記マーカ・グリッドの第1のコーナーと前記第1のマーカーとの間の第1のオフセット;および
前記マーカ・グリッドの前記第1のコーナーと前記第2のマーカーとの間の第2のオフセットを識別する
マーカ・グリッド情報とを
を記憶するように動作可能な一つまたは複数のメモリと;
前記一つまたは複数のメモリに動作可能に結合された一つまたは複数のプロセッサとを有しており、前記一つまたは複数のプロセッサは:
前記空間においてマーカ・グリッドの第1のコーナーが位置するところの、前記グローバルプレーンにおける第1のx値および第1のy値を同定する第1の(x,y)座標を受領する段階と;
前記マーカ・グリッドの前記第1のコーナーについての前記第1の(x,y)座標からの前記第1のオフセットに基づいて、前記第1のマーカーが位置するところの、前記グローバルプレーンにおける第2のx値および第2のy値を同定する第2の(x,y)座標を決定する段階と;
前記マーカ・グリッドの前記第1のコーナーについての前記第1の(x,y)座標からの前記第2のオフセットに基づいて、前記第2のマーカーが位置するところの、前記グローバルプレーンにおける第3のx値および第3のy値を同定する第3の(x,y)座標を決定する段階と;
前記第1のフレームを受領する段階と;
前記第1のフレームにおいて前記第1のマーカーおよび前記第2のマーカーを識別する段階と;
前記第1のフレーム内の前記第1のマーカーについての第1のバウンディングボックスを識別する段階であって、前記第1のバウンディングボックスは、前記第1のマーカーの少なくとも一部を含む第1の複数のピクセルを含む、段階と;
前記第1のフレーム内の前記第2のマーカーについての第2のバウンディングボックスを識別する段階であって、前記第2のバウンディングボックスは、前記第2のマーカーの少なくとも一部を含む第2の複数のピクセルを含む、段階と;
前記第1のマーカーに対応する前記第1のバウンディングボックス内の第1のピクセルを識別する段階と;
前記第2のマーカーに対応する前記第2のバウンディングボックス内の第2のピクセルを識別する段階と;
前記第1のピクセルについての第1のピクセル位置を決定する段階であって、前記第1のピクセル位置は、前記第1のフレームの第1のピクセル行および第1のピクセル列を含む、段階と;
前記第2のピクセルについての第2のピクセル位置を決定する段階であって、前記第2のピクセル位置は、前記第1のフレームの第2のピクセル行および第2のピクセル列を含む、段階と;
前記第1のマーカーについての前記第2の(x,y)座標、前記第2のマーカーについての前記第3の(x,y)座標、前記第1のピクセル位置、および前記第2のピクセル位置に基づいて前記第1のホモグラフィーを生成する段階とを実行するように構成されている、
システム。
〔条項99〕
前記一つまたは複数のプロセッサがさらに:
前記第1のフレーム内の識別されたマーカーの数を決定する段階と;
識別されたマーカーの数が所定の閾値を超えていることを判別する段階と;
識別されたマーカーの数が前記所定の閾値を超えていることを判別することに応答して、前記第1のマーカーについての前記第1のバウンディングボックスを識別する段階とを実行するように構成されている、
条項98に記載のシステム。
〔条項100〕
前記一つまたは複数のメモリは、単語を含むマーカー辞書を記憶するように動作可能であり;
前記第1のマーカーがテキストを含み;
前記第1のマーカーを識別することが:
前記第1のフレーム内のテキストを識別し;
識別されたテキストを前記マーカー辞書における前記単語と比較し;
識別されたテキストが前記マーカー辞書におけるある単語と一致することを判別することを含む、
条項98に記載のシステム。
〔条項101〕
前記一つ以上のメモリは、記号を含むマーカー辞書を記憶するように動作可能であり;
前記第1のマーカーが記号を含み;
前記第1のマーカーを識別することが:
前記第1のフレーム内の記号を識別し;
識別された記号を前記マーカー辞書における前記記号と比較し;
識別された記号が前記マーカー辞書におけるある記号と一致することを判別することを含む、
条項98に記載のシステム。
〔条項102〕
前記一つまたは複数のプロセッサはさらに:
前記マーカ・グリッドの第2のコーナーが前記空間において位置するところの、前記グローバルプレーンにおける第4のx値および第4のy値を同定する第4の(x,y)座標を受領する段階と;
前記マーカ・グリッドの前記第1コーナーについての前記第1(x,y)座標および前記マーカ・グリッドの前記第2コーナーについての前記第4の(x,y)座標に基づいて、前記グローバルプレーン内の回転角度を決定する段階を実行するように構成されており;
前記第1のマーカーについての前記第2の(x,y)座標を決定することは:
前記マーカ・グリッドの前記第1のコーナーについての前記第1の(x,y)座標からの前記第1のオフセットを使用する並進を適用し;
前記マーカ・グリッドの前記第1のコーナーについての前記第1の(x,y)座標に関する前記回転角度を使用した回転を適用することを含む、
条項98に記載のシステム。
〔条項103〕
前記追跡システムに動作可能に結合され、前記空間における前記マーカ・グリッドの前記少なくとも一部分の第2のフレームを捕捉するように構成された第2のセンサーをさらに有しており、
前記一つまたは複数のプロセッサがさらに:
前記第1のマーカーについての前記第2のフレームにおける第3のピクセル位置を決定する段階と;
前記第2のマーカーについての前記第2のフレームにおける第4のピクセル位置を決定する段階と;
前記第3のピクセル位置、前記第4のピクセル位置、前記第1のマーカーについての前記第2の(x,y)座標、および前記第2のマーカーについての前記第3の(x,y)マーカーに基づいて、第2のホモグラフィーを生成する段階とを実行するように構成されており、
前記第2のホモグラフィーは、前記第2のフレームにおけるピクセル位置と前記グローバルプレーンにおける(x,y)座標との間で変換する係数を含み、
前記第2のホモグラフィーの係数は、前記第1のホモグラフィーの係数とは異なる、
条項99に記載のシステム。
〔条項104〕
前記空間の少なくとも第2の部分の第2のフレームを捕捉するように構成された、前記追跡システムに動作可能に結合された第2のセンサーをさらに有しており、
前記第1のセンサーおよび前記第2のセンサーは、センサー・アレイとして構成された複数のセンサーの要素であり;
前記センサー・アレイは、前記グローバルプレーンと平行に位置する、
条項99に記載のシステム。
〔条項105〕
前記第1のフレームにおける各ピクセルは、ピクセル値に関連付けられており;
前記第1のホモグラフィーは、前記第1のフレームにおけるピクセル値と前記グローバルプレーンにおけるz座標との間で変換するようにさらに構成されている、
条項99に記載のシステム。
〔条項106〕
前記第1の(x,y)座標を受領することが、前記マーカ・グリッドの前記第1のコーナーに位置するビーコンから前記第1の(x,y)座標を同定する信号を受領することを含む、
条項99に記載のシステム。
〔条項107〕
前記第1のバウンディングボックス内の前記第1のピクセルを識別することが、前記第1のバウンディングボックス内の第1のピクセル・マーカーを識別することを含み;
前記第2のバウンディングボックス内の前記第2のピクセルを識別することが、前記第2のバウンディングボックス内の第2のピクセル・マーカーを識別することを含む、
条項99に記載のシステム。
〔条項108〕
前記第1のピクセル・マーカーは第1の光源であり;
前記第2のピクセル・マーカーは第2の光源である、
条項107に記載のシステム。
〔条項109〕
前記第1のピクセル・マーカーは前記第1のマーカーの第1の特徴であり、
前記第2のピクセル・マーカーは、前記第2のマーカーの第2の特徴でる、
条項107に記載のシステム。
〔条項110〕
センサー・マッピング方法であって:
空間においてマーカ・グリッドの第1のコーナーが位置するところの、グローバルプレーンにおける第1のx値および第1のy値を同定する第1の(x,y)座標を受領する段階であって、
前記グローバルプレーンは、前記空間の前記少なくとも一部についての(x,y)座標を表し;
前記マーカ・グリッドは、第1のマーカーおよび第2のマーカーを含み;
前記第1のマーカーは、前記マーカ・グリッド上の第1の位置を識別する第1のオブジェクトであり;
前記第2のマーカーは、前記マーカ・グリッド上の第2の位置を識別する第2のオブジェクトである、段階と;
前記マーカ・グリッドの前記第1のコーナーについての前記第1の(x,y)座標からの第1のオフセットに基づいて、前記第1のマーカーが位置するところの、前記グローバルプレーンにおける第2のx値および第2のy値を同定する第2の(x,y)座標を決定する段階と;
前記マーカ・グリッドの前記第1のコーナーについての前記第1の(x,y)座標からの第2のオフセットに基づいて、前記第2のマーカーが位置するところの、前記グローバルプレーンにおける第3のx値および第3のy値を同定する第3の(x,y)座標を決定する段階と;
前記空間における前記マーカ・グリッドの少なくとも一部について、前記グローバルプレーンの第1のフレームを受領する段階であって、
前記第1のフレームが複数のピクセルを含み;
前記複数のピクセルからの各ピクセルは、ピクセル行およびピクセル列を含むピクセル位置に関連付けられている、段階と;
前記第1のフレームにおいて前記第1のマーカーおよび前記第2のマーカーを識別する段階と;
前記第1のフレーム内の前記第1のマーカーについての第1のバウンディングボックスを識別する段階であって、前記第1のバウンディングボックスは、前記第1のマーカーの少なくとも一部を含む第1の複数のピクセルを含む、段階と;
前記第1のフレーム内の前記第2のマーカーについての第2のバウンディングボックスを識別する段階であって、前記第2のバウンディングボックスは、前記第2のマーカーの少なくとも一部を含む第2の複数のピクセルを含む、段階と;
前記第1のマーカーに対応する前記第1のバウンディングボックス内の第1のピクセルを識別する段階と;
前記第2のマーカーに対応する前記第2のバウンディングボックス内の第2のピクセルを識別する段階と;
前記第1のピクセルについての第1のピクセル位置を決定する段階であって、前記第1のピクセル位置は、前記第1のフレームの第1のピクセル行および第1のピクセル列を含む、段階と;
前記第2のピクセルについての第2のピクセル位置を決定する段階であって、前記第2のピクセル位置は、前記第1のフレームの第2のピクセル行および第2のピクセル列を含む、段階と;
前記第1のマーカーについての前記第2の(x,y)座標、前記第2のマーカーについての前記第3の(x,y)座標、前記第1のピクセル位置、および前記第2のピクセル位置に基づいて第1のホモグラフィーを生成する段階であって、前記第1のホモグラフィーは、前記第1のフレームにおけるピクセル位置と前記グローバルプレーンにおける(x,y)座標との間で変換する係数を含む、段階とを含む、
方法。
〔条項111〕
前記第1のフレーム内の識別されたマーカーの数を決定する段階と;
識別されたマーカーの数が所定の閾値を超えていることを判別する段階と;
識別されたマーカーの数が前記所定の閾値を超えていることを判別することに応答して、前記第1のマーカーについての前記第1のバウンディングボックスを識別する段階とをさらに含む、
条項110に記載の方法。
〔条項112〕
前記第1のマーカーを識別することが:
前記第1のフレーム内のテキストを識別し;
識別されたテキストをマーカー辞書における単語と比較し;
識別されたテキストが前記マーカー辞書におけるある単語と一致することを判別することを含む、
条項110に記載の方法。
〔条項113〕
前記第1のマーカーを識別することが:
前記第1のフレーム内の記号を識別し;
識別された記号をマーカー辞書における記号と比較し;
識別された記号が前記マーカー辞書におけるある記号と一致することを判別することを含む、
条項100に記載の方法。
〔条項114〕
前記マーカ・グリッドの第2のコーナーが前記空間において位置するところの、前記グローバルプレーンにおける第4のx値および第4のy値を同定する第4の(x,y)座標を受領する段階と;
前記マーカ・グリッドの前記第1のコーナーについての前記第1(x,y)座標および前記マーカ・グリッドの前記第2のコーナーについての前記第4の(x,y)座標に基づいて、前記グローバルプレーン内の回転角度を決定する段階とをさらに含み;
前記第1のマーカーについての前記第2の(x,y)座標を決定することは:
前記マーカ・グリッドの前記第1のコーナーについての前記第1の(x,y)座標からの前記第1のオフセットを使用する並進を適用し;
前記マーカ・グリッドの前記第1のコーナーについての前記第1の(x,y)座標に関する前記回転角度を使用した回転を適用することを含む、
条項100に記載の方法。
〔条項115〕
第2のセンサーから、前記空間における前記マーカ・グリッドの前記少なくとも一部分の第2のフレームを受領する段階と;
前記第1のマーカーについての前記第2のフレームにおける第3のピクセル位置を決定する段階と;
前記第2のマーカーについての前記第2のフレームにおける第4のピクセル位置を決定する段階と;
前記第3のピクセル位置、前記第4のピクセル位置、前記第1のマーカーについての前記第2の(x,y)座標、および前記第2のマーカーについての前記第3の(x,y)マーカーに基づいて、第2のホモグラフィーを生成する段階とをさらに含み、
前記第2のホモグラフィーは、前記第2のフレームにおけるピクセル位置と前記グローバルプレーンにおける(x,y)座標との間で変換する係数を含み、
前記第2のホモグラフィーの係数は、前記第1のホモグラフィーの係数とは異なる、
条項100に記載の方法。
〔条項116〕
前記第1のフレームにおける各ピクセルは、ピクセル値に関連付けられており;
前記第1のホモグラフィーは、前記第1のフレームにおけるピクセル値と前記グローバルプレーンにおけるz座標との間で変換するようにさらに構成されている、
条項100に記載のシステム。
〔条項117〕
非一時的なコンピュータ読み取り可能媒体に記憶された実行可能な命令を含むコンピュータ・プログラムであって、前記命令は、プロセッサによって実行されたときに該プロセッサに:
空間においてマーカ・グリッドの第1のコーナーが位置するところの、グローバルプレーンにおける第1のx値および第1のy値を同定する第1の(x,y)座標を受領する段階であって、
前記グローバルプレーンは、前記空間の前記少なくとも一部についての(x,y)座標を表し;
前記マーカ・グリッドは、第1のマーカーおよび第2のマーカーを含み;
前記第1のマーカーは、前記マーカ・グリッド上の第1の位置を識別する第1のオブジェクトであり;
前記第2のマーカーは、前記マーカ・グリッド上の第2の位置を識別する第2のオブジェクトである、段階と;
前記マーカ・グリッドの前記第1のコーナーについての前記第1の(x,y)座標からの第1のオフセットに基づいて、前記第1のマーカーが位置するところの、前記グローバルプレーンにおける第2のx値および第2のy値を同定する第2の(x,y)座標を決定する段階と;
前記マーカ・グリッドの前記第1のコーナーについての前記第1の(x,y)座標からの第2のオフセットに基づいて、前記第2のマーカーが位置するところの、前記グローバルプレーンにおける第3のx値および第3のy値を同定する第3の(x,y)座標を決定する段階と;
前記空間における前記マーカ・グリッドの少なくとも一部について、前記グローバルプレーンの第1のフレームを受領する段階であって、
前記第1のフレームが複数のピクセルを含み;
前記複数のピクセルからの各ピクセルは、ピクセル行およびピクセル列を含むピクセル位置に関連付けられている、段階と;
前記第1のフレームにおいて前記第1のマーカーおよび前記第2のマーカーを識別する段階と;
前記第1のフレーム内の前記第1のマーカーについての第1のバウンディングボックスを識別する段階であって、前記第1のバウンディングボックスは、前記第1のマーカーの少なくとも一部を含む第1の複数のピクセルを含む、段階と;
前記第1のフレーム内の前記第2のマーカーについての第2のバウンディングボックスを識別する段階であって、前記第2のバウンディングボックスは、前記第2のマーカーの少なくとも一部を含む第2の複数のピクセルを含む、段階と;
前記第1のマーカーに対応する前記第1のバウンディングボックス内の第1のピクセルを識別する段階と;
前記第2のマーカーに対応する前記第2のバウンディングボックス内の第2のピクセルを識別する段階と;
前記第1のピクセルについての第1のピクセル位置を決定する段階であって、前記第1のピクセル位置は、前記第1のフレームの第1のピクセル行および第1のピクセル列を含む、段階と;
前記第2のピクセルについての第2のピクセル位置を決定する段階であって、前記第2のピクセル位置は、前記第1のフレームの第2のピクセル行および第2のピクセル列を含む、段階と;
前記第1のマーカーについての前記第2の(x,y)座標、前記第2のマーカーについての前記第3の(x,y)座標、前記第1のピクセル位置、および前記第2のピクセル位置に基づいて第1のホモグラフィーを生成する段階であって、前記第1のホモグラフィーは、前記第1のフレームにおけるピクセル位置と前記グローバルプレーンにおける(x,y)座標との間で変換する係数を含む、段階とを実行させるものである、
コンピュータ・プログラム。
オブジェクト追跡システムであって:
空間についてのグローバルプレーン内のラックの第1のフレームを捕捉するように構成された第1のセンサーであって:
前記グローバルプレーンは前記空間についての(x,y)座標を表し;
前記ラックは棚マーカーを含み;
前記第1のフレームが複数のピクセルを含み;
前記複数のピクセルからの各ピクセルは、ピクセル行およびピクセル列を含むピクセル位置に関連付けられている、第1のセンサーと;
前記棚マーカーを含む前記ラックの第2のフレームを捕捉するように構成された第2のセンサーと;
前記第1のセンサーおよび前記第2のセンサーに動作可能に結合された追跡システムとを有しており、前記追跡システムは:
前記棚マーカーに対応する前記第1のフレームにおける第1のピクセル位置であって、前記第1のピクセル位置情報は、前記第1のフレームの第1のピクセル行および第1のピクセル列を含む、第1のピクセル位置;および
前記棚マーカーに対応する前記第2のフレームにおける第2のピクセル位置であって、前記第2のピクセル位置情報は、前記第2のフレームの第2のピクセル行および第2のピクセル列を含む、第2のピクセル位置を
記憶するように動作可能な一つまたは複数のメモリと;
前記一つまたは複数のメモリに動作可能に結合された一つまたは複数のプロセッサとを有しており、前記一つまたは複数のプロセッサは:
前記第1のフレームを受領する段階と;
前記第1のフレーム内の前記棚マーカーを識別する段階と;
前記第1のフレーム内の前記棚マーカーについての第1の現在のピクセル位置を決定する段階であって、前記第1の現在のピクセル位置情報は、前記第1のフレームの第3のピクセル行および第3のピクセル列を含む、段階と;
前記棚マーカーについての前記第1の現在のピクセル位置と前記棚マーカーについての前記第1のピクセル位置とを比較する段階と;
前記棚マーカーについての前記第1の現在のピクセル位置が前記棚マーカーについての前記第1のピクセル位置と一致しないことを判別する段階と;
前記第2のフレームを受領する段階と;
前記第2のフレーム内の前記棚マーカーを識別する段階と;
前記第2のフレーム内の前記棚マーカーについての第2の現在のピクセル位置を決定する段階であって、前記第2の現在のピクセル位置情報は、前記第2のフレームの第4のピクセル行および第4のピクセル列を含む、段階と;
前記棚マーカーについての前記第2の現在のピクセル位置と前記棚マーカーについての前記第2のピクセル位置を比較する段階と;
前記棚マーカーについての前記第2の現在のピクセル位置が、前記棚マーカーについての前記第2のピクセル位置と一致するかどうかを判定する段階と;
前記棚マーカーについての前記第2の現在のピクセル位置が前記棚マーカーについての前記第2のピクセル位置と一致することを判別することに応答して、前記第1のセンサーを再較正する段階と;
前記棚マーカーについての前記第2の現在のピクセル位置が前記棚マーカーについての前記第2のピクセル位置と一致しないことを判別することに応答して、前記第1のピクセル位置を前記第1の現在のピクセル位置で更新し、前記第2のピクセル位置を前記第2の現在のピクセル位置を更新する段階とを実行するように構成されている、
システム。
〔条項119〕
前記第1のセンサーを再較正することが:
前記棚マーカーが位置するところの前記グローバルプレーンにおける第1のx値および第1のy値を同定する第1の(x,y)座標を決定し;
第2の棚マーカーが位置するところの前記グローバルプレーンにおける第2のx値および第2のy値を同定する第2の(x,y)座標を決定し;
前記第1のフレーム内の第2の棚マーカーについての第3の現在のピクセル位置を決定し;
前記第1の現在のピクセル位置、前記第3の現在のピクセル位置、前記第1の(x,y)座標、および前記第2の(x,y)座標に基づいてホモグラフィーを生成することを含み、前記ホモグラフィーは、前記第1のフレームにおけるピクセル位置と前記グローバルプレーンにおける(x,y)座標との間で変換するものである、
条項118に記載のシステム。
〔条項120〕
前記一つまたは複数のメモリは、前記第1のフレームにおけるピクセル位置と前記グローバルプレーンにおける(x,y)座標との間で変換する係数を含むホモグラフィーを記憶するようにさらに動作可能である、条項118に記載のシステム。
〔条項121〕
前記一つまたは複数のプロセッサはさらに、前記ホモグラフィーを前記第1の現在のピクセル位置に適用して、前記棚マーカーについて前記グローバルプレーンにおける第1のx値および第1のy値を同定する(x,y)座標を決定するように構成される、条項120に記載のシステム。
〔条項122〕
前記第1のフレームにおける各ピクセルは、ピクセル値に関連付けられており;
前記ホモグラフィーは、さらに、前記第1のフレームのピクセル値と前記グローバルプレーンにおけるz座標との間で変換するように構成される、
条項120に記載のシステム。
〔条項123〕
前記一つまたは複数のプロセッサは、前記棚マーカーについての前記第2の現在のピクセル位置が前記棚マーカーについての前記第2のピクセル位置と一致することを判別することに応答して、前記第1のセンサーが移動したことを示す通知を送信するように構成される、条項118に記載のシステム。
〔条項124〕
前記一つまたは複数のプロセッサは、前記棚マーカーについての前記第2の現在のピクセル位置が前記棚マーカーについての前記第2のピクセル位置と一致しないことを判別することに応答して、前記ラックが移動したことを示す通知を送信するように構成される、条項118に記載のシステム。
〔条項125〕
前記第1のセンサーおよび前記第2のセンサーは、センサー・アレイとして構成された複数のセンサーの要素であり:
前記センサー・アレイは、前記グローバルプレーンと平行に位置される、
条項118に記載のシステム。
〔条項126〕
オブジェクト追跡方法であって:
第1のセンサーから、空間についてのグローバルプレーン内のラックの第1のフレームを受領する段階であって、
前記グローバルプレーンは前記空間についての(x,y)座標を表し;
前記ラックは棚マーカーを含み;
前記第1のフレームが複数のピクセルを含み;
前記複数のピクセルからの各ピクセルは、ピクセル行およびピクセル列を含むピクセル位置に関連付けられている、段階と;
前記第1のフレーム内の前記棚マーカーを識別する段階と;
前記第1のフレーム内の前記棚マーカーについての第1の現在のピクセル位置を決定する段階であって、前記第1の現在のピクセル位置情報は、前記第1のフレームの第1のピクセル行および第1のピクセル列を含む、段階と;
前記棚マーカーについての前記第1の現在のピクセル位置と前記棚マーカーについての第1の期待されるピクセル位置とを比較する段階であって、前記第1の期待されるピクセル位置情報は、前記第1のフレームの第2のピクセル行および第2のピクセル列を含む、段階と;
前記棚マーカーについての前記第1の現在のピクセル位置が前記棚マーカーについての前記第1の期待されるピクセル位置と一致しないことを判別する段階と;
第2のセンサーから、前記棚マーカーを含む前記ラックの第2のフレームを受領する段階と;
前記第2のフレーム内の前記棚マーカーを識別する段階と;
前記第2のフレーム内の前記棚マーカーについての第2の現在のピクセル位置を決定する段階であって、前記第2の現在のピクセル位置情報は、前記第2のフレームの第3のピクセル行および第3のピクセル列を含む、段階と;
前記棚マーカーについての前記第2の現在のピクセル位置と前記棚マーカーについての第2の期待されるピクセル位置を比較する段階であって、前記第2の期待されるピクセル位置情報は、前記第2のフレームの第4のピクセル行および第4のピクセル列を含む、段階と;
前記棚マーカーについての前記第2の現在のピクセル位置が、前記棚マーカーについての前記第2の期待されるピクセル位置と一致するかどうかを判定する段階と;
前記棚マーカーについての前記第2の現在のピクセル位置が前記棚マーカーについての前記第2の期待されるピクセル位置と一致することを判別することに応答して、前記第1のセンサーを再較正する段階とを含む、
方法。
〔条項127〕
前記棚マーカーについての前記第2の現在のピクセル位置が前記棚マーカーについての前記第2の期待される位置と一致しないことを判別することに応答して、前記第1のピクセル位置を前記第1の現在のピクセル位置で更新し、前記第2のピクセル位置を前記第2の現在のピクセル位置で更新する段階をさらに含む、条項126に記載の方法。
〔条項128〕
前記第1のセンサーを再較正することが:
前記棚マーカーが位置するところの前記グローバルプレーンにおける第1のx値および第1のy値を同定する第1の(x,y)座標を決定し;
第2の棚マーカーが位置するところの前記グローバルプレーンにおける第2のx値および第2のy値を同定する第2の(x,y)座標を決定し;
前記第1のフレーム内の第2の棚マーカーについての第3の現在のピクセル位置を決定し;
前記第1の現在のピクセル位置、前記第3の現在のピクセル位置、前記第1の(x,y)座標、および前記第2の(x,y)座標に基づいてホモグラフィーを生成することを含み、前記ホモグラフィーは、前記第1のフレームにおけるピクセル位置と前記グローバルプレーンにおける(x,y)座標との間で変換するものである、
条項126に記載の方法。
〔条項129〕
前記第1のフレームにおけるピクセル位置と前記グローバルプレーンにおける(x,y)座標との間で変換する係数を含むホモグラフィーを記憶することをさらに含む、条項126に記載の方法。
〔条項130〕
前記ホモグラフィーを前記第1の現在のピクセル位置に適用して、前記棚マーカーについて前記グローバルプレーンにおける第1のx値および第1のy値を同定する(x,y)座標を決定することをさらに含む、条項129に記載の方法。
〔条項131〕
前記第1のフレームにおける各ピクセルは、ピクセル値に関連付けられており;
前記ホモグラフィーは、さらに、前記第1のフレームのピクセル値と前記グローバルプレーンにおけるz座標との間で変換するように構成される、
条項129に記載の方法。
〔条項132〕
前記棚マーカーについての前記第2の現在のピクセル位置が前記棚マーカーについての前記第2のピクセル位置と一致することを判別することに応答して、前記第1のセンサーが移動したことを示す通知を送信する段階をさらに含む、条項126に記載の方法。
〔条項133〕
前記棚マーカーについての前記第2の現在のピクセル位置が前記棚マーカーについての前記第2のピクセル位置と一致しないことを判別することに応答して、前記ラックが移動したことを示す通知を送信するように構成される、条項126に記載の方法。
〔条項134〕
非一時的なコンピュータ読み取り可能媒体に記憶された実行可能な命令を含むコンピュータ・プログラムであって、前記命令は、プロセッサによって実行されたときに該プロセッサに:
第1のセンサーから、空間についてのグローバルプレーン内のラックの第1のフレームを受領する段階であって、
前記グローバルプレーンは前記空間についての(x,y)座標を表し;
前記ラックは棚マーカーを含み;
前記第1のフレームが複数のピクセルを含み;
前記複数のピクセルからの各ピクセルは、ピクセル行およびピクセル列を含むピクセル位置に関連付けられている、段階と;
前記第1のフレーム内の前記棚マーカーを識別する段階と;
前記第1のフレーム内の前記棚マーカーについての第1の現在のピクセル位置を決定する段階であって、前記第1の現在のピクセル位置情報は、前記第1のフレームの第1のピクセル行および第1のピクセル列を含む、段階と;
前記棚マーカーについての前記第1の現在のピクセル位置と前記棚マーカーについての第1の期待されるピクセル位置とを比較する段階であって、前記第1の期待されるピクセル位置情報は、前記第1のフレームの第2のピクセル行および第2のピクセル列を含む、段階と;
前記棚マーカーについての前記第1の現在のピクセル位置が前記棚マーカーについての前記第1の期待されるピクセル位置と一致しないことを判別する段階と;
第2のセンサーから、前記棚マーカーを含む前記ラックの第2のフレームを受領する段階と;
前記第2のフレーム内の前記棚マーカーを識別する段階と;
前記第2のフレーム内の前記棚マーカーについての第2の現在のピクセル位置を決定する段階であって、前記第2の現在のピクセル位置情報は、前記第2のフレームの第3のピクセル行および第3のピクセル列を含む、段階と;
前記棚マーカーについての前記第2の現在のピクセル位置と前記棚マーカーについての第2の期待されるピクセル位置を比較する段階であって、前記第2の期待されるピクセル位置情報は、前記第2のフレームの第4のピクセル行および第4のピクセル列を含む、段階と;
前記棚マーカーについての前記第2の現在のピクセル位置が、前記棚マーカーについての前記第2の期待されるピクセル位置と一致するかどうかを判定する段階と;
前記棚マーカーについての前記第2の現在のピクセル位置が前記棚マーカーについての前記第2の期待されるピクセル位置と一致することを判別することに応答して、前記第1のセンサーを再較正する段階とを実行させるものである、
コンピュータ・プログラム。
〔条項135〕
前記プロセッサによって実行されたときに該プロセッサに、前記棚マーカーについての前記第2の現在のピクセル位置が前記棚マーカーについての前記第2の期待される位置と一致しないことを判別することに応答して、前記第1のピクセル位置を前記第1の現在のピクセル位置で更新し、前記第2のピクセル位置を前記第2の現在のピクセル位置で更新する段階を実行させる命令をさらに含む、条項134に記載のコンピュータ・プログラム。
〔条項136〕
前記第1のセンサーを再較正することが:
前記棚マーカーが位置するところの前記グローバルプレーンにおける第1のx値および第1のy値を同定する第1の(x,y)座標を決定し;
第2の棚マーカーが位置するところの前記グローバルプレーンにおける第2のx値および第2のy値を同定する第2の(x,y)座標を決定し;
前記第1のフレーム内の第2の棚マーカーについての第3の現在のピクセル位置を決定し;
前記第1の現在のピクセル位置、前記第3の現在のピクセル位置、前記第1の(x,y)座標、および前記第2の(x,y)座標に基づいてホモグラフィーを生成することを含み、前記ホモグラフィーは、前記第1のフレームにおけるピクセル位置と前記グローバルプレーンにおける(x,y)座標との間で変換するものであり、前記ホモグラフィーは、前記第1のフレームにおけるピクセル位置と前記グローバルプレーンにおける(x,y)座標との間で変換する係数を含む、
条項134に記載のコンピュータ・プログラム。
〔条項137〕
前記プロセッサによって実行されたときに該プロセッサに、前記ホモグラフィーを前記第1の現在のピクセル位置に適用して、前記棚マーカーについて前記グローバルプレーンにおける第1のx値および第1のy値を同定する(x,y)座標を決定する段階を実行させるための命令をさらに含む、条項136に記載のコンピュータ・プログラム。
空間の少なくとも一部のトップビュー深さ画像を生成するように構成されたセンサーと;
前記センサーに通信上結合されたセンサー・クライアントとを有するシステムであって、前記センサー・クライアントは、
前記センサーによって生成された前記トップビュー深さ画像の一組のフレームを受領する段階と;
受領されたフレームのうち、第1のオブジェクトに関連する第1の輪郭が第2のオブジェクトに関連する第2の輪郭とマージされるフレームを識別する段階であって、マージされた第1の輪郭および第2の輪郭は:
所定の第1の高さに対応する、受領された深さ画像における第1の深さにおいて決定され、
前記第1のオブジェクトが前記空間において前記第2のオブジェクトから閾値距離以内に位置することに対応する、段階と;
識別されたフレームにおいて、マージされた第1および第2の輪郭のピクセル座標に関連するマージされた輪郭領域を決定する段階と;
前記マージされた輪郭領域内で、所定の第2の高さに関連する第2の深さにおける第3の輪郭を検出する段階であって、前記第2の深さは第1の深さよりも小さい、段階と;
前記第3の輪郭のピクセル座標に関連する第1の領域を決定する段階と;
前記マージされた輪郭領域内で、前記第2の深さにおける第4の輪郭を検出する段階と;
前記第4の輪郭のピクセル座標に関連する第2の領域を決定する段階と;
前記第1の領域を前記第2の領域から区別するための基準が満たされていることを判別する段階と;
前記基準が満たされていることに応答して:
前記第1の領域を前記第1のオブジェクトの第1のピクセル位置に関連付け;
前記第2の領域を前記第2のオブジェクトの第2のピクセル位置に関連付ける段階とを実行するように構成されている、
システム。
〔条項139〕
前記空間の前記部分の少なくとも一部分の傾斜視深さ画像を生成するように構成された第2のセンサーをさらに有しており、
前記クライアント・サーバーはさらに:
第1の傾斜視画像を前記第2のセンサーから受領する段階であって、前記第1の傾斜視画像は前記第1のオブジェクトおよび前記第2のオブジェクトの表現を含む、段階と;
前記第1の傾斜視画像において前記第1のオブジェクトに対応する第5の輪郭を検出する段階と;
前記第5の輪郭のピクセル座標に関連する第3の領域を決定する段階と;
前記第3の領域を前記第1のオブジェクトの第3のピクセル位置に関連付ける段階と;
前記第1の傾斜視画像において前記第2のオブジェクトに対応する第6の輪郭を検出する段階と;
前記第6の輪郭のピクセル座標に関連する第4の領域を決定する段階と;
前記第4の領域を前記第2のオブジェクトの第4のピクセル位置に関連付ける段階とを実行するように構成されている、
条項138に記載のシステム。
〔条項140〕
前記第2の高さは、前記第1のオブジェクトの第1の以前に決定された高さに関連し;
前記センサー・クライアントは、前記マージされた輪郭領域内で、第3の深さにおける第5の輪郭を決定するようにさらに構成されており、前記第3の深さは、前記第1の深さよりも小さく、前記第2のオブジェクトの第2の以前に決定された高さに関連する、
条項138に記載のシステム。
〔条項141〕
前記センサー・クライアントは:
前記第1の領域を前記第2の領域をから区別するための前記基準が満たされていないと判定する段階と;
前記基準が満されていないと判定することに応答して:
前記マージされた輪郭領域内で、第3の深さにおいて、更新された第3の輪郭を決定する段階であって、前記第3の深さは前記第1の深さよりも小さく、前記第2の深さよりも大きい、段階と;
前記更新された第3輪郭のピクセル座標に関連する更新された第1の領域を決定する段階と;
前記マージされた輪郭領域内で、前記第3の深さにおいて、更新された第4の輪郭を決定する段階と;
前記更新された第4の輪郭のピクセル座標に関連する更新された第2の領域を決定する段階と;
前記更新された第1の領域を前記更新された第2の領域から区別するための前記基準が満たされていることを判別する段階と;
前記更新された第1の領域を前記更新された第2の領域から区別するための前記基準が満たされていることを判別することに応答して:
前記更新された第1の領域を前記第1のオブジェクトの前記第1のピクセル位置に関連付け;
前記更新された第2の領域を前記第2のオブジェクトの第2のピクセル位置に関連付ける段階とを実行するようにさらに構成される、
条項138に記載のシステム。
〔条項142〕
前記センサー・クライアントは、前記識別されたフレームにおける輪郭が閾値を超える数のピクセルを含むことを判別することによって、前記第1の輪郭が前記第2の輪郭とマージする前記フレームを識別するように構成されている、条項138に記載のシステム。
〔条項143〕
前記第1の領域を前記第2の領域から区別するための前記基準は、前記第1の領域および前記第2の領域が閾値量以下、重複するという第1の要件と、前記第1の領域および前記第2の領域が前記マージされた輪郭領域内にあるという第2の要件とを含む、条項138に記載のシステム。
〔条項144〕
前記閾値量が10%である、条項143に記載のシステム。
〔条項145〕
前記センサー・クライアントは、前記マージされた輪郭領域を決定することを:
前記第1の輪郭に関連する複数のバウンディングボックスを決定し;
前記複数のバウンディングボックスのそれぞれについて、そのバウンディングボックスが前記複数のバウンディングボックスと類似する程度を示すスコアを計算し;
閾値類似性値よりも大きいスコアを有する、前記複数のバウンディングボックスのサブセットを識別し;
識別されたサブセットに基づいて前記マージされた輪郭領域を決定することによって行うように構成されている、
条項138に記載のシステム。
〔条項146〕
前記第1の領域の決定は:
前記第3の輪郭に関連する複数のバウンディングボックスを決定し;
前記複数のバウンディングボックスのそれぞれについて、そのバウンディングボックスが前記複数のバウンディングボックスと類似する程度を示すスコアを計算し;
閾値類似性値未満のスコアを有する、前記複数のバウンディングボックスのサブセットを識別し;
識別されたサブセットに基づいて前記第1の領域を決定することによって行われる、
条項138に記載のシステム。
〔条項147〕
前記第1のオブジェクトが第1の人であり;
前記第2のオブジェクトが第2の人であり;
前記第2の深さは、前記第1の人および前記第2の人の一方または両方のほぼ頭部の高さに対応する、
条項138に記載のシステム。
〔条項148〕
センサーによって生成されたトップビュー深さ画像の一組のフレームを受領する段階であって、前記センサーは、空間の少なくとも一部のトップビュー深さ画像を生成するように構成されている、段階と;
受領されたフレームのうち、第1のオブジェクトに関連する第1の輪郭が第2のオブジェクトに関連する第2の輪郭とマージされるフレームを識別する段階であって、マージされた第1の輪郭および第2の輪郭は:
所定の第1の高さに対応する、受領された深さ画像における第1の深さにおいて決定され、
前記第1のオブジェクトが前記空間において前記第2のオブジェクトから閾値距離以内に位置することに対応する、段階と;
識別されたフレームにおいて、マージされた第1および第2の輪郭のピクセル座標に関連するマージされた輪郭領域を決定する段階と;
前記マージされた輪郭領域内で、所定の第2の高さに関連する第2の深さにおける第3の輪郭を検出する段階であって、前記第2の深さは第1の深さよりも小さい、段階と;
前記第3の輪郭のピクセル座標に関連する第1の領域を決定する段階と;
前記マージされた輪郭領域内で、前記第2深さにおける第4の輪郭を検出する段階と;
前記第4の輪郭のピクセル座標に関連する第2の領域を決定する段階と;
前記第1の領域を前記第2の領域から区別するための基準が満たされていることを判別する段階と;
前記基準が満たされていることに応答して:
前記第1の領域を前記第1のオブジェクトの第1のピクセル位置に関連付け;
前記第2の領域を前記第2のオブジェクトの第2のピクセル位置に関連付ける段階とを含む、
方法。
〔条項149〕
第1の傾斜視画像を第2のセンサーから受領する段階であって、前記第2のセンサーは、前記空間の前記部分の少なくとも一部分の傾斜視深さ画像を生成するように構成されており、前記第1の傾斜視画像は前記第1のオブジェクトおよび前記第2のオブジェクトの表現を含む、段階と;
前記第1の傾斜視画像において前記第1のオブジェクトに対応する第5の輪郭を検出する段階と;
前記第5の輪郭のピクセル座標に関連する第3の領域を決定する段階と;
前記第3の領域を前記第1のオブジェクトの第3のピクセル位置に関連付ける段階と;
前記第1の傾斜視画像において前記第2のオブジェクトに対応する第6の輪郭を検出する段階と;
前記第6の輪郭のピクセル座標に関連する第4の領域を決定する段階と;
前記第4の領域を前記第2のオブジェクトの第4のピクセル位置に関連付ける段階とをさらに含む、
条項148に記載の方法。
〔条項150〕
前記第2の高さは、前記第1のオブジェクトの第1の以前に決定された高さに関連し;
当該方法は、前記マージされた輪郭領域内で、第3の深さにおける第5の輪郭を決定する段階をさらに含み、前記第3の深さは、前記第1の深さよりも小さく、前記第2のオブジェクトの第2の以前に決定された高さに関連する、
条項148に記載の方法。
〔条項151〕
前記第1の領域を前記第2の領域をから区別するための前記基準が満たされていないと判定する段階と;
前記基準が満されていないと判定することに応答して:
前記マージされた輪郭領域内で、第3の深さにおいて、更新された第3の輪郭を決定する段階であって、前記第3の深さは前記第1の深さよりも小さく、前記第2の深さよりも大きい、段階と;
前記更新された第3輪郭のピクセル座標に関連する更新された第1の領域を決定する段階と;
前記マージされた輪郭領域内で、前記第3の深さにおいて、更新された第4の輪郭を決定する段階と;
前記更新された第4の輪郭のピクセル座標に関連する更新された第2の領域を決定する段階と;
前記更新された第1の領域を前記更新された第2の領域から区別するための前記基準が満たされていることを判別する段階と;
前記更新された第1の領域を前記更新された第2の領域から区別するための前記基準が満たされていることを判別することに応答して:
前記更新された第1の領域を前記第1のオブジェクトの前記第1のピクセル位置に関連付け;
前記更新された第2の領域を前記第2のオブジェクトの第2のピクセル位置に関連付ける段階とをさらに含む、
条項148に記載の方法。
〔条項152〕
前記識別されたフレームにおける輪郭が閾値を超える数のピクセルを含むことを判別することによって、前記第1の輪郭が前記第2の輪郭とマージする前記フレームを識別することをさらに含む、条項148に記載の方法。
〔条項153〕
前記第1の領域を前記第2の領域から区別するための前記基準は、前記第1の領域および前記第2の領域が閾値量以下、重複するという第1の要件と、前記第1の領域および前記第2の領域が前記マージされた輪郭領域内にあるという第2の要件とを含む、条項148に記載の方法。
〔条項154〕
前記マージされた輪郭領域を決定することを:
前記第1の輪郭に関連する複数のバウンディングボックスを決定し;
前記複数のバウンディングボックスのそれぞれについて、そのバウンディングボックスが前記複数のバウンディングボックスと類似する程度を示すスコアを計算し;
閾値類似性値よりも大きいスコアを有する、前記複数のバウンディングボックスのサブセットを識別し;
識別されたサブセットに基づいて前記マージされた輪郭領域を決定することによって行うことを含む、
条項148に記載の方法。
〔条項155〕
前記第1の領域の決定を:
前記第3の輪郭に関連する複数のバウンディングボックスを決定し;
前記複数のバウンディングボックスのそれぞれについて、そのバウンディングボックスが前記複数のバウンディングボックスと類似する程度を示すスコアを計算し;
閾値類似性値未満のスコアを有する、前記複数のバウンディングボックスのサブセットを識別し;
識別されたサブセットに基づいて前記第1の領域を決定することによって行うことを含む、
条項148に記載の方法。
〔条項156〕
前記第1のオブジェクトが第1の人であり;
前記第2のオブジェクトが第2の人であり;
前記第2の深さは、前記第1の人および前記第2の人の一方または両方のほぼ頭部の高さに対応する、
条項148に記載の方法。
空間の少なくとも一部のトップビュー深さ画像を生成するように構成されたセンサーと;
前記センサーに通信上結合されたセンサー・クライアントとを有するシステムであって、前記センサー・クライアントは、
前記センサーによって生成された前記トップビュー深さ画像の一組のフレームを受領し;
前記一組のフレームのうちの第1のフレームにおいて:
輪郭検出アルゴリズムを用いて初期輪郭を検出し;
前記初期輪郭内のピクセルの数に基づいて、前記初期輪郭が複数の輪郭にセグメント分割されるべきであると判断し;
前記初期輪郭に関連する初期領域内で、第1の輪郭および第2の輪郭を検出し;
前記第1の輪郭に関連する第1の領域を、第1のオブジェクトの第1のピクセル位置に関連付け;
前記第2の輪郭に関連する第2の領域を、第2のオブジェクトの第2のピクセル位置に関連付けるように構成されている、
システム。
複数のセンサーであって、各センサーは、空間の少なくとも一部のトップビュー画像を生成するように構成されている、センサーと;
前記複数のセンサーに通信上結合された追跡サブシステムとを有するシステムであって、前記追跡サブシステムは:
前記複数のセンサーのうちの少なくとも1つによって生成されたトップビュー画像を使用してある時間期間にわたって、前記空間における第1のオブジェクトの第1のグローバル位置を、前記第1のオブジェクトに関連する第1の輪郭のピクセル座標に基づいて追跡する段階と;
前記複数のセンサーのうちの少なくとも1つによって生成されたトップビュー画像を使用して前記時間期間にわたって、前記空間における第2のオブジェクトの第2のグローバル位置を、前記第2のオブジェクトに関連する第2の輪郭のピクセル座標に基づいて追跡する段階と;
前記時間期間内のある時刻に対応する第1のタイムスタンプにおいて、前記第1のオブジェクトと前記第2のオブジェクトとの間の衝突事象を検出する段階であって、前記衝突事象は、前記第1の追跡される位置が前記第2の追跡される位置の閾値距離以内にあることに対応する、段階と;
前記衝突事象を検出した後、前記複数のセンサーのうちの第1のセンサーから第1のトップビュー画像を受領する段階であって、前記第1のトップビュー画像は前記第1のオブジェクトのトップビュー画像を含む、段階と;
前記第1のトップビュー画像に基づいて、前記第1のオブジェクトについての第1の記述子を決定する段階であって、前記第1の記述子は、前記第1の輪郭の観察可能な特性に関連付けられた少なくとも1つの値を含む、段階と;
前記第1の記述子に基づいて、前記第1のオブジェクトを前記第2のオブジェクトから区別するための基準が満たされていないことを判別する段階であって、前記基準は、前記衝突事象に関連する時間区間の間に、前記第1の記述子の第1の値と前記第2のオブジェクトに関連する第2の記述子の第2の値との間の差がある最小値より小さい場合に満たされない、段階と;
前記基準が満たされていないことを判別することに応答して、前記第1の輪郭についての第3の記述子を決定する段階であって、前記第3の記述子は、トップビュー画像においてオブジェクトを識別するように構成された人工ニューラルネットワークによって生成された値を含む、段階と;
前記第3の記述子に基づいて、あらかじめ定義された識別子の集合からの第1の識別子が前記第1のオブジェクトに対応することを判別する段階とを実行するように構成されている、
システム。
〔条項159〕
前記追跡サブシステムは:
前記第1の記述子に基づいて、前記第1のオブジェクトを前記第2のオブジェクトから区別するための前記基準が満たされていることを判別する段階であって、前記基準は、前記第1の記述子の前記第1の値と前記第2の記述子の前記第2の値との間の差が前記最小値以上である場合に満たされる、段階と;
前記第1の記述子に基づいて、あらかじめ定義された識別子の前記集合からの前記第1の識別子を識別する段階と;
前記第1の識別子を前記第1のオブジェクトに関連付ける段階とを実行するように構成されている、
条項158に記載のシステム。
〔条項160〕
前記追跡サブシステムは、前記第1の識別子が前記第1のオブジェクトに対応することを判別することを:
あらかじめ定義された識別子の前記集合の各要素について、前記第1の識別子の値とあらかじめ定義された識別子の値における差の絶対値を計算する段階と;
前記第1の識別子を、最も小さい値をもつ計算された絶対値に関連付けられたあらかじめ定義された識別子として決定する段階によって行うように構成されている、
条項158に記載のシステム。
〔条項161〕
前記追跡サブシステムは、前記第1の記述子を決定することを:
テクスチャー演算子を使用して前記第1の輪郭についての初期データ・ベクトルを計算する段階と;
主成分分析を用いて、前記第1の記述子の前記第1の記述子に含めるべき、前記初期データ・ベクトルの一部を選択する段階によって行うように構成されている、
条項158に記載のシステム。
〔条項162〕
前記第1の記述子を決定するために使用される処理コアの第1の数は、前記人工ニューラルネットワークを使用して前記第3の記述子を決定するために使用される処理コアの第2の数よりも少ない、条項158に記載のシステム。
〔条項163〕
前記あらかじめ定義された識別子の集合は、前記第1のオブジェクトの前記第1の識別子と前記第2のオブジェクトの第2の識別子を含み;
前記追跡サブシステムはさらに:
前記時間期間の前の第1の初期時間期間の間に:
前記第1のオブジェクトの第1の高さに関連する第1の高さ記述子、前記第1の輪郭の形状に関連する第1の輪郭記述子、および前記第1の輪郭についての前記人工ニューラルネットワークによって生成された第1のベクトルに対応する第1のアンカー記述子を決定する段階と;
前記第1の高さ記述子、第1の輪郭記述子、および第1のアンカー記述子を前記第1の識別子に関連付ける段階とを実行し;
前記時間期間の前の第2の初期時間期間の間に:
前記第2のオブジェクトの第2の高さに関連する第2の高さ記述子、前記第2の輪郭の形状に関連する第2の輪郭記述子、および前記第2の輪郭についての前記人工ニューラルネットワークによって生成された第2のベクトルに対応する第2のアンカー記述子を決定する段階と;
前記第2の高さ記述子、第2の輪郭記述子、および第2のアンカー記述子を前記第1の識別子に関連付ける段階とを実行するように構成されている、
条項158に記載のシステム。
〔条項164〕
前記第1の記述子が、前記第1のオブジェクトの高さを含み;
前記追跡サブシステムがさらに:
前記第1の記述子に基づいて、前記第1のオブジェクトを前記第2のオブジェクトから区別するための前記基準が満たされていることを判別する段階であって、前記基準は、前記第1の記述子の前記第1の値と前記第2の記述子の前記第2の値との間の差が前記最小値以上である場合に満たされる、段階と;
前記高さが前記第1の高さ記述子の閾値範囲以内であることを判別することに応答して、前記第1のオブジェクトが前記第1の記述子に関連付けられていることを判別する段階と;
前記第1のオブジェクトが前記第1の記述子に関連付けられていることを判別することに応答して、前記第1のオブジェクトを前記第1の識別子に関連付ける段階とを実行するように構成されている、
条項163に記載のシステム。
〔条項165〕
前記衝突事象は、前記複数のセンサーのうち第1のセンサーからの第1のトップビュー画像フレームにおいて、前記第1の輪郭が前記第2の輪郭とマージすることに対応し、
前記追跡サブシステムはさらに:
前記衝突事象を検出することに応答して、少なくとも前記第1の輪郭と第2の輪郭がマージされなくなるまで、前記複数のセンサーのうちの前記第1のセンサーから前記トップビュー画像フレームを受領し;
前記第1の輪郭と第2の輪郭がマージされなくなった後、前記第1のオブジェクト識別アルゴリズムを使用して、前記第1のオブジェクトについての前記第1の記述子を決定するように構成されている、
条項158に記載のシステム。
〔条項166〕
複数のセンサーのうちの少なくとも1つによって生成されたトップビュー画像を使用してある時間期間にわたって、前記空間における第1のオブジェクトの第1のグローバル位置を、前記第1のオブジェクトに関連する第1の輪郭のピクセル座標に基づいて追跡する段階であって、前記複数のセンサーの各センサーは、空間の少なくとも一部のトップビュー画像を生成するように構成されている、段階と;
前記複数のセンサーのうちの少なくとも1つによって生成されたトップビュー画像を使用して前記時間期間にわたって、前記空間における第2のオブジェクトの第2のグローバル位置を、前記第2のオブジェクトに関連する第2の輪郭のピクセル座標に基づいて追跡する段階と;
前記時間期間内のある時刻に対応する第1のタイムスタンプにおいて、前記第1のオブジェクトと前記第2のオブジェクトとの間の衝突事象を検出する段階であって、前記衝突事象は、前記第1の追跡される位置が前記第2の追跡される位置の閾値距離以内にあることに対応する、段階と;
前記衝突事象を検出した後、前記複数のセンサーのうちの第1のセンサーから第1のトップビュー画像を受領する段階であって、前記第1のトップビュー画像は前記第1のオブジェクトのトップビュー画像を含む、段階と;
前記第1のトップビュー画像に基づいて、前記第1のオブジェクトについての第1の記述子を決定する段階であって、前記第1の記述子は、前記第1の輪郭の観察可能な特性に関連付けられた少なくとも1つの値を含む、段階と;
前記第1の記述子に基づいて、前記第1のオブジェクトを前記第2のオブジェクトから区別するための基準が満たされていないことを判別する段階であって、前記基準は、前記衝突事象に関連する時間区間の間に、前記第1の記述子の第1の値と前記第2のオブジェクトに関連する第2の記述子の第2の値との間の差がある最小値より小さい場合に満たされない、段階と;
前記基準が満たされていないことを判別することに応答して、前記第1の輪郭についての第3の記述子を決定する段階であって、前記第3の記述子は、トップビュー画像においてオブジェクトを識別するように構成された人工ニューラルネットワークによって生成された値を含む、段階と;
前記第3の記述子に基づいて、あらかじめ定義された識別子の集合からの第1の識別子が前記第1のオブジェクトに対応することを判別する段階とを含む、
方法。
〔条項167〕
前記第1の記述子に基づいて、前記第1のオブジェクトを前記第2のオブジェクトから区別するための前記基準が満たされていることを判別する段階であって、前記基準は、前記第1の記述子の前記第1の値と前記第2の記述子の前記第2の値との間の差が前記最小値以上である場合に満たされる、段階と;
前記第1の記述子に基づいて、あらかじめ定義された識別子の前記集合からの前記第1の識別子を識別する段階と;
前記第1の識別子を前記第1のオブジェクトに関連付ける段階とをさらに含む、
条項166に記載の方法。
〔条項168〕
前記第1の識別子が前記第1のオブジェクトに対応することを判別することを:
あらかじめ定義された識別子の前記集合の各要素について、前記第1の識別子の値とあらかじめ定義された識別子の値における差の絶対値を計算する段階と;
前記第1の識別子を、最も小さい値をもつ計算された絶対値に関連付けられたあらかじめ定義された識別子として決定する段階によって行うことをさらに含む、
条項166に記載の方法。
〔条項169〕
前記第1の記述子を決定することを:
テクスチャー演算子を使用して前記第1の輪郭についての初期データ・ベクトルを計算する段階と;
主成分分析を用いて、前記第1の記述子の前記第1の記述子に含めるべき、前記初期データ・ベクトルの一部を選択する段階によって行うことをさらに含む、
条項158に記載の方法。
〔条項170〕
前記あらかじめ定義された識別子の集合は、前記第1のオブジェクトの前記第1の識別子と前記第2のオブジェクトの第2の識別子を含み;
当該方法はさらに:
前記時間期間の前の第1の初期時間期間の間に:
前記第1のオブジェクトの第1の高さに関連する第1の高さ記述子、前記第1の輪郭の形状に関連する第1の輪郭記述子、および前記第1の輪郭についての前記人工ニューラルネットワークによって生成された第1のベクトルに対応する第1のアンカー記述子を決定する段階と;
前記第1の高さ記述子、第1の輪郭記述子、および第1のアンカー記述子を前記第1の識別子に関連付ける段階とを実行し;
前記時間期間の前の第2の初期時間期間の間に:
前記第2のオブジェクトの第2の高さに関連する第2の高さ記述子、前記第2の輪郭の形状に関連する第2の輪郭記述子、および前記第2の輪郭についての前記人工ニューラルネットワークによって生成された第2のベクトルに対応する第2のアンカー記述子を決定する段階と;
前記第2の高さ記述子、第2の輪郭記述子、および第2のアンカー記述子を前記第1の識別子に関連付ける段階とをさらに含む、
条項166に記載の方法。
〔条項171〕
前記第1の記述子が、前記第1のオブジェクトの高さを含み;
当該方法がさらに:
前記第1の記述子に基づいて、前記第1のオブジェクトを前記第2のオブジェクトから区別するための前記基準が満たされていることを判別する段階であって、前記基準は、前記第1の記述子の前記第1の値と前記第2の記述子の前記第2の値との間の差が前記最小値以上である場合に満たされる、段階と;
前記高さが前記第1の高さ記述子の閾値範囲以内であることを判別することに応答して、前記第1のオブジェクトが前記第1の記述子に関連付けられていることを判別する段階と;
前記第1のオブジェクトが前記第1の記述子に関連付けられていることを判別することに応答して、前記第1のオブジェクトを前記第1の識別子に関連付ける段階とをさらに含む、
条項170に記載の方法。
〔条項172〕
前記衝突事象は、前記複数のセンサーのうち第1のセンサーからの第1のトップビュー画像フレームにおいて、前記第1の輪郭が前記第2の輪郭とマージすることに対応し、
当該方法はさらに:
前記衝突事象を検出することに応答して、少なくとも前記第1の輪郭と第2の輪郭がマージされなくなるまで、前記複数のセンサーのうちの前記第1のセンサーから前記トップビュー画像フレームを受領し;
前記第1の輪郭と第2の輪郭がマージされなくなった後、前記第1のオブジェクト識別アルゴリズムを使用して、前記第1のオブジェクトについての前記第1の記述子を決定することをさらに含む、
条項166に記載の方法。
〔条項173〕
複数のセンサーに通信上結合された追跡サブシステムであって、前記複数のセンサーの各センサーは、空間の少なくとも一部のトップビュー画像を生成するように構成されており、当該追跡サブシステムは:
前記複数のセンサーのうちの少なくとも1つによって生成されたトップビュー画像を使用してある時間期間にわたって、前記空間における第1のオブジェクトの第1のグローバル位置を、前記第1のオブジェクトに関連する第1の輪郭のピクセル座標に基づいて追跡する段階と;
前記複数のセンサーのうちの少なくとも1つによって生成されたトップビュー画像を使用して前記時間期間にわたって、前記空間における第2のオブジェクトの第2のグローバル位置を、前記第2のオブジェクトに関連する第2の輪郭のピクセル座標に基づいて追跡する段階と;
前記時間期間内のある時刻に対応する第1のタイムスタンプにおいて、前記第1のオブジェクトと前記第2のオブジェクトとの間の衝突事象を検出する段階であって、前記衝突事象は、前記第1の追跡される位置が前記第2の追跡される位置の閾値距離以内にあることに対応する、段階と;
前記衝突事象を検出した後、前記複数のセンサーのうちの第1のセンサーから第1のトップビュー画像を受領する段階であって、前記第1のトップビュー画像は前記第1のオブジェクトのトップビュー画像を含む、段階と;
前記第1のトップビュー画像に基づいて、前記第1のオブジェクトについての第1の記述子を決定する段階であって、前記第1の記述子は、前記第1の輪郭の観察可能な特性に関連付けられた少なくとも1つの値を含む、段階と;
前記第1の記述子に基づいて、前記第1のオブジェクトを前記第2のオブジェクトから区別するための基準が満たされていないことを判別する段階であって、前記基準は、前記衝突事象に関連する時間区間の間に、前記第1の記述子の第1の値と前記第2のオブジェクトに関連する第2の記述子の第2の値との間の差がある最小値より小さい場合に満たされない、段階と;
前記基準が満たされていないことを判別することに応答して、前記第1の輪郭についての第3の記述子を決定する段階であって、前記第3の記述子は、トップビュー画像においてオブジェクトを識別するように構成された人工ニューラルネットワークによって生成された値を含む、段階と;
前記第3の記述子に基づいて、あらかじめ定義された識別子の集合からの第1の識別子が前記第1のオブジェクトに対応することを判別する段階とを実行するように構成されている、
追跡サブシステム。
〔条項174〕
前記第1の記述子に基づいて、前記第1のオブジェクトを前記第2のオブジェクトから区別するための前記基準が満たされていることを判別する段階であって、前記基準は、前記第1の記述子の前記第1の値と前記第2の記述子の前記第2の値との間の差が前記最小値以上である場合に満たされる、段階と;
前記第1の記述子に基づいて、あらかじめ定義された識別子の前記集合からの前記第1の識別子を識別する段階と;
前記第1の識別子を前記第1のオブジェクトに関連付ける段階とを実行するようにさらに構成されている、
条項173に記載の追跡サブシステム。
〔条項175〕
前記第1の識別子が前記第1のオブジェクトに対応することを判別することを:
あらかじめ定義された識別子の前記集合の各要素について、前記第1の識別子の値とあらかじめ定義された識別子の値における差の絶対値を計算する段階と;
前記第1の識別子を、最も小さい値をもつ計算された絶対値に関連付けられたあらかじめ定義された識別子として決定する段階によって行うようにさらに構成されている、
条項173に記載の追跡サブシステム。
〔条項176〕
前記第1の記述子を決定することを:
テクスチャー演算子を使用して前記第1の輪郭についての初期データ・ベクトルを計算する段階と;
主成分分析を用いて、前記第1の記述子の前記第1の記述子に含めるべき、前記初期データ・ベクトルの一部を選択する段階によって行うようにさらに構成されている、
条項173に記載の追跡サブシステム。
〔条項177〕
前記あらかじめ定義された識別子の集合は、前記第1のオブジェクトの前記第1の識別子と前記第2のオブジェクトの第2の識別子を含み;
前記追跡サブシステムはさらに:
前記時間期間の前の第1の初期時間期間の間に:
前記第1のオブジェクトの第1の高さに関連する第1の高さ記述子、前記第1の輪郭の形状に関連する第1の輪郭記述子、および前記第1の輪郭についての前記人工ニューラルネットワークによって生成された第1のベクトルに対応する第1のアンカー記述子を決定する段階と;
前記第1の高さ記述子、第1の輪郭記述子、および第1のアンカー記述子を前記第1の識別子に関連付ける段階とを実行し;
前記時間期間の前の第2の初期時間期間の間に:
前記第2のオブジェクトの第2の高さに関連する第2の高さ記述子、前記第2の輪郭の形状に関連する第2の輪郭記述子、および前記第2の輪郭についての前記人工ニューラルネットワークによって生成された第2のベクトルに対応する第2のアンカー記述子を決定する段階と;
前記第2の高さ記述子、第2の輪郭記述子、および第2のアンカー記述子を前記第1の識別子に関連付ける段階とを実行するように構成されている、
条項173に記載の追跡サブシステム。
複数のセンサーであって、各センサーは、空間の少なくとも一部のトップビュー画像を生成するように構成されている、センサーと、
前記複数のセンサーに通信上結合された追跡サブシステムとを有するシステムであって、前記追跡サブシステムは:
前記複数のセンサーによって生成されたトップビュー画像を受領する段階と;
前記複数のセンサーによって生成された前記トップビュー画像の少なくとも一部を使用して前記空間における第1のオブジェクトおよび一つまたは複数の他のオブジェクトを追跡する段階と;
追跡される第1のオブジェクトの識別子が前記第1のオブジェクトに関連する確率が閾値確率値未満であることに少なくとも基づいて、追跡される第1のオブジェクトの再識別が必要であることを判別する段階と;
追跡される第1のオブジェクトの再識別が必要であることを判別することに応答して、追跡される第1のオブジェクトについての候補識別子を決定する段階であって、前記候補識別子は、すべての追跡されるオブジェクトの識別子のサブセットを含み、前記サブセットは、追跡される第1のオブジェクトの動きの履歴および追跡される第1のオブジェクトの、前記空間における前記一つまたは複数の他の追跡されるオブジェクトとの相互作用に基づく、追跡される第1のオブジェクトの可能な識別子を含む、段階と;
前記複数のセンサーのうちの第1のセンサーから、前記第1のオブジェクトの第1のトップビュー画像を受領する段階と;
前記第1のトップビュー画像に基づいて、前記第1のオブジェクトについての第1の記述子を決定する段階であって、前記第1の記述子は、前記第1のオブジェクトに関連する前記第1の輪郭の特性に関連する少なくとも1つの値を含む、段階と;
前記第1の記述子を、前記第1のオブジェクトについて決定された前記候補識別子に関連するあらかじめ決定された記述子の集合と比較する段階と;
前記比較の結果に基づいて、前記第1のオブジェクトについての更新された識別子を決定する段階であって、前記更新された識別子は、前記あらかじめ決定された記述子であって第1の記述子値の閾値範囲以内の値を有するものである、段階と;
前記更新された識別子を前記第1のオブジェクトに割り当てる段階とを実行するように構成されている、
システム。
〔条項179〕
前記第1の記述子は、前記フレーム内の前記第1のオブジェクトの特性に関連する第1のデータ・ベクトルを含み;
前記あらかじめ決定された記述子のそれぞれは、対応するあらかじめ決定されたデータ・ベクトルを含み;
前記追跡サブシステムはさらに:
前記第1のデータ・ベクトルと前記あらかじめ決定されたデータ・ベクトルのそれぞれとの間の第1の余弦類似性値を計算することによって、前記第1の記述子を、前記候補識別子に関連する前記あらかじめ決定された記述子のそれぞれと比較する段階と;
前記更新された識別子を、1に最も近い前記第1の余弦類似性値に対応する候補識別子として決定する段階とを実行するように構成されている、
条項178に記載のシステム。
〔条項180〕
前記追跡サブシステムは、前記第1の余弦類似性値のそれぞれが閾値類似性値未満であることを判別することに応答して:
前記一つまたは複数の他のオブジェクトのそれぞれについて第2の記述子値を決定する段階であって、各第2の記述子値が第2のデータ・ベクトルを含む、段階と;
前記第2のデータ・ベクトルのそれぞれと前記あらかじめ決定された記述子値のそれぞれとの間の第2の余弦類似性値を決定する段階と;
前記第1および第2の余弦類似性値に基づいて、前記第1のオブジェクトおよび前記他のオブジェクトのそれぞれについて、第2の更新された識別子を決定する段階とを実行するようにさらに構成されている、
条項179に記載のシステム。
〔条項181〕
前記記述子は、前記第1のトップビュー画像の一部に基づいて決定され、該一部は、前記第1のセンサーによって対象とされる全視野の中央サブ領域を含むあらかじめ定義された視野に対応する、条項178に記載のシステム。
〔条項182〕
前記第1のオブジェクトが第1の人であり;
前記第1のトップビュー画像は、深さ画像であり、前記深さ画像は、前記第1のセンサーとは異なる深さでの画像データを含み;
前記追跡サブシステムは、前記第1のトップビュー画像内の関心領域に基づいて前記記述子を決定するようにさらに構成され、前記関心領域は、前記第1の人の頭部に関連する深さに対応する前記画像データを含む、
条項177に記載のシステム。
〔条項183〕
前記追跡サブシステムは、追跡される第1のオブジェクトの再識別が必要であることを判別する前に、前記候補識別子に関連する更新されたあらかじめ決定された記述子を周期的に決定するようにさらに構成される、条項177に記載のシステム。
〔条項184〕
前記追跡サブシステムは、さらに:
前記更新されたあらかじめ決定された記述子を決定することに応答して、第1の更新されたあらかじめ決定された記述子が、対応するあらかじめ決定された記述子から、少なくとも閾値量だけ異なることを判別する段階と;
前記更新された記述子と、対応する以前のあらかじめ決定された記述子との両方を保存する段階とを実行するように構成されている、
条項183に記載のシステム。
〔条項185〕
複数のセンサーによって生成されたトップビュー画像を受領する段階であって、前記複数のセンサーの各センサーは、空間の少なくとも一部のトップビュー画像を生成するように構成されている、段階と;
前記複数のセンサーによって生成された前記トップビュー画像の少なくとも一部を使用して前記空間における第1のオブジェクトおよび一つまたは複数の他のオブジェクトを追跡する段階と;
追跡される第1のオブジェクトの識別子が前記第1のオブジェクトに関連する確率が閾値確率値未満であることに少なくとも基づいて、追跡される第1のオブジェクトの再識別が必要であることを判別する段階と;
追跡される第1のオブジェクトの再識別が必要であることを判別することに応答して、追跡される第1のオブジェクトについての候補識別子を決定する段階であって、前記候補識別子は、すべての追跡されるオブジェクトの識別子のサブセットを含み、前記サブセットは、追跡される第1のオブジェクトの動きの履歴および追跡される第1のオブジェクトの、前記空間における前記一つまたは複数の他の追跡されるオブジェクトとの相互作用に基づく、追跡される第1のオブジェクトの可能な識別子を含む、段階と;
前記複数のセンサーのうちの第1のセンサーから、前記第1のオブジェクトの第1のトップビュー画像を受領する段階と;
前記第1のトップビュー画像に基づいて、前記第1のオブジェクトについての第1の記述子を決定する段階であって、前記第1の記述子は、前記第1のオブジェクトに関連する前記第1の輪郭の特性に関連する少なくとも1つの値を含む、段階と;
前記第1の記述子を、前記第1のオブジェクトについて決定された前記候補識別子に関連するあらかじめ決定された記述子の集合と比較する段階と;
前記比較の結果に基づいて、前記第1のオブジェクトについての更新された識別子を決定する段階であって、前記更新された識別子は、前記あらかじめ決定された記述子であって第1の記述子値の閾値範囲以内の値を有するものである、段階と;
前記更新された識別子を前記第1のオブジェクトに割り当てる段階とを含む、
方法。
〔条項186〕
前記第1の記述子は、前記フレーム内の前記第1のオブジェクトの特性に関連する第1のデータ・ベクトルを含み;
前記あらかじめ決定された記述子のそれぞれは、対応するあらかじめ決定されたデータ・ベクトルを含み;
当該方法はさらに:
前記第1のデータ・ベクトルと前記あらかじめ決定されたデータ・ベクトルのそれぞれとの間の第1の余弦類似性値を計算することによって、前記第1の記述子を、前記候補識別子に関連する前記あらかじめ決定された記述子のそれぞれと比較する段階と;
前記更新された識別子を、1に最も近い前記第1の余弦類似性値に対応する候補識別子として決定する段階とをさらに含む、
条項185に記載の方法。
〔条項187〕
前記第1の余弦類似性値のそれぞれが閾値類似性値未満であることを判別することに応答して:
前記一つまたは複数の他のオブジェクトのそれぞれについて第2の記述子値を決定する段階であって、各第2の記述子値が第2のデータ・ベクトルを含む、段階と;
前記第2のデータ・ベクトルのそれぞれと前記あらかじめ決定された記述子値のそれぞれとの間の第2の余弦類似性値を決定する段階と;
前記第1および第2の余弦類似性値に基づいて、前記第1のオブジェクトおよび前記他のオブジェクトのそれぞれについて、第2の更新された識別子を決定する段階とを実行することをさらに含む、
条項186に記載の方法。
〔条項188〕
前記記述子を、前記第1のトップビュー画像の一部に基づいて決定し、該一部は、前記第1のセンサーによって対象とされる全視野の中央サブ領域を含むあらかじめ定義された視野に対応する、条項185に記載の方法。
〔条項189〕
前記第1のオブジェクトが第1の人であり;
前記第1のトップビュー画像は、深さ画像であり、前記深さ画像は、前記第1のセンサーとは異なる深さでの画像データを含み;
当該方法は、前記第1のトップビュー画像内の関心領域に基づいて前記記述子を決定することをさらに含み、前記関心領域は、前記第1の人の頭部に関連する深さに対応する前記画像データを含む、
条項185に記載の方法。
〔条項190〕
追跡される第1のオブジェクトの再識別が必要であることを判別する前に、前記候補識別子に関連する更新されたあらかじめ決定された記述子を周期的に決定することをさらに含む、条項185に記載の方法。
〔条項191〕
前記更新されたあらかじめ決定された記述子を決定することに応答して、第1の更新されたあらかじめ決定された記述子が、対応するあらかじめ決定された記述子から、少なくとも閾値量だけ異なることを判別する段階と;
前記更新された記述子と、対応する以前のあらかじめ決定された記述子との両方を保存する段階とをさらに含む、
条項190に記載の方法。
〔条項192〕
複数のセンサーに通信上結合された追跡サブシステムであって、前記複数のセンサーの各センサーは、空間の少なくとも一部のトップビュー画像を生成するように構成されており、当該追跡サブシステムは:
前記複数のセンサーによって生成されたトップビュー画像を受領する段階と;
前記複数のセンサーによって生成された前記トップビュー画像の少なくとも一部を使用して前記空間における第1のオブジェクトおよび一つまたは複数の他のオブジェクトを追跡する段階と;
追跡される第1のオブジェクトの識別子が前記第1のオブジェクトに関連する確率が閾値確率値未満であることに少なくとも基づいて、追跡される第1のオブジェクトの再識別が必要であることを判別する段階と;
追跡される第1のオブジェクトの再識別が必要であることを判別することに応答して、追跡される第1のオブジェクトについての候補識別子を決定する段階であって、前記候補識別子は、すべての追跡されるオブジェクトの識別子のサブセットを含み、前記サブセットは、追跡される第1のオブジェクトの動きの履歴および追跡される第1のオブジェクトの、前記空間における前記一つまたは複数の他の追跡されるオブジェクトとの相互作用に基づく、追跡される第1のオブジェクトの可能な識別子を含む、段階と;
前記複数のセンサーのうちの第1のセンサーから、前記第1のオブジェクトの第1のトップビュー画像を受領する段階と;
前記第1のトップビュー画像に基づいて、前記第1のオブジェクトについての第1の記述子を決定する段階であって、前記第1の記述子は、前記第1のオブジェクトに関連する前記第1の輪郭の特性に関連する少なくとも1つの値を含む、段階と;
前記第1の記述子を、前記第1のオブジェクトについて決定された前記候補識別子に関連するあらかじめ決定された記述子の集合と比較する段階と;
前記比較の結果に基づいて、前記第1のオブジェクトについての更新された識別子を決定する段階であって、前記更新された識別子は、前記あらかじめ決定された記述子であって第1の記述子値の閾値範囲以内の値を有するものである、段階と;
前記更新された識別子を前記第1のオブジェクトに割り当てる段階とを実行するように構成されている、
追跡サブシステム。
〔条項193〕
前記第1の記述子は、前記フレーム内の前記第1のオブジェクトの特性に関連する第1のデータ・ベクトルを含み;
前記あらかじめ決定された記述子のそれぞれは、対応するあらかじめ決定されたデータ・ベクトルを含み;
前記追跡サブシステムはさらに:
前記第1のデータ・ベクトルと前記あらかじめ決定されたデータ・ベクトルのそれぞれとの間の第1の余弦類似性値を計算することによって、前記第1の記述子を、前記候補識別子に関連する前記あらかじめ決定された記述子のそれぞれと比較する段階と;
前記更新された識別子を、1に最も近い前記第1の余弦類似性値に対応する候補識別子として決定する段階とを実行するように構成されている、
条項192に記載の追跡サブシステム。
〔条項194〕
前記第1の余弦類似性値のそれぞれが閾値類似性値未満であることを判別することに応答して:
前記一つまたは複数の他のオブジェクトのそれぞれについて第2の記述子値を決定する段階であって、各第2の記述子値が第2のデータ・ベクトルを含む、段階と;
前記第2のデータ・ベクトルのそれぞれと前記あらかじめ決定された記述子値のそれぞれとの間の第2の余弦類似性値を決定する段階と;
前記第1および第2の余弦類似性値に基づいて、前記第1のオブジェクトおよび前記他のオブジェクトのそれぞれについて、第2の更新された識別子を決定する段階とを実行するようにさらに構成されている、
条項193に記載の追跡サブシステム。
〔条項195〕
前記記述子は、前記第1のトップビュー画像の一部に基づいて決定され、該一部は、前記第1のセンサーによって対象とされる全視野の中央サブ領域を含むあらかじめ定義された視野に対応する、条項192に記載の追跡サブシステム。
〔条項196〕
前記第1のオブジェクトが第1の人であり;
前記第1のトップビュー画像は、深さ画像であり、前記深さ画像は、前記第1のセンサーとは異なる深さでの画像データを含み;
前記追跡サブシステムは、前記第1のトップビュー画像内の関心領域に基づいて前記記述子を決定するようにさらに構成され、前記関心領域は、前記第1の人の頭部に関連する深さに対応する前記画像データを含む、
条項192に記載の追跡サブシステム。
〔条項197〕
追跡される第1のオブジェクトの再識別が必要であることを判別する前に、前記候補識別子に関連する更新されたあらかじめ決定された記述子を周期的に決定するようにさらに構成される、条項192に記載の追跡サブシステム。
空間内のラックの上方に配置されたセンサーであって、前記センサーは、前記ラックを含む空間の少なくとも一部のトップビュー深さ画像を生成するように構成されている、センサーと;
複数の重量センサーであって、各重量センサーは、前記ラックの棚に格納された対応する品目に関連付けられる、重量センサーと;
前記イメージセンサーおよび前記重量センサーに結合された追跡サブシステムとを有するシステムであって、前記追跡サブシステムは:
前記センサーによって生成された前記トップビュー深さ画像のフレームを含む画像フィードを受領する段階と;
前記重量センサーから重量測定値を受領する段階と;
人の一部分が前記ラックに隣接したゾーンに入ることと、第1の重量センサーに関連付けられた第1の棚から第1の品目が取り除かれることに関連する重量変化との一方または両方に関連する事象を検出する段階と;
前記事象を検出することに応答して、第1の人および第2の人が、検出された事象と関連する可能性があることを、前記第1の人と前記ラックとの間の第1の距離、前記第2の人と前記ラックとの間の第2の距離、および前記第1の人と前記第2の人との間の人間(じんかん)距離のうちの一つまたは複数に基づいて、判別する段階と;
前記第1の人および第2の人が検出された事象と関連する可能性があることを判別することに応答して、前記センサーによって生成された第1のトップビュー画像フレームにアクセスする段階であって、該第1のトップビュー画像フレームは、前記人の前記一部分が前記ラックに隣接する前記ゾーンに入るときのタイムスタンプに対応するものである、段階と;
前記第1のトップビュー画像において、前記第1の人に対応する第1の初期輪郭を識別する段階と;
前記第1の初期輪郭を第1の深さから第2の深さまで、前記第1の深さから前記第2の深さまでの複数の逐次的な反復工程において拡張する段階であって、前記第1の深さは前記第2の深さより前記センサーに近く、前記第1の初期輪郭は:
前記第1の深さにおける第1の輪郭を検出し;
前記第2の深さにおける第2の輪郭を検出し;
前記第1および第2の輪郭に基づく拡張した輪郭を生成することによって拡張される、段階と;
拡張された輪郭が前記ラックに隣接した前記ゾーンに入ることを判別する段階と;
前記第1の輪郭が前記ラックに隣接する前記ゾーンに入ることを判別した後、前記第1の輪郭が前記ラックに隣接する前記ゾーンに入るまでの反復工程の第1の数を決定する段階と;
前記第1のトップビュー画像フレームにおいて、前記第2の人に対応する第2の初期輪郭を識別する段階と;
前記第2の初期輪郭を前記第1の深さから前記第2の深さまで、前記第1の深さから前記第2の深さまでの前記複数の逐次的な反復工程において拡張する段階と;
拡張後、前記第2の輪郭が前記ラックに隣接する前記ゾーンに入ることを判別する段階と;
前記第2の輪郭が前記ラックに隣接する前記ゾーンに入ることを決定した後、前記第2の輪郭が前記ラックに隣接する前記ゾーンに入るまでの反復工程の第2の数を決定する段階と;
前記第1の数が拡張の開大回数未満であり、かつ拡張の前記第2の数未満であること判別することに応答して、前記第1の品目を前記第1の人に割り当てる段階とを実行するように構成されている、
システム。
〔条項199〕
前記追跡サブシステムは、前記第1の品目を前記第1の人に割り当てた後に、さらに:
第1の輪郭の腕セグメントを前記ラックに投影し;
投影された腕セグメントが前記ラック上の前記第1の品目の位置に向けられているかどうかを判定する段階とを実行するように構成されている、
条項198に記載のシステム。
〔条項200〕
前記追跡サブシステムは、前記投影された腕セグメントが前記第1の品目の位置に向けられていないことを判別することに応答して、前記第1の品目を前記第1の人から割り当てを解除するようにさらに構成される、条項199に記載のシステム。
〔条項201〕
前記追跡サブシステムはさらに:
拡張された第1の輪郭および拡張された第2の輪郭がマージすることを判別する段階と;
第1および第2の拡張された輪郭がマージすることを判別することに応答して、人工ニューラルネットワーク・ベースの姿勢推定アルゴリズムを用いて、前記第1の人についての第1の姿勢および前記第2の人についての第2の姿勢を決定する段階と;
前記第1の姿勢が前記第1の品目との相互作用に対応すると判断することに応答して、前記第1の品目を前記第1の人に割り当てる段階とを実行するように構成されている、
条項198に記載のシステム。
〔条項202〕
前記追跡サブシステムはさらに:
反復工程の前記第1の数が反復工程の最大回数を超えていることを判別する段階であって、反復工程の最大回数は、前記第1の人の高さの50%に対応する深さに到達するために必要とされる反復工程の数に対応する、段階と;
反復工程の前記第1の数が反復工程の最大回数を超えていることを判別することに応答して、人工ニューラルネットワーク・ベースの姿勢推定アルゴリズムを用いて、前記第1の人についての第1の姿勢と前記第2の人についての第2の姿勢を決定する段階と;
前記第1の姿勢が前記第1の品目との相互作用に対応すると判断することに応答して、前記第1の品目を前記第1の人に割り当てる段階とを実行するように構成されている、
条項198に記載のシステム。
〔条項203〕
前記追跡サブシステムは、前記第1の人および前記第2の人が前記検出された事象に関連する可能性があることを、前記第1の人および前記ラックの第1の相対配向、および前記第2の人および前記ラックの第2の相対配向に基づいて判別するようにさらに構成される、条項198に記載のシステム。
〔条項204〕
前記センサーは、前記空間の天井に取り付けられる、条項198に記載のシステム。
〔条項205〕
センサーによって生成されたトップビュー画像のフレームを含む画像フィードを受領する段階であって、前記センサーは、空間においてラックの上方に空間内に位置され、前記ラックを含む空間の少なくとも一部分のトップビュー画像を生成するように構成されている、段階と;
前記ラックの棚から第1の品目が取り除かれたときに重量の変化を測定するように構成された重量センサーからの重量測定値を受領する段階と;
人の一部分が前記ラックに隣接するゾーンに入ること、および前記重量センサーに関連付けられている第1の棚から除去される前記第1の品目に関連する重量の変化の一方または両方に関連する事象を検出する段階と;
前記事象の検出に応答して、第1の人および第2の人が検出された事象と関連しうることを、前記第1の人と前記ラックとの間の第1の距離、前記第2の人と前記ラックとの間の第2の距離、および前記第1の人と前記第2の人との間の人間(じんかん)距離のうちの一つまたは複数に基づいて判別する段階と;
前記第1の人および第2の人が検出された事象に関連しうることと判別したことに応答して、前記センサーによって生成された第1のトップビュー画像フレームにアクセスする段階であって、前記第1のトップビュー画像フレームは、前記人の前記一部分が前記ラックに隣接する前記ゾーンに入る時のタイムスタンプに対応する、段階と;
前記第1のトップビュー画像において、前記第1の人に対応する第1の初期輪郭を識別する段階と;
前記第1の初期輪郭を、第1の深さから第2の深さまの複数の逐次的な反復工程において、第1の深さから第2の深さまで拡張する段階であって、前記第1の深さが前記第2の深さより前記センサーに近く、前記第1の初期輪郭は:
前記第1の深さにおける第1の輪郭を検出し;
前記第2の深さにおける第2の輪郭を検出し;
前記第1および第2の輪郭に基づいて拡張された輪郭を生成することによって拡張される、段階と;
拡張された輪郭が前記ラックに隣接した前記ゾーンに入ることを判別する段階と;
前記第1の輪郭が前記ラックに隣接する前記ゾーンに入ることを判別した後、前記第1の輪郭が前記ラックに隣接する前記ゾーンに入るまでの反復工程の第1の数を決定する段階と;
前記第1のトップビュー画像フレームにおいて、前記第2の人に対応する第2の初期輪郭を識別する段階と;
前記第2の初期輪郭を前記第1の深さから前記第2の深さまで、前記第1の深さから前記第2の深さまでの前記複数の逐次的な反復工程において拡張する段階と;
拡張後、前記第2の輪郭が前記ラックに隣接する前記ゾーンに入ることを判別する段階と;
前記第2の輪郭が前記ラックに隣接する前記ゾーンに入ることを決定した後、前記第2の輪郭が前記ラックに隣接する前記ゾーンに入るまでの反復工程の第2の数を決定する段階と;
前記第1の数が拡張の開大回数未満であり、かつ拡張の前記第2の数未満であること判別することに応答して、前記第1の品目を前記第1の人に割り当てる段階とを含む、
方法。
〔条項206〕
前記第1の品目を前記第1の人に割り当てた後に、さらに:
前記第1の輪郭の腕セグメントを前記ラックに投影し;
投影された腕セグメントが前記ラック上の前記第1の品目の位置に向けられているかどうかを判定する段階とを含む、
条項205に記載の方法。
〔条項207〕
前記投影された腕セグメントが前記第1の品目の位置に向けられていないことを判別することに応答して、前記第1の品目を前記第1の人から割り当てを解除する段階をさらに含む、条項206に記載の方法。
〔条項208〕
拡張された第1の輪郭および拡張された第2の輪郭がマージすることを判別する段階と;
第1および第2の拡張された輪郭がマージすることを判別することに応答して、人工ニューラルネットワーク・ベースの姿勢推定アルゴリズムを用いて、前記第1の人についての第1の姿勢および前記第2の人についての第2の姿勢を決定する段階と;
前記第1の姿勢が前記第1の品目との相互作用に対応すると判断することに応答して、前記第1の品目を前記第1の人に割り当てる段階とをさらに含む、
条項205に記載の方法。
〔条項209〕
反復工程の前記第1の数が反復工程の最大回数を超えていることを判別する段階であって、反復工程の最大回数は、前記第1の人の高さの50%に対応する深さに到達するために必要とされる反復工程の数に対応する、段階と;
反復工程の前記第1の数が反復工程の最大回数を超えていることを判別することに応答して、人工ニューラルネットワーク・ベースの姿勢推定アルゴリズムを用いて、前記第1の人についての第1の姿勢と前記第2の人についての第2の姿勢を決定する段階と;
前記第1の姿勢が前記第1の品目との相互作用に対応すると判断することに応答して、前記第1の品目を前記第1の人に割り当てる段階とをさらに含む、
条項205に記載の方法。
〔条項210〕
前記第1の人および前記第2の人が前記検出された事象に関連する可能性があることを、前記第1の人および前記ラックの第1の相対配向、および前記第2の人および前記ラックの第2の相対配向に基づいて判別する段階をさらに含む、条項205に記載の方法。
〔条項211〕
前記センサーは、前記空間の天井に取り付けられる、条項205に記載の方法。
〔条項212〕
イメージセンサーおよび重量センサーに結合された追跡サブシステムであって、前記イメージセンサーは空間内のラックの上方に配置されており、前記ラックを含む前記空間の少なくとも一部のトップビュー画像を生成するように構成されており、前記重量センサーは、前記ラックの棚から第1の品目が除去されるときに重量の変化を測定するように構成されており、当該追跡サブシステムは:
前記センサーによって生成された前記トップビュー画像のフレームを含む画像フィードを受領する段階と;
前記重量センサーから重量測定値を受領する段階と;
人の一部分が前記ラックに隣接したゾーンに入ることと、前記重量センサーに関連付けられた第1の棚から前記第1の品目が取り除かれることに関連する重量変化との一方または両方に関連する事象を検出する段階と;
前記事象を検出することに応答して、第1の人および第2の人が、検出された事象と関連する可能性があることを、前記第1の人と前記ラックとの間の第1の距離、前記第2の人と前記ラックとの間の第2の距離、および前記第1の人と前記第2の人との間の人間(じんかん)距離のうちの一つまたは複数に基づいて、判別する段階と;
前記第1の人および第2の人が検出された事象と関連する可能性があることを判別することに応答して、前記センサーによって生成された第1のトップビュー画像フレームにアクセスする段階であって、該第1のトップビュー画像フレームは、前記人の前記一部分が前記ラックに隣接する前記ゾーンに入るときのタイムスタンプに対応するものである、段階と;
前記第1のトップビュー画像において、前記第1の人に対応する第1の初期輪郭を識別する段階と;
前記第1の初期輪郭を第1の深さから第2の深さまで、前記第1の深さから前記第2の深さまでの複数の逐次的な反復工程において拡張する段階であって、前記第1の深さは前記第2の深さより前記センサーに近く、前記第1の初期輪郭は:
前記第1の深さにおける第1の輪郭を検出し;
前記第2の深さにおける第2の輪郭を検出し;
前記第1および第2の輪郭に基づく拡張した輪郭を生成することによって拡張される、段階と;
拡張された輪郭が前記ラックに隣接した前記ゾーンに入ることを判別する段階と;
前記第1の輪郭が前記ラックに隣接する前記ゾーンに入ることを判別した後、前記第1の輪郭が前記ラックに隣接する前記ゾーンに入るまでの反復工程の第1の数を決定する段階と;
前記第1のトップビュー画像フレームにおいて、前記第2の人に対応する第2の初期輪郭を識別する段階と;
前記第2の初期輪郭を前記第1の深さから前記第2の深さまで、前記第1の深さから前記第2の深さまでの前記複数の逐次的な反復工程において拡張する段階と;
拡張後、前記第2の輪郭が前記ラックに隣接する前記ゾーンに入ることを判別する段階と;
前記第2の輪郭が前記ラックに隣接する前記ゾーンに入ることを決定した後、前記第2の輪郭が前記ラックに隣接する前記ゾーンに入るまでの反復工程の第2の数を決定する段階と;
前記第1の数が拡張の開大回数未満であり、かつ拡張の前記第2の数未満であること判別することに応答して、前記第1の品目を前記第1の人に割り当てる段階とを実行するように構成されている、
追跡サブシステム。
〔条項213〕
前記第1の品目を前記第1の人に割り当てた後に、さらに:
第1の輪郭の腕セグメントを前記ラックに投影し;
投影された腕セグメントが前記ラック上の前記第1の品目の位置に向けられているかどうかを判定する段階とを実行するように構成されている、
条項228に記載の追跡サブシステム。
〔条項214〕
前記投影された腕セグメントが前記第1の品目の位置に向けられていないことを判別することに応答して、前記第1の品目を前記第1の人から割り当てを解除するようにさらに構成される、条項213に記載の追跡サブシステム。
〔条項215〕
拡張された第1の輪郭および拡張された第2の輪郭がマージすることを判別する段階と;
第1および第2の拡張された輪郭がマージすることを判別することに応答して、人工ニューラルネットワーク・ベースの姿勢推定アルゴリズムを用いて、前記第1の人についての第1の姿勢および前記第2の人についての第2の姿勢を決定する段階と;
前記第1の姿勢が前記第1の品目との相互作用に対応すると判断することに応答して、前記第1の品目を前記第1の人に割り当てる段階とを実行するようにさらに構成されている、
条項213に記載の追跡サブシステム。
〔条項216〕
反復工程の前記第1の数が反復工程の最大回数を超えていることを判別する段階であって、反復工程の最大回数は、前記第1の人の高さの50%に対応する深さに到達するために必要とされる反復工程の数に対応する、段階と;
反復工程の前記第1の数が反復工程の最大回数を超えていることを判別することに応答して、人工ニューラルネットワーク・ベースの姿勢推定アルゴリズムを用いて、前記第1の人についての第1の姿勢と前記第2の人についての第2の姿勢を決定する段階と;
前記第1の姿勢が前記第1の品目との相互作用に対応すると判断することに応答して、前記第1の品目を前記第1の人に割り当てる段階とを実行するように構成されている、
条項213に記載の追跡サブシステム。
〔条項217〕
前記第1の人および前記第2の人が前記検出された事象に関連する可能性があることを、前記第1の人および前記ラックの第1の相対配向、および前記第2の人および前記ラックの第2の相対配向に基づいて判別するようにさらに構成されている、条項212に記載の追跡サブシステム。
少なくとも第1のセンサーおよび第2のセンサーを含む複数のセンサーであって、各センサーは空間の少なくとも一部分のトップビュー画像を生成するように構成されている、複数のセンサーと;
前記複数のセンサーに通信上結合された追跡サブシステムとを有するシステムであって、前記追跡サブシステムは:
前記複数のセンサーによって生成されたトップビュー画像のフレームを受領する段階と;
受領されたフレームの少なくとも一部に基づいて、第1の識別子に関連付けられた第1のオブジェクトを追跡する段階と;
受領されたフレームの少なくとも一部に基づいて、第2の識別子に関連付けられた第2のオブジェクトを追跡する段階と;
受領されたフレームの少なくとも一部に基づいて、第3の識別子に関連付けられた第3のオブジェクトを追跡する段階と;
前記第1のオブジェクトが前記第2のオブジェクトの閾値距離以内にあることを検出する段階と;
前記第1のオブジェクトが前記第2のオブジェクトの閾値距離以内にあることを検出したことに応答して:
前記第1のオブジェクトが前記第2のオブジェクトと識別子を入れ替えた第1の確率を決定する段階;
前記第1のオブジェクトが前記第2のオブジェクトと識別子を入れ替えた前記第1の確率に基づいて、前記第1のオブジェクトについての第1の候補リストを更新する段階であって、更新された第1の候補リストは、前記第1のオブジェクトが前記第1の識別子と関連付けられていた第2の確率と、前記第1のオブジェクトが前記第2の識別子と関連付けられている第3の確率とを含む、段階;
前記第1のオブジェクトが前記第2のオブジェクトと識別子を入れ替えた前記第1の確率に基づいて、前記第2のオブジェクトについての第2の候補リストを更新する段階であって、更新された第2の候補リストは、前記第2のオブジェクトが前記第1の識別子と関連付けられる第4の確率と、前記第2のオブジェクトが前記第2の識別子と関連付けられる第5の確率とを含む、段階を実行する段階と;
前記第1および第2の候補リストを更新した後、前記第1のオブジェクトが前記第3のオブジェクトの閾値距離以内にあることを検出する段階と;
前記第1のオブジェクトが前記第3のオブジェクトの閾値距離以内にあることを検出したことに応答して:
前記第1のオブジェクトが前記第3のオブジェクトと識別子を入れ替えた第6の確率を決定する段階;
前記第1のオブジェクトが前記第3のオブジェクトと識別子を入れ替えた第6の確率に基づいて、前記第1のオブジェクトについての前記第1の候補リストをさらに更新する段階であって、該さらに更新された第1の候補リストは、前記第1のオブジェクトが前記第1の識別子と関連付けられる更新された第2の確率、前記第1のオブジェクトが前記第2の識別子と関連付けられる更新された第3の確率、および前記第1のオブジェクトが前記第3の識別子と関連付けられる第7の確率を含む、段階;および
前記第1のオブジェクトが前記第3のオブジェクトの閾値距離以内にあることを検出する前に、前記第1のオブジェクトが前記第3のオブジェクトと識別子を入れ替えた前記第6の確率および前記第1の候補リストに基づいて、前記第3のオブジェクトについての第3の候補リストを更新する段階であって、更新された第3の候補リストは、前記第3のオブジェクトが前記第1の識別子に関連する第8の確率、前記第3のオブジェクトが前記第2の識別子に関連する第9の確率、および前記第3のオブジェクトが前記第3の識別子に関連する第10の確率を含む、段階を実行する段階とを実行するように構成されている、
システム。
〔条項219〕
前記追跡サブシステムは、前記第1のオブジェクトが前記第2のオブジェクトの前記閾値距離以内にあることを検出することを:
前記第1のセンサーによって生成された前記トップビュー画像内のピクセルの位置を前記空間における物理的座標に関連付ける第1のホモグラフィーおよび前記第2のセンサーによって生成された前記トップビュー画像内のピクセルの位置を前記空間における物理的座標に関連付ける第2のホモグラフィーを使用して、前記空間における前記第1のオブジェクトの第1の物理的座標を決定し;
前記第1のホモグラフィーおよび第2のホモグラフィーを使用して、前記第2のオブジェクトの第2の物理的座標を決定し;
前記第1の物理的座標と前記第2の物理的座標との間の距離を計算することによって行うように構成されている、
条項218に記載のシステム。
〔条項220〕
前記追跡サブシステムは、あらかじめ定義された確率値にアクセスすることによって、前記第1のオブジェクトが前記第2のオブジェクトと素性を入れ替えた前記第1の確率を決定するように構成される、条項218に記載のシステム。
〔条項221〕
前記追跡サブシステムは、少なくとも部分的に、前記第1のオブジェクトと前記第2のオブジェクトとの間の距離に基づいて、前記第1のオブジェクトが素性を入れ替えた前記第1の確率を決定するように構成される、条項218に記載のシステム。
〔条項222〕
前記追跡サブシステムは:
前記第1のオブジェクトと前記第2のオブジェクトの間の相対配向を決定し;
少なくとも部分的には前記相対配向に基づいて、前記第1のオブジェクトが素性を入れ替えた前記第1の確率を決定するように構成されている、
条項218に記載のシステム。
〔条項223〕
前記追跡サブシステムはさらに:
前記第1の候補リストの最も高い値の確率が閾値未満であることを判別する段階と;
前記第1の候補リストの最も高い確率が前記閾値未満であることを判別するのに応答して、前記第1の輪郭に関連する特徴を抽出する段階であって、該特徴は前記第1の輪郭の観察可能な特徴を含む、段階と;
前記第1のオブジェクトに関連する可能性の高い前記第1、第2、および第3の識別子のサブセットを決定する段階であって、前記サブセットは、閾値確率値よりも大きい確率を有する前記第1の候補リストからの識別子を含む、段階と;
抽出された特徴を、前記サブセットの各識別子に関連するオブジェクトについて事前に決定されたあらかじめ定義された特徴のセットと比較することによって、前記第1のオブジェクトについての更新された第1の識別子を決定する段階と;
前記第1の候補リストを更新して、前記更新された第1の識別子を含める段階とを実行するように構成されている、
条項218に記載のシステム。
〔条項224〕
前記第1のオブジェクトが第1の人であり;
前記第2のオブジェクトが第2の人であり;
前記第3のオブジェクトが第3の人であり;
前記追跡サブシステムはさらに:
前記第1の人が前記空間を出た確率に関連する組み合わされた退出確率を:
前記第1のオブジェクトが前記空間を出る場合、前記更新された第2の確率;
前記第2のオブジェクトが前記空間を出る場合、前記第4の確率;および
前記第3のオブジェクトが前記空間を出る場合、前記第8の確率を
加算することによって決定する段階と;
前記組み合わされた退出確率が閾値確率より大きいことを判別することに応答して、前記第1の人の装置上で閲覧可能な退出通知を送信する段階であって、前記退出通知は、前記第1の人が前記空間を出たと判定されたことを示す、段階とを実行するように構成されている、
条項218に記載のシステム。
〔条項225〕
前記追跡システムは:
第1のタイムスタンプにおいて、前記第1および第2のオブジェクトがもはや検出されないことを判別する段階であって、前記第1および第2のオブジェクトがもはや検出されないことを判別することは、前記第1のオブジェクトに関連する第1の輪郭が前記第2のオブジェクトに関連する第2の輪郭とマージされることを判別することを含む、段階と;
前記第1のタイムスタンプに続く第2のタイムスタンプにおいて、前記第1のオブジェクトおよび第2のオブジェクトが検出されたことを判別する段階と;
検出された第1および第2のオブジェクトについて前記第1および第2の候補リストを更新する段階とを実行するように構成される、
条項218に記載のシステム。
〔条項226〕
複数のセンサーによって生成されたトップビュー画像のフレームを受領する段階であって、前記複数のセンサーは、少なくとも第1のセンサーおよび第2のセンサーを含み、各センサーは空間の少なくとも一部分のトップビュー画像を生成するように構成されている、段階と;
受領されたフレームの少なくとも一部に基づいて、第1の識別子に関連付けられた第1のオブジェクトを追跡する段階と;
受領されたフレームの少なくとも一部に基づいて、第2の識別子に関連付けられた第2のオブジェクトを追跡する段階と;
受領されたフレームの少なくとも一部に基づいて、第3の識別子に関連付けられた第3のオブジェクトを追跡する段階と;
前記第1のオブジェクトが前記第2のオブジェクトの閾値距離以内にあることを検出する段階と;
前記第1のオブジェクトが前記第2のオブジェクトの閾値距離以内にあることを検出したことに応答して:
前記第1のオブジェクトが前記第2のオブジェクトと識別子を入れ替えた第1の確率を決定する段階;
前記第1のオブジェクトが前記第2のオブジェクトと識別子を入れ替えた前記第1の確率に基づいて、前記第1のオブジェクトについての第1の候補リストを更新する段階であって、更新された第1の候補リストは、前記第1のオブジェクトが前記第1の識別子と関連付けられている第2の確率と、前記第1のオブジェクトが前記第2の識別子と関連付けられている第3の確率とを含む、段階;
前記第1のオブジェクトが前記第2のオブジェクトと識別子を入れ替えた前記第1の確率に基づいて、前記第2のオブジェクトについての第2の候補リストを更新する段階であって、更新された第2の候補リストは、前記第2のオブジェクトが前記第1の識別子と関連付けられる第4の確率と、前記第2のオブジェクトが前記第2の識別子と関連付けられる第5の確率とを含む、段階を実行する段階と;
前記第1および第2の候補リストを更新した後、前記第1のオブジェクトが前記第3のオブジェクトの閾値距離以内にあることを検出する段階と;
前記第1のオブジェクトが前記第3のオブジェクトの閾値距離以内にあることを検出したことに応答して:
前記第1のオブジェクトが前記第3のオブジェクトと識別子を入れ替えた第6の確率を決定する段階;
前記第1のオブジェクトが前記第3のオブジェクトと識別子を入れ替えた第6の確率に基づいて、前記第1のオブジェクトについての前記第1の候補リストをさらに更新する段階であって、該さらに更新された第1の候補リストは、前記第1のオブジェクトが前記第1の識別子と関連付けられる更新された第2の確率、前記第1のオブジェクトが前記第2の識別子と関連付けられる更新された第3の確率、および前記第1のオブジェクトが前記第3の識別子と関連付けられる第7の確率を含む、段階;および
前記第1のオブジェクトが前記第3のオブジェクトの閾値距離以内にあることを検出する前に、前記第1のオブジェクトが前記第3のオブジェクトと識別子を入れ替えた前記第6の確率および前記第1の候補リストに基づいて、前記第3のオブジェクトについての第3の候補リストを更新する段階であって、更新された第3の候補リストは、前記第3のオブジェクトが前記第1の識別子に関連する第8の確率、前記第3のオブジェクトが前記第2の識別子に関連する第9の確率、および前記第3のオブジェクトが前記第3の識別子に関連する第10の確率を含む、段階を実行する段階とを実行するように構成されている、
方法。
〔条項227〕
前記第1のオブジェクトが前記第2のオブジェクトの前記閾値距離以内にあることを検出することを:
前記第1のセンサーによって生成された前記トップビュー画像内のピクセルの位置を前記空間における物理的座標に関連付ける第1のホモグラフィーおよび前記第2のセンサーによって生成された前記トップビュー画像内のピクセルの位置を前記空間における物理的座標に関連付ける第2のホモグラフィーを使用して、前記空間における前記第1のオブジェクトの第1の物理的座標を決定し;
前記第1のホモグラフィーおよび第2のホモグラフィーを使用して、前記第2のオブジェクトの第2の物理的座標を決定し;
前記第1の物理的座標と前記第2の物理的座標との間の距離を計算することによって行ことをさらに含む、
条項226に記載の方法。
〔条項228〕
あらかじめ定義された確率値にアクセスすることによって、前記第1のオブジェクトが前記第2のオブジェクトと素性を入れ替えた前記第1の確率を決定することをさらに含む、条項225に記載の方法。
〔条項229〕
少なくとも部分的に、前記第1のオブジェクトと前記第2のオブジェクトとの間の距離に基づいて、前記第1のオブジェクトが素性を入れ替えた前記第1の確率を決定することをさらに含む、条項226に記載のシステム。
〔条項230〕
前記第1のオブジェクトと前記第2のオブジェクトの間の相対配向を決定し;
少なくとも部分的には前記相対配向に基づいて、前記第1のオブジェクトが素性を入れ替えた前記第1の確率を決定することをさらに含む、
条項226に記載の方法。
〔条項231〕
前記第1の候補リストの最も高い値の確率が閾値未満であることを判別する段階と;
前記第1の候補リストの最も高い確率が前記閾値未満であることを判別するのに応答して、前記第1の輪郭に関連する特徴を抽出する段階であって、該特徴は前記第1の輪郭の観察可能な特徴を含む、段階と;
前記第1のオブジェクトに関連する可能性の高い前記第1、第2、および第3の識別子のサブセットを決定する段階であって、前記サブセットは、閾値確率値よりも大きい確率を有する前記第1の候補リストからの識別子を含む、段階と;
抽出された特徴を、前記サブセットの各識別子に関連するオブジェクトについて事前に決定されたあらかじめ定義された特徴のセットと比較することによって、前記第1のオブジェクトについての更新された第1の識別子を決定する段階と;
前記第1の候補リストを更新して、前記更新された第1の識別子を含める段階とをさらに含む、
条項226に記載の方法。
〔条項232〕
前記第1のオブジェクトが第1の人であり;
前記第2のオブジェクトが第2の人であり;
前記第3のオブジェクトが第3の人であり;
当該方法はさらに:
前記第1の人が前記空間を出た確率に関連する組み合わされた退出確率を:
前記第1のオブジェクトが前記空間を出る場合、前記更新された第2の確率;
前記第2のオブジェクトが前記空間を出る場合、前記第4の確率;および
前記第3のオブジェクトが前記空間を出る場合、前記第8の確率を
加算することによって決定する段階と;
前記組み合わされた退出確率が閾値確率より大きいことを判別することに応答して、前記第1の人の装置上で閲覧可能な退出通知を送信する段階であって、前記退出通知は、前記第1の人が前記空間を出たと判定されたことを示す、段階とを含む、
条項226に記載の方法。
〔条項233〕
第1のタイムスタンプにおいて、前記第1および第2のオブジェクトがもはや検出されないことを判別する段階であって、前記第1および第2のオブジェクトがもはや検出されないことを判別することは、前記第1のオブジェクトに関連する第1の輪郭が前記第2のオブジェクトに関連する第2の輪郭とマージされることを判別することを含む、段階と;
前記第1のタイムスタンプに続く第2のタイムスタンプにおいて、前記第1のオブジェクトおよび第2のオブジェクトが検出されることを判別する段階と;
検出された第1および第2のオブジェクトについて前記第1および第2の候補リストを更新する段階とをさらに含む、
条項226に記載の方法。
〔条項234〕
少なくとも第1のセンサーおよび第2のセンサーを含む複数のセンサーに通信上結合された追跡サブシステムであって、各センサーは空間の少なくとも一部分のトップビュー画像を生成するように構成されおり、当該追跡サブシステムは:
前記複数のセンサーによって生成されたトップビュー画像のフレームを受領する段階と;
受領されたフレームの少なくとも一部に基づいて、第1の識別子に関連付けられた第1のオブジェクトを追跡する段階と;
受領されたフレームの少なくとも一部に基づいて、第2の識別子に関連付けられた第2のオブジェクトを追跡する段階と;
受領されたフレームの少なくとも一部に基づいて、第3の識別子に関連付けられた第3のオブジェクトを追跡する段階と;
前記第1のオブジェクトが前記第2のオブジェクトの閾値距離以内にあることを検出する段階と;
前記第1のオブジェクトが前記第2のオブジェクトの閾値距離以内にあることを検出したことに応答して:
前記第1のオブジェクトが前記第2のオブジェクトと識別子を入れ替えた第1の確率を決定する段階;
前記第1のオブジェクトが前記第2のオブジェクトと識別子を入れ替えた前記第1の確率に基づいて、前記第1のオブジェクトについての第1の候補リストを更新する段階であって、更新された第1の候補リストは、前記第1のオブジェクトが前記第1の識別子と関連付けられていた第2の確率と、前記第1のオブジェクトが前記第2の識別子と関連付けられている第3の確率とを含む、段階;
前記第1のオブジェクトが前記第2のオブジェクトと識別子を入れ替えた前記第1の確率に基づいて、前記第2のオブジェクトについての第2の候補リストを更新する段階であって、更新された第2の候補リストは、前記第2のオブジェクトが前記第1の識別子と関連付けられる第4の確率と、前記第2のオブジェクトが前記第2の識別子と関連付けられる第5の確率とを含む、段階を実行する段階と;
前記第1および第2の候補リストを更新した後、前記第1のオブジェクトが前記第3のオブジェクトの閾値距離以内にあることを検出する段階と;
前記第1のオブジェクトが前記第3のオブジェクトの閾値距離以内にあることを検出したことに応答して:
前記第1のオブジェクトが前記第3のオブジェクトと識別子を入れ替えた第6の確率を決定する段階;
前記第1のオブジェクトが前記第3のオブジェクトと識別子を入れ替えた第6の確率に基づいて、前記第1のオブジェクトについての前記第1の候補リストをさらに更新する段階であって、該さらに更新された第1の候補リストは、前記第1のオブジェクトが前記第1の識別子と関連付けられる更新された第2の確率、前記第1のオブジェクトが前記第2の識別子と関連付けられる更新された第3の確率、および前記第1のオブジェクトが前記第3の識別子と関連付けられる第7の確率を含む、段階;および
前記第1のオブジェクトが前記第3のオブジェクトの閾値距離以内にあることを検出する前に、前記第1のオブジェクトが前記第3のオブジェクトと識別子を入れ替えた前記第6の確率および前記第1の候補リストに基づいて、前記第3のオブジェクトについての第3の候補リストを更新する段階であって、更新された第3の候補リストは、前記第3のオブジェクトが前記第1の識別子に関連する第8の確率、前記第3のオブジェクトが前記第2の識別子に関連する第9の確率、および前記第3のオブジェクトが前記第3の識別子に関連する第10の確率を含む、段階を実行する段階とを実行するように構成されている、
追跡サブシステム。
〔条項235〕
前記第1のオブジェクトが前記第2のオブジェクトの前記閾値距離以内にあることを検出することを:
前記第1のセンサーによって生成された前記トップビュー画像内のピクセルの位置を前記空間における物理的座標に関連付ける第1のホモグラフィーおよび前記第2のセンサーによって生成された前記トップビュー画像内のピクセルの位置を前記空間における物理的座標に関連付ける第2のホモグラフィーを使用して、前記空間における前記第1のオブジェクトの第1の物理的座標を決定し;
前記第1のホモグラフィーおよび第2のホモグラフィーを使用して、前記第2のオブジェクトの第2の物理的座標を決定し;
前記第1の物理的座標と前記第2の物理的座標との間の距離を計算することによって行うようにさらに構成されている、
条項218に記載の追跡サブシステム。
〔条項236〕
前記第1のオブジェクトと前記第2のオブジェクトの間の相対配向を決定し;
少なくとも部分的には前記相対配向に基づいて、前記第1のオブジェクトが素性を入れ替えた前記第1の確率を決定するようにさらに構成されている、
条項234に記載の追跡サブシステム。
〔条項237〕
前記第1のオブジェクトが第1の人であり;
前記第2のオブジェクトが第2の人であり;
前記第3のオブジェクトが第3の人であり;
前記追跡サブシステムはさらに:
前記第1の人が前記空間を出た確率に関連する組み合わされた退出確率を:
前記第1のオブジェクトが前記空間を出る場合、前記更新された第2の確率;
前記第2のオブジェクトが前記空間を出る場合、前記第4の確率;および
前記第3のオブジェクトが前記空間を出る場合、前記第8の確率を
加算することによって決定する段階と;
前記組み合わされた退出確率が閾値確率より大きいことを判別することに応答して、前記第1の人の装置上で閲覧可能な退出通知を送信する段階であって、前記退出通知は、前記第1の人が前記空間を出たと判定されたことを示す、段階とを実行するように構成されている、
条項234に記載の追跡サブシステム。
空間内のラックの上方に配置されたセンサーであって、前記センサーは、前記ラックを含む空間の少なくとも一部のトップビュー画像を生成するように構成されている、センサーと;
複数の重量センサーであって、各重量センサーは、前記ラックの棚に格納された対応する品目に関連付けられる、重量センサーと;
前記イメージセンサーおよび前記重量センサーに結合された追跡サブシステムとを有するシステムであって、前記追跡サブシステムは:
前記センサーによって生成された前記トップビュー画像のフレームを含む画像フィードを受領する段階と;
前記重量センサーから重量測定値を受領する段階と;
人の一部が前記ラックに隣接するゾーンに入ることと、第1の重量センサーに関連付けられた第1の棚から第1の品目が取り除かれることに関連する重量変化に関連する事象を検出する段階と;
前記事象の検出に応答して、第1の人および第2の人が検出された事象と関連する可能性があることを、前記第1の人と前記ラックとの間の第1の距離、前記第2の人と前記ラックとの間の第2の距離、および前記第1の人と前記第2の人との間の人間(じんかん)距離のうちの一つまたは複数に基づいて判別する段階と;
前記第1の人および前記第2の人が検出された事象に関連する可能性があることを判別することに応答して、前記センサーによって生成されたトップビュー画像のバッファ・フレームを記憶する段階であって、前記バッファ・フレームは、前記人の前記一部分が前記ラックに隣接する前記ゾーンを出ることに続く時間期間に対応する、段階と;
記憶されたフレームにおいて、前記第1の品目のピクセル位置を追跡する段階と;
前記第1の品目の追跡されたピクセル位置に基づいて、前記時間期間の第1の部分の間に前記空間を動かされる際の前記第1の品目の速度を計算する段階と;
前記第1の品目の計算された速度に基づいて、前記第1の品目の速度が閾値速度よりも小さい第1のフレームを識別する段階であって、前記第1のフレームにおける前記第1の品目の追跡されたピクセル位置は前記第1の品目の第1の停止位置に対応する、段階と;
前記第1のフレームにおける前記第1の品目の前記第1の停止位置が、前記第2の人に関連する第2のピクセル位置よりも、前記第1の人に関連する第1のピクセル位置に近いことを判別する段階と;
前記第1の停止位置が前記第1のピクセル位置により近いと判別することに応答して、前記第1の品目を前記第1の人に割り当てる段階とを実行するように構成されている、
システム。
〔条項239〕
前記追跡サブシステムは、粒子フィルタ追跡器を使用して、前記第1の品目の前記ピクセル位置を追跡するようにさらに構成される、条項238に記載のシステム。
〔条項240〕
前記追跡サブシステムは、さらに、前記粒子フィルタ追跡器を用いて決定された前記第1の品目の推定された将来の位置を用いて、前記第1の品目の速度を決定するように構成される、条項239に記載のシステム。
〔条項241〕
前記追跡サブシステムは:
前記第1の停止位置が、前記第1のピクセル位置からは第1の距離離れ、前記第2のピクセル位置からは第2の距離離れていることを判別し;
前記第1の距離と前記第2の距離との間の差の絶対値が閾値距離未満であることを判別し;
前記第1の距離と前記第2の距離との間の前記差の絶対値が前記閾値距離未満であることを判別することに応答して、前記第1の品目を追跡し続け、前記品目の第2の停止位置を決定し;
前記第2の停止位置が前記第2のピクセル位置よりも前記第1のピクセル位置に近いことを判別し;
前記第2の停止位置が前記第1のピクセル位置により近いことに応答して、前記第1の品目を前記第1の人に割り当てるように構成されている、
条項238に記載のシステム。
〔条項242〕
前記第1の品目は、前記センサーによって閲覧可能な、視覚的に観察可能なタグを有しており;
前記追跡サブシステムは、前記視覚的に観察可能なタグに少なくとも部分的に基づいて、前記第1の品目を追跡するように構成される、
条項238に記載のシステム。
〔条項243〕
前記追跡サブシステムは、機械学習アルゴリズムを使用して前記第1の品目を検出するようにさらに構成され、前記機械学習アルゴリズムは、合成データを使用してトレーニングされる、条項238に記載のシステム。
〔条項244〕
前記センサーは、前記部屋の天井に取り付けられる、条項238に記載のシステム。
〔条項245〕
前記センサーによって生成された前記トップビュー画像のフレームを含む画像フィードを受領する段階であって、前記センサーは、空間内のラックの上方に配置され、前記ラックを含む空間の少なくとも一部のトップビュー画像を生成するように構成されている、段階と;
前記ラックの棚から第1の品目が取り除かれるときに重量の変化を測定するように構成された重量センサーから重量測定値を受領する段階と;
人の一部が前記ラックに隣接するゾーンに入ること、および、第1の重量センサーに関連付けられた第1の棚から前記第1の品目が取り除かれることに関連する重量変化の一方または両方に関連する事象を検出する段階と;
前記事象の検出に応答して、第1の人および第2の人が検出された事象と関連する可能性があることを、前記第1の人と前記ラックとの間の第1の距離、前記第2の人と前記ラックとの間の第2の距離、および前記第1の人と前記第2の人との間の人間(じんかん)距離のうちの一つまたは複数に基づいて判別する段階と;
前記第1の人および前記第2の人が検出された事象に関連する可能性があることを判別することに応答して、前記センサーによって生成されたトップビュー画像のバッファ・フレームを記憶する段階であって、前記バッファ・フレームは、前記人の前記一部分が前記ラックに隣接する前記ゾーンを出ることに続く時間期間に対応する、段階と;
記憶されたフレームにおいて、前記第1の品目のピクセル位置を追跡する段階と;
前記第1の品目の追跡されたピクセル位置に基づいて、前記時間期間の第1の部分の間に前記空間を動かされる際の前記第1の品目の速度を計算する段階と;
前記第1の品目の計算された速度に基づいて、前記第1の品目の速度が閾値速度よりも小さい第1のフレームを識別する段階であって、前記第1のフレームにおける前記第1の品目の追跡されたピクセル位置は前記第1の品目の第1の停止位置に対応する、段階と;
前記第1のフレームにおける前記第1の品目の前記第1の停止位置が、前記第2の人に関連する第2のピクセル位置よりも、前記第1の人に関連する第1のピクセル位置に近いことを判別する段階と;
前記第1の停止位置が前記第1のピクセル位置により近いと判別することに応答して、前記第1の品目を前記第1の人に割り当てる段階とを含む、
方法。
〔条項246〕
粒子フィルタ追跡器を使用して、前記第1の品目の前記ピクセル位置を追跡することをさらに含む、条項245に記載の方法。
〔条項247〕
前記粒子フィルタ追跡器を用いて決定された前記第1の品目の推定された将来の位置を用いて、前記第1の品目の速度を決定することをさらに含む、条項246に記載の方法。
〔条項248〕
前記第1の停止位置が、前記第1のピクセル位置からは第1の距離離れ、前記第2のピクセル位置からは第2の距離離れていることを判別し;
前記第1の距離と前記第2の距離との間の差の絶対値が閾値距離未満であることを判別し;
前記第1の距離と前記第2の距離との間の前記差の絶対値が前記閾値距離未満であることを判別することに応答して、前記第1の品目を追跡し続け、前記品目の第2の停止位置を決定し;
前記第2の停止位置が前記第2のピクセル位置よりも前記第1のピクセル位置に近いことを判別し;
前記第2の停止位置が前記第1のピクセル位置により近いことに応答して、前記第1の品目を前記第1の人に割り当てることをさらに含む、
条項245に記載の方法。
〔条項249〕
前記第1の品目は、前記センサーによって閲覧可能な、視覚的に観察可能なタグを有しており;
当該方法は、前記視覚的に観察可能なタグに少なくとも部分的に基づいて、前記第1の品目を追跡することをさらに含む、
条項245に記載の方法。
〔条項250〕
機械学習アルゴリズムを使用して前記第1の品目を検出することをさらに含み、前記機械学習アルゴリズムは、合成データを使用してトレーニングされる、条項245に記載の方法。
〔条項251〕
前記センサーは、前記部屋の天井に取り付けられる、条項245に記載の方法。
〔条項252〕
イメージセンサーおよび重量センサーに結合された追跡サブシステムであって、前記イメージセンサーは、空間内のラックの上方に配置され、前記ラックを含む前記空間の少なくとも一部のトップビュー画像を生成するように構成されており、前記重量センサーは、前記ラックの棚から第1の品目が取り除かれるときに重量の変化を検出するように構成されており、前記追跡サブシステムは:
前記センサーによって生成された前記トップビュー画像のフレームを含む画像フィードを受領する段階と;
前記重量センサーから重量測定値を受領する段階と;
人の一部が前記ラックに隣接するゾーンに入ること、および、前記重量センサーに関連付けられた第1の棚から前記第1の品目が取り除かれることに関連する重量変化の一方または両方に関連する事象を検出する段階と;
前記事象の検出に応答して、第1の人および第2の人が検出された事象と関連する可能性があることを、前記第1の人と前記ラックとの間の第1の距離、前記第2の人と前記ラックとの間の第2の距離、および前記第1の人と前記第2の人との間の人間(じんかん)距離のうちの一つまたは複数に基づいて判別する段階と;
前記第1の人および前記第2の人が検出された事象に関連する可能性があることを判別することに応答して、前記センサーによって生成されたトップビュー画像のバッファ・フレームを記憶する段階であって、前記バッファ・フレームは、前記人の前記一部分が前記ラックに隣接する前記ゾーンを出ることに続く時間期間に対応する、段階と;
記憶されたフレームにおいて、前記第1の品目のピクセル位置を追跡する段階と;
前記第1の品目の追跡されたピクセル位置に基づいて、前記時間期間の第1の部分の間に前記空間を動かされる際の前記第1の品目の速度を計算する段階と;
前記第1の品目の計算された速度に基づいて、前記第1の品目の速度が閾値速度よりも小さい第1のフレームを識別する段階であって、前記第1のフレームにおける前記第1の品目の追跡されたピクセル位置は前記第1の品目の第1の停止位置に対応する、段階と;
前記第1のフレームにおける前記第1の品目の前記第1の停止位置が、前記第2の人に関連する第2のピクセル位置よりも、前記第1の人に関連する第1のピクセル位置に近いことを判別する段階と;
前記第1の停止位置が前記第1のピクセル位置により近いと判別することに応答して、前記第1の品目を前記第1の人に割り当てる段階とを実行するように構成されている、
追跡サブシステム。
〔条項253〕
粒子フィルタ追跡器を使用して、前記第1の品目の前記ピクセル位置を追跡するようにさらに構成される、条項252に記載の追跡サブシステム。
〔条項254〕
前記粒子フィルタ追跡器を用いて決定された前記第1の品目の推定された将来の位置を用いて、前記第1の品目の速度を決定するようにさらに構成されている、条項253に記載の追跡サブシステム。
〔条項255〕
前記第1の停止位置が、前記第1のピクセル位置からは第1の距離離れ、前記第2のピクセル位置からは第2の距離離れていることを判別し;
前記第1の距離と前記第2の距離との間の差の絶対値が閾値距離未満であることを判別し;
前記第1の距離と前記第2の距離との間の前記差の絶対値が前記閾値距離未満であることを判別することに応答して、前記第1の品目を追跡し続け、前記品目の第2の停止位置を決定し;
前記第2の停止位置が前記第2のピクセル位置よりも前記第1のピクセル位置に近いことを判別し;
前記第2の停止位置が前記第1のピクセル位置により近いことに応答して、前記第1の品目を前記第1の人に割り当てるようにさらに構成されている、
条項252に記載の追跡サブシステム。
〔条項256〕
前記第1の品目は、前記センサーによって閲覧可能な、視覚的に観察可能なタグを有しており;
前記追跡サブシステムは、前記視覚的に観察可能なタグに少なくとも部分的に基づいて、前記第1の品目を追跡するようにさらに構成される、
条項252に記載の追跡サブシステム。
〔条項257〕
機械学習アルゴリズムを使用して前記第1の品目を検出するようにさらに構成され、前記機械学習アルゴリズムは、合成データを使用してトレーニングされる、条項252に記載の追跡サブシステム。
空間の少なくとも第1の部分のトップビュー画像を生成するように構成された第1のセンサーと;
前記第1のセンサーに通信上結合されたセンサー・クライアントとを有するシステムであって、前記センサー・クライアントは:
初期時間区間の間に:
前記第1のセンサーによって生成された一つまたは複数の第1のトップビュー画像を受領する段階と;
前記一つまたは複数の第1のトップビュー画像において一つまたは複数の第1の輪郭を検出する段階と;
検出された第1の輪郭に対応する第1のピクセル座標を決定する段階であって、前記第1のピクセル座標は、オブジェクト追跡中に除外するべき、前記第1のセンサーによって生成された前記トップビュー画像の領域に対応する、段階とを実行し;
前記初期時間区間より後のその後の時間区間の間に:
前記第1のセンサーによって生成された第2のトップビュー画像を受領する段階と;
前記第1のトップビュー画像において第2の輪郭を検出する段階と;
検出された第2の輪郭に対応する第2のピクセル座標を決定する段階と;
前記第2のピクセル座標の少なくともある閾値割合が前記第1のピクセル座標と重複するかどうかを判定する段階と;
前記第2のピクセル座標の少なくとも前記閾値割合が前記第1のピクセル座標と重複すると判定することに応答して、前記第2の輪郭を追跡するための第1のピクセル位置を決定せず;
前記第2のピクセル座標の少なくとも前記閾値割合が前記第1のピクセル座標と重複しないと判定することに応答して、前記第2の輪郭を追跡するための前記第1のピクセル位置を決定する段階とを実行するように構成されている、
システム。
〔条項259〕
前記センサー・クライアントに通信上結合され、前記空間の少なくとも第2の部分のトップビュー画像を生成するように構成される第2のセンサーをさらに有しており、
前記センサー・クライアントは:
前記初期時間区間の間に:
前記第2のセンサーによって生成された一つまたは複数の第3のトップビュー画像を受領する段階と;
前記一つまたは複数の第3のトップビュー画像において一つまたは複数の第3の輪郭を検出する段階と;
検出された第3の輪郭に対応する第3のピクセル座標を決定する段階であって、前記第3のピクセル座標は、オブジェクト追跡中に除外するべき、前記第2のセンサーによって生成された前記トップビュー画像の領域に対応する、段階とを実行し;
前記初期時間区間より後の前記その後の時間区間の間に:
前記第2のセンサーによって生成された第4のトップビュー画像を受領する段階と;
前記第4のトップビュー画像において第4の輪郭を検出する段階と;
検出された第4の輪郭に対応する第4のピクセル座標を決定する段階と;
第4のピクセル座標の少なくともある閾値割合が前記第3のピクセル座標と重複するかどうかを判定する段階と;
前記第4のピクセル座標の少なくとも前記閾値割合が前記第3のピクセル座標と重複すると判定することに応答として、前記第4の輪郭を追跡するための第2のピクセル位置を決定し;
前記第2のピクセル座標の少なくとも前記閾値割合が前記第1のピクセル座標と重複しないと判定することに応答して、前記第4の輪郭を追跡するための前記第2のピクセル位置を決定する段階とを実行するように構成されている、
条項258に記載のシステム。
〔条項260〕
前記第4の輪郭および前記第2の輪郭は、前記空間内の同じオブジェクトに対応する、条項259に記載のシステム。
〔条項261〕
前記センサー・クライアントは、前記第2のピクセル座標の少なくとも前記閾値割合が前記第1のピクセル座標と同じであることを判別することによって、前記第2のピクセル座標の少なくとも前記閾値割合が前記第1のピクセル座標と重複すると判定するようにさらに構成される、請求項258に記載のシステム。
〔条項262〕
前記センサー・クライアントは、前記第2のピクセル座標の少なくとも前記閾値割合が、前記第1のピクセル座標と重複すると判定することを:
前記第1のピクセル位置に関連する第1の連続領域を決定し;
前記第2の輪郭に関連する第2の連続領域を決定し;
前記第2の連続領域のうち前記第1の連続領域内にある割合を計算し;
計算された割合が前記閾値割合以上であることを判別することによって行うようにさらに構成されている、
条項258に記載のシステム。
〔条項263〕
前記閾値割合が10%である、条項258に記載のシステム。
〔条項264〕
前記センサー・クライアントに通信上結合されたサーバーをさらに有しており、
前記センサー・クライアントは:
前記第2のピクセル座標の前記閾値割合が前記第1のピクセル座標と同じであることを判別することに応答して、前記第2の輪郭を追跡するための前記第1のピクセル位置を前記サーバーに送信するように構成されており、
前記サーバーは:
前記センサー・クライアントから前記第1のピクセル位置を受領する段階と;
前記第1のピクセル位置に基づいて、ホモグラフィーを用いて前記空間における対応する物理的位置を決定する段階であって、前記ホモグラフィーは、第1のセンサーによって生成された前記トップビュー画像におけるピクセル座標を、前記空間における物理的座標に関連付ける、段階と;
前記その後の時間区間の間に前記物理的位置を追跡する段階とを実行するように構成されている、
条項258に記載のシステム。
〔条項265〕
前記サーバーは:
前記センサー・クライアントから前記第1のピクセル座標を受領する段階と;
前記空間における追跡中に除外するべき物理的座標のセットを生成する段階であって、物理的座標の前記セットは、オブジェクト追跡中に除外するべき前記空間における一つまたは複数の物理的領域に対応する、段階とを実行するようにさらに構成されている、
条項264に記載のシステム。
〔条項266〕
前記初期時間区間の間、前記空間に人がいない、条項258に記載のシステム。
〔条項267〕
初期時間区間の間に:
第1のセンサーによって生成された一つまたは複数の第1のトップビュー画像を受領する段階であって、前記第1のセンサーは、空間の少なくとも第1の部分のトップビュー画像を生成するように構成されている、段階と;
前記一つまたは複数の第1のトップビュー画像において一つまたは複数の第1の輪郭を検出する段階と;
検出された第1の輪郭に対応する第1のピクセル座標を決定する段階であって、前記第1のピクセル座標は、オブジェクト追跡中に除外するべき、前記第1のセンサーによって生成された前記トップビュー画像の領域に対応する、段階とを含み;
前記初期時間区間より後のその後の時間区間の間に:
前記第1のセンサーによって生成された第2のトップビュー画像を受領する段階と;
前記第1のトップビュー画像において第2の輪郭を検出する段階と;
検出された第2の輪郭に対応する第2のピクセル座標を決定する段階と;
前記第2のピクセル座標の少なくともある閾値割合が前記第1のピクセル座標と重複するかどうかを判定する段階と;
前記第2のピクセル座標の少なくとも前記閾値割合が前記第1のピクセル座標と重複すると判定することに応答して、前記第2の輪郭を追跡するための第1のピクセル位置を決定せず;
前記第2のピクセル座標の少なくとも前記閾値割合が前記第1のピクセル座標と重複しないと判定することに応答して、前記第2の輪郭を追跡するための前記第1のピクセル位置を決定する段階とを含む、
方法。
〔条項268〕
前記初期時間区間の間に:
第2のセンサーによって生成された一つまたは複数の第3のトップビュー画像を受領する段階であって、前記第2のセンサーは、前記空間の少なくとも第2の部分のトップビュー画像を生成するように構成されている、段階と;
前記一つまたは複数の第3のトップビュー画像において一つまたは複数の第3の輪郭を検出する段階と;
検出された第3の輪郭に対応する第3のピクセル座標を決定する段階であって、前記第3のピクセル座標は、オブジェクト追跡中に除外するべき、前記第2のセンサーによって生成された前記トップビュー画像の領域に対応する、段階とを含み;
前記初期時間区間より後の前記その後の時間区間の間に:
前記第2のセンサーによって生成された第4のトップビュー画像を受領する段階と;
前記第4のトップビュー画像において第4の輪郭を検出する段階と;
検出された第4の輪郭に対応する第4のピクセル座標を決定する段階と;
前記第4のピクセル座標の少なくともある閾値割合が前記第3のピクセル座標と重複するかどうかを判定する段階と;
前記第4のピクセル座標の少なくとも前記閾値割合が前記第3のピクセル座標と重複すると判定することに応答として、前記第4の輪郭を追跡するための第2のピクセル位置を決定し;
前記第2のピクセル座標の少なくとも前記閾値割合が前記第1のピクセル座標と重複しないと判定することに応答して、前記第4の輪郭を追跡するための前記第2のピクセル位置を決定する段階とをさらに含む、
条項267に記載の方法。
〔条項269〕
前記第4の輪郭および前記第2の輪郭は、前記空間内の同じオブジェクトに対応する、条項268に記載の方法。
〔条項270〕
前記第2のピクセル座標の少なくとも前記閾値割合が前記第1のピクセル座標と同じであることを判別することによって、前記第2のピクセル座標の少なくとも前記閾値割合が前記第1のピクセル座標と重複すると判定することをさらに含む、請求項267に記載の方法。
〔条項271〕
前記第2のピクセル座標の少なくとも前記閾値割合が、前記第1のピクセル座標と重複すると判定することを:
前記第1のピクセル位置に関連する第1の連続領域を決定し;
前記第2の輪郭に関連する第2の連続領域を決定し;
前記第2の連続領域のうち前記第1の連続領域内にある割合を計算し;
計算された割合が前記閾値割合以上であることを判別することによって行うことをさらに含む、
条項267に記載の方法。
〔条項272〕
前記閾値割合が10%である、条項267に記載の方法。
〔条項273〕
前記第1のピクセル位置に基づいて、ホモグラフィーを用いて前記空間における対応する物理的位置を決定する段階であって、前記ホモグラフィーは、前記第1のセンサーによって生成された前記トップビュー画像におけるピクセル座標を、前記空間における物理的座標に関連付ける、段階と;
前記その後の時間区間の間に前記物理的位置を追跡する段階とをさらに含む、
条項267に記載の方法。
〔条項274〕
前記空間における追跡中に除外するべき物理的座標のセットを生成する段階であって、物理的座標の前記セットは、オブジェクト追跡中に除外するべき前記空間における一つまたは複数の物理的領域に対応する、段階をさらに含む、
条項273に記載の方法。
〔条項275〕
前記初期時間区間の間、前記空間に人がいない、条項267に記載の方法。
〔条項276〕
第1のセンサーに通信上結合された装置であって、前記第1のセンサーは、空間の少なくとも第1の部分のトップビュー画像を生成するように構成されており、当該装置は:
初期時間区間の間に:
前記第1のセンサーによって生成された一つまたは複数の第1のトップビュー画像を受領する段階と;
前記一つまたは複数の第1のトップビュー画像において一つまたは複数の第1の輪郭を検出する段階と;
検出された第1の輪郭に対応する第1のピクセル座標を決定する段階であって、前記第1のピクセル座標は、オブジェクト追跡中に除外するべき、前記第1のセンサーによって生成された前記トップビュー画像の領域に対応する、段階とを実行し;
前記初期時間区間より後のその後の時間区間の間に:
前記第1のセンサーによって生成された第2のトップビュー画像を受領する段階と;
前記第1のトップビュー画像において第2の輪郭を検出する段階と;
検出された第2の輪郭に対応する第2のピクセル座標を決定する段階と;
前記第2のピクセル座標の少なくともある閾値割合が前記第1のピクセル座標と重複するかどうかを判定する段階と;
前記第2のピクセル座標の少なくとも前記閾値割合が前記第1のピクセル座標と重複すると判定することに応答して、前記第2の輪郭を追跡するための第1のピクセル位置を決定せず;
前記第2のピクセル座標の少なくとも前記閾値割合が前記第1のピクセル座標と重複しないと判定することに応答して、前記第2の輪郭を追跡するための前記第1のピクセル位置を決定する段階とを実行するように構成されている、
システム。
〔条項277〕
当該装置がさらに第2のセンサーに結合されており、前記第2のセンサーは、前記空間の少なくとも第2の部分のトップビュー画像を生成するように構成されており、
当該装置は:
前記初期時間区間の間に:
前記第2のセンサーによって生成された一つまたは複数の第3のトップビュー画像を受領する段階と;
前記一つまたは複数の第3のトップビュー画像において一つまたは複数の第3の輪郭を検出する段階と;
検出された第3の輪郭に対応する第3のピクセル座標を決定する段階であって、前記第3のピクセル座標は、オブジェクト追跡中に除外するべき、前記第2のセンサーによって生成された前記トップビュー画像の領域に対応する、段階とを実行し;
前記初期時間区間より後の前記その後の時間区間の間に:
前記第2のセンサーによって生成された第4のトップビュー画像を受領する段階と;
前記第4のトップビュー画像において第4の輪郭を検出する段階であって、前記第4の輪郭および前記第2の輪郭は前記空間における同じオブジェクトに対応する、段階と;
検出された第4の輪郭に対応する第4のピクセル座標を決定する段階と;
第4のピクセル座標の少なくともある閾値割合が前記第3のピクセル座標と重複するかどうかを判定する段階と;
前記第4のピクセル座標の少なくとも前記閾値割合が前記第3のピクセル座標と重複すると判定することに応答として、前記第4の輪郭を追跡するための第2のピクセル位置を決定し;
前記第2のピクセル座標の少なくとも前記閾値割合が前記第1のピクセル座標と重複しないと判定することに応答して、前記第4の輪郭を追跡するための前記第2のピクセル位置を決定する段階とを実行するように構成されている、
条項276に記載の装置。
少なくとも第1のセンサーおよび第2のセンサーを含む複数のセンサーであって、各センサーは空間の少なくとも一部のトップビュー画像を生成するように構成されている、複数のセンサーと;
前記複数のセンサーに通信上結合された追跡サブシステムとを有するシステムであって、前記追跡サブシステムは:
前記第1のセンサーから第1の画像フィードを受領する段階であって、前記第1の画像フィードは、前記第1のセンサーによって生成されたトップビュー画像のフレームを含み、前記第1のセンサーは、前記空間内の第1の視野を有する、段階と;
前記第2のセンサーから第2の画像フィードを受領する段階であって、前記第2の画像フィードは、前記第2のセンサーによって生成されたトップビュー画像の第2のフレームを含み、前記第2のセンサーは、前記空間内の第2の視野を有し、前記第2の視野は、前記第1の視野と部分的に重複する、段階と;
第1のタイムスタンプにおいて:
前記第1の画像フィードからの第1のフレームにおいて、第1のオブジェクトに関連する第1の輪郭を検出する段階;
前記第1の輪郭のピクセル座標に基づいて、前記第1のオブジェクトの第1のピクセル位置を決定する段階;
前記第2の画像フィードからの第2のフレームにおいて、第2のオブジェクトに関連する第2の輪郭を検出する段階であって、前記第2のオブジェクトは前記第1のオブジェクトであってもなくてもよい、段階;
前記第2の輪郭のピクセル座標に基づいて、前記第2のオブジェクトの第2のピクセル位置を決定する段階;
前記第1のピクセル位置に基づいて、前記第1のセンサーによって生成された前記トップビュー画像におけるピクセル座標を前記空間における物理的座標に関連付ける第1のホモグラフィーを使用して、前記第1の輪郭からの前記第1のオブジェクトの第1の物理的位置を決定する段階;
前記第2のピクセル位置に基づいて、前記第2のセンサーによって生成された前記トップビュー画像におけるピクセル座標を前記空間における物理的座標に関連付ける第2のホモグラフィーを使用して、前記第2のオブジェクトの第2の物理的位置を決定する段階;
前記第1の物理的位置と第2の物理的位置が互いの閾値距離以内にあるかどうかを判定する段階;
前記第1の物理的位置と第2の物理的位置が互いの閾値距離以内にあると判定することに応答して:
前記第1のオブジェクトの前記第1の物理的位置と前記第2のオブジェクトの前記第2の物理的位置が同じオブジェクトの、位置に対応しており、前記第1のオブジェクトと前記第2のオブジェクトが同じオブジェクトであることを判別し;
前記第1の物理的位置および前記第2の物理的位置に基づいて、前記空間における同じオブジェクトのグローバル位置を決定する段階;および
前記第1の物理的位置および前記第2の物理的位置が、互いの前記閾値距離以内にないと判定することに応答して:
前記第1のオブジェクトの前記第1の物理的位置および前記第2のオブジェクトの前記第2の物理的位置が、異なるオブジェクトの、位置に対応し、前記第1のオブジェクトおよび前記第2のオブジェクトが異なるオブジェクトであることを判別し;
前記第1の物理的位置に基づいて、前記空間における前記第1のオブジェクトの第1のグローバル位置を決定し;
前記第2の物理的位置に基づいて、前記空間における前記第2のオブジェクトの第2のグローバル位置を決定する段階を行う段階とを実行するように構成されている、
システム。
〔条項279〕
前記追跡サブシステムがさらに:
前記空間における同じオブジェクトの前記グローバル位置を、前記第1の物理的位置と前記第2の物理的位置の平均として決定するように構成されている、
条項278に記載のシステム。
〔条項280〕
前記追跡サブシステムは:
前記空間における同じオブジェクトの前記グローバル位置に基づいて、その後の時点における、同じオブジェクトのその後のグローバル位置の確率加重推定値(probability-weighted estimate)を決定し;
前記その後の時点において、前記第1のセンサーの前記第1の画像フィードおよび前記第2のセンサーの前記第2の画像フィードからはピクセル位置が利用可能でないことを判別し;
前記その後の時点において前記ピクセル位置が利用可能でないことを判別することに応答して、前記その後のグローバル位置の確率加重推定値を、前記その後の時点における同じオブジェクトの前記グローバル位置として割り当てるようにさらに構成されている、
条項279に記載のシステム。
〔条項281〕
前記追跡サブシステムは、前記グローバル位置を決定することを:
前記第1の物理的位置と前記第2の物理的位置との間の距離を決定し;
前記距離が閾値距離未満であることを判別することに応答して、前記第1の物理的位置と前記第2の物理的位置が同じ追跡されるオブジェクトに対応することを判別し;
前記第1の物理的位置と前記第2の物理的位置の平均を計算することによって行うように構成されている、
条項279に記載のシステム。
〔条項282〕
前記追跡サブシステムは、第2のタイムスタンプにおいて:
前記第1の画像フィードからの第3のフレームにおいて、前記オブジェクトに関連付けられた第3の輪郭を検出せず;
前記第3の輪郭を検出しないことに応答して、第1の粒子フィルタを用いて前記第3の輪郭についての推定されたピクセル位置を生成し;
前記第2の画像フィードからの第4のフレームにおいて、前記オブジェクトに関連する第4の輪郭を検出し;
前記第4の輪郭から前記オブジェクトの第3のピクセル位置を決定し;
前記推定されたピクセル位置および前記第3のピクセル位置に基づいて、前記空間における前記オブジェクトについての第2のグローバル位置を決定するように構成されている、
条項278に記載のシステム。
〔条項283〕
前記追跡サブシステムは、さらに、前記時間期間内の第3のタイムスタンプにおいて:
前記第1の粒子追跡器によって生成された前記推定されたピクセル位置に関連する標準偏差を決定し;
前記標準偏差が閾値より大きいことを判別すること応答して、前記第3のピクセル位置に基づいて前記空間における前記オブジェクトについての前記第2のグローバル位置を決定するように構成されている、
条項281に記載のシステム。
〔条項284〕
ある時間期間にわたって:
前記第1のフィードに基づいて、第1の粒子フィルタ追跡器を使って前記オブジェクトの前記第1のピクセル位置を追跡するように構成された第1のセンサー・クライアントであって、前記第1の粒子フィルタ追跡器は、前記時間期間の間のその後の第1のピクセル位置の確率加重推定値を生成するように構成されている、第1のセンサー・クライアントと;
前記時間期間にわたって:
前記第2のフィードに基づいて、第2の粒子フィルタ追跡器を使って前記オブジェクトの前記第2のピクセル位置を追跡するように構成された第2のセンサー・クライアントであって、前記第2の粒子フィルタ追跡器は、前記時間期間の間のその後の第2のピクセル位置の確率加重推定値を生成するように構成されている、第2のセンサー・クライアントと;
前記時間期間にわたって:
追跡された第1および第2のピクセル位置を受領し;
グローバル粒子フィルタ追跡器を使って前記グローバル位置を追跡するように構成されたマスターであって、前記グローバル粒子フィルタ追跡器は、前記時間期間の間のその後のグローバル位置の確率加重推定値を生成するように構成されている、マスターとを有する、
条項278に記載のシステム。
〔条項285〕
前記第1の視野は、前記第2の視野と10%ないし30%重複する、条項278に記載のシステム。
〔条項286〕
第1のセンサーから第1の画像フィードを受領する段階であって、前記第1のセンサーは、空間の少なくとも一部のトップビュー画像を生成するように構成されており、前記第1の画像フィードは、前記第1のセンサーによって生成されたトップビュー画像のフレームを含み、前記第1のセンサーは、前記空間内の第1の視野を有する、段階と;
前記第2のセンサーから第2の画像フィードを受領する段階であって、前記第2のセンサーは、前記空間の少なくとも一部のトップビュー画像を生成するように構成されており、前記第2の画像フィードは、前記第2のセンサーによって生成されたトップビュー画像の第2のフレームを含み、前記第2のセンサーは、前記空間内の第2の視野を有し、前記第2の視野は、前記第1の視野と部分的に重複する、段階と;
第1のタイムスタンプにおいて:
前記第1の画像フィードからの第1のフレームにおいて、第1のオブジェクトに関連する第1の輪郭を検出する段階;
前記第1の輪郭のピクセル座標に基づいて、前記第1のオブジェクトの第1のピクセル位置を決定する段階;
前記第2の画像フィードからの第2のフレームにおいて、第2のオブジェクトに関連する第2の輪郭を検出する段階であって、前記第2のオブジェクトは前記第1のオブジェクトであってもなくてもよい、段階;
前記第2の輪郭のピクセル座標に基づいて、前記第2のオブジェクトの第2のピクセル位置を決定する段階;
前記第1のピクセル位置に基づいて、前記第1のセンサーによって生成された前記トップビュー画像におけるピクセル座標を前記空間における物理的座標に関連付ける第1のホモグラフィーを使用して、前記第1の輪郭からの前記第1のオブジェクトの第1の物理的位置を決定する段階;
前記第2のピクセル位置に基づいて、前記第2のセンサーによって生成された前記トップビュー画像におけるピクセル座標を前記空間における物理的座標に関連付ける第2のホモグラフィーを使用して、前記第2のオブジェクトの第2の物理的位置を決定する段階;
前記第1の物理的位置と第2の物理的位置が互いの閾値距離以内にあるかどうかを判定する段階;
前記第1の物理的位置と第2の物理的位置が互いの閾値距離以内にあると判定することに応答して:
前記第1のオブジェクトの前記第1の物理的位置と前記第2のオブジェクトの前記第2の物理的位置が同じオブジェクトの、位置に対応しており、前記第1のオブジェクトと前記第2のオブジェクトが同じオブジェクトであることを判別し;
前記第1の物理的位置および前記第2の物理的位置に基づいて、前記空間における同じオブジェクトのグローバル位置を決定する段階;および
前記第1の物理的位置および前記第2の物理的位置が、互いの前記閾値距離以内にないと判定することに応答して:
前記第1のオブジェクトの前記第1の物理的位置および前記第2のオブジェクトの前記第2の物理的位置が、異なるオブジェクトの、位置に対応し、前記第1のオブジェクトおよび前記第2のオブジェクトが異なるオブジェクトであることを判別し;
前記第1の物理的位置に基づいて、前記空間における前記第1のオブジェクトの第1のグローバル位置を決定し;
前記第2の物理的位置に基づいて、前記空間における前記第2のオブジェクトの第2のグローバル位置を決定する段階を行う段階とを含む、
方法。
〔条項287〕
前記空間における同じオブジェクトの前記グローバル位置を、前記第1の物理的位置と前記第2の物理的位置の平均として決定することをさらに含む、
条項286に記載の方法。
〔条項288〕
前記空間における同じオブジェクトの前記グローバル位置に基づいて、その後の時点における、同じオブジェクトのその後のグローバル位置の確率加重推定値(probability-weighted estimate)を決定し;
前記その後の時点において、前記第1のセンサーの前記第1の画像フィードおよび前記第2のセンサーの前記第2の画像フィードからピクセル位置が利用可能でないことを判別し;
前記その後の時点において前記ピクセル位置が利用可能でないことを判別することに応答して、前記その後のグローバル位置の確率加重推定値を、前記その後の時点における同じオブジェクトの前記グローバル位置として割り当てることをさらに含む、
条項287に記載の方法。
〔条項289〕
前記グローバル位置を決定することを:
前記第1の物理的位置と前記第2の物理的位置との間の距離を決定し;
前記距離が閾値距離未満であることを判別することに応答して、前記第1の物理的位置と前記第2の物理的位置が同じ追跡されるオブジェクトに対応することを判別し;
前記第1の物理的位置と前記第2の物理的位置の平均を計算することによって行うことをさらに含む、
条項287に記載の方法。
〔条項290〕
第2のタイムスタンプにおいて:
前記第1の画像フィードからの第3のフレームにおいて、前記オブジェクトに関連付けられた第3の輪郭を検出せず;
前記第3の輪郭を検出しないことに応答して、第1の粒子フィルタを用いて前記第3の輪郭についての推定されたピクセル位置を生成し;
前記第2の画像フィードからの第4のフレームにおいて、前記オブジェクトに関連する第4の輪郭を検出し;
前記第4の輪郭から前記オブジェクトの第3のピクセル位置を決定し;
前記推定されたピクセル位置および前記第3のピクセル位置に基づいて、前記空間における前記オブジェクトについての第2のグローバル位置を決定することをさらに含む、
条項286に記載の方法。
〔条項291〕
前記時間期間内の第3のタイムスタンプにおいて:
前記第1の粒子追跡器によって生成された前記推定されたピクセル位置に関連する標準偏差を決定し;
前記標準偏差が閾値より大きいことを判別すること応答して、前記第3のピクセル位置に基づいて前記空間における前記オブジェクトについての前記第2のグローバル位置を決定することをさらに含む、
条項290に記載の方法。
〔条項292〕
ある時間期間にわたって:
前記第1のフィードに基づいて、第1の粒子フィルタ追跡器を使って前記オブジェクトの前記第1のピクセル位置を追跡する段階であって、前記第1の粒子フィルタ追跡器は、前記時間期間の間のその後の第1のピクセル位置の確率加重推定値を生成するように構成されている、段階と;
前記第2のフィードに基づいて、第2の粒子フィルタ追跡器を使って前記オブジェクトの前記第2のピクセル位置を追跡する段階であって、前記第2の粒子フィルタ追跡器は、前記時間期間の間のその後の第2のピクセル位置の確率加重推定値を生成するように構成されている、段階と;
グローバル粒子フィルタ追跡器を使って前記グローバル位置を追跡する段階であって、前記グローバル粒子フィルタ追跡器は、前記時間期間の間のその後のグローバル位置の確率加重推定値を生成するように構成されている、段階とを実行することを含む、
条項286に記載の方法。
〔条項293〕
複数のセンサーに通信上結合された追跡サブシステムであって、前記複数のセンサーは少なくとも第1のセンサーおよび第2のセンサーを含み、各センサーは空間の少なくとも一部のトップビュー画像を生成するように構成されており、前記追跡サブシステムは:
前記第1のセンサーから第1の画像フィードを受領する段階であって、前記第1の画像フィードは、前記第1のセンサーによって生成されたトップビュー画像のフレームを含み、前記第1のセンサーは、前記空間内の第1の視野を有する、段階と;
前記第2のセンサーから第2の画像フィードを受領する段階であって、前記第2の画像フィードは、前記第2のセンサーによって生成されたトップビュー画像の第2のフレームを含み、前記第2のセンサーは、前記空間内の第2の視野を有し、前記第2の視野は、前記第1の視野と部分的に重複する、段階と;
第1のタイムスタンプにおいて:
前記第1の画像フィードからの第1のフレームにおいて、第1のオブジェクトに関連する第1の輪郭を検出する段階;
前記第1の輪郭のピクセル座標に基づいて、前記第1のオブジェクトの第1のピクセル位置を決定する段階;
前記第2の画像フィードからの第2のフレームにおいて、第2のオブジェクトに関連する第2の輪郭を検出する段階であって、前記第2のオブジェクトは前記第1のオブジェクトであってもなくてもよい、段階;
前記第2の輪郭のピクセル座標に基づいて、前記第2のオブジェクトの第2のピクセル位置を決定する段階;
前記第1のピクセル位置に基づいて、前記第1のセンサーによって生成された前記トップビュー画像におけるピクセル座標を前記空間における物理的座標に関連付ける第1のホモグラフィーを使用して、前記第1の輪郭からの前記第1のオブジェクトの第1の物理的位置を決定する段階;
前記第2のピクセル位置に基づいて、前記第2のセンサーによって生成された前記トップビュー画像におけるピクセル座標を前記空間における物理的座標に関連付ける第2のホモグラフィーを使用して、前記第2のオブジェクトの第2の物理的位置を決定する段階;
前記第1の物理的位置と第2の物理的位置が互いの閾値距離以内にあるかどうかを判定する段階;
前記第1の物理的位置と第2の物理的位置が互いの閾値距離以内にあると判定することに応答して:
前記第1のオブジェクトの前記第1の物理的位置と前記第2のオブジェクトの前記第2の物理的位置が同じオブジェクトの、位置に対応しており、前記第1のオブジェクトと前記第2のオブジェクトが同じオブジェクトであることを判別し;
前記第1の物理的位置および前記第2の物理的位置に基づいて、前記空間における同じオブジェクトのグローバル位置を決定する段階;および
前記第1の物理的位置および前記第2の物理的位置が、互いの前記閾値距離以内にないと判定することに応答して:
前記第1のオブジェクトの前記第1の物理的位置および前記第2のオブジェクトの前記第2の物理的位置が、異なるオブジェクトの、位置に対応し、前記第1のオブジェクトおよび前記第2のオブジェクトが異なるオブジェクトであることを判別し;
前記第1の物理的位置に基づいて、前記空間における前記第1のオブジェクトの第1のグローバル位置を決定し;
前記第2の物理的位置に基づいて、前記空間における前記第2のオブジェクトの第2のグローバル位置を決定する段階を行う段階とを実行するように構成されている、
追跡サブシステム。
〔条項294〕
前記空間における同じオブジェクトの前記グローバル位置を、前記第1の物理的位置と前記第2の物理的位置の平均として決定するように構成されている、
条項293に記載の追跡サブシステム。
〔条項295〕
前記空間における同じオブジェクトの前記グローバル位置に基づいて、その後の時点における、同じオブジェクトのその後のグローバル位置の確率加重推定値(probability-weighted estimate)を決定し;
前記その後の時点において、前記第1のセンサーの前記第1の画像フィードおよび前記第2のセンサーの前記第2の画像フィードからはピクセル位置が利用可能でないことを判別し;
前記その後の時点において前記ピクセル位置が利用可能でないことを判別することに応答して、前記その後のグローバル位置の確率加重推定値を、前記その後の時点における同じオブジェクトの前記グローバル位置として割り当てるようにさらに構成されている、
条項294に記載の追跡サブシステム。
〔条項296〕
前記グローバル位置を決定することを:
前記第1の物理的位置と前記第2の物理的位置との間の距離を決定し;
前記距離が閾値距離未満であることを判別することに応答して、前記第1の物理的位置と前記第2の物理的位置が同じ追跡されるオブジェクトに対応することを判別し;
前記第1の物理的位置と前記第2の物理的位置の平均を計算することによって行うようにさらに構成されている、
条項293に記載の追跡サブシステム。
〔条項297〕
第2のタイムスタンプにおいて:
前記第1の画像フィードからの第3のフレームにおいて、前記オブジェクトに関連付けられた第3の輪郭を検出せず;
前記第3の輪郭を検出しないことに応答して、第1の粒子フィルタを用いて前記第3の輪郭についての推定されたピクセル位置を生成し;
前記第2の画像フィードからの第4のフレームにおいて、前記オブジェクトに関連する第4の輪郭を検出し;
前記第4の輪郭から前記オブジェクトの第3のピクセル位置を決定し;
前記推定されたピクセル位置および前記第3のピクセル位置に基づいて、前記空間における前記オブジェクトについての第2のグローバル位置を決定するようにさらに構成されている、
条項293に記載の追跡サブシステム。
空間についてのグローバルプレーン内でラックの少なくとも一部のフレームを捕捉するように構成されたセンサーであって:
前記グローバルプレーンは前記空間についての(x,y)座標を表し;
前記フレームは複数のピクセルを含み;
前記複数のピクセルからの各ピクセルは、ピクセル行およびピクセル列を含むピクセル位置に関連付けられ;
前記フレームは、前記ラックに関連付けられた第1のあらかじめ定義されたゾーンをさらに含み、前記第1のあらかじめ定義されたゾーンは、前記ラックの正面に近接している、センサーと;
前記ラックの棚に配置された重量センサーであって、前記重量センサーは、前記重量センサー上の品目についての重量を測定するように構成されている、重量センサーと;
前記センサーおよび前記重量センサーに動作可能に結合された追跡システムとを有するオブジェクト追跡システムであって、前記追跡システムは:
一つまたは複数のメモリと;
前記一つまたは複数のメモリに結合された一つまたは複数のプロセッサとを有しており、
前記一つまたは複数のメモリは:
人に関連付けられたデジタル・カートと;
前記ラックに関連付けられた複数の品目を識別する品目マップであって、各品目は品目を一意的に同定するマーカーを含む、品目マップとを記憶するように動作可能であり;
前記一つまたは複数のプロセッサは:
前記重量センサー上の重量減少を検出し;
前記ラックの前記フレームを受領し;
前記フレームにおける前記第1のあらかじめ定義されたゾーン内で品目上のマーカーを識別し;
識別されたマーカーに関連付けられた前記品目マップ内の品目を識別し;
前記人のピクセル位置であって、前記ピクセル位置は、前記フレームの第1のピクセル行および第1のピクセル列を含む、ピクセル位置を決定し;
前記人のピクセル位置に基づいて、前記人が前記フレームにおける前記ラックに関連付けられた前記第1のあらかじめ定義されたゾーン内にあることを判別し;
識別された品目を、前記人に関連付けられた前記デジタル・カートに追加するように構成されている、
システム。
〔条項299〕
前記マーカーが英数字テキストを含む、条項298に記載のシステム。
〔条項300〕
前記ラックに関連付けられた前記第1のあらかじめ定義されたゾーンは、前記フレームにおけるピクセル列の範囲および前記フレームにおけるピクセル行の範囲に関連付けられており;
前記人が前記ラックに関連付けられた前記第1のあらかじめ定義されたゾーン内にあることを判別することが:
前記人についての前記ピクセル位置の前記第1のピクセル列は、前記フレームにおけるピクセル列の前記範囲内にあり;
前記人についての前記ピクセル位置の前記第1のピクセル行は、前記フレームにおけるピクセル行の前記範囲内にあることを判別することを含む、
条項298に記載のシステム。
〔条項301〕
前記ラックは、前部と、第1の側部と、第2の側部と、後部とを含み、
前記第1のあらかじめ定義されたゾーンは、前記フレームにおいて前記ラックの前記前部、前記第1の側部、および前記第2の側部の少なくとも一部と重複する、
条項298に記載のシステム。
〔条項302〕
前記一つまたは複数のプロセッサは:
第2の人についての第2のピクセル位置を決定する段階であって、前記第2のピクセル位置は、前記フレームにおける第2のピクセル行および第2のピクセル列を含む、段階と;
前記ラックの第3のピクセル位置を決定する段階であって、前記第3のピクセル位置は、前記フレームにおける第3のピクセル行および第3のピクセル列を含む、段階と;
前記人の前記ピクセル位置と前記ラックの前記第3のピクセル位置との間の第1の距離を決定する段階と;
前記第2の人の前記第2のピクセル位置と前記ラックの前記第3のピクセル位置との間の第2の距離を決定する段階と;
識別された品目を前記人に関連付けられた前記デジタル・カートに追加する前に、前記第1の距離が前記第2の距離より短いことを判別する段階とを実行するようにさらに構成されている、
条項298に記載のシステム。
〔条項303〕
前記一つまたは複数のプロセッサは:
前記フレームにおける第2の人を識別する段階と;
前記第2の人が前記ラックに関連付けられた前記第1のあらかじめ定義されたゾーンの外側にいることを判別する段階と;
前記第2の人が前記第1のあらかじめ定義されたゾーンの外側にいることを判別することに応答して、前記第2の人を無視する段階とを実行するように構成されている、
条項298に記載のシステム。
〔条項304〕
前記重量センサーが識別された品目に関連付けられており;
前記品目の識別は、少なくとも部分的には、前記重量センサー上の重量減少を検出することに基づいている、
条項298に記載のシステム。
〔条項305〕
前記フレームは、前記ラックの前面に近接し、前記第1のあらかじめ定義されたゾーン内にある第2のあらかじめ定義されたゾーンをさらに含み;
前記一つまたは複数のプロセッサは、前記重量センサー上の重量減少を検出する前に、前記第2のあらかじめ定義されたゾーン内の前記人に関連付けられたオブジェクトを検出するようにさらに構成されている、
条項298に記載のシステム。
〔条項306〕
オブジェクト追跡方法であって:
ラックの棚に配置された重量センサー上の重量減少を検出する段階と;
空間についてのグローバルプレーン内での前記ラックの少なくとも一部分のフレームをセンサーから受領する段階であって、
前記グローバルプレーンは前記空間についての(x,y)座標を表し;
前記フレームは複数のピクセルを含み;
前記複数のピクセルからの各ピクセルは、ピクセル行およびピクセル列を含むピクセル位置に関連付けられ;
前記フレームは、前記ラックに関連付けられた第1のあらかじめ定義されたゾーンをさらに含み、前記第1のあらかじめ定義されたゾーンは、前記ラックの正面に近接している、段階と;
前記フレームにおける前記第1のあらかじめ定義されたゾーン内で品目上のマーカーを識別する段階と;
識別されたマーカーに関連付けられた前記品目を識別する段階と;
前記人のピクセル位置であって、前記ピクセル位置は、前記フレームの第1のピクセル行および第1のピクセル列を含む、ピクセル位置を決定する段階と;
人が前記フレームにおける前記ラックに関連付けられた前記第1のあらかじめ定義されたゾーン内にあることを、前記人のピクセル位置に基づいて判別する段階と;
識別された品目を、前記人に関連付けられた前記デジタル・カートに追加する段階とを含む、
方法。
〔条項307〕
前記マーカーが英数字テキストを含む、条項306に記載の方法。
〔条項308〕
前記人が前記ラックに関連付けられた前記第1のあらかじめ定義されたゾーン内にあることを判別することが:
前記人についての前記ピクセル位置の前記第1のピクセル列は、前記フレームにおけるピクセル列の前記範囲内にあり;
前記人についての前記ピクセル位置の前記第1のピクセル行は、前記フレームにおけるピクセル行の前記範囲内にあることを判別することを含む、
条項306に記載の方法。
〔条項309〕
前記ラックは、前部と、第1の側部と、第2の側部と、後部とを含み、
前記第1のあらかじめ定義されたゾーンは、前記フレームにおいて前記ラックの前記前部、前記第1の側部、および前記第2の側部の少なくとも一部と重複する、
条項306に記載の方法。
〔条項310〕
第2の人についての第2のピクセル位置を決定する段階であって、前記第2のピクセル位置は、前記フレームにおける第2のピクセル行および第2のピクセル列を含む、段階と;
前記ラックの第3のピクセル位置を決定する段階であって、前記第3のピクセル位置は、前記フレームにおける第3のピクセル行および第3のピクセル列を含む、段階と;
前記人の前記ピクセル位置と前記ラックの前記第3のピクセル位置との間の第1の距離を決定する段階と;
前記第2の人の前記第2のピクセル位置と前記ラックの前記第3のピクセル位置との間の第2の距離を決定する段階と;
識別された品目を前記人に関連付けられた前記デジタル・カートに追加する前に、前記第1の距離が前記第2の距離より短いことを判別する段階とをさらに含む、
条項306に記載の方法。
〔条項311〕
前記フレームにおける第2の人を識別する段階と;
前記第2の人が前記ラックに関連付けられた前記第1のあらかじめ定義されたゾーンの外側にいることを判別する段階と;
前記第2の人が前記第1のあらかじめ定義されたゾーンの外側にいることを判別することに応答して、前記第2の人を無視する段階とをさらに含む、
条項306に記載の方法。
〔条項312〕
前記品目の識別は、少なくとも部分的には、前記重量センサー上の重量減少を検出することに基づいている、
条項306に記載の方法。
〔条項313〕
前記重量センサー上の重量減少を検出する前に、前記フレームにおいて第2のあらかじめ定義されたゾーン内の前記人に関連付けられたオブジェクトを検出する段階をさらに含み、前記第2のあらかじめ定義されたゾーンは、前記ラックの前面に近接し、前記第1のあらかじめ定義されたゾーン内にある、条項306に記載の方法。
〔条項314〕
非一時的なコンピュータ読み取り可能媒体に記憶された実行可能な命令を含むコンピュータ・プログラムであって、前記命令はプロセッサによって実行されたときに該プロセッサに:
ラックの棚に配置された重量センサー上の重量減少を検出する段階と;
空間についてのグローバルプレーン内での前記ラックの少なくとも一部分のフレームをセンサーから受領する段階であって、
前記グローバルプレーンは前記空間についての(x,y)座標を表し;
前記フレームは複数のピクセルを含み;
前記複数のピクセルからの各ピクセルは、ピクセル行およびピクセル列を含むピクセル位置に関連付けられ;
前記フレームは、前記ラックに関連付けられた第1のあらかじめ定義されたゾーンをさらに含み、前記第1のあらかじめ定義されたゾーンは、前記ラックの正面に近接している、段階と;
前記フレームにおける前記第1のあらかじめ定義されたゾーン内で品目上のマーカーを識別する段階と;
識別されたマーカーに関連付けられた前記品目を識別する段階と;
前記人のピクセル位置であって、前記ピクセル位置は、前記フレームの第1のピクセル行および第1のピクセル列を含む、ピクセル位置を決定する段階と;
人が前記フレームにおける前記ラックに関連付けられた前記第1のあらかじめ定義されたゾーン内にあることを、前記人のピクセル位置に基づいて判別する段階と;
識別された品目を、前記人に関連付けられた前記デジタル・カートに追加する段階とを実行させるものである、
コンピュータ・プログラム。
〔条項315〕
前記ラックは、前部と、第1の側部と、第2の側部と、後部とを含み、
前記第1のあらかじめ定義されたゾーンは、前記フレームにおいて前記ラックの前記前部、前記第1の側部、および前記第2の側部の少なくとも一部と重複する、
条項314に記載のコンピュータ・プログラム。
〔条項316〕
前記プロセッサによって実行されたときに前記プロセッサにさらに:
第2の人についての第2のピクセル位置を決定する段階であって、前記第2のピクセル位置は、前記フレームにおける第2のピクセル行および第2のピクセル列を含む、段階と;
前記ラックの第3のピクセル位置を決定する段階であって、前記第3のピクセル位置は、前記フレームにおける第3のピクセル行および第3のピクセル列を含む、段階と;
前記人の前記ピクセル位置と前記ラックの前記第3のピクセル位置との間の第1の距離を決定する段階と;
前記第2の人の前記第2のピクセル位置と前記ラックの前記第3のピクセル位置との間の第2の距離を決定する段階と;
識別された品目を前記人に関連付けられた前記デジタル・カートに追加する前に、前記第1の距離が前記第2の距離より短いことを判別する段階とを実行させる命令をさらに含む、
条項314に記載のコンピュータ・プログラム。
〔条項317〕
前記プロセッサによって実行されたときに前記プロセッサにさらに:
前記フレームにおける第2の人を識別する段階と;
前記第2の人が前記ラックに関連付けられた前記第1のあらかじめ定義されたゾーンの外側にいることを判別する段階と;
前記第2の人が前記第1のあらかじめ定義されたゾーンの外側にいることを判別することに応答して、前記第2の人を無視する段階とを実行させる命令をさらに含む、
条項314に記載のコンピュータ・プログラム。
〔条項318〕
オブジェクト追跡システムであって:
空間の少なくとも一部分の上方に配置されたセンサー・アレイ内に構成された複数のセンサーであって、
前記複数のセンサーからの第1のセンサーは、前記空間の少なくとも一部分について、グローバルプレーンの第1のフレームを捕捉するように構成され;
前記第1のフレームは複数のピクセルを含み;
前記複数のピクセルからの各ピクセルは、ピクセル行およびピクセル列を含むピクセル位置に関連付けられる、複数のセンサーと;
前記複数のセンサーに動作可能に結合される追跡システムとを有しており、前記追跡システムは、
前記第1のセンサーに関連付けられた第1のホモグラフィーを記憶するように動作可能な一つまたは複数のメモリであって、
前記第1のホモグラフィーは、前記第1のフレームにおけるピクセル位置と前記グローバルプレーンにおける(x,y)座標との間で変換するように構成されている、メモリと;
前記一つまたは複数のメモリに動作可能に結合された一つまたは複数のプロセッサであって、
前記第1のフレームを受領し;
前記空間に位置するオブジェクトについての前記第1のフレームにおける第3のピクセル位置であって、前記第3のピクセル位置は、前記第1のフレームの第1のピクセル行および第1のピクセル列を含む、第3のピクセル位置を決定し;
前記第1のホモグラフィーを前記第3のピクセル位置に適用して、前記グローバルプレーンにおける第3のx値および第3のy値を同定する第3の(x,y)座標を決定するように構成されているプロセッサとを有する、
システム。
〔条項319〕
前記複数のセンサーは、前記空間の少なくとも第2の部分について前記グローバルプレーンの第2のフレームを捕捉するように構成されている、前記追跡システムに動作可能に結合された第2のセンサーをさらに含み、
前記一つまたは複数のメモリは、前記第2のセンサーに関連付けられた第2のホモグラフィーを記憶するようにさらに動作可能であり、
前記第2のホモグラフィーは、前記第2のフレームにおけるピクセル位置と前記グローバルプレーンにおける(x,y)座標との間で変換する係数を含み、
前記第2のホモグラフィーの係数は、前記第1のホモグラフィーの係数とは異なり;
前記一つまたは複数のプロセッサは:
前記空間内に位置する前記オブジェクトについての前記第2のフレームにおける第4のピクセル位置を決定し;
前記第2のホモグラフィーを前記第4のピクセル位置に適用して、前記グローバルプレーンにおける第4のx値および第4のy値を同定する第4の(x,y)座標を決定するようにさらに構成される、
条項318に記載のシステム。
〔条項320〕
前記一つまたは複数のプロセッサは:
前記オブジェクトの前記第3の(x,y)座標と前記オブジェクトの前記第4の(x,y)座標の平均を計算することによって、前記オブジェクトについての平均(x,y)座標を生成するようにさらに構成される、
条項319に記載のシステム。
〔条項321〕
前記一つまたは複数のプロセッサは:
前記オブジェクトの前記第3の(x,y)座標と前記オブジェクトの前記第4の(x,y)座標の中央値を計算することによって、前記オブジェクトについての中央値(x,y)座標を生成するように構成される、
条項319に記載のシステム。
〔条項322〕
前記第3の(x,y)座標は、前記第4の(x,y)座標と同じである、条項319に記載のシステム。
〔条項323〕
前記一つまたは複数のメモリは、前記第1のセンサーに関連付けられた追跡リストを記憶するようにさらに動作可能であり、前記追跡リストは:
前記オブジェクトについてのオブジェクト識別子;および
前記オブジェクトについての前記第3の(x,y)座標を同定し;
前記一つまたは複数のプロセッサは、前記第3の(x,y)座標を決定することに応答して、前記第1のセンサーに関連する追跡リストに前記第3の(x,y)座標を格納するようにさらに構成される、
条項318に記載のシステム。
〔条項324〕
前記第1のフレームにおける各ピクセルは、ピクセル値に関連付けられ;
前記第1のホモグラフィーは、前記第1のフレームにおけるピクセル値と前記グローバルプレーンにおけるz座標との間で変換するようにさらに構成される、
条項318に記載のシステム。
〔条項325〕
前記センサー・アレイは、前記グローバルプレーンと平行に配置される、条項318に記載のシステム。
〔条項326〕
オブジェクト追跡方法であって:
空間の少なくとも一部分の上方にあるセンサー・アレイ内に構成された複数のセンサーのうちの第1のセンサーから第1のフレームを受領する段階であって、
前記第1のフレームは、前記空間の前記少なくとも一部分について、グローバルプレーンのフレームであり;
前記第1のフレームは複数のピクセルを含み;
前記複数のピクセルからの各ピクセルは、ピクセル行およびピクセル列を含むピクセル位置に関連付けられる、段階と;
前記空間に位置するオブジェクトについての前記第1のフレームにおける第3のピクセル位置を決定する段階であって、前記第3のピクセル位置は、前記第1のフレームの第1のピクセル行および第1のピクセル列を含む、段階と;
第1のホモグラフィーを前記第3のピクセル位置に適用して、前記グローバルプレーンにおける第3のx値および第3のy値を同定する第3の(x,y)座標を決定する段階であって、前記第1のホモグラフィーは、前記第1のフレームにおけるピクセル位置と前記グローバルプレーンにおける(x,y)座標との間で変換するように構成されている、段階とを含む、
方法。
〔条項327〕
前記空間の少なくとも第2の部分について前記グローバルプレーンの第2のフレームを第2のセンサーから受領する段階と;
前記空間内に位置する前記オブジェクトについての前記第2のフレームにおける第4のピクセル位置を決定する段階と;
第2のホモグラフィーを前記第4のピクセル位置に適用して、前記グローバルプレーンにおける第4のx値および第4のy値を同定する第4の(x,y)座標を決定する段階とをさらに含み、
前記第2のホモグラフィーは、前記第2のフレームにおけるピクセル位置と前記グローバルプレーンにおける(x,y)座標との間で変換する係数を含み、
前記第2のホモグラフィーの係数は、前記第1のホモグラフィーの係数とは異なる、
条項326に記載の方法。
〔条項328〕
前記オブジェクトの前記第3の(x,y)座標と前記オブジェクトの前記第4の(x,y)座標の平均を計算することによって、前記オブジェクトについての平均(x,y)座標を生成する段階をさらに含む、
条項327に記載の方法。
〔条項329〕
前記オブジェクトの前記第3の(x,y)座標と前記オブジェクトの前記第4の(x,y)座標の中央値を計算することによって、前記オブジェクトについての中央値(x,y)座標を生成する段階をさらに含む、
条項327に記載の方法。
〔条項330〕
前記第3の(x,y)座標を決定することに応答して、前記第1のセンサーに関連する追跡リストに前記第3の(x,y)座標を格納する段階をさらに含み、前記追跡リストは:
前記オブジェクトについてのオブジェクト識別子;および
前記オブジェクトについての前記第3の(x,y)座標を同定する、
条項326に記載の方法。
〔条項331〕
前記第1のフレームにおける各ピクセルは、ピクセル値に関連付けられ;
前記第1のホモグラフィーは、前記第1のフレームにおけるピクセル値と前記グローバルプレーンにおけるz座標との間で変換するようにさらに構成される、
条項326に記載の方法。
〔条項332〕
非一時的なコンピュータ読み取り可能媒体に記憶された実行可能な命令を含むコンピュータ・プログラムであって、前記命令は、プロセッサによって実行されたときに前記プロセッサに:
空間の少なくとも一部分の上方にあるセンサー・アレイ内に構成された複数のセンサーのうちの第1のセンサーから第1のフレームを受領する段階であって、
前記第1のフレームは、前記空間の前記少なくとも一部分について、グローバルプレーンのフレームであり;
前記第1のフレームは複数のピクセルを含み;
前記複数のピクセルからの各ピクセルは、ピクセル行およびピクセル列を含むピクセル位置に関連付けられる、段階と;
前記空間に位置するオブジェクトについての前記第1のフレームにおける第3のピクセル位置を決定する段階であって、前記第3のピクセル位置は、前記第1のフレームの第1のピクセル行および第1のピクセル列を含む、段階と;
第1のホモグラフィーを前記第3のピクセル位置に適用して、前記グローバルプレーンにおける第3のx値および第3のy値を同定する第3の(x,y)座標を決定する段階であって、前記第1のホモグラフィーは、前記第1のフレームにおけるピクセル位置と前記グローバルプレーンにおける(x,y)座標との間で変換するように構成されている、段階とを実行させるものである、
コンピュータ・プログラム。
〔条項333〕
前記プロセッサによって実行されたときに前記プロセッサに:
前記空間の少なくとも第2の部分について前記グローバルプレーンの第2のフレームを第2のセンサーから受領する段階と;
前記空間内に位置する前記オブジェクトについての前記第2のフレームにおける第4のピクセル位置を決定する段階と;
第2のホモグラフィーを前記第4のピクセル位置に適用して、前記グローバルプレーンにおける第4のx値および第4のy値を同定する第4の(x,y)座標を決定する段階とを実行させる命令をさらに含み、
前記第2のホモグラフィーは、前記第2のフレームにおけるピクセル位置と前記グローバルプレーンにおける(x,y)座標との間で変換する係数を含み、
前記第2のホモグラフィーの係数は、前記第1のホモグラフィーの係数とは異なる、
条項332に記載のコンピュータ・プログラム。
〔条項334〕
前記プロセッサによって実行されたときに前記プロセッサに:
前記オブジェクトの前記第3の(x,y)座標と前記オブジェクトの前記第4の(x,y)座標の平均を計算することによって、前記オブジェクトについての平均(x,y)座標を生成する段階を実行させる命令をさらに含む、
条項333に記載のコンピュータ・プログラム。
〔条項335〕
前記プロセッサによって実行されたときに前記プロセッサに:
前記オブジェクトの前記第3の(x,y)座標と前記オブジェクトの前記第4の(x,y)座標の中央値を計算することによって、前記オブジェクトについての中央値(x,y)座標を生成する段階を実行させる命令をさらに含む、
条項333に記載のコンピュータ・プログラム。
〔条項336〕
前記プロセッサによって実行されたときに前記プロセッサに:
前記第3の(x,y)座標を決定することに応答して、前記第1のセンサーに関連する追跡リストに前記第3の(x,y)座標を格納する段階を実行させる命令をさらに含み、前記追跡リストは:
前記オブジェクトについてのオブジェクト識別子;および
前記オブジェクトについての前記第3の(x,y)座標を同定する、
条項332に記載のコンピュータ・プログラム。
〔条項337〕
前記第1のフレームにおける各ピクセルは、ピクセル値に関連付けられ;
前記第1のホモグラフィーは、前記第1のフレームにおけるピクセル値と前記グローバルプレーンにおけるz座標との間で変換するようにさらに構成される、
条項332に記載のコンピュータ・プログラム。
Claims (20)
- 空間内のラックの上方に配置されたセンサーであって、前記センサーは、前記ラックを含む空間の少なくとも一部のトップビュー画像を生成するように構成されている、センサーと;
複数の重量センサーであって、各重量センサーは、前記ラックの棚に格納された対応する品目に関連付けられる、重量センサーと;
前記イメージセンサーおよび前記重量センサーに結合された追跡サブシステムとを有するシステムであって、前記追跡サブシステムは:
前記センサーによって生成された前記トップビュー画像のフレームを含む画像フィードを受領する段階と;
前記重量センサーから重量測定値を受領する段階と;
人の一部が前記ラックに隣接するゾーンに入ることと、第1の重量センサーに関連付けられた第1の棚から第1の品目が取り除かれることに関連する重量変化の一方または両方に関連する事象を検出する段階と;
前記事象の検出に応答して、第1の人および第2の人が検出された事象と関連する可能性があることを、前記第1の人と前記ラックとの間の第1の距離、前記第2の人と前記ラックとの間の第2の距離、および前記第1の人と前記第2の人との間の人間(じんかん)距離のうちの一つまたは複数に基づいて判別する段階と;
前記第1の人および前記第2の人が検出された事象に関連する可能性があることを判別することに応答して、検出された事象後に前記センサーによって生成されたトップビュー画像のバッファ・フレームを記憶する段階と;
記憶されたバッファ・フレームのうちの少なくとも1つと、第1のアクション検出アルゴリズムを用いて、検出された事象に関連するアクションが前記第1の人によって実行されたか前記第2の人によって実行されたかを判定する段階であって、前記第1のアクション検出アルゴリズムは、前記少なくとも1つの記憶されたバッファ・フレームにおける一つまたは複数の輪郭の特性に基づいて、前記アクションを検出するように構成されている、段階と;
前記第1のアクション検出アルゴリズムの結果が、少なくとも部分的には、前記第1のアクション検出アルゴリズムを実施するために必要とされた反復工程の数に基づく基準を満たすかどうかを判定する段階と;
前記第1のアクション検出アルゴリズムの結果が前記基準を満たさないと判定することに応答して、第2のアクション検出アルゴリズムを前記バッファ・フレームの少なくとも1つに適用することによって、検出された事象に関連するアクションが前記第1の人によって実行されたか前記第2の人によって実行されたかを判定する段階であって、前記第2のアクション検出アルゴリズムは、人工ニューラルネットワークを使用して前記アクションを検出するように構成されている、段階と;
前記アクションが前記第1の人によって実行されたと判定することに応答して、前記アクションを前記第1の人に割り当てる段階と;
前記アクションが前記第2の人によって実行されたと判定することに応答して、前記アクションを前記第2の人に割り当てる段階とを実行するように構成されている、
システム。 - 前記追跡サブシステムは:
前記バッファ・フレームを記憶した後、記憶されたフレームのトップビュー画像の関心領域を決定する段階と;
前記記憶されたバッファ・フレームのうちの少なくとも1つの前記関心領域と、前記第1のアクション検出アルゴリズムとを用いて、検出された事象に関連するアクションが前記第1の人によって実行されたか、前記第2の人によって実行されたかを判定する段階とを実行するようにさらに構成されている、
請求項1に記載のシステム。 - 前記記憶されたバッファ・フレームは、前記人の前記一部分が前記ラックに隣接する前記ゾーンに入ること、および前記人の前記一部分が前記ラックに隣接する前記ゾーンを出ることの一方または両方に続く3フレーム以下のトップビュー画像を含む、請求項1に記載のシステム。
- 前記追跡サブシステムは、前記第1のアクション検出アルゴリズムとともに使用する前記バッファ・フレームのサブセットと、前記第2のアクション検出アルゴリズムとともに使用する前記バッファ・フレームの第2のサブセットとを決定するようにさらに構成されている、請求項3に記載のシステム。
- 前記追跡サブシステムは、前記第1の人と前記ラックとの間の第1の相対配向と、前記第2の人と前記ラックとの間の第2の相対配向に基づいて、前記第1の人および前記第2の人が前記検出された事象に関連する可能性があることを判別するようにさらに構成される、請求項1に記載のシステム。
- 検出されたアクションは、人が前記ラックの前記第1の棚に保管されている前記第1の品目をピックアップすることと関連しており;
追跡サブシステムはさらに:
前記アクションが前記第1の人によって実行されたと判定することに応答して、前記第1の品目を前記第1の人に割り当て;
前記アクションが前記第2の人によって実行されたと判定することに応答して、前記第1の品目を前記第2の人に割り当てるように構成されている、
請求項1に記載のシステム。 - 前記第1のアクション検出アルゴリズムは、前記第1の人に関連する第1の輪郭および前記第2の輪郭に関連する第2の輪郭の逐次反復的な拡張に関わり;
前記基準は、前記人の前記一部が前記ラックに隣接する前記ゾーンに入ることが、前記第1および第2の輪郭の逐次反復的な拡張の最大回数以内に、前記第1の人または前記第2の人のいずれかと関連付けられるという要件を含む、
請求項1に記載のシステム。 - 前記追跡サブシステムは:
拡張の最大回数以内に、前記第1の人が、前記人の前記一部が前記ラックに隣接する前記ゾーンに入ることと関連付けられることを判別することに応答して、前記アクションを前記第1の人に割り当てるようにさらに構成されている、
請求項7に記載のシステム。 - センサーによって生成されたトップビュー画像のフレームを含む画像フィードを受領する段階であって、前記センサーは、空間内のラックの上方に配置されており、前記ラックを含む空間の少なくとも一部のトップビュー画像を生成するように構成されている、段階と;
前記ラックの棚に格納された対応する品目に関連付けられる重量センサーから重量測定値を受領する段階と;
人の一部が前記ラックに隣接するゾーンに入ることと、前記重量センサーに関連付けられた第1の棚から第1の品目が取り除かれることに関連する重量変化の一方または両方に関連する事象を検出する段階と;
前記事象の検出に応答して、第1の人および第2の人が検出された事象と関連する可能性があることを、前記第1の人と前記ラックとの間の第1の距離、前記第2の人と前記ラックとの間の第2の距離、および前記第1の人と前記第2の人との間の人間(じんかん)距離のうちの一つまたは複数に基づいて判別する段階と;
前記第1の人および前記第2の人が検出された事象に関連する可能性があることを判別することに応答して、検出された事象後に前記センサーによって生成されたトップビュー画像のバッファ・フレームを記憶する段階と;
記憶されたバッファ・フレームのうちの少なくとも1つと、第1のアクション検出アルゴリズムを用いて、検出された事象に関連するアクションが前記第1の人によって実行されたか前記第2の人によって実行されたかを判定する段階であって、前記第1のアクション検出アルゴリズムは、前記少なくとも1つの記憶されたバッファ・フレームにおける一つまたは複数の輪郭の特性に基づいて、前記アクションを検出するように構成されている、段階と;
前記第1のアクション検出アルゴリズムの結果が、少なくとも部分的には、前記第1のアクション検出アルゴリズムを実施するために必要とされた反復工程の数に基づく基準を満たすかどうかを判定する段階と;
前記第1のアクション検出アルゴリズムの結果が前記基準を満たさないと判定することに応答して、第2のアクション検出アルゴリズムを前記バッファ・フレームの少なくとも1つに適用することによって、検出された事象に関連するアクションが前記第1の人によって実行されたか前記第2の人によって実行されたかを判定する段階であって、前記第2のアクション検出アルゴリズムは、人工ニューラルネットワークを使用して前記アクションを検出するように構成されている、段階と;
前記アクションが前記第1の人によって実行されたと判定することに応答して、前記アクションを前記第1の人に割り当てる段階と;
前記アクションが前記第2の人によって実行されたと判定することに応答して、前記アクションを前記第2の人に割り当てる段階とを含む、
方法。 - 前記バッファ・フレームを記憶した後、記憶されたフレームのトップビュー画像の関心領域を決定する段階と;
前記記憶されたバッファ・フレームのうちの少なくとも1つの前記関心領域と、前記第1のアクション検出アルゴリズムとを用いて、検出された事象に関連するアクションが前記第1の人によって実行されたか、前記第2の人によって実行されたかを判定する段階とをさらに含む、
請求項9に記載の方法。 - 前記記憶されたバッファ・フレームは、前記人の前記一部分が前記ラックに隣接する前記ゾーンに入ること、および前記人の前記一部分が前記ラックに隣接する前記ゾーンを出ることの一方または両方に続く3フレーム以下のトップビュー画像を含む、請求項9に記載の方法。
- 前記第1のアクション検出アルゴリズムとともに使用する前記バッファ・フレームのサブセットと、前記第2のアクション検出アルゴリズムとともに使用する前記バッファ・フレームの第2のサブセットとを決定する段階をさらに含む、請求項11に記載の方法。
- 前記第1の人と前記ラックとの間の第1の相対配向と、前記第2の人と前記ラックとの間の第2の相対配向に基づいて、前記第1の人および前記第2の人が前記検出された事象に関連する可能性があることを判別することをさらに含む、請求項11に記載の方法。
- 検出されたアクションは、人が前記ラックの前記第1の棚に保管されている前記第1の品目をピックアップすることと関連しており;
当該方法はさらに:
前記アクションが前記第1の人によって実行されたと判定することに応答して、前記第1の品目を前記第1の人に割り当て;
前記アクションが前記第2の人によって実行されたと判定することに応答して、前記第1の品目を前記第2の人に割り当てることを含む、
請求項9に記載の方法。 - 前記第1のアクション検出アルゴリズムは、前記第1の人に関連する第1の輪郭および前記第2の輪郭に関連する第2の輪郭の逐次反復的な拡張に関わり;
前記基準は、前記人の前記一部が前記ラックに隣接する前記ゾーンに入ることが、前記第1および第2の輪郭の逐次反復的な拡張の最大回数以内に、前記第1の人または前記第2の人のいずれかと関連付けられるという要件を含む、
請求項9に記載の方法。 - 拡張の最大回数以内に、前記第1の人が、前記人の前記一部が前記ラックに隣接する前記ゾーンに入ることと関連付けられることを判別することに応答して、前記アクションを前記第1の人に割り当てることをさらに含む、請求項15に記載の方法。
- イメージセンサーおよび重量センサーに結合された追跡サブシステムであって、前記イメージセンサーは、空間内のラックの上方に配置され、前記ラックを含む前記空間の少なくとも一部のトップビュー画像を生成するように構成されており、前記重量センサーは、前記ラックの棚から品目が取り除かれたときに重量変化を測定するように構成されており、当該追跡サブシステムは:
前記センサーによって生成された前記トップビュー画像のフレームを含む画像フィードを受領する段階と;
前記重量センサーから重量測定値を受領する段階と;
人の一部が前記ラックに隣接するゾーンに入ることと、前記重量センサーに関連付けられた第1の棚から第1の品目が取り除かれることに関連する重量変化の一方または両方に関連する事象を検出する段階と;
前記事象の検出に応答して、第1の人および第2の人が検出された事象と関連する可能性があることを、前記第1の人と前記ラックとの間の第1の距離、前記第2の人と前記ラックとの間の第2の距離、および前記第1の人と前記第2の人との間の人間(じんかん)距離のうちの一つまたは複数に基づいて判別する段階と;
前記第1の人および前記第2の人が検出された事象に関連する可能性があることを判別することに応答して、検出された事象後に前記センサーによって生成されたトップビュー画像のバッファ・フレームを記憶する段階と;
記憶されたバッファ・フレームのうちの少なくとも1つと、第1のアクション検出アルゴリズムを用いて、検出された事象に関連するアクションが前記第1の人によって実行されたか前記第2の人によって実行されたかを判定する段階であって、前記第1のアクション検出アルゴリズムは、前記少なくとも1つの記憶されたバッファ・フレームにおける一つまたは複数の輪郭の特性に基づいて、前記アクションを検出するように構成されている、段階と;
前記第1のアクション検出アルゴリズムの結果が、少なくとも部分的には、前記第1のアクション検出アルゴリズムを実施するために必要とされた反復工程の数に基づく基準を満たすかどうかを判定する段階と;
前記第1のアクション検出アルゴリズムの結果が前記基準を満たさないと判定することに応答して、第2のアクション検出アルゴリズムを前記バッファ・フレームの少なくとも1つに適用することによって、検出された事象に関連するアクションが前記第1の人によって実行されたか前記第2の人によって実行されたかを判定する段階であって、前記第2のアクション検出アルゴリズムは、人工ニューラルネットワークを使用して前記アクションを検出するように構成されている、段階と;
前記アクションが前記第1の人によって実行されたと判定することに応答して、前記アクションを前記第1の人に割り当てる段階と;
前記アクションが前記第2の人によって実行されたと判定することに応答して、前記アクションを前記第2の人に割り当てる段階とを実行するように構成されている、
追跡サブシステム。 - 前記バッファ・フレームを記憶した後、記憶されたフレームのトップビュー画像の関心領域を決定する段階と;
前記記憶されたバッファ・フレームのうちの少なくとも1つの前記関心領域と、前記第1のアクション検出アルゴリズムとを用いて、検出された事象に関連するアクションが前記第1の人によって実行されたか、前記第2の人によって実行されたかを判定する段階とを実行するようにさらに構成されている、
請求項17に記載の追跡サブシステム。 - 前記記憶されたバッファ・フレームは、前記人の前記一部分が前記ラックに隣接する前記ゾーンに入ること、および前記人の前記一部分が前記ラックに隣接する前記ゾーンを出ることの一方または両方に続く3フレーム以下のトップビュー画像を含む、請求項17に記載の追跡サブシステム。
- 前記追跡サブシステムは、前記第1のアクション検出アルゴリズムとともに使用する前記バッファ・フレームのサブセットと、前記第2のアクション検出アルゴリズムとともに使用する前記バッファ・フレームの第2のサブセットとを決定するようにさらに構成されている、請求項19に記載の追跡サブシステム。
Applications Claiming Priority (37)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/663,451 | 2019-10-25 | ||
US16/663,856 US10956777B1 (en) | 2019-10-25 | 2019-10-25 | Shelf position calibration in a global coordinate system using a sensor array |
US16/664,332 US11176686B2 (en) | 2019-10-25 | 2019-10-25 | Image-based action detection using contour dilation |
US16/664,219 | 2019-10-25 | ||
US16/663,794 | 2019-10-25 | ||
US16/664,269 | 2019-10-25 | ||
US16/663,451 US10943287B1 (en) | 2019-10-25 | 2019-10-25 | Topview item tracking using a sensor array |
US16/663,822 US11113837B2 (en) | 2019-10-25 | 2019-10-25 | Sensor mapping to a global coordinate system |
US16/663,948 US11257225B2 (en) | 2019-10-25 | 2019-10-25 | Sensor mapping to a global coordinate system using homography |
US16/664,160 | 2019-10-25 | ||
US16/664,426 | 2019-10-25 | ||
US16/663,948 | 2019-10-25 | ||
US16/663,533 | 2019-10-25 | ||
US16/663,500 | 2019-10-25 | ||
US16/664,269 US11004219B1 (en) | 2019-10-25 | 2019-10-25 | Vector-based object re-identification during image tracking |
US16/663,901 US11430046B2 (en) | 2019-10-25 | 2019-10-25 | Identifying non-uniform weight objects using a sensor array |
US16/663,710 | 2019-10-25 | ||
US16/663,766 US11132550B2 (en) | 2019-10-25 | 2019-10-25 | Detecting shelf interactions using a sensor array |
US16/664,426 US11308630B2 (en) | 2019-10-25 | 2019-10-25 | Auto-exclusion zone for contour-based object detection |
US16/663,794 US11367124B2 (en) | 2019-10-25 | 2019-10-25 | Detecting and identifying misplaced items using a sensor array |
US16/663,822 | 2019-10-25 | ||
US16/664,391 US11062147B2 (en) | 2019-10-25 | 2019-10-25 | Object assignment during image tracking |
US16/664,219 US11107226B2 (en) | 2019-10-25 | 2019-10-25 | Object re-identification during image tracking |
US16/664,160 US11568554B2 (en) | 2019-10-25 | 2019-10-25 | Contour-based detection of closely spaced objects |
US16/663,710 US11188763B2 (en) | 2019-10-25 | 2019-10-25 | Topview object tracking using a sensor array |
US16/664,363 US11080529B2 (en) | 2019-10-25 | 2019-10-25 | Determining candidate object identities during image tracking |
US16/663,901 | 2019-10-25 | ||
US16/664,332 | 2019-10-25 | ||
US16/664,363 | 2019-10-25 | ||
US16/663,472 | 2019-10-25 | ||
US16/663,472 US10614318B1 (en) | 2019-10-25 | 2019-10-25 | Sensor mapping to a global coordinate system using a marker grid |
US16/663,500 US10621444B1 (en) | 2019-10-25 | 2019-10-25 | Action detection during image tracking |
US16/663,533 US10789720B1 (en) | 2019-10-25 | 2019-10-25 | Multi-camera image tracking on a global plane |
US16/663,856 | 2019-10-25 | ||
US16/663,766 | 2019-10-25 | ||
US16/664,391 | 2019-10-25 | ||
PCT/US2020/057011 WO2021081297A1 (en) | 2019-10-25 | 2020-10-23 | Action detection during image tracking |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2022553088A true JP2022553088A (ja) | 2022-12-21 |
JP7515581B2 JP7515581B2 (ja) | 2024-07-12 |
Family
ID=73476231
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022523937A Active JP7515581B2 (ja) | 2019-10-25 | 2020-10-23 | 画像追跡中のアクション検出 |
Country Status (8)
Country | Link |
---|---|
US (2) | US11301691B2 (ja) |
EP (1) | EP4049172A1 (ja) |
JP (1) | JP7515581B2 (ja) |
KR (1) | KR20220100887A (ja) |
CN (1) | CN114830194A (ja) |
CA (1) | CA3165141A1 (ja) |
MX (1) | MX2022004898A (ja) |
WO (1) | WO2021081297A1 (ja) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11893759B2 (en) * | 2019-10-24 | 2024-02-06 | 7-Eleven, Inc. | Homography error correction using a disparity mapping |
MX2022004898A (es) * | 2019-10-25 | 2022-05-16 | 7 Eleven Inc | Deteccion de accion durante el seguimiento de imagenes. |
US11024053B1 (en) * | 2019-12-20 | 2021-06-01 | NEX Team Inc. | User analytics using a mobile device camera and associated systems and methods |
JP2022012399A (ja) * | 2020-07-01 | 2022-01-17 | キヤノン株式会社 | 情報処理装置、情報処理装置の制御方法、およびプログラム |
US20230112584A1 (en) * | 2021-10-08 | 2023-04-13 | Target Brands, Inc. | Multi-camera person re-identification |
Family Cites Families (106)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01173292A (ja) | 1987-12-28 | 1989-07-07 | Ncr Corp | キヤツシヤレス・チエツクアウト・システム |
EP0348484B1 (en) | 1987-12-28 | 1993-09-29 | Ncr International Inc. | Checkout system and method |
CA2201423C (en) | 1997-04-01 | 2007-06-26 | Michael Coveley | Cashierless shopping store and components for use therein |
US6437819B1 (en) | 1999-06-25 | 2002-08-20 | Rohan Christopher Loveland | Automated video person tracking system |
US7688349B2 (en) * | 2001-12-07 | 2010-03-30 | International Business Machines Corporation | Method of detecting and tracking groups of people |
US7797204B2 (en) * | 2001-12-08 | 2010-09-14 | Balent Bruce F | Distributed personal automation and shopping method, apparatus, and process |
JP4413633B2 (ja) * | 2004-01-29 | 2010-02-10 | 株式会社ゼータ・ブリッジ | 情報検索システム、情報検索方法、情報検索装置、情報検索プログラム、画像認識装置、画像認識方法および画像認識プログラム、ならびに、販売システム |
US20160098095A1 (en) | 2004-01-30 | 2016-04-07 | Electronic Scripting Products, Inc. | Deriving Input from Six Degrees of Freedom Interfaces |
US8289390B2 (en) | 2004-07-28 | 2012-10-16 | Sri International | Method and apparatus for total situational awareness and monitoring |
DE602006020422D1 (de) * | 2005-03-25 | 2011-04-14 | Sensormatic Electronics Llc | Intelligente kameraauswahl und objektverfolgung |
US20070011099A1 (en) | 2005-07-11 | 2007-01-11 | Conrad Sheehan | SECURE ELECTRONIC TRANSACTIONS BETWEEN A MOBILE DEVICE AND OTHER MOBILE, FIXED, or VIRTUAL DEVICES |
US7357316B2 (en) | 2005-09-29 | 2008-04-15 | International Business Machines Corporation | Retail environment |
US20070282665A1 (en) | 2006-06-02 | 2007-12-06 | Buehler Christopher J | Systems and methods for providing video surveillance data |
US7844509B2 (en) | 2006-08-25 | 2010-11-30 | International Business Machines Corporation | Method and apparatus for monitoring depletion of an item |
US8861898B2 (en) * | 2007-03-16 | 2014-10-14 | Sony Corporation | Content image search |
US7672876B2 (en) | 2007-07-13 | 2010-03-02 | Sunrise R&D Holdings, Llc | System for shopping in a store |
US8630924B2 (en) * | 2007-08-31 | 2014-01-14 | Accenture Global Services Limited | Detection of stock out conditions based on image processing |
WO2009035698A1 (en) * | 2007-09-12 | 2009-03-19 | Airkast, Inc. | Wireless device tagging system and method |
DE602008004330D1 (de) | 2008-07-04 | 2011-02-17 | Sick Ivp Aktiebolag | Kalibrierung eines Profilmesssystems |
US7848964B2 (en) | 2008-07-14 | 2010-12-07 | Sunrise R&D Holdings, Llc | Method for shopping in a store |
US8396755B2 (en) * | 2008-07-14 | 2013-03-12 | Sunrise R&D Holdings, Llc | Method of reclaiming products from a retail store |
US8520979B2 (en) * | 2008-08-19 | 2013-08-27 | Digimarc Corporation | Methods and systems for content processing |
US20100138281A1 (en) | 2008-11-12 | 2010-06-03 | Yinying Zhang | System and method for retail store shelf stock monitoring, predicting, and reporting |
US8494909B2 (en) | 2009-02-09 | 2013-07-23 | Datalogic ADC, Inc. | Automatic learning in a merchandise checkout system with visual recognition |
US20100318440A1 (en) | 2010-03-18 | 2010-12-16 | Coveley Michael Ej | Cashierless, Hygienic, Automated, Computerized, Programmed Shopping Store, Storeroom And Supply Pipeline With Administration Cataloguing To Eliminate Retail Fraud; With Innovative Components For Use Therein |
US8639440B2 (en) * | 2010-03-31 | 2014-01-28 | International Business Machines Corporation | Augmented reality shopper routing |
US9727838B2 (en) * | 2011-03-17 | 2017-08-08 | Triangle Strategy Group, LLC | On-shelf tracking system |
EP2693951B1 (en) | 2011-04-08 | 2018-10-24 | Algotec Systems Ltd. | Image analysis for specific objects |
US9129277B2 (en) * | 2011-08-30 | 2015-09-08 | Digimarc Corporation | Methods and arrangements for identifying objects |
US20130284806A1 (en) | 2011-10-19 | 2013-10-31 | Ran Margalit | Automated purchasing system |
US9159047B2 (en) | 2011-11-11 | 2015-10-13 | James T. Winkel | Projected image planogram system |
US9262780B2 (en) * | 2012-01-09 | 2016-02-16 | Google Inc. | Method and apparatus for enabling real-time product and vendor identification |
US10049281B2 (en) | 2012-11-12 | 2018-08-14 | Shopperception, Inc. | Methods and systems for measuring human interaction |
US20140152847A1 (en) * | 2012-12-03 | 2014-06-05 | Google Inc. | Product comparisons from in-store image and video captures |
US20140171116A1 (en) * | 2012-12-14 | 2014-06-19 | Anthony G. LaMarca | Location-aware mobile application management |
US9275361B2 (en) * | 2013-01-11 | 2016-03-01 | Tagnetics, Inc. | Out of stock sensor |
US9197998B2 (en) * | 2013-05-16 | 2015-11-24 | Marvell World Trade Ltd. | Method and system for positioning wireless device |
US10176456B2 (en) | 2013-06-26 | 2019-01-08 | Amazon Technologies, Inc. | Transitioning items from a materials handling facility |
US10268983B2 (en) | 2013-06-26 | 2019-04-23 | Amazon Technologies, Inc. | Detecting item interaction and movement |
US10296814B1 (en) | 2013-06-27 | 2019-05-21 | Amazon Technologies, Inc. | Automated and periodic updating of item images data store |
US9473747B2 (en) * | 2013-07-25 | 2016-10-18 | Ncr Corporation | Whole store scanner |
US10353982B1 (en) | 2013-08-13 | 2019-07-16 | Amazon Technologies, Inc. | Disambiguating between users |
US20160205341A1 (en) | 2013-08-20 | 2016-07-14 | Smarter Tv Ltd. | System and method for real-time processing of ultra-high resolution digital video |
US10366306B1 (en) | 2013-09-19 | 2019-07-30 | Amazon Technologies, Inc. | Item identification among item variations |
US10140483B1 (en) | 2014-06-17 | 2018-11-27 | Amazon Technologies, Inc. | Antenna embedded inventory shelf |
US10303133B1 (en) | 2014-06-23 | 2019-05-28 | Amazon Technologies, Inc. | Presenting predicted items to users |
WO2016029939A1 (en) | 2014-08-27 | 2016-03-03 | Metaio Gmbh | Method and system for determining at least one image feature in at least one image |
US10664705B2 (en) | 2014-09-26 | 2020-05-26 | Nec Corporation | Object tracking apparatus, object tracking system, object tracking method, display control device, object detection device, and computer-readable medium |
US9984354B1 (en) | 2014-09-30 | 2018-05-29 | Amazon Technologies, Inc. | Camera time synchronization system |
US10384869B1 (en) | 2014-12-15 | 2019-08-20 | Amazon Technologies, Inc. | Optical item management system |
US10169660B1 (en) | 2014-12-19 | 2019-01-01 | Amazon Technologies, Inc. | Counting inventory items using image analysis |
US9996818B1 (en) | 2014-12-19 | 2018-06-12 | Amazon Technologies, Inc. | Counting inventory items using image analysis and depth information |
US10438277B1 (en) | 2014-12-23 | 2019-10-08 | Amazon Technologies, Inc. | Determining an item involved in an event |
US10134004B1 (en) | 2014-12-23 | 2018-11-20 | Amazon Technologies, Inc. | Processing image data from a camera cluster |
US10291862B1 (en) | 2014-12-23 | 2019-05-14 | Amazon Technologies, Inc. | Camera hierarchy for monitoring large facilities |
US10475185B1 (en) | 2014-12-23 | 2019-11-12 | Amazon Technologies, Inc. | Associating a user with an event |
US10332066B1 (en) | 2015-03-30 | 2019-06-25 | Amazon Technologies, Inc. | Item management system using weight |
US10318917B1 (en) | 2015-03-31 | 2019-06-11 | Amazon Technologies, Inc. | Multiple sensor data fusion system |
US10733661B1 (en) | 2015-05-22 | 2020-08-04 | Walgreen Co. | Automatic mapping of store layout using soft object recognition |
US10064502B1 (en) | 2015-06-19 | 2018-09-04 | Amazon Technologies, Inc. | Shelf with integrated electronics |
US10388019B1 (en) | 2015-06-23 | 2019-08-20 | Amazon Technologies, Inc. | Associating an agent with an event based on multiple inputs |
US10262293B1 (en) | 2015-06-23 | 2019-04-16 | Amazon Technologies, Inc | Item management system using multiple scales |
CN108368165A (zh) | 2015-06-24 | 2018-08-03 | 德克萨斯大学系统董事会 | 用于治疗颅内出血相关症状的方法和组合物 |
US9911290B1 (en) | 2015-07-25 | 2018-03-06 | Gary M. Zalewski | Wireless coded communication (WCC) devices for tracking retail interactions with goods and association to user accounts |
US10157452B1 (en) | 2015-09-28 | 2018-12-18 | Amazon Technologies, Inc. | Image processing system for image rectification |
US10339411B1 (en) | 2015-09-28 | 2019-07-02 | Amazon Technologies, Inc. | System to represent three-dimensional objects |
US20180374239A1 (en) | 2015-11-09 | 2018-12-27 | Cognex Corporation | System and method for field calibration of a vision system imaging two opposite sides of a calibration object |
US10021371B2 (en) | 2015-11-24 | 2018-07-10 | Dell Products, Lp | Method and apparatus for gross-level user and input detection using similar or dissimilar camera pair |
US10244363B1 (en) | 2015-12-28 | 2019-03-26 | Amazon Technologies, Inc. | Entry portal identification system |
US10318919B2 (en) | 2016-02-10 | 2019-06-11 | International Business Machines Corporation | Smart shelves for retail industry |
US10198710B1 (en) | 2016-03-28 | 2019-02-05 | Amazon Technologies, Inc. | System to determine a change in weight at a load cell |
US9886827B2 (en) | 2016-04-25 | 2018-02-06 | Bernd Schoner | Registry verification for a mechanized store |
US10846996B2 (en) | 2016-04-25 | 2020-11-24 | Standard Cognition Corp. | Registry verification for a mechanized store using radio frequency tags |
EP4410155A1 (en) | 2016-05-09 | 2024-08-07 | Grabango Co. | System and method for computer vision driven applications within an environment |
US20180048894A1 (en) | 2016-08-11 | 2018-02-15 | Qualcomm Incorporated | Methods and systems of performing lighting condition change compensation in video analytics |
US10321275B1 (en) | 2016-09-22 | 2019-06-11 | Amazon Technologies, Inc. | Multi-frequency user tracking system |
US10368057B1 (en) | 2016-09-28 | 2019-07-30 | Amazon Technologies, Inc. | Synchronizing data streams |
US10459103B1 (en) | 2016-09-29 | 2019-10-29 | Amazon Technologies, Inc. | Magnetic entry portal identification system |
US10861051B2 (en) * | 2016-10-05 | 2020-12-08 | Abl Ip Holding, Llc | Assessing and reporting in-store recycling of wireless beacon components used with retail displays |
US9972187B1 (en) | 2016-11-13 | 2018-05-15 | Agility4Life | Biomechanical parameter determination for emergency alerting and health assessment |
US10157308B2 (en) | 2016-11-30 | 2018-12-18 | Whirlpool Corporation | Interaction recognition and analysis system |
US10181113B2 (en) | 2017-03-09 | 2019-01-15 | SmartMart Inc. | Automated retail facility |
EP3379459A1 (en) | 2017-03-24 | 2018-09-26 | Tata Consultancy Services Limited | System and method for telecom inventory management |
US10250868B1 (en) | 2017-03-29 | 2019-04-02 | Amazon Technologies, Inc. | Synchronizing data streams |
US10466095B1 (en) | 2017-06-27 | 2019-11-05 | Amazon Technologies, Inc. | Multi-load cell weighing shelf |
US10445694B2 (en) | 2017-08-07 | 2019-10-15 | Standard Cognition, Corp. | Realtime inventory tracking using deep learning |
US10853965B2 (en) | 2017-08-07 | 2020-12-01 | Standard Cognition, Corp | Directional impression analysis using deep learning |
US10133933B1 (en) | 2017-08-07 | 2018-11-20 | Standard Cognition, Corp | Item put and take detection using image recognition |
US10127438B1 (en) | 2017-08-07 | 2018-11-13 | Standard Cognition, Corp | Predicting inventory events using semantic diffing |
US10474988B2 (en) | 2017-08-07 | 2019-11-12 | Standard Cognition, Corp. | Predicting inventory events using foreground/background processing |
US10055853B1 (en) | 2017-08-07 | 2018-08-21 | Standard Cognition, Corp | Subject identification and tracking using image recognition |
US10650545B2 (en) | 2017-08-07 | 2020-05-12 | Standard Cognition, Corp. | Systems and methods to check-in shoppers in a cashier-less store |
US10474991B2 (en) | 2017-08-07 | 2019-11-12 | Standard Cognition, Corp. | Deep learning-based store realograms |
US11023850B2 (en) | 2017-08-07 | 2021-06-01 | Standard Cognition, Corp. | Realtime inventory location management using deep learning |
US11250376B2 (en) | 2017-08-07 | 2022-02-15 | Standard Cognition, Corp | Product correlation analysis using deep learning |
US11232687B2 (en) | 2017-08-07 | 2022-01-25 | Standard Cognition, Corp | Deep learning-based shopper statuses in a cashier-less store |
JP7228569B2 (ja) | 2017-08-07 | 2023-02-24 | スタンダード コグニション コーポレーション | 画像認識を用いた被写体識別及び追跡 |
US20200364752A1 (en) | 2017-08-25 | 2020-11-19 | Nec Corporation | Storefront device, storefront system, storefront management method, and program |
EP3738073A4 (en) | 2018-01-10 | 2021-10-06 | Trax Technology Solutions Pte Ltd. | AUTOMATIC MONITORING OF RETAIL PRODUCTS BASED ON CAPTURED IMAGES |
CN111919233B (zh) | 2018-03-20 | 2024-05-17 | 日本电气株式会社 | 店铺管理设备和店铺管理方法 |
US10282852B1 (en) | 2018-07-16 | 2019-05-07 | Accel Robotics Corporation | Autonomous store tracking system |
US10614318B1 (en) | 2019-10-25 | 2020-04-07 | 7-Eleven, Inc. | Sensor mapping to a global coordinate system using a marker grid |
US10789720B1 (en) | 2019-10-25 | 2020-09-29 | 7-Eleven, Inc. | Multi-camera image tracking on a global plane |
US10621444B1 (en) | 2019-10-25 | 2020-04-14 | 7-Eleven, Inc. | Action detection during image tracking |
CN110009836A (zh) | 2019-03-29 | 2019-07-12 | 江西理工大学 | 基于高光谱摄像技术的深度学习的系统及方法 |
MX2022004898A (es) * | 2019-10-25 | 2022-05-16 | 7 Eleven Inc | Deteccion de accion durante el seguimiento de imagenes. |
-
2020
- 2020-10-23 MX MX2022004898A patent/MX2022004898A/es unknown
- 2020-10-23 KR KR1020227017154A patent/KR20220100887A/ko active IP Right Grant
- 2020-10-23 CA CA3165141A patent/CA3165141A1/en active Pending
- 2020-10-23 JP JP2022523937A patent/JP7515581B2/ja active Active
- 2020-10-23 EP EP20808558.9A patent/EP4049172A1/en active Pending
- 2020-10-23 WO PCT/US2020/057011 patent/WO2021081297A1/en unknown
- 2020-10-23 CN CN202080088563.4A patent/CN114830194A/zh active Pending
- 2020-11-25 US US17/105,230 patent/US11301691B2/en active Active
-
2022
- 2022-02-10 US US17/650,639 patent/US20220165063A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
CN114830194A (zh) | 2022-07-29 |
WO2021081297A1 (en) | 2021-04-29 |
CA3165141A1 (en) | 2021-04-29 |
EP4049172A1 (en) | 2022-08-31 |
JP7515581B2 (ja) | 2024-07-12 |
US11301691B2 (en) | 2022-04-12 |
MX2022004898A (es) | 2022-05-16 |
US20210124953A1 (en) | 2021-04-29 |
US20220165063A1 (en) | 2022-05-26 |
KR20220100887A (ko) | 2022-07-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11823397B2 (en) | Multi-camera image tracking on a global plane | |
US11974077B2 (en) | Action detection during image tracking | |
US10614318B1 (en) | Sensor mapping to a global coordinate system using a marker grid | |
US11861852B2 (en) | Image-based action detection using contour dilation | |
US11625918B2 (en) | Detecting shelf interactions using a sensor array | |
US11721041B2 (en) | Sensor mapping to a global coordinate system | |
US11756211B2 (en) | Topview object tracking using a sensor array | |
US11756216B2 (en) | Object re-identification during image tracking | |
US11657538B2 (en) | Shelf position calibration in a global coordinate system using a sensor array | |
US11625923B2 (en) | Object assignment during image tracking | |
US11568554B2 (en) | Contour-based detection of closely spaced objects | |
US11676289B2 (en) | Sensor mapping to a global coordinate system using homography | |
US11657517B2 (en) | Auto-exclusion zone for contour-based object detection | |
US11659139B2 (en) | Determining candidate object identities during image tracking | |
US11645698B2 (en) | Topview item tracking using a sensor array | |
US11403772B2 (en) | Vector-based object re-identification during image tracking | |
US11847688B2 (en) | Detecting and identifying misplaced items using a sensor array | |
JP7515581B2 (ja) | 画像追跡中のアクション検出 | |
US11720952B2 (en) | Identifying non-uniform weight objects using a sensor array |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20231023 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20231023 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20240109 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20240327 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240604 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240702 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7515581 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |